Commit 7ec8ca4b authored by Michael Hunold's avatar Michael Hunold Committed by Linus Torvalds

[PATCH] DVB: add frontend

- [DVB] add new driver for Zarlink DVB-T MT352 frontend
- [DVB] add new driver for Conexant 22702 DVB OFDM frontend 
Signed-off-by: default avatarMichael Hunold <hunold@linuxtv.org>
Signed-off-by: default avatarAndrew Morton <akpm@osdl.org>
Signed-off-by: default avatarLinus Torvalds <torvalds@osdl.org>
parent 3742c04d
......@@ -18,3 +18,5 @@ obj-$(CONFIG_DVB_VES1X93) += ves1x93.o
obj-$(CONFIG_DVB_TDA1004X) += tda1004x.o
obj-$(CONFIG_DVB_SP887X) += sp887x.o
obj-$(CONFIG_DVB_NXT6000) += nxt6000.o
obj-$(CONFIG_DVB_MT352) += mt352.o
/*
Conexant 22702 DVB OFDM frontend driver
based on:
Alps TDMB7 DVB OFDM frontend driver
Copyright (C) 2001-2002 Convergence Integrated Media GmbH
Holger Waechtler <holger@convergence.de>
Copyright (C) 2004 Steven Toth <steve@toth.demon.co.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include "dvb_frontend.h"
#define FRONTEND_NAME "dvbfe_cx22702"
#define I2C_EEPROM_SLAVE_ADDR 0x50
#define PLLTYPE_DTT7592 1
#define PLLTYPE_DTT7595 2
#define PLLTYPE_DTT7579 3
static int debug = 0;
#define dprintk if (debug) printk
static struct dvb_frontend_info cx22702_info = {
.name = "CX22702 Demod Thomson 759x/7579 PLL",
.type = FE_OFDM,
.frequency_min = 177000000,
.frequency_max = 858000000,
.frequency_stepsize = 166666,
.caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
FE_CAN_HIERARCHY_AUTO | FE_CAN_GUARD_INTERVAL_AUTO |
FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_RECOVER
};
struct cx22702_state {
struct i2c_adapter *i2c;
struct dvb_adapter *dvb;
struct dvb_frontend_info cx22702_info;
char pll_type;
int pll_addr;
int demod_addr;
u8 prevUCBlocks;
};
/* Register values to initialise the demod */
static u8 init_tab [] = {
0x00, 0x00, /* Stop aquisition */
0x0B, 0x06,
0x09, 0x01,
0x0D, 0x41,
0x16, 0x32,
0x20, 0x0A,
0x21, 0x17,
0x24, 0x3e,
0x26, 0xff,
0x27, 0x10,
0x28, 0x00,
0x29, 0x00,
0x2a, 0x10,
0x2b, 0x00,
0x2c, 0x10,
0x2d, 0x00,
0x48, 0xd4,
0x49, 0x56,
0x6b, 0x1e,
0xc8, 0x02,
0xf8, 0x02,
0xf9, 0x00,
0xfa, 0x00,
0xfb, 0x00,
0xfc, 0x00,
0xfd, 0x00,
};
static struct i2c_client client_template;
static int cx22702_writereg (struct i2c_adapter *i2c, int demod_addr, u8 reg, u8 data)
{
int ret;
u8 buf [] = { reg, data };
struct i2c_msg msg = { .addr = demod_addr, .flags = 0, .buf = buf, .len = 2 };
ret = i2c_transfer(i2c, &msg, 1);
if (ret != 1)
printk("%s: writereg error (reg == 0x%02x, val == 0x%02x, ret == %i)\n",
__FUNCTION__, reg, data, ret);
return (ret != 1) ? -1 : 0;
}
static u8 cx22702_readreg (struct i2c_adapter *i2c, int demod_addr, u8 reg)
{
int ret;
u8 b0 [] = { reg };
u8 b1 [] = { 0 };
struct i2c_msg msg [] = {
{ .addr = demod_addr, .flags = 0, .buf = b0, .len = 1 },
{ .addr = demod_addr, .flags = I2C_M_RD, .buf = b1, .len = 1 } };
ret = i2c_transfer(i2c, msg, 2);
if (ret != 2)
printk("%s: readreg error (ret == %i)\n", __FUNCTION__, ret);
return b1[0];
}
static int pll_readreg(struct i2c_adapter *i2c, int pll_addr, int demod_addr, u8 reg)
{
u8 b0 [] = { reg };
u8 b1 [] = { 0 };
struct i2c_msg msg [] = {
{ .addr = pll_addr, .flags = 0, .buf = b0, .len = 1 },
{ .addr = pll_addr, .flags = I2C_M_RD, .buf = b1, .len = 1 }
};
cx22702_writereg (i2c, demod_addr, 0x0D, cx22702_readreg(i2c,demod_addr,0x0D) &0xfe); // Enable PLL bus
if (i2c_transfer(i2c, msg, 2) != 2) {
printk ("%s i2c pll request failed\n", __FUNCTION__);
cx22702_writereg (i2c, demod_addr, 0x0D, cx22702_readreg(i2c,demod_addr,0x0D) | 1); // Disable PLL bus
return -ENODEV;
}
cx22702_writereg (i2c, demod_addr, 0x0D, cx22702_readreg(i2c,demod_addr,0x0D) | 1); // Disable PLL bus
return b1[0];
}
static int pll_write (struct i2c_adapter *i2c, int pll_addr, int demod_addr, u8 data [4])
{
int ret=0;
struct i2c_msg msg = { .addr = pll_addr, .flags = 0, .buf = data, .len = 4 };
cx22702_writereg (i2c, demod_addr, 0x0D, cx22702_readreg(i2c,demod_addr,0x0D) &0xfe); // Enable PLL bus
ret = i2c_transfer(i2c, &msg, 1);
cx22702_writereg (i2c, demod_addr, 0x0D, cx22702_readreg(i2c,demod_addr,0x0D) | 1); // Disable PLL bus
if (ret != 1)
printk("%s: i/o error (addr == 0x%02x, ret == %i)\n", __FUNCTION__, msg.addr, ret);
return (ret != 1) ? -1 : 0;
}
static int pll_dtt759x_set_tv_freq (struct i2c_adapter *i2c, struct cx22702_state *state, u32 freq, int bandwidth)
{
int ret;
u32 div = (freq + 36166667) / 166666;
/* dividerhigh, dividerlow, control, bandwidth switch tuner args */
unsigned char buf [4] = {
(div >> 8) & 0x7f,
div & 0xff,
0x84,
0x00
};
if(freq < 470000000) {
buf[3] = 0x02;
} else {
buf[3] = 0x08;
}
if(bandwidth == BANDWIDTH_7_MHZ) {
buf[3] |= 0x10;
}
// Now compensate for the charge pump osc
if(freq <= 264000000) {
buf[2] = buf[2] | 0x30;
} else if (freq <= 735000000) {
buf[2] = buf[2] | 0x38;
} else if (freq <= 835000000) {
buf[2] = buf[2] | 0x70;
} else if (freq <= 896000000) {
buf[2] = buf[2] | 0x78;
}
dprintk ("%s: freq == %i, div == 0x%04x\n", __FUNCTION__, (int) freq, (int) div);
ret= pll_write (i2c, state->pll_addr, state->demod_addr, buf);
if(ret<0) {
dprintk ("%s: first pll_write failed\n",__FUNCTION__);
return ret;
}
/* Set the AGC during search */
buf[2]=(buf[2] & 0xc7) | 0x18;
buf[3]=0xa0;
ret=pll_write (i2c, state->pll_addr, state->demod_addr, buf);
if(ret<0) {
dprintk ("%s: second pll_write failed\n",__FUNCTION__);
return ret;
}
/* Tuner needs a small amount of time */
msleep(100);
/* Set the AGC post-search */
buf[3]=0x20;
ret=pll_write (i2c, state->pll_addr, state->demod_addr, buf);
if(ret<0) {
dprintk ("%s: third pll_write failed\n",__FUNCTION__);
return ret;
}
return ret;
}
static int pll_dtt7579_set_tv_freq (struct i2c_adapter *i2c, struct cx22702_state *state, u32 freq, int bandwidth)
{
int ret;
u32 div = (freq + 36166667) / 166666;
/* dividerhigh, dividerlow */
unsigned char buf [4] = {
div >> 8,
div & 0xff,
0x00,
0x00
};
// FIXME: bandwidth setting unknown
// Now compensate for the charge pump osc
if(freq <= 506000000) {
buf[2] = 0xb4;
buf[3] = 0x02;
} else if (freq <= 735000000) {
buf[2] = 0xbc;
buf[3] = 0x08;
} else if (freq <= 835000000) {
buf[2] = 0xf4;
buf[3] = 0x08;
} else if (freq <= 896000000) {
buf[2] = 0xfc;
buf[3] = 0x08;
}
dprintk ("%s: freq == %i, div == 0x%04x\n", __FUNCTION__, (int) freq, (int) div);
ret= pll_write (i2c, state->pll_addr, state->demod_addr, buf);
if(ret<0) {
dprintk ("%s: first pll_write failed\n",__FUNCTION__);
return ret;
}
/* Set the AGC to search */
buf[2]=(buf[2] & 0xdc) | 0x9c;
buf[3]=0xa0;
ret=pll_write (i2c, state->pll_addr, state->demod_addr, buf);
if(ret<0) {
dprintk ("%s: second pll_write failed\n",__FUNCTION__);
return ret;
}
return ret;
}
/* Reset the demod hardware and reset all of the configuration registers
to a default state. */
static int cx22702_init (struct i2c_adapter *i2c, struct cx22702_state *state)
{
int i;
cx22702_writereg (i2c, state->demod_addr, 0x00, 0x02);
msleep(10);
for (i=0; i<sizeof(init_tab); i+=2)
cx22702_writereg (i2c, state->demod_addr, init_tab[i], init_tab[i+1]);
return 0;
}
static int cx22702_set_inversion (struct i2c_adapter *i2c, struct cx22702_state *state, int inversion)
{
u8 val;
switch (inversion) {
case INVERSION_AUTO:
return -EOPNOTSUPP;
case INVERSION_ON:
val = cx22702_readreg (i2c, state->demod_addr, 0x0C);
return cx22702_writereg (i2c, state->demod_addr, 0x0C, val | 0x01);
case INVERSION_OFF:
val = cx22702_readreg (i2c, state->demod_addr, 0x0C);
return cx22702_writereg (i2c, state->demod_addr, 0x0C, val & 0xfe);
default:
return -EINVAL;
}
}
/* Talk to the demod, set the FEC, GUARD, QAM settings etc */
static int cx22702_set_tps (struct i2c_adapter *i2c, struct cx22702_state *state,
struct dvb_frontend_parameters *p)
{
u8 val;
/* set PLL */
switch(state->pll_type) {
case PLLTYPE_DTT7592:
case PLLTYPE_DTT7595:
pll_dtt759x_set_tv_freq (i2c, state, p->frequency, p->u.ofdm.bandwidth);
break;
case PLLTYPE_DTT7579:
pll_dtt7579_set_tv_freq (i2c, state, p->frequency, p->u.ofdm.bandwidth);
break;
}
/* set inversion */
cx22702_set_inversion (i2c, state, p->inversion);
/* set bandwidth */
switch(p->u.ofdm.bandwidth) {
case BANDWIDTH_6_MHZ:
cx22702_writereg(i2c, state->demod_addr, 0x0C, (cx22702_readreg(i2c, state->demod_addr, 0x0C) & 0xcf) | 0x20 );
break;
case BANDWIDTH_7_MHZ:
cx22702_writereg(i2c, state->demod_addr, 0x0C, (cx22702_readreg(i2c, state->demod_addr, 0x0C) & 0xcf) | 0x10 );
break;
case BANDWIDTH_8_MHZ:
cx22702_writereg(i2c, state->demod_addr, 0x0C, cx22702_readreg(i2c, state->demod_addr, 0x0C) &0xcf );
break;
default:
dprintk ("%s: invalid bandwidth\n",__FUNCTION__);
return -EINVAL;
}
p->u.ofdm.code_rate_LP = FEC_AUTO; //temp hack as manual not working
/* use auto configuration? */
if((p->u.ofdm.hierarchy_information==HIERARCHY_AUTO) ||
(p->u.ofdm.constellation==QAM_AUTO) ||
(p->u.ofdm.code_rate_HP==FEC_AUTO) ||
(p->u.ofdm.code_rate_LP==FEC_AUTO) ||
(p->u.ofdm.guard_interval==GUARD_INTERVAL_AUTO) ||
(p->u.ofdm.transmission_mode==TRANSMISSION_MODE_AUTO) ) {
/* TPS Source - use hardware driven values */
cx22702_writereg(i2c, state->demod_addr, 0x06, 0x10);
cx22702_writereg(i2c, state->demod_addr, 0x07, 0x9);
cx22702_writereg(i2c, state->demod_addr, 0x08, 0xC1);
cx22702_writereg(i2c, state->demod_addr, 0x0B, cx22702_readreg(i2c, state->demod_addr, 0x0B) & 0xfc );
cx22702_writereg(i2c, state->demod_addr, 0x0C, (cx22702_readreg(i2c, state->demod_addr, 0x0C) & 0xBF) | 0x40 );
cx22702_writereg(i2c, state->demod_addr, 0x00, 0x01); /* Begin aquisition */
printk("%s: Autodetecting\n",__FUNCTION__);
return 0;
}
/* manually programmed values */
val=0;
switch(p->u.ofdm.constellation) {
case QPSK: val = (val&0xe7); break;
case QAM_16: val = (val&0xe7)|0x08; break;
case QAM_64: val = (val&0xe7)|0x10; break;
default:
dprintk ("%s: invalid constellation\n",__FUNCTION__);
return -EINVAL;
}
switch(p->u.ofdm.hierarchy_information) {
case HIERARCHY_NONE: val = (val&0xf8); break;
case HIERARCHY_1: val = (val&0xf8)|1; break;
case HIERARCHY_2: val = (val&0xf8)|2; break;
case HIERARCHY_4: val = (val&0xf8)|3; break;
default:
dprintk ("%s: invalid hierarchy\n",__FUNCTION__);
return -EINVAL;
}
cx22702_writereg (i2c, state->demod_addr, 0x06, val);
val=0;
switch(p->u.ofdm.code_rate_HP) {
case FEC_NONE:
case FEC_1_2: val = (val&0xc7); break;
case FEC_2_3: val = (val&0xc7)|0x08; break;
case FEC_3_4: val = (val&0xc7)|0x10; break;
case FEC_5_6: val = (val&0xc7)|0x18; break;
case FEC_7_8: val = (val&0xc7)|0x20; break;
default:
dprintk ("%s: invalid code_rate_HP\n",__FUNCTION__);
return -EINVAL;
}
switch(p->u.ofdm.code_rate_LP) {
case FEC_NONE:
case FEC_1_2: val = (val&0xf8); break;
case FEC_2_3: val = (val&0xf8)|1; break;
case FEC_3_4: val = (val&0xf8)|2; break;
case FEC_5_6: val = (val&0xf8)|3; break;
case FEC_7_8: val = (val&0xf8)|4; break;
default:
dprintk ("%s: invalid code_rate_LP\n",__FUNCTION__);
return -EINVAL;
}
cx22702_writereg (i2c, state->demod_addr, 0x07, val);
val=0;
switch(p->u.ofdm.guard_interval) {
case GUARD_INTERVAL_1_32: val = (val&0xf3); break;
case GUARD_INTERVAL_1_16: val = (val&0xf3)|0x04; break;
case GUARD_INTERVAL_1_8: val = (val&0xf3)|0x08; break;
case GUARD_INTERVAL_1_4: val = (val&0xf3)|0x0c; break;
default:
dprintk ("%s: invalid guard_interval\n",__FUNCTION__);
return -EINVAL;
}
switch(p->u.ofdm.transmission_mode) {
case TRANSMISSION_MODE_2K: val = (val&0xfc); break;
case TRANSMISSION_MODE_8K: val = (val&0xfc)|1; break;
default:
dprintk ("%s: invalid transmission_mode\n",__FUNCTION__);
return -EINVAL;
}
cx22702_writereg (i2c, state->demod_addr, 0x08, val);
cx22702_writereg(i2c, state->demod_addr, 0x0B, (cx22702_readreg(i2c, state->demod_addr, 0x0B) & 0xfc) | 0x02 );
cx22702_writereg(i2c, state->demod_addr, 0x0C, (cx22702_readreg(i2c, state->demod_addr, 0x0C) & 0xBF) | 0x40 );
/* Begin channel aquisition */
cx22702_writereg(i2c, state->demod_addr, 0x00, 0x01);
return 0;
}
/* Retrieve the demod settings */
static int cx22702_get_tps (struct i2c_adapter *i2c, struct cx22702_state *state,
struct dvb_ofdm_parameters *p)
{
u8 val;
/* Make sure the TPS regs are valid */
if (!(cx22702_readreg(i2c, state->demod_addr, 0x0A) & 0x20))
return -EAGAIN;
val = cx22702_readreg (i2c, state->demod_addr, 0x01);
switch( (val&0x18)>>3) {
case 0: p->constellation = QPSK; break;
case 1: p->constellation = QAM_16; break;
case 2: p->constellation = QAM_64; break;
}
switch( val&0x07 ) {
case 0: p->hierarchy_information = HIERARCHY_NONE; break;
case 1: p->hierarchy_information = HIERARCHY_1; break;
case 2: p->hierarchy_information = HIERARCHY_2; break;
case 3: p->hierarchy_information = HIERARCHY_4; break;
}
val = cx22702_readreg (i2c, state->demod_addr, 0x02);
switch( (val&0x38)>>3 ) {
case 0: p->code_rate_HP = FEC_1_2; break;
case 1: p->code_rate_HP = FEC_2_3; break;
case 2: p->code_rate_HP = FEC_3_4; break;
case 3: p->code_rate_HP = FEC_5_6; break;
case 4: p->code_rate_HP = FEC_7_8; break;
}
switch( val&0x07 ) {
case 0: p->code_rate_LP = FEC_1_2; break;
case 1: p->code_rate_LP = FEC_2_3; break;
case 2: p->code_rate_LP = FEC_3_4; break;
case 3: p->code_rate_LP = FEC_5_6; break;
case 4: p->code_rate_LP = FEC_7_8; break;
}
val = cx22702_readreg (i2c, state->demod_addr, 0x03);
switch( (val&0x0c)>>2 ) {
case 0: p->guard_interval = GUARD_INTERVAL_1_32; break;
case 1: p->guard_interval = GUARD_INTERVAL_1_16; break;
case 2: p->guard_interval = GUARD_INTERVAL_1_8; break;
case 3: p->guard_interval = GUARD_INTERVAL_1_4; break;
}
switch( val&0x03 ) {
case 0: p->transmission_mode = TRANSMISSION_MODE_2K; break;
case 1: p->transmission_mode = TRANSMISSION_MODE_8K; break;
}
return 0;
}
static int cx22702_ioctl (struct dvb_frontend *fe, unsigned int cmd, void *arg)
{
struct cx22702_state *state = fe->data;
struct i2c_adapter *i2c = state->i2c;
u8 reg0A;
u8 reg23;
u8 ucblocks;
switch (cmd) {
case FE_GET_INFO:
memcpy (arg, &state->cx22702_info, sizeof(struct dvb_frontend_info));
break;
case FE_READ_STATUS:
{
fe_status_t *status = (fe_status_t *) arg;
*status = 0;
reg0A = cx22702_readreg (i2c, state->demod_addr, 0x0A);
reg23 = cx22702_readreg (i2c, state->demod_addr, 0x23);
dprintk ("%s: status demod=0x%02x agc=0x%02x\n"
,__FUNCTION__,reg0A,reg23);
if(reg0A & 0x10) {
*status |= FE_HAS_LOCK;
*status |= FE_HAS_VITERBI;
*status |= FE_HAS_SYNC;
}
if(reg0A & 0x20)
*status |= FE_HAS_CARRIER;
if(reg23 < 0xf0)
*status |= FE_HAS_SIGNAL;
break;
}
case FE_READ_BER:
if(cx22702_readreg (i2c, state->demod_addr, 0xE4) & 0x02) {
/* Realtime statistics */
*((u32*) arg) = (cx22702_readreg (i2c, state->demod_addr, 0xDE) & 0x7F) << 7
| (cx22702_readreg (i2c, state->demod_addr, 0xDF)&0x7F);
} else {
/* Averagtine statistics */
*((u32*) arg) = (cx22702_readreg (i2c, state->demod_addr, 0xDE) & 0x7F) << 7
| cx22702_readreg (i2c, state->demod_addr, 0xDF);
}
break;
case FE_READ_SIGNAL_STRENGTH:
{
u16 ss = cx22702_readreg (i2c, state->demod_addr, 0x23);
*((u16*) arg) = ss;
break;
}
/* We don't have an register for this */
/* We'll take the inverse of the BER register */
case FE_READ_SNR:
{
u16 rs_ber=0;
if(cx22702_readreg (i2c, state->demod_addr, 0xE4) & 0x02) {
/* Realtime statistics */
rs_ber = (cx22702_readreg (i2c, state->demod_addr, 0xDE) & 0x7F) << 7
| (cx22702_readreg (i2c, state->demod_addr, 0xDF)& 0x7F);
} else {
/* Averagine statistics */
rs_ber = (cx22702_readreg (i2c, state->demod_addr, 0xDE) & 0x7F) << 8
| cx22702_readreg (i2c, state->demod_addr, 0xDF);
}
*((u16*) arg) = ~rs_ber;
break;
}
case FE_READ_UNCORRECTED_BLOCKS:
/* RS Uncorrectable Packet Count then reset */
ucblocks = cx22702_readreg (i2c, state->demod_addr, 0xE3);
if (state->prevUCBlocks < ucblocks) *((u32*) arg) = (ucblocks - state->prevUCBlocks);
else *((u32*) arg) = state->prevUCBlocks - ucblocks;
state->prevUCBlocks = ucblocks;
break;
case FE_SET_FRONTEND:
{
struct dvb_frontend_parameters *p = arg;
int ret;
if((ret=cx22702_set_tps (i2c, state, p))<0) {
dprintk ("%s: set_tps failed ret=%d\n",__FUNCTION__,ret);
return ret;
}
break;
}
case FE_GET_FRONTEND:
{
struct dvb_frontend_parameters *p = arg;
u8 reg0C = cx22702_readreg (i2c, state->demod_addr, 0x0C);
p->inversion = reg0C & 0x1 ? INVERSION_ON : INVERSION_OFF;
return cx22702_get_tps (i2c, state, &p->u.ofdm);
}
case FE_INIT:
return cx22702_init (i2c, state);
default:
return -EOPNOTSUPP;
};
return 0;
}
/* Validate the eeprom contents, make sure content look ok.
Get the eeprom data. */
static int cx22702_validate_eeprom(struct i2c_adapter *i2c, int* minfreq, int* pll_type, int* pll_addr, int* demod_addr)
{
u8 b0 [] = { 0 };
u8 b1 [128];
u32 model=0;
u8 tuner=0;
int i,j;
struct i2c_msg msg [] = {
{ .addr = I2C_EEPROM_SLAVE_ADDR, .flags = 0, .buf = b0, .len = 1 },
{ .addr = I2C_EEPROM_SLAVE_ADDR, .flags = I2C_M_RD, .buf = b1, .len = 128 }
};
if (i2c_transfer(i2c, msg, 2) != 2) {
printk ("%s i2c eeprom request failed\n", __FUNCTION__);
return -ENODEV;
}
if(debug) {
dprintk ("i2c eeprom content:\n");
j=0;
for(i=0;i<128;i++) {
dprintk("%02x ",b1[i]);
if(j++==16) {
dprintk("\n");
j=0;
}
}
dprintk("\n");
}
if( (b1[8]!=0x84) || (b1[10]!=0x00) ) {
printk ("%s eeprom content is not valid\n", __FUNCTION__);
return -ENODEV;
}
/* Make sure we support the board model */
model = b1[0x1f] << 24 | b1[0x1e] << 16 | b1[0x1d] << 8 | b1[0x1c];
switch(model) {
case 90002:
case 90500:
case 90501:
dprintk ("%s: Model #%d\n",__FUNCTION__,model);
break;
default:
printk ("%s: Unknown model #%d not supported\n",__FUNCTION__,model);
return -ENODEV;
}
/* Make sure we support the tuner */
tuner = b1[0x2d];
switch(tuner) {
case 0x4B:
dprintk ("%s: Tuner Thomson DTT 7595\n",__FUNCTION__);
*minfreq = 177000000;
*pll_type = PLLTYPE_DTT7595;
break;
case 0x4C:
dprintk ("%s: Tuner Thomson DTT 7592\n",__FUNCTION__);
*minfreq = 474000000;
*pll_type = PLLTYPE_DTT7592;
break;
default:
printk ("%s: Unknown tuner 0x%02x not supported\n",__FUNCTION__,tuner);
return -ENODEV;
}
*pll_addr = 0x61;
*demod_addr = 0x43;
return 0;
}
/* Validate the demod, make sure we understand the hardware */
static int cx22702_validate_demod(struct i2c_adapter *i2c, int demod_addr)
{
u8 b0 [] = { 0x1f };
u8 b1 [] = { 0 };
struct i2c_msg msg [] = {
{ .addr = demod_addr, .flags = 0, .buf = b0, .len = 1 },
{ .addr = demod_addr, .flags = I2C_M_RD, .buf = b1, .len = 1 }
};
if (i2c_transfer(i2c, msg, 2) != 2) {
printk ("%s i2c demod request failed\n", __FUNCTION__);
return -ENODEV;
}
if( (b1[0]!=0x3) ) {
printk ("%s i2c demod type 0x(%02x) not known\n", __FUNCTION__,b1[0]);
return -ENODEV;
}
return 0;
}
/* Validate the tuner PLL, make sure we understand the hardware */
static int cx22702_validate_pll(struct i2c_adapter *i2c, int pll_addr, int demod_addr)
{
int result=0;
if( (result=pll_readreg(i2c,pll_addr,demod_addr,0xc2)) < 0)
return result;
if( (result >= 0) && (result&0x30) )
return 0;
return result;
}
/* Check we can see the I2c clients */
static int cx22702_attach_adapter(struct i2c_adapter *adapter)
{
struct cx22702_state *state;
struct i2c_client *client;
int ret;
int minfreq;
int pll_type;
int pll_addr;
int demod_addr;
if (0 == (adapter->class & I2C_CLASS_TV_DIGITAL)) {
dprintk("Ignoring adapter 0x%x:%s (no digital tv card).\n",
adapter->id, adapter->name);
return 0;
}
dprintk("Trying to attach to adapter 0x%x:%s.\n",
adapter->id, adapter->name);
if (!strcmp(adapter->name, "Conexant DVB-T reference design")) {
printk("cx22702: Detected Conexant DVB-T card - PLL Thomson DTT7579\n");
pll_type = PLLTYPE_DTT7579;
pll_addr = 0x60;
demod_addr = 0x43;
minfreq = 177000000; // guess
} else {
// default to Hauppauge Nova-T for the moment
printk("cx22702: Detected Hauppauge Nova-T DVB-T - PLL Thomson DTT759x\n");
ret=cx22702_validate_eeprom(adapter, &minfreq, &pll_type, &pll_addr, &demod_addr);
if(ret < 0)
return ret;
}
ret=cx22702_validate_demod(adapter, demod_addr);
if(ret < 0)
return ret;
ret=cx22702_validate_pll(adapter, pll_addr, demod_addr);
if(ret < 0)
return ret;
if ( !(state = kmalloc(sizeof(struct cx22702_state), GFP_KERNEL)) )
return -ENOMEM;
memset(state, 0, sizeof(struct cx22702_state));
state->i2c = adapter;
memcpy(&state->cx22702_info, &cx22702_info, sizeof(struct dvb_frontend_info));
state->cx22702_info.frequency_min = minfreq;
state->pll_type = pll_type;
state->pll_addr = pll_addr;
state->demod_addr = demod_addr;
if ( !(client = kmalloc(sizeof(struct i2c_client), GFP_KERNEL)) ) {
kfree(state);
return -ENOMEM;
}
memcpy(client, &client_template, sizeof(struct i2c_client));
client->adapter = adapter;
client->addr = state->demod_addr;
i2c_set_clientdata(client, state);
if ((ret = i2c_attach_client(client))) {
printk("cx22702: attach failed %i\n", ret);
kfree(client);
kfree(state);
return ret;
}
return 0;
}
static int cx22702_detach_client(struct i2c_client *client)
{
struct cx22702_state *state = i2c_get_clientdata(client);
if (NULL != state->dvb) {
dvb_unregister_frontend (cx22702_ioctl, state->dvb);
state->dvb = NULL;
}
i2c_detach_client(client);
kfree(client);
return 0;
}
static int command(struct i2c_client *client, unsigned int cmd, void *arg)
{
struct cx22702_state *state = i2c_get_clientdata(client);
int rc;
switch(cmd) {
case FE_REGISTER:
if (NULL != state->dvb)
break;
state->dvb = arg;
rc = dvb_register_frontend(cx22702_ioctl, state->dvb, state,
&state->cx22702_info, THIS_MODULE);
if (0 != rc) {
printk("cx22702: dvb_register_frontend failed with rc=%d\n",rc);
state->dvb = NULL;
return rc;
}
break;
case FE_UNREGISTER:
if (NULL == state->dvb)
break;
dvb_unregister_frontend (cx22702_ioctl, state->dvb);
state->dvb = NULL;
break;
default:
return -EOPNOTSUPP;
}
return 0;
}
static struct i2c_driver driver = {
.owner = THIS_MODULE,
.name = FRONTEND_NAME,
.id = I2C_DRIVERID_DVBFE_CX22702,
.flags = I2C_DF_NOTIFY,
.attach_adapter = cx22702_attach_adapter,
.detach_client = cx22702_detach_client,
.command = command,
};
static struct i2c_client client_template = {
.name = FRONTEND_NAME,
.flags = I2C_CLIENT_ALLOW_USE,
.driver = &driver,
};
static int __init init_cx22702 (void)
{
return i2c_add_driver(&driver);
}
static void __exit exit_cx22702 (void)
{
if (i2c_del_driver(&driver))
printk(KERN_ERR "cx22702: driver deregistration failed.\n");
}
module_init (init_cx22702);
module_exit (exit_cx22702);
MODULE_PARM(debug,"i");
MODULE_PARM_DESC(debug, "Enable verbose debug messages");
MODULE_DESCRIPTION("CX22702 / Thomson DTT 759x / Thomson DTT 7579 PLL DVB Frontend driver");
MODULE_AUTHOR("Steven Toth");
MODULE_LICENSE("GPL");
/*
* Driver for Zarlink DVB-T MT352 demodulator
*
* Written by Holger Waechtler <holger@qanu.de>
* and Daniel Mack <daniel@qanu.de>
*
* AVerMedia AVerTV DVB-T 771 support by
* Wolfram Joost <dbox2@frokaschwei.de>
*
* Support for Samsung TDTC9251DH01C(M) tuner
*
* Copyright (C) 2004 Antonio Mancuso <antonio.mancuso@digitaltelevision.it>
* Amauri Celani <acelani@essegi.net>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
*
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.=
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/delay.h>
#include "dvb_frontend.h"
#include "mt352.h"
#define FRONTEND_NAME "dvbfe_mt352"
#define dprintk(args...) \
do { \
if (debug) printk(KERN_DEBUG FRONTEND_NAME ": " args); \
} while (0)
static int debug;
static int force_card = -1;
static int card_type = -1;
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "Turn on/off frontend debugging (default:off).");
//FIXME: Should be an array.
module_param(force_card, int, 0444);
MODULE_PARM_DESC(force_card, "Force card type.\n\t(0 == AVDVBT771, 1 == TUA6034, "
"2 == TDTC9251DH01C).\n\tDefault is that AVDVBT771 is attempted "
"to be autodetected,\n\tif you do not have this card, you must "
"specify the card type here.");
struct mt352_state {
struct i2c_adapter *i2c;
struct dvb_adapter *dvb;
};
#define mt352_write(ibuf, ilen) \
do { \
struct i2c_msg msg = { .addr = I2C_MT352_ADDR, .flags = 0, \
.buf = ibuf, .len = ilen }; \
int err = i2c_transfer(i2c, &msg, 1); \
if (err != 1) { \
printk(KERN_WARNING \
"mt352_write() failed (err = %d)!\n", err); \
return err; \
} \
} while (0)
// FIXME:
static struct _tuner_info tuner_info [] = {
//AVERMEDIA 771 board
{
.fe_frequency_min = 174000000,
.fe_frequency_max = 862000000,
.fe_frequency_stepsize = 83333,
.coderate_hp_shift = 7,
.coderate_lp_shift = 4,
.constellation_shift = 13,
.tx_mode_shift = 0,
.guard_interval_shift = 2,
.hierarchy_shift = 10,
.read_reg_flag = I2C_M_NOSTART,
.mt352_init = mt352_init_AVERMEDIA771,
.mt352_charge_pump = mt352_cp_AVERMEDIA771,
.mt352_band_select = mt352_bs_AVERMEDIA771
},
//TUA6034 tuner
{
.fe_frequency_min = 174000000,
.fe_frequency_max = 862000000,
.fe_frequency_stepsize = 166667,
.coderate_hp_shift = 9,
.coderate_lp_shift = 6,
.constellation_shift = 14,
.tx_mode_shift = 1,
.guard_interval_shift = 3,
.hierarchy_shift = 12,
.read_reg_flag = I2C_M_NOSTART,
.mt352_init = mt352_init_TUA6034,
.mt352_charge_pump = mt352_cp_TUA6034,
.mt352_band_select = mt352_bs_TUA6034
},
//TDTC9251DH01C tuner
{
.fe_frequency_min = 474000000,
.fe_frequency_max = 858000000,
.fe_frequency_stepsize = 166667,
.coderate_hp_shift = 9,
.coderate_lp_shift = 6,
.constellation_shift = 4,
.tx_mode_shift = 1,
.guard_interval_shift = 3,
.hierarchy_shift = 12,
.read_reg_flag = 0,
.mt352_init = mt352_init_TDTC9251DH01C,
.mt352_charge_pump = mt352_cp_TDTC9251DH01C,
.mt352_band_select = mt352_bs_TDTC9251DH01C
}
};
static struct dvb_frontend_info mt352_info = {
.name = "DVB-T Zarlink MT352 demodulator driver",
.type = FE_OFDM,
/*
.frequency_min = 0,
.frequency_max = 0,
.frequency_stepsize = 0,
.frequency_tolerance = 0,
.symbol_rate_min = 1000000,
.symbol_rate_max = 45000000,
.symbol_rate_tolerance = ???,
*/
.notifier_delay = 0,
.caps = FE_CAN_INVERSION_AUTO | FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 |
FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 |
FE_CAN_FEC_AUTO |
FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO |
FE_CAN_HIERARCHY_AUTO | FE_CAN_RECOVER |
FE_CAN_MUTE_TS
};
static int mt352_init_TUA6034(struct i2c_adapter *i2c)
{
static u8 mt352_reset [] = { RESET, 0x80 };
static u8 mt352_clock_config [] = { CLOCK_CTL, 0x38, 0x2d };
static u8 mt352_adc_ctl_1_cfg [] = { ADC_CTL_1, 0x40 };
static u8 mt352_agc_cfg [] = { AGC_TARGET, 0x19, 0xa0 };
static u8 mt352_acq_ctl [] = { ACQ_CTL, 0x50 };
mt352_write(mt352_clock_config, sizeof(mt352_clock_config));
udelay(2000);
mt352_write(mt352_reset, sizeof(mt352_reset));
mt352_write(mt352_adc_ctl_1_cfg, sizeof(mt352_adc_ctl_1_cfg));
mt352_write(mt352_acq_ctl, sizeof(mt352_acq_ctl));
mt352_write(mt352_agc_cfg, sizeof(mt352_agc_cfg));
return 0;
}
static int mt352_init_AVERMEDIA771(struct i2c_adapter *i2c)
{
static u8 mt352_reset [] = { RESET, 0x80 };
static u8 mt352_clock_config [] = { CLOCK_CTL, 0x38, 0x2d };
static u8 mt352_adc_ctl_1_cfg [] = { ADC_CTL_1, 0x40 };
static u8 mt352_agc_cfg [] = { AGC_TARGET, 0x10, 0x23, 0x00, 0xFF, 0xFF,
0x00, 0xFF, 0x00, 0x40, 0x40 };
static u8 mt352_acq_ctl [] = { ACQ_CTL, 0x50 };
static u8 mt352_av771_extra[] = { 0xB5, 0x7A };
mt352_write(mt352_clock_config, sizeof(mt352_clock_config));
udelay(2000);
mt352_write(mt352_reset, sizeof(mt352_reset));
mt352_write(mt352_adc_ctl_1_cfg, sizeof(mt352_adc_ctl_1_cfg));
mt352_write(mt352_acq_ctl, sizeof(mt352_acq_ctl));
mt352_write(mt352_agc_cfg,sizeof(mt352_agc_cfg));
udelay(2000);
mt352_write(mt352_av771_extra,sizeof(mt352_av771_extra));
return 0;
}
static int mt352_init_TDTC9251DH01C(struct i2c_adapter *i2c)
{
static u8 mt352_reset [] = { RESET, 0x80 };
static u8 mt352_clock_config [] = { CLOCK_CTL, 0x10, 0x2d };
static u8 mt352_adc_ctl_1_cfg [] = { ADC_CTL_1, 0x40 };
static u8 mt352_agc_cfg [] = { AGC_TARGET, 0x28, 0xa1 };
static u8 mt352_acq_ctl [] = { ACQ_CTL, 0x50 };
mt352_write(mt352_clock_config, sizeof(mt352_clock_config));
udelay(2000);
mt352_write(mt352_reset, sizeof(mt352_reset));
mt352_write(mt352_adc_ctl_1_cfg, sizeof(mt352_adc_ctl_1_cfg));
mt352_write(mt352_acq_ctl, sizeof(mt352_acq_ctl));
mt352_write(mt352_agc_cfg, sizeof(mt352_agc_cfg));
return 0;
}
static unsigned char mt352_cp_TUA6034(u32 freq)
{
unsigned char cp = 0;
if (freq < 542)
cp = 0xbe;
else if (freq < 830)
cp = 0xf6;
else
cp = 0xfe;
return cp;
}
static unsigned char mt352_cp_AVERMEDIA771(u32 freq)
{
unsigned char cp = 0;
if (freq < 150)
cp = 0xB4;
else if (freq < 173)
cp = 0xBC;
else if (freq < 250)
cp = 0xB4;
else if (freq < 400)
cp = 0xBC;
else if (freq < 420)
cp = 0xF4;
else if (freq < 470)
cp = 0xFC;
else if (freq < 600)
cp = 0xBC;
else if (freq < 730)
cp = 0xF4;
else
cp = 0xFC;
return cp;
}
static unsigned char mt352_cp_TDTC9251DH01C(u32 freq)
{
return(0xcc);
}
static unsigned char mt352_bs_TUA6034(u32 freq)
{
unsigned char bs = 0;
if (freq < 250)
bs = 0x01;
else
bs = 0x08;
return bs;
}
static unsigned char mt352_bs_AVERMEDIA771(u32 freq)
{
unsigned char bs = 0;
if (freq < 150)
bs = 0x01;
else if (freq < 173)
bs = 0x01;
else if (freq < 250)
bs = 0x02;
else if (freq < 400)
bs = 0x02;
else if (freq < 420)
bs = 0x02;
else if (freq < 470)
bs = 0x02;
else if (freq < 600)
bs = 0x08;
else if (freq < 730)
bs = 0x08;
else
bs = 0x08;
return bs;
}
static unsigned char mt352_bs_TDTC9251DH01C(u32 freq)
{
unsigned char bs = 0;
if ((freq >= 48) && (freq <= 154)) /* low band */
bs = 0x09;
if ((freq >= 161) && (freq <= 439)) /* medium band */
bs = 0x0a;
if ((freq >= 447) && (freq <= 863)) /* high band */
bs = 0x08;
return bs;
}
static int mt352_detect_avermedia_771(struct i2c_adapter *i2c)
{
int i;
u8 reg;
u8 id[4];
const u8 pciid[4] = { 0x07, 0x71, 0x14, 0x61 };
struct i2c_msg msg[2] =
{
{
.addr = 0x50,
.flags = I2C_M_NOSTART,
.buf = &reg,
.len = 1
},
{
.addr = 0x50,
.flags = I2C_M_RD,
.len = 1
}
};
for (i = 0; i < 4; i++)
{
reg = i + 0xFC;
msg[1].buf = id + i;
if (i2c_transfer(i2c,msg,2) != 2)
{
return 0;
}
}
return *((u32 *) id) == *((u32 *) pciid);
}
static int mt352_init(struct i2c_adapter *i2c)
{
/**
* all register write sequence have the register address of the
* first register in the first byte, thenafter the value to write
* into this and the following registers.
*
*
* We only write non-default settings, all default settings are
* restored by the full mt352_reset sequence.
*
*
* The optimal AGC target value and slope might vary from tuner
* type to tuner type, so check whether you need to adjust this one...
**/
return(MT352_INIT(i2c));
}
static int mt352_sleep(struct i2c_adapter *i2c)
{
static u8 mt352_softdown[] = { 0x89, 0x20, 0x08 };
mt352_write(mt352_softdown, sizeof(mt352_softdown));
return 0;
}
static int mt352_set_parameters(struct i2c_adapter *i2c,
struct dvb_frontend_parameters *param)
{
unsigned char buf[14];
unsigned int tps = 0;
struct dvb_ofdm_parameters *op = &param->u.ofdm;
u32 freq = param->frequency / 1000000;
uint16_t tmp;
switch (op->code_rate_HP) {
case FEC_2_3:
tps |= (1 << CODERATE_HP_SHIFT);
break;
case FEC_3_4:
tps |= (2 << CODERATE_HP_SHIFT);
break;
case FEC_5_6:
tps |= (3 << CODERATE_HP_SHIFT);
break;
case FEC_7_8:
tps |= (4 << CODERATE_HP_SHIFT);
break;
case FEC_1_2:
case FEC_AUTO:
break;
default:
return -EINVAL;
}
switch (op->code_rate_LP) {
case FEC_2_3:
tps |= (1 << CODERATE_LP_SHIFT);
break;
case FEC_3_4:
tps |= (2 << CODERATE_LP_SHIFT);
break;
case FEC_5_6:
tps |= (3 << CODERATE_LP_SHIFT);
break;
case FEC_7_8:
tps |= (4 << CODERATE_LP_SHIFT);
break;
case FEC_1_2:
case FEC_AUTO:
break;
default:
return -EINVAL;
}
switch (op->constellation) {
case QPSK:
break;
case QAM_AUTO:
case QAM_16:
tps |= (1 << CONSTELLATION_SHIFT);
break;
case QAM_64:
tps |= (2 << CONSTELLATION_SHIFT);
break;
default:
return -EINVAL;
}
switch (op->transmission_mode) {
case TRANSMISSION_MODE_2K:
case TRANSMISSION_MODE_AUTO:
break;
case TRANSMISSION_MODE_8K:
tps |= (1 << TX_MODE_SHIFT);
break;
default:
return -EINVAL;
}
switch (op->guard_interval) {
case GUARD_INTERVAL_1_32:
case GUARD_INTERVAL_AUTO:
break;
case GUARD_INTERVAL_1_16:
tps |= (1 << GUARD_INTERVAL_SHIFT);
break;
case GUARD_INTERVAL_1_8:
tps |= (2 << GUARD_INTERVAL_SHIFT);
break;
case GUARD_INTERVAL_1_4:
tps |= (3 << GUARD_INTERVAL_SHIFT);
break;
default:
return -EINVAL;
}
switch (op->hierarchy_information) {
case HIERARCHY_AUTO:
case HIERARCHY_NONE:
break;
case HIERARCHY_1:
tps |= (1 << HIERARCHY_SHIFT);
break;
case HIERARCHY_2:
tps |= (2 << HIERARCHY_SHIFT);
break;
case HIERARCHY_4:
tps |= (3 << HIERARCHY_SHIFT);
break;
default:
return -EINVAL;
}
buf[0] = TPS_GIVEN_1; /* TPS_GIVEN_1 and following registers */
buf[1] = msb(tps); /* TPS_GIVEN_(1|0) */
buf[2] = lsb(tps);
buf[3] = 0x50;
/**
* these settings assume 20.48MHz f_ADC, for other tuners you might
* need other values. See p. 33 in the MT352 Design Manual.
*/
if (op->bandwidth == BANDWIDTH_8_MHZ) {
buf[4] = 0x72; /* TRL_NOMINAL_RATE_(1|0) */
buf[5] = 0x49;
} else if (op->bandwidth == BANDWIDTH_7_MHZ) {
buf[4] = 0x64;
buf[5] = 0x00;
} else { /* 6MHz */
buf[4] = 0x55;
buf[5] = 0xb7;
}
buf[6] = 0x31; /* INPUT_FREQ_(1|0), 20.48MHz clock, 36.166667MHz IF */
buf[7] = 0x05; /* see MT352 Design Manual page 32 for details */
buf[8] = I2C_TUNER_ADDR;
/**
* All the following settings are tuner module dependent,
* check the datasheet...
*/
/* here we assume 1/6MHz == 166.66kHz stepsize */
#define IF_FREQUENCYx6 217 /* 6 * 36.16666666667MHz */
tmp = ((param->frequency*3)/500000) + IF_FREQUENCYx6;
buf[9] = msb(tmp); /* CHAN_START_(1|0) */
buf[10] = lsb(tmp);
buf[11] = MT352_CHARGE_PUMP(freq);
buf[12] = MT352_BAND_SELECT(freq);
buf[13] = 0x01; /* TUNER_GO!! */
mt352_write(buf, sizeof(buf));
return 0;
}
static u8 mt352_read_register(struct i2c_adapter *i2c, u8 reg)
{
int ret;
u8 b0 [] = { reg };
u8 b1 [] = { 0 };
struct i2c_msg msg [] = { { .addr = I2C_MT352_ADDR,
.flags = READ_REG_FLAG,
.buf = b0, .len = 1 },
{ .addr = I2C_MT352_ADDR,
.flags = I2C_M_RD,
.buf = b1, .len = 1 } };
ret = i2c_transfer(i2c, msg, 2);
if (ret != 2)
printk(KERN_WARNING
"%s: readreg error (ret == %i)\n", __FUNCTION__, ret);
return b1[0];
}
static int mt352_get_parameters(struct i2c_adapter *i2c,
struct dvb_frontend_parameters *param)
{
u16 tps;
u16 div;
u8 trl;
struct dvb_ofdm_parameters *op = &param->u.ofdm;
static const u8 tps_fec_to_api[8] =
{
FEC_1_2,
FEC_2_3,
FEC_3_4,
FEC_5_6,
FEC_7_8,
FEC_AUTO,
FEC_AUTO,
FEC_AUTO
};
if ( (mt352_read_register(i2c,0x00) & 0xC0) != 0xC0 )
{
return -EINVAL;
}
/* Use TPS_RECEIVED-registers, not the TPS_CURRENT-registers because
* the mt352 sometimes works with the wrong parameters
*/
tps = (mt352_read_register(i2c, TPS_RECEIVED_1) << 8) | mt352_read_register(i2c, TPS_RECEIVED_0);
div = (mt352_read_register(i2c, CHAN_START_1) << 8) | mt352_read_register(i2c, CHAN_START_0);
trl = mt352_read_register(i2c, TRL_NOMINAL_RATE_1);
op->code_rate_HP = tps_fec_to_api[(tps >> 7) & 7];
op->code_rate_LP = tps_fec_to_api[(tps >> 4) & 7];
switch ( (tps >> 13) & 3)
{
case 0:
op->constellation = QPSK;
break;
case 1:
op->constellation = QAM_16;
break;
case 2:
op->constellation = QAM_64;
break;
default:
op->constellation = QAM_AUTO;
break;
}
op->transmission_mode = (tps & 0x01) ? TRANSMISSION_MODE_8K : TRANSMISSION_MODE_2K;
switch ( (tps >> 2) & 3)
{
case 0:
op->guard_interval = GUARD_INTERVAL_1_32;
break;
case 1:
op->guard_interval = GUARD_INTERVAL_1_16;
break;
case 2:
op->guard_interval = GUARD_INTERVAL_1_8;
break;
case 3:
op->guard_interval = GUARD_INTERVAL_1_4;
break;
default:
op->guard_interval = GUARD_INTERVAL_AUTO;
break;
}
switch ( (tps >> 10) & 7)
{
case 0:
op->hierarchy_information = HIERARCHY_NONE;
break;
case 1:
op->hierarchy_information = HIERARCHY_1;
break;
case 2:
op->hierarchy_information = HIERARCHY_2;
break;
case 3:
op->hierarchy_information = HIERARCHY_4;
break;
default:
op->hierarchy_information = HIERARCHY_AUTO;
break;
}
param->frequency = ( 500 * (div - IF_FREQUENCYx6) ) / 3 * 1000;
if (trl == 0x72)
{
op->bandwidth = BANDWIDTH_8_MHZ;
}
else if (trl == 0x64)
{
op->bandwidth = BANDWIDTH_7_MHZ;
}
else
{
op->bandwidth = BANDWIDTH_6_MHZ;
}
if (mt352_read_register(i2c, STATUS_2) & 0x02)
param->inversion = INVERSION_OFF;
else
param->inversion = INVERSION_ON;
return 0;
}
static int mt352_ioctl(struct dvb_frontend *fe, unsigned int cmd, void *arg)
{
struct mt352_state *state = fe->data;
struct i2c_adapter *i2c = state->i2c;
u8 r,snr;
fe_status_t *status;
u16 signal;
struct dvb_frontend_tune_settings *fe_tune_settings;
switch (cmd) {
case FE_GET_INFO:
memcpy (arg, &mt352_info, sizeof(struct dvb_frontend_info));
break;
case FE_READ_STATUS:
status = arg;
*status = 0;
r = mt352_read_register (i2c, STATUS_0);
if (r & (1 << 4))
*status = FE_HAS_CARRIER;
if (r & (1 << 1))
*status |= FE_HAS_VITERBI;
if (r & (1 << 5))
*status |= FE_HAS_LOCK;
r = mt352_read_register (i2c, STATUS_1);
if (r & (1 << 1))
*status |= FE_HAS_SYNC;
r = mt352_read_register (i2c, STATUS_3);
if (r & (1 << 6))
*status |= FE_HAS_SIGNAL;
break;
case FE_READ_BER:
*((u32 *) arg) = (mt352_read_register (i2c, RS_ERR_CNT_2) << 16) |
(mt352_read_register (i2c, RS_ERR_CNT_1) << 8) |
(mt352_read_register (i2c, RS_ERR_CNT_0));
break;
case FE_READ_SIGNAL_STRENGTH:
signal = (mt352_read_register (i2c, AGC_GAIN_3) << 8) |
(mt352_read_register (i2c, AGC_GAIN_2));
*((u16*) arg) = ~signal;
break;
case FE_READ_SNR:
snr = mt352_read_register (i2c, SNR);
*((u16*) arg) = (snr << 8) | snr;
break;
case FE_READ_UNCORRECTED_BLOCKS:
*(u32*) arg = (mt352_read_register (i2c, RS_UBC_1) << 8) |
(mt352_read_register (i2c, RS_UBC_0));
break;
case FE_SET_FRONTEND:
return mt352_set_parameters (i2c,
(struct dvb_frontend_parameters *) arg);
case FE_GET_FRONTEND:
return mt352_get_parameters (i2c,
(struct dvb_frontend_parameters *) arg);
case FE_GET_TUNE_SETTINGS:
fe_tune_settings = (struct dvb_frontend_tune_settings *) arg;
fe_tune_settings->min_delay_ms = 800;
fe_tune_settings->step_size = 0;
fe_tune_settings->max_drift = 0;
break;
case FE_SLEEP:
return mt352_sleep(i2c);
case FE_INIT:
return mt352_init(i2c);
default:
return -EOPNOTSUPP;
}
return 0;
}
static struct i2c_client client_template;
static int mt352_attach_adapter(struct i2c_adapter *i2c)
{
struct mt352_state *state;
struct i2c_client *client;
static u8 mt352_reset_attach [] = { 0x50, 0xC0 };
int ret;
dprintk("Trying to attach to adapter 0x%x:%s.\n",
i2c->id, i2c->name);
/* set the proper MT352 frequency range */
mt352_info.frequency_min = FE_FREQ_MIN;
mt352_info.frequency_max = FE_FREQ_MAX;
mt352_info.frequency_stepsize = FE_FREQ_STEPSIZE;
if ( !(state = kmalloc(sizeof(struct mt352_state), GFP_KERNEL)) )
return -ENOMEM;
memset(state, 0, sizeof(struct mt352_state));
state->i2c = i2c;
if (mt352_detect_avermedia_771(i2c)) {
card_type = CARD_AVDVBT771;
} else if (force_card < 0) {
dprintk("Avermedia 771 not detected, maybe you should try the "
"'force_card' module parameter?.\n");
kfree(state);
return -ENODEV;
}
if (force_card > 0) {
if (card_type >= 0 && force_card != card_type)
printk(KERN_WARNING "dvbfe_mt352: Warning, overriding"
" detected card.\n");
card_type = force_card;
}
if (mt352_read_register(i2c, CHIP_ID) != ID_MT352) {
kfree(state);
return -ENODEV;
}
if (card_type == CARD_AVDVBT771)
printk(KERN_INFO FRONTEND_NAME ": Setup for Avermedia 771.\n");
else if (card_type == CARD_TUA6034)
printk(KERN_INFO FRONTEND_NAME ": Setup for TUA6034.\n");
else if (card_type == CARD_TDTC9251DH01C)
printk(KERN_INFO FRONTEND_NAME ": Setup for TDTC9251DH01C.\n");
/* Do a "hard" reset */
mt352_write(mt352_reset_attach, sizeof(mt352_reset_attach));
if ( !(client = kmalloc(sizeof(struct i2c_client), GFP_KERNEL)) ) {
kfree(state);
return -ENOMEM;
}
memcpy(client, &client_template, sizeof(struct i2c_client));
client->adapter = i2c;
client->addr = 0; // XXX
i2c_set_clientdata(client, state);
if ((ret = i2c_attach_client(client))) {
kfree(client);
kfree(state);
return ret;
}
BUG_ON(!state->dvb);
if ((ret = dvb_register_frontend(mt352_ioctl, state->dvb, state,
&mt352_info, THIS_MODULE))) {
i2c_detach_client(client);
kfree(client);
kfree(state);
return ret;
}
return 0;
}
static int mt352_detach_client(struct i2c_client *client)
{
struct mt352_state *state = i2c_get_clientdata(client);
dvb_unregister_frontend_new (mt352_ioctl, state->dvb);
i2c_detach_client(client);
BUG_ON(state->dvb);
kfree(client);
kfree(state);
return 0;
}
static int mt352_command (struct i2c_client *client, unsigned int cmd, void *arg)
{
struct mt352_state *state = i2c_get_clientdata(client);
switch (cmd) {
case FE_REGISTER:
state->dvb = arg;
break;
case FE_UNREGISTER:
state->dvb = NULL;
break;
default:
return -EOPNOTSUPP;
}
return 0;
}
static struct i2c_driver driver = {
.owner = THIS_MODULE,
.name = FRONTEND_NAME,
.id = I2C_DRIVERID_DVBFE_MT352,
.flags = I2C_DF_NOTIFY,
.attach_adapter = mt352_attach_adapter,
.detach_client = mt352_detach_client,
.command = mt352_command,
};
static struct i2c_client client_template = {
.name = FRONTEND_NAME,
.flags = I2C_CLIENT_ALLOW_USE,
.driver = &driver,
};
static int __init mt352_module_init(void)
{
return i2c_add_driver(&driver);
}
static void __exit mt352_module_exit(void)
{
if (i2c_del_driver(&driver))
printk(KERN_ERR "mt352: driver deregistration failed.\n");
}
module_init(mt352_module_init);
module_exit(mt352_module_exit);
MODULE_DESCRIPTION("DVB-T MT352 Zarlink");
MODULE_AUTHOR("Holger Waechtler, Daniel Mack, Antonio Mancuso");
MODULE_LICENSE("GPL");
/*
* Driver for Zarlink DVB-T MT352 demodulator
*
* Written by Holger Waechtler <holger@qanu.de>
* and Daniel Mack <daniel@qanu.de>
*
* Support for Samsung TDTC9251DH01C(M) tuner
*
* Copyright (C) 2004 Antonio Mancuso <antonio.mancuso@digitaltelevision.it>
* Amauri Celani <acelani@essegi.net>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
*
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.=
*/
#ifndef _MT352_
#define _MT352_
#define I2C_MT352_ADDR 0x0f
#define I2C_TUNER_ADDR 0xc2
#define ID_MT352 0x13
#define CARD_AVDVBT771 0x00
#define CARD_TUA6034 0x01
#define CARD_TDTC9251DH01C 0x02
#define msb(x) (((x) >> 8) & 0xff)
#define lsb(x) ((x) & 0xff)
enum mt352_reg_addr {
STATUS_0 = 0x00,
STATUS_1 = 0x01,
STATUS_2 = 0x02,
STATUS_3 = 0x03,
STATUS_4 = 0x04,
INTERRUPT_0 = 0x05,
INTERRUPT_1 = 0x06,
INTERRUPT_2 = 0x07,
INTERRUPT_3 = 0x08,
SNR = 0x09,
VIT_ERR_CNT_2 = 0x0A,
VIT_ERR_CNT_1 = 0x0B,
VIT_ERR_CNT_0 = 0x0C,
RS_ERR_CNT_2 = 0x0D,
RS_ERR_CNT_1 = 0x0E,
RS_ERR_CNT_0 = 0x0F,
RS_UBC_1 = 0x10,
RS_UBC_0 = 0x11,
AGC_GAIN_3 = 0x12,
AGC_GAIN_2 = 0x13,
AGC_GAIN_1 = 0x14,
AGC_GAIN_0 = 0x15,
FREQ_OFFSET_2 = 0x17,
FREQ_OFFSET_1 = 0x18,
FREQ_OFFSET_0 = 0x19,
TIMING_OFFSET_1 = 0x1A,
TIMING_OFFSET_0 = 0x1B,
CHAN_FREQ_1 = 0x1C,
CHAN_FREQ_0 = 0x1D,
TPS_RECEIVED_1 = 0x1E,
TPS_RECEIVED_0 = 0x1F,
TPS_CURRENT_1 = 0x20,
TPS_CURRENT_0 = 0x21,
TPS_CELL_ID_1 = 0x22,
TPS_CELL_ID_0 = 0x23,
TPS_MISC_DATA_2 = 0x24,
TPS_MISC_DATA_1 = 0x25,
TPS_MISC_DATA_0 = 0x26,
RESET = 0x50,
TPS_GIVEN_1 = 0x51,
TPS_GIVEN_0 = 0x52,
ACQ_CTL = 0x53,
TRL_NOMINAL_RATE_1 = 0x54,
TRL_NOMINAL_RATE_0 = 0x55,
INPUT_FREQ_1 = 0x56,
INPUT_FREQ_0 = 0x57,
TUNER_ADDR = 0x58,
CHAN_START_1 = 0x59,
CHAN_START_0 = 0x5A,
CONT_1 = 0x5B,
CONT_0 = 0x5C,
TUNER_GO = 0x5D,
STATUS_EN_0 = 0x5F,
STATUS_EN_1 = 0x60,
INTERRUPT_EN_0 = 0x61,
INTERRUPT_EN_1 = 0x62,
INTERRUPT_EN_2 = 0x63,
INTERRUPT_EN_3 = 0x64,
AGC_TARGET = 0x67,
AGC_CTL = 0x68,
CAPT_RANGE = 0x75,
SNR_SELECT_1 = 0x79,
SNR_SELECT_0 = 0x7A,
RS_ERR_PER_1 = 0x7C,
RS_ERR_PER_0 = 0x7D,
CHIP_ID = 0x7F,
CHAN_STOP_1 = 0x80,
CHAN_STOP_0 = 0x81,
CHAN_STEP_1 = 0x82,
CHAN_STEP_0 = 0x83,
FEC_LOCK_TIME = 0x85,
OFDM_LOCK_TIME = 0x86,
ACQ_DELAY = 0x87,
SCAN_CTL = 0x88,
CLOCK_CTL = 0x89,
CONFIG = 0x8A,
MCLK_RATIO = 0x8B,
GPP_CTL = 0x8C,
ADC_CTL_1 = 0x8E,
ADC_CTL_0 = 0x8F
};
struct _tuner_info {
__u32 fe_frequency_min;
#define FE_FREQ_MIN tuner_info[card_type].fe_frequency_min
__u32 fe_frequency_max;
#define FE_FREQ_MAX tuner_info[card_type].fe_frequency_max
__u32 fe_frequency_stepsize; //verificare se u32 e' corretto
#define FE_FREQ_STEPSIZE tuner_info[card_type].fe_frequency_stepsize
__u32 coderate_hp_shift; //verificare se u32 giusto
#define CODERATE_HP_SHIFT tuner_info[card_type].coderate_hp_shift
__u32 coderate_lp_shift;
#define CODERATE_LP_SHIFT tuner_info[card_type].coderate_lp_shift
int constellation_shift;
#define CONSTELLATION_SHIFT tuner_info[card_type].constellation_shift
int tx_mode_shift;
#define TX_MODE_SHIFT tuner_info[card_type].tx_mode_shift
int guard_interval_shift;
#define GUARD_INTERVAL_SHIFT tuner_info[card_type].guard_interval_shift
int hierarchy_shift;
#define HIERARCHY_SHIFT tuner_info[card_type].hierarchy_shift
int read_reg_flag;
#define READ_REG_FLAG tuner_info[card_type].read_reg_flag
int (* mt352_init) (struct i2c_adapter *i2c);
#define MT352_INIT tuner_info[card_type].mt352_init
unsigned char (* mt352_charge_pump) (u32 freq);
#define MT352_CHARGE_PUMP tuner_info[card_type].mt352_charge_pump
unsigned char (* mt352_band_select) (u32 freq);
#define MT352_BAND_SELECT tuner_info[card_type].mt352_band_select
};
static int mt352_init_TUA6034(struct i2c_adapter *i2c);
static int mt352_init_AVERMEDIA771(struct i2c_adapter *i2c);
static int mt352_init_TDTC9251DH01C(struct i2c_adapter *i2c);
static unsigned char mt352_cp_TUA6034(u32 freq);
static unsigned char mt352_cp_AVERMEDIA771(u32 freq);
static unsigned char mt352_cp_TDTC9251DH01C(u32 freq);
static unsigned char mt352_bs_TUA6034(u32 freq);
static unsigned char mt352_bs_AVERMEDIA771(u32 freq);
static unsigned char mt352_bs_TDTC9251DH01C(u32 freq);
static int mt352_detect_avermedia_771(struct i2c_adapter *i2c);
#endif /* _MT352_ */
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment