Commit 7df4f9a9 authored by Willy Tarreau's avatar Willy Tarreau Committed by Jacek Anaszewski

leds: ledtrig-activity: Add a system activity LED trigger

The "activity" trigger was inspired by the heartbeat one, but aims at
providing instant indication of the immediate CPU usage. Under idle
condition, it flashes 10ms every second. At 100% usage, it flashes
90ms every 100ms. The blinking frequency increases from 1 to 10 Hz
until either the load is high enough to saturate one CPU core or 50%
load is reached on a single-core system. Then past this point only the
duty cycle increases from 10 to 90%.

This results in a very visible activity reporting allowing one to
immediately tell whether a machine is under load or not, making it
quite suitable to be used in clusters.
Signed-off-by: default avatarWilly Tarreau <w@1wt.eu>
Signed-off-by: default avatarJacek Anaszewski <jacek.anaszewski@gmail.com>
parent 9e66317d
......@@ -77,6 +77,15 @@ config LEDS_TRIGGER_CPU
If unsure, say N.
config LEDS_TRIGGER_ACTIVITY
tristate "LED activity Trigger"
depends on LEDS_TRIGGERS
help
This allows LEDs to be controlled by a immediate CPU usage.
The flash frequency and duty cycle varies from faint flashes to
intense brightness depending on the instant CPU load.
If unsure, say N.
config LEDS_TRIGGER_GPIO
tristate "LED GPIO Trigger"
depends on LEDS_TRIGGERS
......
......@@ -6,6 +6,7 @@ obj-$(CONFIG_LEDS_TRIGGER_HEARTBEAT) += ledtrig-heartbeat.o
obj-$(CONFIG_LEDS_TRIGGER_BACKLIGHT) += ledtrig-backlight.o
obj-$(CONFIG_LEDS_TRIGGER_GPIO) += ledtrig-gpio.o
obj-$(CONFIG_LEDS_TRIGGER_CPU) += ledtrig-cpu.o
obj-$(CONFIG_LEDS_TRIGGER_ACTIVITY) += ledtrig-activity.o
obj-$(CONFIG_LEDS_TRIGGER_DEFAULT_ON) += ledtrig-default-on.o
obj-$(CONFIG_LEDS_TRIGGER_TRANSIENT) += ledtrig-transient.o
obj-$(CONFIG_LEDS_TRIGGER_CAMERA) += ledtrig-camera.o
......
/*
* Activity LED trigger
*
* Copyright (C) 2017 Willy Tarreau <w@1wt.eu>
* Partially based on Atsushi Nemoto's ledtrig-heartbeat.c.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
*/
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/leds.h>
#include <linux/module.h>
#include <linux/reboot.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/timer.h>
#include "../leds.h"
static int panic_detected;
struct activity_data {
struct timer_list timer;
u64 last_used;
u64 last_boot;
int time_left;
int state;
int invert;
};
static void led_activity_function(unsigned long data)
{
struct led_classdev *led_cdev = (struct led_classdev *)data;
struct activity_data *activity_data = led_cdev->trigger_data;
struct timespec boot_time;
unsigned int target;
unsigned int usage;
int delay;
u64 curr_used;
u64 curr_boot;
s32 diff_used;
s32 diff_boot;
int cpus;
int i;
if (test_and_clear_bit(LED_BLINK_BRIGHTNESS_CHANGE, &led_cdev->work_flags))
led_cdev->blink_brightness = led_cdev->new_blink_brightness;
if (unlikely(panic_detected)) {
/* full brightness in case of panic */
led_set_brightness_nosleep(led_cdev, led_cdev->blink_brightness);
return;
}
get_monotonic_boottime(&boot_time);
cpus = 0;
curr_used = 0;
for_each_possible_cpu(i) {
curr_used += kcpustat_cpu(i).cpustat[CPUTIME_USER]
+ kcpustat_cpu(i).cpustat[CPUTIME_NICE]
+ kcpustat_cpu(i).cpustat[CPUTIME_SYSTEM]
+ kcpustat_cpu(i).cpustat[CPUTIME_SOFTIRQ]
+ kcpustat_cpu(i).cpustat[CPUTIME_IRQ];
cpus++;
}
/* We come here every 100ms in the worst case, so that's 100M ns of
* cumulated time. By dividing by 2^16, we get the time resolution
* down to 16us, ensuring we won't overflow 32-bit computations below
* even up to 3k CPUs, while keeping divides cheap on smaller systems.
*/
curr_boot = timespec_to_ns(&boot_time) * cpus;
diff_boot = (curr_boot - activity_data->last_boot) >> 16;
diff_used = (curr_used - activity_data->last_used) >> 16;
activity_data->last_boot = curr_boot;
activity_data->last_used = curr_used;
if (diff_boot <= 0 || diff_used < 0)
usage = 0;
else if (diff_used >= diff_boot)
usage = 100;
else
usage = 100 * diff_used / diff_boot;
/*
* Now we know the total boot_time multiplied by the number of CPUs, and
* the total idle+wait time for all CPUs. We'll compare how they evolved
* since last call. The % of overall CPU usage is :
*
* 1 - delta_idle / delta_boot
*
* What we want is that when the CPU usage is zero, the LED must blink
* slowly with very faint flashes that are detectable but not disturbing
* (typically 10ms every second, or 10ms ON, 990ms OFF). Then we want
* blinking frequency to increase up to the point where the load is
* enough to saturate one core in multi-core systems or 50% in single
* core systems. At this point it should reach 10 Hz with a 10/90 duty
* cycle (10ms ON, 90ms OFF). After this point, the blinking frequency
* remains stable (10 Hz) and only the duty cycle increases to report
* the activity, up to the point where we have 90ms ON, 10ms OFF when
* all cores are saturated. It's important that the LED never stays in
* a steady state so that it's easy to distinguish an idle or saturated
* machine from a hung one.
*
* This gives us :
* - a target CPU usage of min(50%, 100%/#CPU) for a 10% duty cycle
* (10ms ON, 90ms OFF)
* - below target :
* ON_ms = 10
* OFF_ms = 90 + (1 - usage/target) * 900
* - above target :
* ON_ms = 10 + (usage-target)/(100%-target) * 80
* OFF_ms = 90 - (usage-target)/(100%-target) * 80
*
* In order to keep a good responsiveness, we cap the sleep time to
* 100 ms and keep track of the sleep time left. This allows us to
* quickly change it if needed.
*/
activity_data->time_left -= 100;
if (activity_data->time_left <= 0) {
activity_data->time_left = 0;
activity_data->state = !activity_data->state;
led_set_brightness_nosleep(led_cdev,
(activity_data->state ^ activity_data->invert) ?
led_cdev->blink_brightness : LED_OFF);
}
target = (cpus > 1) ? (100 / cpus) : 50;
if (usage < target)
delay = activity_data->state ?
10 : /* ON */
990 - 900 * usage / target; /* OFF */
else
delay = activity_data->state ?
10 + 80 * (usage - target) / (100 - target) : /* ON */
90 - 80 * (usage - target) / (100 - target); /* OFF */
if (!activity_data->time_left || delay <= activity_data->time_left)
activity_data->time_left = delay;
delay = min_t(int, activity_data->time_left, 100);
mod_timer(&activity_data->timer, jiffies + msecs_to_jiffies(delay));
}
static ssize_t led_invert_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct led_classdev *led_cdev = dev_get_drvdata(dev);
struct activity_data *activity_data = led_cdev->trigger_data;
return sprintf(buf, "%u\n", activity_data->invert);
}
static ssize_t led_invert_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct led_classdev *led_cdev = dev_get_drvdata(dev);
struct activity_data *activity_data = led_cdev->trigger_data;
unsigned long state;
int ret;
ret = kstrtoul(buf, 0, &state);
if (ret)
return ret;
activity_data->invert = !!state;
return size;
}
static DEVICE_ATTR(invert, 0644, led_invert_show, led_invert_store);
static void activity_activate(struct led_classdev *led_cdev)
{
struct activity_data *activity_data;
int rc;
activity_data = kzalloc(sizeof(*activity_data), GFP_KERNEL);
if (!activity_data)
return;
led_cdev->trigger_data = activity_data;
rc = device_create_file(led_cdev->dev, &dev_attr_invert);
if (rc) {
kfree(led_cdev->trigger_data);
return;
}
setup_timer(&activity_data->timer,
led_activity_function, (unsigned long)led_cdev);
if (!led_cdev->blink_brightness)
led_cdev->blink_brightness = led_cdev->max_brightness;
led_activity_function(activity_data->timer.data);
set_bit(LED_BLINK_SW, &led_cdev->work_flags);
led_cdev->activated = true;
}
static void activity_deactivate(struct led_classdev *led_cdev)
{
struct activity_data *activity_data = led_cdev->trigger_data;
if (led_cdev->activated) {
del_timer_sync(&activity_data->timer);
device_remove_file(led_cdev->dev, &dev_attr_invert);
kfree(activity_data);
clear_bit(LED_BLINK_SW, &led_cdev->work_flags);
led_cdev->activated = false;
}
}
static struct led_trigger activity_led_trigger = {
.name = "activity",
.activate = activity_activate,
.deactivate = activity_deactivate,
};
static int activity_reboot_notifier(struct notifier_block *nb,
unsigned long code, void *unused)
{
led_trigger_unregister(&activity_led_trigger);
return NOTIFY_DONE;
}
static int activity_panic_notifier(struct notifier_block *nb,
unsigned long code, void *unused)
{
panic_detected = 1;
return NOTIFY_DONE;
}
static struct notifier_block activity_reboot_nb = {
.notifier_call = activity_reboot_notifier,
};
static struct notifier_block activity_panic_nb = {
.notifier_call = activity_panic_notifier,
};
static int __init activity_init(void)
{
int rc = led_trigger_register(&activity_led_trigger);
if (!rc) {
atomic_notifier_chain_register(&panic_notifier_list,
&activity_panic_nb);
register_reboot_notifier(&activity_reboot_nb);
}
return rc;
}
static void __exit activity_exit(void)
{
unregister_reboot_notifier(&activity_reboot_nb);
atomic_notifier_chain_unregister(&panic_notifier_list,
&activity_panic_nb);
led_trigger_unregister(&activity_led_trigger);
}
module_init(activity_init);
module_exit(activity_exit);
MODULE_AUTHOR("Willy Tarreau <w@1wt.eu>");
MODULE_DESCRIPTION("Activity LED trigger");
MODULE_LICENSE("GPL");
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment