Commit 7f613c7d authored by Keith Owens's avatar Keith Owens Committed by Tony Luck

[PATCH] MCA/INIT: use per cpu stacks

The bulk of the change.  Use per cpu MCA/INIT stacks.  Change the SAL
to OS state (sos) to be per process.  Do all the assembler work on the
MCA/INIT stacks, leaving the original stack alone.  Pass per cpu state
data to the C handlers for MCA and INIT, which also means changing the
mca_drv interfaces slightly.  Lots of verification on whether the
original stack is usable before converting it to a sleeping process.
Signed-off-by: default avatarKeith Owens <kaos@sgi.com>
Signed-off-by: default avatarTony Luck <tony.luck@intel.com>
parent 289d773e
No related merge requests found
......@@ -211,17 +211,41 @@ void foo(void)
#endif
BLANK();
DEFINE(IA64_MCA_CPU_PROC_STATE_DUMP_OFFSET,
offsetof (struct ia64_mca_cpu, proc_state_dump));
DEFINE(IA64_MCA_CPU_STACK_OFFSET,
offsetof (struct ia64_mca_cpu, stack));
DEFINE(IA64_MCA_CPU_STACKFRAME_OFFSET,
offsetof (struct ia64_mca_cpu, stackframe));
DEFINE(IA64_MCA_CPU_RBSTORE_OFFSET,
offsetof (struct ia64_mca_cpu, rbstore));
DEFINE(IA64_MCA_CPU_MCA_STACK_OFFSET,
offsetof (struct ia64_mca_cpu, mca_stack));
DEFINE(IA64_MCA_CPU_INIT_STACK_OFFSET,
offsetof (struct ia64_mca_cpu, init_stack));
BLANK();
DEFINE(IA64_SAL_OS_STATE_COMMON_OFFSET,
offsetof (struct ia64_sal_os_state, sal_ra));
DEFINE(IA64_SAL_OS_STATE_OS_GP_OFFSET,
offsetof (struct ia64_sal_os_state, os_gp));
DEFINE(IA64_SAL_OS_STATE_PAL_MIN_STATE_OFFSET,
offsetof (struct ia64_sal_os_state, pal_min_state));
DEFINE(IA64_SAL_OS_STATE_PROC_STATE_PARAM_OFFSET,
offsetof (struct ia64_sal_os_state, proc_state_param));
DEFINE(IA64_SAL_OS_STATE_SIZE,
sizeof (struct ia64_sal_os_state));
DEFINE(IA64_PMSA_GR_OFFSET,
offsetof (struct pal_min_state_area_s, pmsa_gr));
DEFINE(IA64_PMSA_BANK1_GR_OFFSET,
offsetof (struct pal_min_state_area_s, pmsa_bank1_gr));
DEFINE(IA64_PMSA_PR_OFFSET,
offsetof (struct pal_min_state_area_s, pmsa_pr));
DEFINE(IA64_PMSA_BR0_OFFSET,
offsetof (struct pal_min_state_area_s, pmsa_br0));
DEFINE(IA64_PMSA_RSC_OFFSET,
offsetof (struct pal_min_state_area_s, pmsa_rsc));
DEFINE(IA64_PMSA_IIP_OFFSET,
offsetof (struct pal_min_state_area_s, pmsa_iip));
DEFINE(IA64_PMSA_IPSR_OFFSET,
offsetof (struct pal_min_state_area_s, pmsa_ipsr));
DEFINE(IA64_PMSA_IFS_OFFSET,
offsetof (struct pal_min_state_area_s, pmsa_ifs));
DEFINE(IA64_PMSA_XIP_OFFSET,
offsetof (struct pal_min_state_area_s, pmsa_xip));
BLANK();
/* used by fsys_gettimeofday in arch/ia64/kernel/fsys.S */
DEFINE(IA64_TIME_INTERPOLATOR_ADDRESS_OFFSET, offsetof (struct time_interpolator, addr));
DEFINE(IA64_TIME_INTERPOLATOR_SOURCE_OFFSET, offsetof (struct time_interpolator, source));
......
......@@ -48,6 +48,9 @@
* Delete dead variables and functions.
* Reorder to remove the need for forward declarations and to consolidate
* related code.
*
* 2005-08-12 Keith Owens <kaos@sgi.com>
* Convert MCA/INIT handlers to use per event stacks and SAL/OS state.
*/
#include <linux/config.h>
#include <linux/types.h>
......@@ -77,6 +80,8 @@
#include <asm/irq.h>
#include <asm/hw_irq.h>
#include "entry.h"
#if defined(IA64_MCA_DEBUG_INFO)
# define IA64_MCA_DEBUG(fmt...) printk(fmt)
#else
......@@ -84,9 +89,7 @@
#endif
/* Used by mca_asm.S */
ia64_mca_sal_to_os_state_t ia64_sal_to_os_handoff_state;
ia64_mca_os_to_sal_state_t ia64_os_to_sal_handoff_state;
u64 ia64_mca_serialize;
u32 ia64_mca_serialize;
DEFINE_PER_CPU(u64, ia64_mca_data); /* == __per_cpu_mca[smp_processor_id()] */
DEFINE_PER_CPU(u64, ia64_mca_per_cpu_pte); /* PTE to map per-CPU area */
DEFINE_PER_CPU(u64, ia64_mca_pal_pte); /* PTE to map PAL code */
......@@ -95,8 +98,10 @@ DEFINE_PER_CPU(u64, ia64_mca_pal_base); /* vaddr PAL code granule */
unsigned long __per_cpu_mca[NR_CPUS];
/* In mca_asm.S */
extern void ia64_monarch_init_handler (void);
extern void ia64_slave_init_handler (void);
extern void ia64_os_init_dispatch_monarch (void);
extern void ia64_os_init_dispatch_slave (void);
static int monarch_cpu = -1;
static ia64_mc_info_t ia64_mc_info;
......@@ -234,7 +239,8 @@ ia64_log_get(int sal_info_type, u8 **buffer, int irq_safe)
* This function retrieves a specified error record type from SAL
* and wakes up any processes waiting for error records.
*
* Inputs : sal_info_type (Type of error record MCA/CMC/CPE/INIT)
* Inputs : sal_info_type (Type of error record MCA/CMC/CPE)
* FIXME: remove MCA and irq_safe.
*/
static void
ia64_mca_log_sal_error_record(int sal_info_type)
......@@ -242,7 +248,7 @@ ia64_mca_log_sal_error_record(int sal_info_type)
u8 *buffer;
sal_log_record_header_t *rh;
u64 size;
int irq_safe = sal_info_type != SAL_INFO_TYPE_MCA && sal_info_type != SAL_INFO_TYPE_INIT;
int irq_safe = sal_info_type != SAL_INFO_TYPE_MCA;
#ifdef IA64_MCA_DEBUG_INFO
static const char * const rec_name[] = { "MCA", "INIT", "CMC", "CPE" };
#endif
......@@ -330,182 +336,6 @@ ia64_mca_cpe_int_handler (int cpe_irq, void *arg, struct pt_regs *ptregs)
#endif /* CONFIG_ACPI */
static void
show_min_state (pal_min_state_area_t *minstate)
{
u64 iip = minstate->pmsa_iip + ((struct ia64_psr *)(&minstate->pmsa_ipsr))->ri;
u64 xip = minstate->pmsa_xip + ((struct ia64_psr *)(&minstate->pmsa_xpsr))->ri;
printk("NaT bits\t%016lx\n", minstate->pmsa_nat_bits);
printk("pr\t\t%016lx\n", minstate->pmsa_pr);
printk("b0\t\t%016lx ", minstate->pmsa_br0); print_symbol("%s\n", minstate->pmsa_br0);
printk("ar.rsc\t\t%016lx\n", minstate->pmsa_rsc);
printk("cr.iip\t\t%016lx ", iip); print_symbol("%s\n", iip);
printk("cr.ipsr\t\t%016lx\n", minstate->pmsa_ipsr);
printk("cr.ifs\t\t%016lx\n", minstate->pmsa_ifs);
printk("xip\t\t%016lx ", xip); print_symbol("%s\n", xip);
printk("xpsr\t\t%016lx\n", minstate->pmsa_xpsr);
printk("xfs\t\t%016lx\n", minstate->pmsa_xfs);
printk("b1\t\t%016lx ", minstate->pmsa_br1);
print_symbol("%s\n", minstate->pmsa_br1);
printk("\nstatic registers r0-r15:\n");
printk(" r0- 3 %016lx %016lx %016lx %016lx\n",
0UL, minstate->pmsa_gr[0], minstate->pmsa_gr[1], minstate->pmsa_gr[2]);
printk(" r4- 7 %016lx %016lx %016lx %016lx\n",
minstate->pmsa_gr[3], minstate->pmsa_gr[4],
minstate->pmsa_gr[5], minstate->pmsa_gr[6]);
printk(" r8-11 %016lx %016lx %016lx %016lx\n",
minstate->pmsa_gr[7], minstate->pmsa_gr[8],
minstate->pmsa_gr[9], minstate->pmsa_gr[10]);
printk("r12-15 %016lx %016lx %016lx %016lx\n",
minstate->pmsa_gr[11], minstate->pmsa_gr[12],
minstate->pmsa_gr[13], minstate->pmsa_gr[14]);
printk("\nbank 0:\n");
printk("r16-19 %016lx %016lx %016lx %016lx\n",
minstate->pmsa_bank0_gr[0], minstate->pmsa_bank0_gr[1],
minstate->pmsa_bank0_gr[2], minstate->pmsa_bank0_gr[3]);
printk("r20-23 %016lx %016lx %016lx %016lx\n",
minstate->pmsa_bank0_gr[4], minstate->pmsa_bank0_gr[5],
minstate->pmsa_bank0_gr[6], minstate->pmsa_bank0_gr[7]);
printk("r24-27 %016lx %016lx %016lx %016lx\n",
minstate->pmsa_bank0_gr[8], minstate->pmsa_bank0_gr[9],
minstate->pmsa_bank0_gr[10], minstate->pmsa_bank0_gr[11]);
printk("r28-31 %016lx %016lx %016lx %016lx\n",
minstate->pmsa_bank0_gr[12], minstate->pmsa_bank0_gr[13],
minstate->pmsa_bank0_gr[14], minstate->pmsa_bank0_gr[15]);
printk("\nbank 1:\n");
printk("r16-19 %016lx %016lx %016lx %016lx\n",
minstate->pmsa_bank1_gr[0], minstate->pmsa_bank1_gr[1],
minstate->pmsa_bank1_gr[2], minstate->pmsa_bank1_gr[3]);
printk("r20-23 %016lx %016lx %016lx %016lx\n",
minstate->pmsa_bank1_gr[4], minstate->pmsa_bank1_gr[5],
minstate->pmsa_bank1_gr[6], minstate->pmsa_bank1_gr[7]);
printk("r24-27 %016lx %016lx %016lx %016lx\n",
minstate->pmsa_bank1_gr[8], minstate->pmsa_bank1_gr[9],
minstate->pmsa_bank1_gr[10], minstate->pmsa_bank1_gr[11]);
printk("r28-31 %016lx %016lx %016lx %016lx\n",
minstate->pmsa_bank1_gr[12], minstate->pmsa_bank1_gr[13],
minstate->pmsa_bank1_gr[14], minstate->pmsa_bank1_gr[15]);
}
static void
fetch_min_state (pal_min_state_area_t *ms, struct pt_regs *pt, struct switch_stack *sw)
{
u64 *dst_banked, *src_banked, bit, shift, nat_bits;
int i;
/*
* First, update the pt-regs and switch-stack structures with the contents stored
* in the min-state area:
*/
if (((struct ia64_psr *) &ms->pmsa_ipsr)->ic == 0) {
pt->cr_ipsr = ms->pmsa_xpsr;
pt->cr_iip = ms->pmsa_xip;
pt->cr_ifs = ms->pmsa_xfs;
} else {
pt->cr_ipsr = ms->pmsa_ipsr;
pt->cr_iip = ms->pmsa_iip;
pt->cr_ifs = ms->pmsa_ifs;
}
pt->ar_rsc = ms->pmsa_rsc;
pt->pr = ms->pmsa_pr;
pt->r1 = ms->pmsa_gr[0];
pt->r2 = ms->pmsa_gr[1];
pt->r3 = ms->pmsa_gr[2];
sw->r4 = ms->pmsa_gr[3];
sw->r5 = ms->pmsa_gr[4];
sw->r6 = ms->pmsa_gr[5];
sw->r7 = ms->pmsa_gr[6];
pt->r8 = ms->pmsa_gr[7];
pt->r9 = ms->pmsa_gr[8];
pt->r10 = ms->pmsa_gr[9];
pt->r11 = ms->pmsa_gr[10];
pt->r12 = ms->pmsa_gr[11];
pt->r13 = ms->pmsa_gr[12];
pt->r14 = ms->pmsa_gr[13];
pt->r15 = ms->pmsa_gr[14];
dst_banked = &pt->r16; /* r16-r31 are contiguous in struct pt_regs */
src_banked = ms->pmsa_bank1_gr;
for (i = 0; i < 16; ++i)
dst_banked[i] = src_banked[i];
pt->b0 = ms->pmsa_br0;
sw->b1 = ms->pmsa_br1;
/* construct the NaT bits for the pt-regs structure: */
# define PUT_NAT_BIT(dst, addr) \
do { \
bit = nat_bits & 1; nat_bits >>= 1; \
shift = ((unsigned long) addr >> 3) & 0x3f; \
dst = ((dst) & ~(1UL << shift)) | (bit << shift); \
} while (0)
/* Rotate the saved NaT bits such that bit 0 corresponds to pmsa_gr[0]: */
shift = ((unsigned long) &ms->pmsa_gr[0] >> 3) & 0x3f;
nat_bits = (ms->pmsa_nat_bits >> shift) | (ms->pmsa_nat_bits << (64 - shift));
PUT_NAT_BIT(sw->caller_unat, &pt->r1);
PUT_NAT_BIT(sw->caller_unat, &pt->r2);
PUT_NAT_BIT(sw->caller_unat, &pt->r3);
PUT_NAT_BIT(sw->ar_unat, &sw->r4);
PUT_NAT_BIT(sw->ar_unat, &sw->r5);
PUT_NAT_BIT(sw->ar_unat, &sw->r6);
PUT_NAT_BIT(sw->ar_unat, &sw->r7);
PUT_NAT_BIT(sw->caller_unat, &pt->r8); PUT_NAT_BIT(sw->caller_unat, &pt->r9);
PUT_NAT_BIT(sw->caller_unat, &pt->r10); PUT_NAT_BIT(sw->caller_unat, &pt->r11);
PUT_NAT_BIT(sw->caller_unat, &pt->r12); PUT_NAT_BIT(sw->caller_unat, &pt->r13);
PUT_NAT_BIT(sw->caller_unat, &pt->r14); PUT_NAT_BIT(sw->caller_unat, &pt->r15);
nat_bits >>= 16; /* skip over bank0 NaT bits */
PUT_NAT_BIT(sw->caller_unat, &pt->r16); PUT_NAT_BIT(sw->caller_unat, &pt->r17);
PUT_NAT_BIT(sw->caller_unat, &pt->r18); PUT_NAT_BIT(sw->caller_unat, &pt->r19);
PUT_NAT_BIT(sw->caller_unat, &pt->r20); PUT_NAT_BIT(sw->caller_unat, &pt->r21);
PUT_NAT_BIT(sw->caller_unat, &pt->r22); PUT_NAT_BIT(sw->caller_unat, &pt->r23);
PUT_NAT_BIT(sw->caller_unat, &pt->r24); PUT_NAT_BIT(sw->caller_unat, &pt->r25);
PUT_NAT_BIT(sw->caller_unat, &pt->r26); PUT_NAT_BIT(sw->caller_unat, &pt->r27);
PUT_NAT_BIT(sw->caller_unat, &pt->r28); PUT_NAT_BIT(sw->caller_unat, &pt->r29);
PUT_NAT_BIT(sw->caller_unat, &pt->r30); PUT_NAT_BIT(sw->caller_unat, &pt->r31);
}
static void
init_handler_platform (pal_min_state_area_t *ms,
struct pt_regs *pt, struct switch_stack *sw)
{
struct unw_frame_info info;
/* if a kernel debugger is available call it here else just dump the registers */
/*
* Wait for a bit. On some machines (e.g., HP's zx2000 and zx6000, INIT can be
* generated via the BMC's command-line interface, but since the console is on the
* same serial line, the user will need some time to switch out of the BMC before
* the dump begins.
*/
printk("Delaying for 5 seconds...\n");
udelay(5*1000000);
show_min_state(ms);
printk("Backtrace of current task (pid %d, %s)\n", current->pid, current->comm);
fetch_min_state(ms, pt, sw);
unw_init_from_interruption(&info, current, pt, sw);
ia64_do_show_stack(&info, NULL);
if (read_trylock(&tasklist_lock)) {
struct task_struct *g, *t;
do_each_thread (g, t) {
if (t == current)
continue;
printk("\nBacktrace of pid %d (%s)\n", t->pid, t->comm);
show_stack(t, NULL);
} while_each_thread (g, t);
}
printk("\nINIT dump complete. Please reboot now.\n");
while (1); /* hang city if no debugger */
}
#ifdef CONFIG_ACPI
/*
* ia64_mca_register_cpev
......@@ -647,42 +477,6 @@ ia64_mca_cmc_vector_enable_keventd(void *unused)
on_each_cpu(ia64_mca_cmc_vector_enable, NULL, 1, 0);
}
/*
* ia64_mca_wakeup_ipi_wait
*
* Wait for the inter-cpu interrupt to be sent by the
* monarch processor once it is done with handling the
* MCA.
*
* Inputs : None
* Outputs : None
*/
static void
ia64_mca_wakeup_ipi_wait(void)
{
int irr_num = (IA64_MCA_WAKEUP_VECTOR >> 6);
int irr_bit = (IA64_MCA_WAKEUP_VECTOR & 0x3f);
u64 irr = 0;
do {
switch(irr_num) {
case 0:
irr = ia64_getreg(_IA64_REG_CR_IRR0);
break;
case 1:
irr = ia64_getreg(_IA64_REG_CR_IRR1);
break;
case 2:
irr = ia64_getreg(_IA64_REG_CR_IRR2);
break;
case 3:
irr = ia64_getreg(_IA64_REG_CR_IRR3);
break;
}
cpu_relax();
} while (!(irr & (1UL << irr_bit))) ;
}
/*
* ia64_mca_wakeup
*
......@@ -748,11 +542,9 @@ ia64_mca_rendez_int_handler(int rendez_irq, void *arg, struct pt_regs *ptregs)
*/
ia64_sal_mc_rendez();
/* Wait for the wakeup IPI from the monarch
* This waiting is done by polling on the wakeup-interrupt
* vector bit in the processor's IRRs
*/
ia64_mca_wakeup_ipi_wait();
/* Wait for the monarch cpu to exit. */
while (monarch_cpu != -1)
cpu_relax(); /* spin until monarch leaves */
/* Enable all interrupts */
local_irq_restore(flags);
......@@ -780,53 +572,13 @@ ia64_mca_wakeup_int_handler(int wakeup_irq, void *arg, struct pt_regs *ptregs)
return IRQ_HANDLED;
}
/*
* ia64_return_to_sal_check
*
* This is function called before going back from the OS_MCA handler
* to the OS_MCA dispatch code which finally takes the control back
* to the SAL.
* The main purpose of this routine is to setup the OS_MCA to SAL
* return state which can be used by the OS_MCA dispatch code
* just before going back to SAL.
*
* Inputs : None
* Outputs : None
*/
static void
ia64_return_to_sal_check(int recover)
{
/* Copy over some relevant stuff from the sal_to_os_mca_handoff
* so that it can be used at the time of os_mca_to_sal_handoff
*/
ia64_os_to_sal_handoff_state.imots_sal_gp =
ia64_sal_to_os_handoff_state.imsto_sal_gp;
ia64_os_to_sal_handoff_state.imots_sal_check_ra =
ia64_sal_to_os_handoff_state.imsto_sal_check_ra;
if (recover)
ia64_os_to_sal_handoff_state.imots_os_status = IA64_MCA_CORRECTED;
else
ia64_os_to_sal_handoff_state.imots_os_status = IA64_MCA_COLD_BOOT;
/* Default = tell SAL to return to same context */
ia64_os_to_sal_handoff_state.imots_context = IA64_MCA_SAME_CONTEXT;
ia64_os_to_sal_handoff_state.imots_new_min_state =
(u64 *)ia64_sal_to_os_handoff_state.pal_min_state;
}
/* Function pointer for extra MCA recovery */
int (*ia64_mca_ucmc_extension)
(void*,ia64_mca_sal_to_os_state_t*,ia64_mca_os_to_sal_state_t*)
(void*,struct ia64_sal_os_state*)
= NULL;
int
ia64_reg_MCA_extension(void *fn)
ia64_reg_MCA_extension(int (*fn)(void *, struct ia64_sal_os_state *))
{
if (ia64_mca_ucmc_extension)
return 1;
......@@ -845,8 +597,321 @@ ia64_unreg_MCA_extension(void)
EXPORT_SYMBOL(ia64_reg_MCA_extension);
EXPORT_SYMBOL(ia64_unreg_MCA_extension);
static inline void
copy_reg(const u64 *fr, u64 fnat, u64 *tr, u64 *tnat)
{
u64 fslot, tslot, nat;
*tr = *fr;
fslot = ((unsigned long)fr >> 3) & 63;
tslot = ((unsigned long)tr >> 3) & 63;
*tnat &= ~(1UL << tslot);
nat = (fnat >> fslot) & 1;
*tnat |= (nat << tslot);
}
/* On entry to this routine, we are running on the per cpu stack, see
* mca_asm.h. The original stack has not been touched by this event. Some of
* the original stack's registers will be in the RBS on this stack. This stack
* also contains a partial pt_regs and switch_stack, the rest of the data is in
* PAL minstate.
*
* The first thing to do is modify the original stack to look like a blocked
* task so we can run backtrace on the original task. Also mark the per cpu
* stack as current to ensure that we use the correct task state, it also means
* that we can do backtrace on the MCA/INIT handler code itself.
*/
static task_t *
ia64_mca_modify_original_stack(struct pt_regs *regs,
const struct switch_stack *sw,
struct ia64_sal_os_state *sos,
const char *type)
{
char *p, comm[sizeof(current->comm)];
ia64_va va;
extern char ia64_leave_kernel[]; /* Need asm address, not function descriptor */
const pal_min_state_area_t *ms = sos->pal_min_state;
task_t *previous_current;
struct pt_regs *old_regs;
struct switch_stack *old_sw;
unsigned size = sizeof(struct pt_regs) +
sizeof(struct switch_stack) + 16;
u64 *old_bspstore, *old_bsp;
u64 *new_bspstore, *new_bsp;
u64 old_unat, old_rnat, new_rnat, nat;
u64 slots, loadrs = regs->loadrs;
u64 r12 = ms->pmsa_gr[12-1], r13 = ms->pmsa_gr[13-1];
u64 ar_bspstore = regs->ar_bspstore;
u64 ar_bsp = regs->ar_bspstore + (loadrs >> 16);
const u64 *bank;
const char *msg;
int cpu = smp_processor_id();
previous_current = curr_task(cpu);
set_curr_task(cpu, current);
if ((p = strchr(current->comm, ' ')))
*p = '\0';
/* Best effort attempt to cope with MCA/INIT delivered while in
* physical mode.
*/
regs->cr_ipsr = ms->pmsa_ipsr;
if (ia64_psr(regs)->dt == 0) {
va.l = r12;
if (va.f.reg == 0) {
va.f.reg = 7;
r12 = va.l;
}
va.l = r13;
if (va.f.reg == 0) {
va.f.reg = 7;
r13 = va.l;
}
}
if (ia64_psr(regs)->rt == 0) {
va.l = ar_bspstore;
if (va.f.reg == 0) {
va.f.reg = 7;
ar_bspstore = va.l;
}
va.l = ar_bsp;
if (va.f.reg == 0) {
va.f.reg = 7;
ar_bsp = va.l;
}
}
/* mca_asm.S ia64_old_stack() cannot assume that the dirty registers
* have been copied to the old stack, the old stack may fail the
* validation tests below. So ia64_old_stack() must restore the dirty
* registers from the new stack. The old and new bspstore probably
* have different alignments, so loadrs calculated on the old bsp
* cannot be used to restore from the new bsp. Calculate a suitable
* loadrs for the new stack and save it in the new pt_regs, where
* ia64_old_stack() can get it.
*/
old_bspstore = (u64 *)ar_bspstore;
old_bsp = (u64 *)ar_bsp;
slots = ia64_rse_num_regs(old_bspstore, old_bsp);
new_bspstore = (u64 *)((u64)current + IA64_RBS_OFFSET);
new_bsp = ia64_rse_skip_regs(new_bspstore, slots);
regs->loadrs = (new_bsp - new_bspstore) * 8 << 16;
/* Verify the previous stack state before we change it */
if (user_mode(regs)) {
msg = "occurred in user space";
goto no_mod;
}
if (r13 != sos->prev_IA64_KR_CURRENT) {
msg = "inconsistent previous current and r13";
goto no_mod;
}
if ((r12 - r13) >= KERNEL_STACK_SIZE) {
msg = "inconsistent r12 and r13";
goto no_mod;
}
if ((ar_bspstore - r13) >= KERNEL_STACK_SIZE) {
msg = "inconsistent ar.bspstore and r13";
goto no_mod;
}
va.p = old_bspstore;
if (va.f.reg < 5) {
msg = "old_bspstore is in the wrong region";
goto no_mod;
}
if ((ar_bsp - r13) >= KERNEL_STACK_SIZE) {
msg = "inconsistent ar.bsp and r13";
goto no_mod;
}
size += (ia64_rse_skip_regs(old_bspstore, slots) - old_bspstore) * 8;
if (ar_bspstore + size > r12) {
msg = "no room for blocked state";
goto no_mod;
}
/* Change the comm field on the MCA/INT task to include the pid that
* was interrupted, it makes for easier debugging. If that pid was 0
* (swapper or nested MCA/INIT) then use the start of the previous comm
* field suffixed with its cpu.
*/
if (previous_current->pid)
snprintf(comm, sizeof(comm), "%s %d",
current->comm, previous_current->pid);
else {
int l;
if ((p = strchr(previous_current->comm, ' ')))
l = p - previous_current->comm;
else
l = strlen(previous_current->comm);
snprintf(comm, sizeof(comm), "%s %*s %d",
current->comm, l, previous_current->comm,
previous_current->thread_info->cpu);
}
memcpy(current->comm, comm, sizeof(current->comm));
/* Make the original task look blocked. First stack a struct pt_regs,
* describing the state at the time of interrupt. mca_asm.S built a
* partial pt_regs, copy it and fill in the blanks using minstate.
*/
p = (char *)r12 - sizeof(*regs);
old_regs = (struct pt_regs *)p;
memcpy(old_regs, regs, sizeof(*regs));
/* If ipsr.ic then use pmsa_{iip,ipsr,ifs}, else use
* pmsa_{xip,xpsr,xfs}
*/
if (ia64_psr(regs)->ic) {
old_regs->cr_iip = ms->pmsa_iip;
old_regs->cr_ipsr = ms->pmsa_ipsr;
old_regs->cr_ifs = ms->pmsa_ifs;
} else {
old_regs->cr_iip = ms->pmsa_xip;
old_regs->cr_ipsr = ms->pmsa_xpsr;
old_regs->cr_ifs = ms->pmsa_xfs;
}
old_regs->pr = ms->pmsa_pr;
old_regs->b0 = ms->pmsa_br0;
old_regs->loadrs = loadrs;
old_regs->ar_rsc = ms->pmsa_rsc;
old_unat = old_regs->ar_unat;
copy_reg(&ms->pmsa_gr[1-1], ms->pmsa_nat_bits, &old_regs->r1, &old_unat);
copy_reg(&ms->pmsa_gr[2-1], ms->pmsa_nat_bits, &old_regs->r2, &old_unat);
copy_reg(&ms->pmsa_gr[3-1], ms->pmsa_nat_bits, &old_regs->r3, &old_unat);
copy_reg(&ms->pmsa_gr[8-1], ms->pmsa_nat_bits, &old_regs->r8, &old_unat);
copy_reg(&ms->pmsa_gr[9-1], ms->pmsa_nat_bits, &old_regs->r9, &old_unat);
copy_reg(&ms->pmsa_gr[10-1], ms->pmsa_nat_bits, &old_regs->r10, &old_unat);
copy_reg(&ms->pmsa_gr[11-1], ms->pmsa_nat_bits, &old_regs->r11, &old_unat);
copy_reg(&ms->pmsa_gr[12-1], ms->pmsa_nat_bits, &old_regs->r12, &old_unat);
copy_reg(&ms->pmsa_gr[13-1], ms->pmsa_nat_bits, &old_regs->r13, &old_unat);
copy_reg(&ms->pmsa_gr[14-1], ms->pmsa_nat_bits, &old_regs->r14, &old_unat);
copy_reg(&ms->pmsa_gr[15-1], ms->pmsa_nat_bits, &old_regs->r15, &old_unat);
if (ia64_psr(old_regs)->bn)
bank = ms->pmsa_bank1_gr;
else
bank = ms->pmsa_bank0_gr;
copy_reg(&bank[16-16], ms->pmsa_nat_bits, &old_regs->r16, &old_unat);
copy_reg(&bank[17-16], ms->pmsa_nat_bits, &old_regs->r17, &old_unat);
copy_reg(&bank[18-16], ms->pmsa_nat_bits, &old_regs->r18, &old_unat);
copy_reg(&bank[19-16], ms->pmsa_nat_bits, &old_regs->r19, &old_unat);
copy_reg(&bank[20-16], ms->pmsa_nat_bits, &old_regs->r20, &old_unat);
copy_reg(&bank[21-16], ms->pmsa_nat_bits, &old_regs->r21, &old_unat);
copy_reg(&bank[22-16], ms->pmsa_nat_bits, &old_regs->r22, &old_unat);
copy_reg(&bank[23-16], ms->pmsa_nat_bits, &old_regs->r23, &old_unat);
copy_reg(&bank[24-16], ms->pmsa_nat_bits, &old_regs->r24, &old_unat);
copy_reg(&bank[25-16], ms->pmsa_nat_bits, &old_regs->r25, &old_unat);
copy_reg(&bank[26-16], ms->pmsa_nat_bits, &old_regs->r26, &old_unat);
copy_reg(&bank[27-16], ms->pmsa_nat_bits, &old_regs->r27, &old_unat);
copy_reg(&bank[28-16], ms->pmsa_nat_bits, &old_regs->r28, &old_unat);
copy_reg(&bank[29-16], ms->pmsa_nat_bits, &old_regs->r29, &old_unat);
copy_reg(&bank[30-16], ms->pmsa_nat_bits, &old_regs->r30, &old_unat);
copy_reg(&bank[31-16], ms->pmsa_nat_bits, &old_regs->r31, &old_unat);
/* Next stack a struct switch_stack. mca_asm.S built a partial
* switch_stack, copy it and fill in the blanks using pt_regs and
* minstate.
*
* In the synthesized switch_stack, b0 points to ia64_leave_kernel,
* ar.pfs is set to 0.
*
* unwind.c::unw_unwind() does special processing for interrupt frames.
* It checks if the PRED_NON_SYSCALL predicate is set, if the predicate
* is clear then unw_unwind() does _not_ adjust bsp over pt_regs. Not
* that this is documented, of course. Set PRED_NON_SYSCALL in the
* switch_stack on the original stack so it will unwind correctly when
* unwind.c reads pt_regs.
*
* thread.ksp is updated to point to the synthesized switch_stack.
*/
p -= sizeof(struct switch_stack);
old_sw = (struct switch_stack *)p;
memcpy(old_sw, sw, sizeof(*sw));
old_sw->caller_unat = old_unat;
old_sw->ar_fpsr = old_regs->ar_fpsr;
copy_reg(&ms->pmsa_gr[4-1], ms->pmsa_nat_bits, &old_sw->r4, &old_unat);
copy_reg(&ms->pmsa_gr[5-1], ms->pmsa_nat_bits, &old_sw->r5, &old_unat);
copy_reg(&ms->pmsa_gr[6-1], ms->pmsa_nat_bits, &old_sw->r6, &old_unat);
copy_reg(&ms->pmsa_gr[7-1], ms->pmsa_nat_bits, &old_sw->r7, &old_unat);
old_sw->b0 = (u64)ia64_leave_kernel;
old_sw->b1 = ms->pmsa_br1;
old_sw->ar_pfs = 0;
old_sw->ar_unat = old_unat;
old_sw->pr = old_regs->pr | (1UL << PRED_NON_SYSCALL);
previous_current->thread.ksp = (u64)p - 16;
/* Finally copy the original stack's registers back to its RBS.
* Registers from ar.bspstore through ar.bsp at the time of the event
* are in the current RBS, copy them back to the original stack. The
* copy must be done register by register because the original bspstore
* and the current one have different alignments, so the saved RNAT
* data occurs at different places.
*
* mca_asm does cover, so the old_bsp already includes all registers at
* the time of MCA/INIT. It also does flushrs, so all registers before
* this function have been written to backing store on the MCA/INIT
* stack.
*/
new_rnat = ia64_get_rnat(ia64_rse_rnat_addr(new_bspstore));
old_rnat = regs->ar_rnat;
while (slots--) {
if (ia64_rse_is_rnat_slot(new_bspstore)) {
new_rnat = ia64_get_rnat(new_bspstore++);
}
if (ia64_rse_is_rnat_slot(old_bspstore)) {
*old_bspstore++ = old_rnat;
old_rnat = 0;
}
nat = (new_rnat >> ia64_rse_slot_num(new_bspstore)) & 1UL;
old_rnat &= ~(1UL << ia64_rse_slot_num(old_bspstore));
old_rnat |= (nat << ia64_rse_slot_num(old_bspstore));
*old_bspstore++ = *new_bspstore++;
}
old_sw->ar_bspstore = (unsigned long)old_bspstore;
old_sw->ar_rnat = old_rnat;
sos->prev_task = previous_current;
return previous_current;
no_mod:
printk(KERN_INFO "cpu %d, %s %s, original stack not modified\n",
smp_processor_id(), type, msg);
return previous_current;
}
/* The monarch/slave interaction is based on monarch_cpu and requires that all
* slaves have entered rendezvous before the monarch leaves. If any cpu has
* not entered rendezvous yet then wait a bit. The assumption is that any
* slave that has not rendezvoused after a reasonable time is never going to do
* so. In this context, slave includes cpus that respond to the MCA rendezvous
* interrupt, as well as cpus that receive the INIT slave event.
*/
static void
ia64_wait_for_slaves(int monarch)
{
int c, wait = 0;
for_each_online_cpu(c) {
if (c == monarch)
continue;
if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) {
udelay(1000); /* short wait first */
wait = 1;
break;
}
}
if (!wait)
return;
for_each_online_cpu(c) {
if (c == monarch)
continue;
if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) {
udelay(5*1000000); /* wait 5 seconds for slaves (arbitrary) */
break;
}
}
}
/*
* ia64_mca_ucmc_handler
* ia64_mca_handler
*
* This is uncorrectable machine check handler called from OS_MCA
* dispatch code which is in turn called from SAL_CHECK().
......@@ -857,16 +922,28 @@ EXPORT_SYMBOL(ia64_unreg_MCA_extension);
* further MCA logging is enabled by clearing logs.
* Monarch also has the duty of sending wakeup-IPIs to pull the
* slave processors out of rendezvous spinloop.
*
* Inputs : None
* Outputs : None
*/
void
ia64_mca_ucmc_handler(void)
ia64_mca_handler(struct pt_regs *regs, struct switch_stack *sw,
struct ia64_sal_os_state *sos)
{
pal_processor_state_info_t *psp = (pal_processor_state_info_t *)
&ia64_sal_to_os_handoff_state.proc_state_param;
int recover;
&sos->proc_state_param;
int recover, cpu = smp_processor_id();
task_t *previous_current;
oops_in_progress = 1; /* FIXME: make printk NMI/MCA/INIT safe */
previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "MCA");
monarch_cpu = cpu;
ia64_wait_for_slaves(cpu);
/* Wakeup all the processors which are spinning in the rendezvous loop.
* They will leave SAL, then spin in the OS with interrupts disabled
* until this monarch cpu leaves the MCA handler. That gets control
* back to the OS so we can backtrace the other cpus, backtrace when
* spinning in SAL does not work.
*/
ia64_mca_wakeup_all();
/* Get the MCA error record and log it */
ia64_mca_log_sal_error_record(SAL_INFO_TYPE_MCA);
......@@ -877,22 +954,17 @@ ia64_mca_ucmc_handler(void)
|| (ia64_mca_ucmc_extension
&& ia64_mca_ucmc_extension(
IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA),
&ia64_sal_to_os_handoff_state,
&ia64_os_to_sal_handoff_state));
sos));
if (recover) {
sal_log_record_header_t *rh = IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA);
rh->severity = sal_log_severity_corrected;
ia64_sal_clear_state_info(SAL_INFO_TYPE_MCA);
sos->os_status = IA64_MCA_CORRECTED;
}
/*
* Wakeup all the processors which are spinning in the rendezvous
* loop.
*/
ia64_mca_wakeup_all();
/* Return to SAL */
ia64_return_to_sal_check(recover);
set_curr_task(cpu, previous_current);
monarch_cpu = -1;
}
static DECLARE_WORK(cmc_disable_work, ia64_mca_cmc_vector_disable_keventd, NULL);
......@@ -1116,34 +1188,114 @@ ia64_mca_cpe_poll (unsigned long dummy)
/*
* C portion of the OS INIT handler
*
* Called from ia64_monarch_init_handler
*
* Inputs: pointer to pt_regs where processor info was saved.
* Called from ia64_os_init_dispatch
*
* Returns:
* 0 if SAL must warm boot the System
* 1 if SAL must return to interrupted context using PAL_MC_RESUME
* Inputs: pointer to pt_regs where processor info was saved. SAL/OS state for
* this event. This code is used for both monarch and slave INIT events, see
* sos->monarch.
*
* All INIT events switch to the INIT stack and change the previous process to
* blocked status. If one of the INIT events is the monarch then we are
* probably processing the nmi button/command. Use the monarch cpu to dump all
* the processes. The slave INIT events all spin until the monarch cpu
* returns. We can also get INIT slave events for MCA, in which case the MCA
* process is the monarch.
*/
void
ia64_init_handler (struct pt_regs *pt, struct switch_stack *sw)
ia64_init_handler(struct pt_regs *regs, struct switch_stack *sw,
struct ia64_sal_os_state *sos)
{
pal_min_state_area_t *ms;
static atomic_t slaves;
static atomic_t monarchs;
task_t *previous_current;
int cpu = smp_processor_id(), c;
struct task_struct *g, *t;
oops_in_progress = 1; /* avoid deadlock in printk, but it makes recovery dodgy */
oops_in_progress = 1; /* FIXME: make printk NMI/MCA/INIT safe */
console_loglevel = 15; /* make sure printks make it to console */
printk(KERN_INFO "Entered OS INIT handler. PSP=%lx\n",
ia64_sal_to_os_handoff_state.proc_state_param);
printk(KERN_INFO "Entered OS INIT handler. PSP=%lx cpu=%d monarch=%ld\n",
sos->proc_state_param, cpu, sos->monarch);
salinfo_log_wakeup(SAL_INFO_TYPE_INIT, NULL, 0, 0);
/*
* Address of minstate area provided by PAL is physical,
* uncacheable (bit 63 set). Convert to Linux virtual
* address in region 6.
previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "INIT");
sos->os_status = IA64_INIT_RESUME;
/* FIXME: Workaround for broken proms that drive all INIT events as
* slaves. The last slave that enters is promoted to be a monarch.
* Remove this code in September 2006, that gives platforms a year to
* fix their proms and get their customers updated.
*/
if (!sos->monarch && atomic_add_return(1, &slaves) == num_online_cpus()) {
printk(KERN_WARNING "%s: Promoting cpu %d to monarch.\n",
__FUNCTION__, cpu);
atomic_dec(&slaves);
sos->monarch = 1;
}
/* FIXME: Workaround for broken proms that drive all INIT events as
* monarchs. Second and subsequent monarchs are demoted to slaves.
* Remove this code in September 2006, that gives platforms a year to
* fix their proms and get their customers updated.
*/
ms = (pal_min_state_area_t *)(ia64_sal_to_os_handoff_state.pal_min_state | (6ul<<61));
if (sos->monarch && atomic_add_return(1, &monarchs) > 1) {
printk(KERN_WARNING "%s: Demoting cpu %d to slave.\n",
__FUNCTION__, cpu);
atomic_dec(&monarchs);
sos->monarch = 0;
}
init_handler_platform(ms, pt, sw); /* call platform specific routines */
if (!sos->monarch) {
ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_INIT;
while (monarch_cpu == -1)
cpu_relax(); /* spin until monarch enters */
while (monarch_cpu != -1)
cpu_relax(); /* spin until monarch leaves */
printk("Slave on cpu %d returning to normal service.\n", cpu);
set_curr_task(cpu, previous_current);
ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
atomic_dec(&slaves);
return;
}
monarch_cpu = cpu;
/*
* Wait for a bit. On some machines (e.g., HP's zx2000 and zx6000, INIT can be
* generated via the BMC's command-line interface, but since the console is on the
* same serial line, the user will need some time to switch out of the BMC before
* the dump begins.
*/
printk("Delaying for 5 seconds...\n");
udelay(5*1000000);
ia64_wait_for_slaves(cpu);
printk(KERN_ERR "Processes interrupted by INIT -");
for_each_online_cpu(c) {
struct ia64_sal_os_state *s;
t = __va(__per_cpu_mca[c] + IA64_MCA_CPU_INIT_STACK_OFFSET);
s = (struct ia64_sal_os_state *)((char *)t + MCA_SOS_OFFSET);
g = s->prev_task;
if (g) {
if (g->pid)
printk(" %d", g->pid);
else
printk(" %d (cpu %d task 0x%p)", g->pid, task_cpu(g), g);
}
}
printk("\n\n");
if (read_trylock(&tasklist_lock)) {
do_each_thread (g, t) {
printk("\nBacktrace of pid %d (%s)\n", t->pid, t->comm);
show_stack(t, NULL);
} while_each_thread (g, t);
read_unlock(&tasklist_lock);
}
printk("\nINIT dump complete. Monarch on cpu %d returning to normal service.\n", cpu);
atomic_dec(&monarchs);
set_curr_task(cpu, previous_current);
monarch_cpu = -1;
return;
}
static int __init
......@@ -1193,6 +1345,34 @@ static struct irqaction mca_cpep_irqaction = {
};
#endif /* CONFIG_ACPI */
/* Minimal format of the MCA/INIT stacks. The pseudo processes that run on
* these stacks can never sleep, they cannot return from the kernel to user
* space, they do not appear in a normal ps listing. So there is no need to
* format most of the fields.
*/
static void
format_mca_init_stack(void *mca_data, unsigned long offset,
const char *type, int cpu)
{
struct task_struct *p = (struct task_struct *)((char *)mca_data + offset);
struct thread_info *ti;
memset(p, 0, KERNEL_STACK_SIZE);
ti = (struct thread_info *)((char *)p + IA64_TASK_SIZE);
ti->flags = _TIF_MCA_INIT;
ti->preempt_count = 1;
ti->task = p;
ti->cpu = cpu;
p->thread_info = ti;
p->state = TASK_UNINTERRUPTIBLE;
__set_bit(cpu, &p->cpus_allowed);
INIT_LIST_HEAD(&p->tasks);
p->parent = p->real_parent = p->group_leader = p;
INIT_LIST_HEAD(&p->children);
INIT_LIST_HEAD(&p->sibling);
strncpy(p->comm, type, sizeof(p->comm)-1);
}
/* Do per-CPU MCA-related initialization. */
void __devinit
......@@ -1205,8 +1385,17 @@ ia64_mca_cpu_init(void *cpu_data)
int cpu;
mca_data = alloc_bootmem(sizeof(struct ia64_mca_cpu)
* NR_CPUS);
* NR_CPUS + KERNEL_STACK_SIZE);
mca_data = (void *)(((unsigned long)mca_data +
KERNEL_STACK_SIZE - 1) &
(-KERNEL_STACK_SIZE));
for (cpu = 0; cpu < NR_CPUS; cpu++) {
format_mca_init_stack(mca_data,
offsetof(struct ia64_mca_cpu, mca_stack),
"MCA", cpu);
format_mca_init_stack(mca_data,
offsetof(struct ia64_mca_cpu, init_stack),
"INIT", cpu);
__per_cpu_mca[cpu] = __pa(mca_data);
mca_data += sizeof(struct ia64_mca_cpu);
}
......@@ -1263,8 +1452,8 @@ ia64_mca_cpu_init(void *cpu_data)
void __init
ia64_mca_init(void)
{
ia64_fptr_t *mon_init_ptr = (ia64_fptr_t *)ia64_monarch_init_handler;
ia64_fptr_t *slave_init_ptr = (ia64_fptr_t *)ia64_slave_init_handler;
ia64_fptr_t *init_hldlr_ptr_monarch = (ia64_fptr_t *)ia64_os_init_dispatch_monarch;
ia64_fptr_t *init_hldlr_ptr_slave = (ia64_fptr_t *)ia64_os_init_dispatch_slave;
ia64_fptr_t *mca_hldlr_ptr = (ia64_fptr_t *)ia64_os_mca_dispatch;
int i;
s64 rc;
......@@ -1342,9 +1531,9 @@ ia64_mca_init(void)
* XXX - disable SAL checksum by setting size to 0, should be
* size of the actual init handler in mca_asm.S.
*/
ia64_mc_info.imi_monarch_init_handler = ia64_tpa(mon_init_ptr->fp);
ia64_mc_info.imi_monarch_init_handler = ia64_tpa(init_hldlr_ptr_monarch->fp);
ia64_mc_info.imi_monarch_init_handler_size = 0;
ia64_mc_info.imi_slave_init_handler = ia64_tpa(slave_init_ptr->fp);
ia64_mc_info.imi_slave_init_handler = ia64_tpa(init_hldlr_ptr_slave->fp);
ia64_mc_info.imi_slave_init_handler_size = 0;
IA64_MCA_DEBUG("%s: OS INIT handler at %lx\n", __FUNCTION__,
......
......@@ -16,6 +16,9 @@
// 04/11/12 Russ Anderson <rja@sgi.com>
// Added per cpu MCA/INIT stack save areas.
//
// 12/08/05 Keith Owens <kaos@sgi.com>
// Use per cpu MCA/INIT stacks for all data.
//
#include <linux/config.h>
#include <linux/threads.h>
......@@ -25,96 +28,23 @@
#include <asm/mca_asm.h>
#include <asm/mca.h>
/*
* When we get a machine check, the kernel stack pointer is no longer
* valid, so we need to set a new stack pointer.
*/
#define MINSTATE_PHYS /* Make sure stack access is physical for MINSTATE */
/*
* Needed for return context to SAL
*/
#define IA64_MCA_SAME_CONTEXT 0
#define IA64_MCA_COLD_BOOT -2
#include "minstate.h"
/*
* SAL_TO_OS_MCA_HANDOFF_STATE (SAL 3.0 spec)
* 1. GR1 = OS GP
* 2. GR8 = PAL_PROC physical address
* 3. GR9 = SAL_PROC physical address
* 4. GR10 = SAL GP (physical)
* 5. GR11 = Rendez state
* 6. GR12 = Return address to location within SAL_CHECK
*/
#define SAL_TO_OS_MCA_HANDOFF_STATE_SAVE(_tmp) \
LOAD_PHYSICAL(p0, _tmp, ia64_sal_to_os_handoff_state);; \
st8 [_tmp]=r1,0x08;; \
st8 [_tmp]=r8,0x08;; \
st8 [_tmp]=r9,0x08;; \
st8 [_tmp]=r10,0x08;; \
st8 [_tmp]=r11,0x08;; \
st8 [_tmp]=r12,0x08;; \
st8 [_tmp]=r17,0x08;; \
st8 [_tmp]=r18,0x08
/*
* OS_MCA_TO_SAL_HANDOFF_STATE (SAL 3.0 spec)
* (p6) is executed if we never entered virtual mode (TLB error)
* (p7) is executed if we entered virtual mode as expected (normal case)
* 1. GR8 = OS_MCA return status
* 2. GR9 = SAL GP (physical)
* 3. GR10 = 0/1 returning same/new context
* 4. GR22 = New min state save area pointer
* returns ptr to SAL rtn save loc in _tmp
*/
#define OS_MCA_TO_SAL_HANDOFF_STATE_RESTORE(_tmp) \
movl _tmp=ia64_os_to_sal_handoff_state;; \
DATA_VA_TO_PA(_tmp);; \
ld8 r8=[_tmp],0x08;; \
ld8 r9=[_tmp],0x08;; \
ld8 r10=[_tmp],0x08;; \
ld8 r22=[_tmp],0x08;;
// now _tmp is pointing to SAL rtn save location
/*
* COLD_BOOT_HANDOFF_STATE() sets ia64_mca_os_to_sal_state
* imots_os_status=IA64_MCA_COLD_BOOT
* imots_sal_gp=SAL GP
* imots_context=IA64_MCA_SAME_CONTEXT
* imots_new_min_state=Min state save area pointer
* imots_sal_check_ra=Return address to location within SAL_CHECK
*
*/
#define COLD_BOOT_HANDOFF_STATE(sal_to_os_handoff,os_to_sal_handoff,tmp)\
movl tmp=IA64_MCA_COLD_BOOT; \
movl sal_to_os_handoff=__pa(ia64_sal_to_os_handoff_state); \
movl os_to_sal_handoff=__pa(ia64_os_to_sal_handoff_state);; \
st8 [os_to_sal_handoff]=tmp,8;; \
ld8 tmp=[sal_to_os_handoff],48;; \
st8 [os_to_sal_handoff]=tmp,8;; \
movl tmp=IA64_MCA_SAME_CONTEXT;; \
st8 [os_to_sal_handoff]=tmp,8;; \
ld8 tmp=[sal_to_os_handoff],-8;; \
st8 [os_to_sal_handoff]=tmp,8;; \
ld8 tmp=[sal_to_os_handoff];; \
st8 [os_to_sal_handoff]=tmp;;
#include "entry.h"
#define GET_IA64_MCA_DATA(reg) \
GET_THIS_PADDR(reg, ia64_mca_data) \
;; \
ld8 reg=[reg]
.global ia64_os_mca_dispatch
.global ia64_os_mca_dispatch_end
.global ia64_sal_to_os_handoff_state
.global ia64_os_to_sal_handoff_state
.global ia64_do_tlb_purge
.global ia64_os_mca_dispatch
.global ia64_os_init_dispatch_monarch
.global ia64_os_init_dispatch_slave
.text
.align 16
//StartMain////////////////////////////////////////////////////////////////////
/*
* Just the TLB purge part is moved to a separate function
* so we can re-use the code for cpu hotplug code as well
......@@ -207,34 +137,31 @@ ia64_do_tlb_purge:
br.sptk.many b1
;;
ia64_os_mca_dispatch:
//EndMain//////////////////////////////////////////////////////////////////////
//StartMain////////////////////////////////////////////////////////////////////
ia64_os_mca_dispatch:
// Serialize all MCA processing
mov r3=1;;
LOAD_PHYSICAL(p0,r2,ia64_mca_serialize);;
ia64_os_mca_spin:
xchg8 r4=[r2],r3;;
xchg4 r4=[r2],r3;;
cmp.ne p6,p0=r4,r0
(p6) br ia64_os_mca_spin
// Save the SAL to OS MCA handoff state as defined
// by SAL SPEC 3.0
// NOTE : The order in which the state gets saved
// is dependent on the way the C-structure
// for ia64_mca_sal_to_os_state_t has been
// defined in include/asm/mca.h
SAL_TO_OS_MCA_HANDOFF_STATE_SAVE(r2)
;;
// LOG PROCESSOR STATE INFO FROM HERE ON..
begin_os_mca_dump:
br ia64_os_mca_proc_state_dump;;
mov r3=IA64_MCA_CPU_MCA_STACK_OFFSET // use the MCA stack
LOAD_PHYSICAL(p0,r2,1f) // return address
mov r19=1 // All MCA events are treated as monarch (for now)
br.sptk ia64_state_save // save the state that is not in minstate
1:
ia64_os_mca_done_dump:
LOAD_PHYSICAL(p0,r16,ia64_sal_to_os_handoff_state+56)
GET_IA64_MCA_DATA(r2)
// Using MCA stack, struct ia64_sal_os_state, variable proc_state_param
;;
add r3=IA64_MCA_CPU_MCA_STACK_OFFSET+MCA_SOS_OFFSET+IA64_SAL_OS_STATE_PROC_STATE_PARAM_OFFSET, r2
;;
ld8 r18=[r16] // Get processor state parameter on existing PALE_CHECK.
ld8 r18=[r3] // Get processor state parameter on existing PALE_CHECK.
;;
tbit.nz p6,p7=r18,60
(p7) br.spnt done_tlb_purge_and_reload
......@@ -323,624 +250,775 @@ ia64_reload_tr:
itr.d dtr[r20]=r16
;;
srlz.d
;;
br.sptk.many done_tlb_purge_and_reload
err:
COLD_BOOT_HANDOFF_STATE(r20,r21,r22)
br.sptk.many ia64_os_mca_done_restore
done_tlb_purge_and_reload:
// Setup new stack frame for OS_MCA handling
GET_IA64_MCA_DATA(r2)
;;
add r3 = IA64_MCA_CPU_STACKFRAME_OFFSET, r2
add r2 = IA64_MCA_CPU_RBSTORE_OFFSET, r2
;;
rse_switch_context(r6,r3,r2);; // RSC management in this new context
// switch to per cpu MCA stack
mov r3=IA64_MCA_CPU_MCA_STACK_OFFSET // use the MCA stack
LOAD_PHYSICAL(p0,r2,1f) // return address
br.sptk ia64_new_stack
1:
// everything saved, now we can set the kernel registers
mov r3=IA64_MCA_CPU_MCA_STACK_OFFSET // use the MCA stack
LOAD_PHYSICAL(p0,r2,1f) // return address
br.sptk ia64_set_kernel_registers
1:
// This must be done in physical mode
GET_IA64_MCA_DATA(r2)
;;
add r2 = IA64_MCA_CPU_STACK_OFFSET+IA64_MCA_STACK_SIZE-16, r2
;;
mov r12=r2 // establish new stack-pointer
mov r7=r2
// Enter virtual mode from physical mode
VIRTUAL_MODE_ENTER(r2, r3, ia64_os_mca_virtual_begin, r4)
ia64_os_mca_virtual_begin:
// This code returns to SAL via SOS r2, in general SAL has no unwind
// data. To get a clean termination when backtracing the C MCA/INIT
// handler, set a dummy return address of 0 in this routine. That
// requires that ia64_os_mca_virtual_begin be a global function.
ENTRY(ia64_os_mca_virtual_begin)
.prologue
.save rp,r0
.body
mov ar.rsc=3 // set eager mode for C handler
mov r2=r7 // see GET_IA64_MCA_DATA above
;;
// Call virtual mode handler
movl r2=ia64_mca_ucmc_handler;;
mov b6=r2;;
br.call.sptk.many b0=b6;;
.ret0:
alloc r14=ar.pfs,0,0,3,0
;;
DATA_PA_TO_VA(r2,r7)
;;
add out0=IA64_MCA_CPU_MCA_STACK_OFFSET+MCA_PT_REGS_OFFSET, r2
add out1=IA64_MCA_CPU_MCA_STACK_OFFSET+MCA_SWITCH_STACK_OFFSET, r2
add out2=IA64_MCA_CPU_MCA_STACK_OFFSET+MCA_SOS_OFFSET, r2
br.call.sptk.many b0=ia64_mca_handler
// Revert back to physical mode before going back to SAL
PHYSICAL_MODE_ENTER(r2, r3, ia64_os_mca_virtual_end, r4)
ia64_os_mca_virtual_end:
// restore the original stack frame here
END(ia64_os_mca_virtual_begin)
// switch back to previous stack
alloc r14=ar.pfs,0,0,0,0 // remove the MCA handler frame
mov r3=IA64_MCA_CPU_MCA_STACK_OFFSET // use the MCA stack
LOAD_PHYSICAL(p0,r2,1f) // return address
br.sptk ia64_old_stack
1:
mov r3=IA64_MCA_CPU_MCA_STACK_OFFSET // use the MCA stack
LOAD_PHYSICAL(p0,r2,1f) // return address
br.sptk ia64_state_restore // restore the SAL state
1:
mov b0=r12 // SAL_CHECK return address
// release lock
LOAD_PHYSICAL(p0,r3,ia64_mca_serialize);;
st4.rel [r3]=r0
br b0
//EndMain//////////////////////////////////////////////////////////////////////
//StartMain////////////////////////////////////////////////////////////////////
//
// SAL to OS entry point for INIT on all processors. This has been defined for
// registration purposes with SAL as a part of ia64_mca_init. Monarch and
// slave INIT have identical processing, except for the value of the
// sos->monarch flag in r19.
//
ia64_os_init_dispatch_monarch:
mov r19=1 // Bow, bow, ye lower middle classes!
br.sptk ia64_os_init_dispatch
ia64_os_init_dispatch_slave:
mov r19=0 // <igor>yeth, mathter</igor>
ia64_os_init_dispatch:
mov r3=IA64_MCA_CPU_INIT_STACK_OFFSET // use the INIT stack
LOAD_PHYSICAL(p0,r2,1f) // return address
br.sptk ia64_state_save // save the state that is not in minstate
1:
// switch to per cpu INIT stack
mov r3=IA64_MCA_CPU_INIT_STACK_OFFSET // use the INIT stack
LOAD_PHYSICAL(p0,r2,1f) // return address
br.sptk ia64_new_stack
1:
// everything saved, now we can set the kernel registers
mov r3=IA64_MCA_CPU_INIT_STACK_OFFSET // use the INIT stack
LOAD_PHYSICAL(p0,r2,1f) // return address
br.sptk ia64_set_kernel_registers
1:
// This must be done in physical mode
GET_IA64_MCA_DATA(r2)
;;
add r2 = IA64_MCA_CPU_STACKFRAME_OFFSET, r2
;;
movl r4=IA64_PSR_MC
mov r7=r2
// Enter virtual mode from physical mode
VIRTUAL_MODE_ENTER(r2, r3, ia64_os_init_virtual_begin, r4)
// This code returns to SAL via SOS r2, in general SAL has no unwind
// data. To get a clean termination when backtracing the C MCA/INIT
// handler, set a dummy return address of 0 in this routine. That
// requires that ia64_os_init_virtual_begin be a global function.
ENTRY(ia64_os_init_virtual_begin)
.prologue
.save rp,r0
.body
mov ar.rsc=3 // set eager mode for C handler
mov r2=r7 // see GET_IA64_MCA_DATA above
;;
rse_return_context(r4,r3,r2) // switch from interrupt context for RSE
// let us restore all the registers from our PSI structure
mov r8=gp
// Call virtual mode handler
alloc r14=ar.pfs,0,0,3,0
;;
DATA_PA_TO_VA(r2,r7)
;;
begin_os_mca_restore:
br ia64_os_mca_proc_state_restore;;
add out0=IA64_MCA_CPU_INIT_STACK_OFFSET+MCA_PT_REGS_OFFSET, r2
add out1=IA64_MCA_CPU_INIT_STACK_OFFSET+MCA_SWITCH_STACK_OFFSET, r2
add out2=IA64_MCA_CPU_INIT_STACK_OFFSET+MCA_SOS_OFFSET, r2
br.call.sptk.many b0=ia64_init_handler
ia64_os_mca_done_restore:
OS_MCA_TO_SAL_HANDOFF_STATE_RESTORE(r2);;
// branch back to SALE_CHECK
ld8 r3=[r2];;
mov b0=r3;; // SAL_CHECK return address
// Revert back to physical mode before going back to SAL
PHYSICAL_MODE_ENTER(r2, r3, ia64_os_init_virtual_end, r4)
ia64_os_init_virtual_end:
// release lock
movl r3=ia64_mca_serialize;;
DATA_VA_TO_PA(r3);;
st8.rel [r3]=r0
END(ia64_os_init_virtual_begin)
mov r3=IA64_MCA_CPU_INIT_STACK_OFFSET // use the INIT stack
LOAD_PHYSICAL(p0,r2,1f) // return address
br.sptk ia64_state_restore // restore the SAL state
1:
// switch back to previous stack
alloc r14=ar.pfs,0,0,0,0 // remove the INIT handler frame
mov r3=IA64_MCA_CPU_INIT_STACK_OFFSET // use the INIT stack
LOAD_PHYSICAL(p0,r2,1f) // return address
br.sptk ia64_old_stack
1:
mov b0=r12 // SAL_CHECK return address
br b0
;;
ia64_os_mca_dispatch_end:
//EndMain//////////////////////////////////////////////////////////////////////
// common defines for the stubs
#define ms r4
#define regs r5
#define temp1 r2 /* careful, it overlaps with input registers */
#define temp2 r3 /* careful, it overlaps with input registers */
#define temp3 r7
#define temp4 r14
//++
// Name:
// ia64_os_mca_proc_state_dump()
// ia64_state_save()
//
// Stub Description:
//
// This stub dumps the processor state during MCHK to a data area
// Save the state that is not in minstate. This is sensitive to the layout of
// struct ia64_sal_os_state in mca.h.
//
// r2 contains the return address, r3 contains either
// IA64_MCA_CPU_MCA_STACK_OFFSET or IA64_MCA_CPU_INIT_STACK_OFFSET.
//
// The OS to SAL section of struct ia64_sal_os_state is set to a default
// value of cold boot (MCA) or warm boot (INIT) and return to the same
// context. ia64_sal_os_state is also used to hold some registers that
// need to be saved and restored across the stack switches.
//
// Most input registers to this stub come from PAL/SAL
// r1 os gp, physical
// r8 pal_proc entry point
// r9 sal_proc entry point
// r10 sal gp
// r11 MCA - rendevzous state, INIT - reason code
// r12 sal return address
// r17 pal min_state
// r18 processor state parameter
// r19 monarch flag, set by the caller of this routine
//
// In addition to the SAL to OS state, this routine saves all the
// registers that appear in struct pt_regs and struct switch_stack,
// excluding those that are already in the PAL minstate area. This
// results in a partial pt_regs and switch_stack, the C code copies the
// remaining registers from PAL minstate to pt_regs and switch_stack. The
// resulting structures contain all the state of the original process when
// MCA/INIT occurred.
//
//--
ia64_os_mca_proc_state_dump:
// Save bank 1 GRs 16-31 which will be used by c-language code when we switch
// to virtual addressing mode.
GET_IA64_MCA_DATA(r2)
ia64_state_save:
add regs=MCA_SOS_OFFSET, r3
add ms=MCA_SOS_OFFSET+8, r3
mov b0=r2 // save return address
cmp.eq p1,p2=IA64_MCA_CPU_MCA_STACK_OFFSET, r3
;;
GET_IA64_MCA_DATA(temp2)
;;
add temp1=temp2, regs // struct ia64_sal_os_state on MCA or INIT stack
add temp2=temp2, ms // struct ia64_sal_os_state+8 on MCA or INIT stack
;;
mov regs=temp1 // save the start of sos
st8 [temp1]=r1,16 // os_gp
st8 [temp2]=r8,16 // pal_proc
;;
st8 [temp1]=r9,16 // sal_proc
st8 [temp2]=r11,16 // rv_rc
mov r11=cr.iipa
;;
st8 [temp1]=r18,16 // proc_state_param
st8 [temp2]=r19,16 // monarch
mov r6=IA64_KR(CURRENT)
;;
st8 [temp1]=r12,16 // sal_ra
st8 [temp2]=r10,16 // sal_gp
mov r12=cr.isr
;;
st8 [temp1]=r17,16 // pal_min_state
st8 [temp2]=r6,16 // prev_IA64_KR_CURRENT
mov r6=cr.ifa
;;
st8 [temp1]=r0,16 // prev_task, starts off as NULL
st8 [temp2]=r12,16 // cr.isr
mov r12=cr.itir
;;
st8 [temp1]=r6,16 // cr.ifa
st8 [temp2]=r12,16 // cr.itir
mov r12=cr.iim
;;
st8 [temp1]=r11,16 // cr.iipa
st8 [temp2]=r12,16 // cr.iim
mov r6=cr.iha
(p1) mov r12=IA64_MCA_COLD_BOOT
(p2) mov r12=IA64_INIT_WARM_BOOT
;;
st8 [temp1]=r6,16 // cr.iha
st8 [temp2]=r12 // os_status, default is cold boot
mov r6=IA64_MCA_SAME_CONTEXT
;;
st8 [temp1]=r6 // context, default is same context
// Save the pt_regs data that is not in minstate. The previous code
// left regs at sos.
add regs=MCA_PT_REGS_OFFSET-MCA_SOS_OFFSET, regs
;;
add temp1=PT(B6), regs
mov temp3=b6
mov temp4=b7
add temp2=PT(B7), regs
;;
st8 [temp1]=temp3,PT(AR_CSD)-PT(B6) // save b6
st8 [temp2]=temp4,PT(AR_SSD)-PT(B7) // save b7
mov temp3=ar.csd
mov temp4=ar.ssd
cover // must be last in group
;;
add r2 = IA64_MCA_CPU_PROC_STATE_DUMP_OFFSET, r2
;;
// save ar.NaT
mov r5=ar.unat // ar.unat
// save banked GRs 16-31 along with NaT bits
bsw.1;;
st8.spill [r2]=r16,8;;
st8.spill [r2]=r17,8;;
st8.spill [r2]=r18,8;;
st8.spill [r2]=r19,8;;
st8.spill [r2]=r20,8;;
st8.spill [r2]=r21,8;;
st8.spill [r2]=r22,8;;
st8.spill [r2]=r23,8;;
st8.spill [r2]=r24,8;;
st8.spill [r2]=r25,8;;
st8.spill [r2]=r26,8;;
st8.spill [r2]=r27,8;;
st8.spill [r2]=r28,8;;
st8.spill [r2]=r29,8;;
st8.spill [r2]=r30,8;;
st8.spill [r2]=r31,8;;
mov r4=ar.unat;;
st8 [r2]=r4,8 // save User NaT bits for r16-r31
mov ar.unat=r5 // restore original unat
bsw.0;;
//save BRs
add r4=8,r2 // duplicate r2 in r4
add r6=2*8,r2 // duplicate r2 in r4
mov r3=b0
mov r5=b1
mov r7=b2;;
st8 [r2]=r3,3*8
st8 [r4]=r5,3*8
st8 [r6]=r7,3*8;;
mov r3=b3
mov r5=b4
mov r7=b5;;
st8 [r2]=r3,3*8
st8 [r4]=r5,3*8
st8 [r6]=r7,3*8;;
mov r3=b6
mov r5=b7;;
st8 [r2]=r3,2*8
st8 [r4]=r5,2*8;;
cSaveCRs:
// save CRs
add r4=8,r2 // duplicate r2 in r4
add r6=2*8,r2 // duplicate r2 in r4
mov r3=cr.dcr
mov r5=cr.itm
mov r7=cr.iva;;
st8 [r2]=r3,8*8
st8 [r4]=r5,3*8
st8 [r6]=r7,3*8;; // 48 byte rements
mov r3=cr.pta;;
st8 [r2]=r3,8*8;; // 64 byte rements
// if PSR.ic=0, reading interruption registers causes an illegal operation fault
mov r3=psr;;
tbit.nz.unc p6,p0=r3,PSR_IC;; // PSI Valid Log bit pos. test
(p6) st8 [r2]=r0,9*8+160 // increment by 232 byte inc.
begin_skip_intr_regs:
(p6) br SkipIntrRegs;;
add r4=8,r2 // duplicate r2 in r4
add r6=2*8,r2 // duplicate r2 in r6
mov r3=cr.ipsr
mov r5=cr.isr
mov r7=r0;;
st8 [r2]=r3,3*8
st8 [r4]=r5,3*8
st8 [r6]=r7,3*8;;
mov r3=cr.iip
mov r5=cr.ifa
mov r7=cr.itir;;
st8 [r2]=r3,3*8
st8 [r4]=r5,3*8
st8 [r6]=r7,3*8;;
mov r3=cr.iipa
mov r5=cr.ifs
mov r7=cr.iim;;
st8 [r2]=r3,3*8
st8 [r4]=r5,3*8
st8 [r6]=r7,3*8;;
mov r3=cr25;; // cr.iha
st8 [r2]=r3,160;; // 160 byte rement
SkipIntrRegs:
st8 [r2]=r0,152;; // another 152 byte .
add r4=8,r2 // duplicate r2 in r4
add r6=2*8,r2 // duplicate r2 in r6
mov r3=cr.lid
// mov r5=cr.ivr // cr.ivr, don't read it
mov r7=cr.tpr;;
st8 [r2]=r3,3*8
st8 [r4]=r5,3*8
st8 [r6]=r7,3*8;;
mov r3=r0 // cr.eoi => cr67
mov r5=r0 // cr.irr0 => cr68
mov r7=r0;; // cr.irr1 => cr69
st8 [r2]=r3,3*8
st8 [r4]=r5,3*8
st8 [r6]=r7,3*8;;
mov r3=r0 // cr.irr2 => cr70
mov r5=r0 // cr.irr3 => cr71
mov r7=cr.itv;;
st8 [r2]=r3,3*8
st8 [r4]=r5,3*8
st8 [r6]=r7,3*8;;
mov r3=cr.pmv
mov r5=cr.cmcv;;
st8 [r2]=r3,7*8
st8 [r4]=r5,7*8;;
mov r3=r0 // cr.lrr0 => cr80
mov r5=r0;; // cr.lrr1 => cr81
st8 [r2]=r3,23*8
st8 [r4]=r5,23*8;;
adds r2=25*8,r2;;
cSaveARs:
// save ARs
add r4=8,r2 // duplicate r2 in r4
add r6=2*8,r2 // duplicate r2 in r6
mov r3=ar.k0
mov r5=ar.k1
mov r7=ar.k2;;
st8 [r2]=r3,3*8
st8 [r4]=r5,3*8
st8 [r6]=r7,3*8;;
mov r3=ar.k3
mov r5=ar.k4
mov r7=ar.k5;;
st8 [r2]=r3,3*8
st8 [r4]=r5,3*8
st8 [r6]=r7,3*8;;
mov r3=ar.k6
mov r5=ar.k7
mov r7=r0;; // ar.kr8
st8 [r2]=r3,10*8
st8 [r4]=r5,10*8
st8 [r6]=r7,10*8;; // rement by 72 bytes
mov r3=ar.rsc
mov ar.rsc=r0 // put RSE in enforced lazy mode
mov r5=ar.bsp
;;
mov r7=ar.bspstore;;
st8 [r2]=r3,3*8
st8 [r4]=r5,3*8
st8 [r6]=r7,3*8;;
mov r3=ar.rnat;;
st8 [r2]=r3,8*13 // increment by 13x8 bytes
mov r3=ar.ccv;;
st8 [r2]=r3,8*4
mov r3=ar.unat;;
st8 [r2]=r3,8*4
mov r3=ar.fpsr;;
st8 [r2]=r3,8*4
mov r3=ar.itc;;
st8 [r2]=r3,160 // 160
mov r3=ar.pfs;;
st8 [r2]=r3,8
mov r3=ar.lc;;
st8 [r2]=r3,8
mov r3=ar.ec;;
st8 [r2]=r3
add r2=8*62,r2 //padding
// save RRs
mov ar.lc=0x08-1
movl r4=0x00;;
cStRR:
dep.z r5=r4,61,3;;
mov r3=rr[r5];;
st8 [r2]=r3,8
add r4=1,r4
br.cloop.sptk.few cStRR
;;
end_os_mca_dump:
br ia64_os_mca_done_dump;;
st8 [temp1]=temp3,PT(AR_UNAT)-PT(AR_CSD) // save ar.csd
st8 [temp2]=temp4,PT(AR_PFS)-PT(AR_SSD) // save ar.ssd
mov temp3=ar.unat
mov temp4=ar.pfs
;;
st8 [temp1]=temp3,PT(AR_RNAT)-PT(AR_UNAT) // save ar.unat
st8 [temp2]=temp4,PT(AR_BSPSTORE)-PT(AR_PFS) // save ar.pfs
mov temp3=ar.rnat
mov temp4=ar.bspstore
;;
st8 [temp1]=temp3,PT(LOADRS)-PT(AR_RNAT) // save ar.rnat
st8 [temp2]=temp4,PT(AR_FPSR)-PT(AR_BSPSTORE) // save ar.bspstore
mov temp3=ar.bsp
;;
sub temp3=temp3, temp4 // ar.bsp - ar.bspstore
mov temp4=ar.fpsr
;;
shl temp3=temp3,16 // compute ar.rsc to be used for "loadrs"
;;
st8 [temp1]=temp3,PT(AR_CCV)-PT(LOADRS) // save loadrs
st8 [temp2]=temp4,PT(F6)-PT(AR_FPSR) // save ar.fpsr
mov temp3=ar.ccv
;;
st8 [temp1]=temp3,PT(F7)-PT(AR_CCV) // save ar.ccv
stf.spill [temp2]=f6,PT(F8)-PT(F6)
;;
stf.spill [temp1]=f7,PT(F9)-PT(F7)
stf.spill [temp2]=f8,PT(F10)-PT(F8)
;;
stf.spill [temp1]=f9,PT(F11)-PT(F9)
stf.spill [temp2]=f10
;;
stf.spill [temp1]=f11
// Save the switch_stack data that is not in minstate nor pt_regs. The
// previous code left regs at pt_regs.
add regs=MCA_SWITCH_STACK_OFFSET-MCA_PT_REGS_OFFSET, regs
;;
add temp1=SW(F2), regs
add temp2=SW(F3), regs
;;
stf.spill [temp1]=f2,32
stf.spill [temp2]=f3,32
;;
stf.spill [temp1]=f4,32
stf.spill [temp2]=f5,32
;;
stf.spill [temp1]=f12,32
stf.spill [temp2]=f13,32
;;
stf.spill [temp1]=f14,32
stf.spill [temp2]=f15,32
;;
stf.spill [temp1]=f16,32
stf.spill [temp2]=f17,32
;;
stf.spill [temp1]=f18,32
stf.spill [temp2]=f19,32
;;
stf.spill [temp1]=f20,32
stf.spill [temp2]=f21,32
;;
stf.spill [temp1]=f22,32
stf.spill [temp2]=f23,32
;;
stf.spill [temp1]=f24,32
stf.spill [temp2]=f25,32
;;
stf.spill [temp1]=f26,32
stf.spill [temp2]=f27,32
;;
stf.spill [temp1]=f28,32
stf.spill [temp2]=f29,32
;;
stf.spill [temp1]=f30,SW(B2)-SW(F30)
stf.spill [temp2]=f31,SW(B3)-SW(F31)
mov temp3=b2
mov temp4=b3
;;
st8 [temp1]=temp3,16 // save b2
st8 [temp2]=temp4,16 // save b3
mov temp3=b4
mov temp4=b5
;;
st8 [temp1]=temp3,SW(AR_LC)-SW(B4) // save b4
st8 [temp2]=temp4 // save b5
mov temp3=ar.lc
;;
st8 [temp1]=temp3 // save ar.lc
// FIXME: Some proms are incorrectly accessing the minstate area as
// cached data. The C code uses region 6, uncached virtual. Ensure
// that there is no cache data lying around for the first 1K of the
// minstate area.
// Remove this code in September 2006, that gives platforms a year to
// fix their proms and get their customers updated.
add r1=32*1,r17
add r2=32*2,r17
add r3=32*3,r17
add r4=32*4,r17
add r5=32*5,r17
add r6=32*6,r17
add r7=32*7,r17
;;
fc r17
fc r1
fc r2
fc r3
fc r4
fc r5
fc r6
fc r7
add r17=32*8,r17
add r1=32*8,r1
add r2=32*8,r2
add r3=32*8,r3
add r4=32*8,r4
add r5=32*8,r5
add r6=32*8,r6
add r7=32*8,r7
;;
fc r17
fc r1
fc r2
fc r3
fc r4
fc r5
fc r6
fc r7
add r17=32*8,r17
add r1=32*8,r1
add r2=32*8,r2
add r3=32*8,r3
add r4=32*8,r4
add r5=32*8,r5
add r6=32*8,r6
add r7=32*8,r7
;;
fc r17
fc r1
fc r2
fc r3
fc r4
fc r5
fc r6
fc r7
add r17=32*8,r17
add r1=32*8,r1
add r2=32*8,r2
add r3=32*8,r3
add r4=32*8,r4
add r5=32*8,r5
add r6=32*8,r6
add r7=32*8,r7
;;
fc r17
fc r1
fc r2
fc r3
fc r4
fc r5
fc r6
fc r7
br.sptk b0
//EndStub//////////////////////////////////////////////////////////////////////
//++
// Name:
// ia64_os_mca_proc_state_restore()
// ia64_state_restore()
//
// Stub Description:
//
// This is a stub to restore the saved processor state during MCHK
// Restore the SAL/OS state. This is sensitive to the layout of struct
// ia64_sal_os_state in mca.h.
//
// r2 contains the return address, r3 contains either
// IA64_MCA_CPU_MCA_STACK_OFFSET or IA64_MCA_CPU_INIT_STACK_OFFSET.
//
// In addition to the SAL to OS state, this routine restores all the
// registers that appear in struct pt_regs and struct switch_stack,
// excluding those in the PAL minstate area.
//
//--
ia64_os_mca_proc_state_restore:
ia64_state_restore:
// Restore the switch_stack data that is not in minstate nor pt_regs.
add regs=MCA_SWITCH_STACK_OFFSET, r3
mov b0=r2 // save return address
;;
GET_IA64_MCA_DATA(temp2)
;;
add regs=temp2, regs
;;
add temp1=SW(F2), regs
add temp2=SW(F3), regs
;;
ldf.fill f2=[temp1],32
ldf.fill f3=[temp2],32
;;
ldf.fill f4=[temp1],32
ldf.fill f5=[temp2],32
;;
ldf.fill f12=[temp1],32
ldf.fill f13=[temp2],32
;;
ldf.fill f14=[temp1],32
ldf.fill f15=[temp2],32
;;
ldf.fill f16=[temp1],32
ldf.fill f17=[temp2],32
;;
ldf.fill f18=[temp1],32
ldf.fill f19=[temp2],32
;;
ldf.fill f20=[temp1],32
ldf.fill f21=[temp2],32
;;
ldf.fill f22=[temp1],32
ldf.fill f23=[temp2],32
;;
ldf.fill f24=[temp1],32
ldf.fill f25=[temp2],32
;;
ldf.fill f26=[temp1],32
ldf.fill f27=[temp2],32
;;
ldf.fill f28=[temp1],32
ldf.fill f29=[temp2],32
;;
ldf.fill f30=[temp1],SW(B2)-SW(F30)
ldf.fill f31=[temp2],SW(B3)-SW(F31)
;;
ld8 temp3=[temp1],16 // restore b2
ld8 temp4=[temp2],16 // restore b3
;;
mov b2=temp3
mov b3=temp4
ld8 temp3=[temp1],SW(AR_LC)-SW(B4) // restore b4
ld8 temp4=[temp2] // restore b5
;;
mov b4=temp3
mov b5=temp4
ld8 temp3=[temp1] // restore ar.lc
;;
mov ar.lc=temp3
// Restore bank1 GR16-31
GET_IA64_MCA_DATA(r2)
// Restore the pt_regs data that is not in minstate. The previous code
// left regs at switch_stack.
add regs=MCA_PT_REGS_OFFSET-MCA_SWITCH_STACK_OFFSET, regs
;;
add temp1=PT(B6), regs
add temp2=PT(B7), regs
;;
ld8 temp3=[temp1],PT(AR_CSD)-PT(B6) // restore b6
ld8 temp4=[temp2],PT(AR_SSD)-PT(B7) // restore b7
;;
mov b6=temp3
mov b7=temp4
ld8 temp3=[temp1],PT(AR_UNAT)-PT(AR_CSD) // restore ar.csd
ld8 temp4=[temp2],PT(AR_PFS)-PT(AR_SSD) // restore ar.ssd
;;
mov ar.csd=temp3
mov ar.ssd=temp4
ld8 temp3=[temp1] // restore ar.unat
add temp1=PT(AR_CCV)-PT(AR_UNAT), temp1
ld8 temp4=[temp2],PT(AR_FPSR)-PT(AR_PFS) // restore ar.pfs
;;
mov ar.unat=temp3
mov ar.pfs=temp4
// ar.rnat, ar.bspstore, loadrs are restore in ia64_old_stack.
ld8 temp3=[temp1],PT(F6)-PT(AR_CCV) // restore ar.ccv
ld8 temp4=[temp2],PT(F7)-PT(AR_FPSR) // restore ar.fpsr
;;
mov ar.ccv=temp3
mov ar.fpsr=temp4
ldf.fill f6=[temp1],PT(F8)-PT(F6)
ldf.fill f7=[temp2],PT(F9)-PT(F7)
;;
ldf.fill f8=[temp1],PT(F10)-PT(F8)
ldf.fill f9=[temp2],PT(F11)-PT(F9)
;;
ldf.fill f10=[temp1]
ldf.fill f11=[temp2]
// Restore the SAL to OS state. The previous code left regs at pt_regs.
add regs=MCA_SOS_OFFSET-MCA_PT_REGS_OFFSET, regs
;;
add r2 = IA64_MCA_CPU_PROC_STATE_DUMP_OFFSET, r2
restore_GRs: // restore bank-1 GRs 16-31
bsw.1;;
add r3=16*8,r2;; // to get to NaT of GR 16-31
ld8 r3=[r3];;
mov ar.unat=r3;; // first restore NaT
ld8.fill r16=[r2],8;;
ld8.fill r17=[r2],8;;
ld8.fill r18=[r2],8;;
ld8.fill r19=[r2],8;;
ld8.fill r20=[r2],8;;
ld8.fill r21=[r2],8;;
ld8.fill r22=[r2],8;;
ld8.fill r23=[r2],8;;
ld8.fill r24=[r2],8;;
ld8.fill r25=[r2],8;;
ld8.fill r26=[r2],8;;
ld8.fill r27=[r2],8;;
ld8.fill r28=[r2],8;;
ld8.fill r29=[r2],8;;
ld8.fill r30=[r2],8;;
ld8.fill r31=[r2],8;;
ld8 r3=[r2],8;; // increment to skip NaT
bsw.0;;
restore_BRs:
add r4=8,r2 // duplicate r2 in r4
add r6=2*8,r2;; // duplicate r2 in r4
ld8 r3=[r2],3*8
ld8 r5=[r4],3*8
ld8 r7=[r6],3*8;;
mov b0=r3
mov b1=r5
mov b2=r7;;
ld8 r3=[r2],3*8
ld8 r5=[r4],3*8
ld8 r7=[r6],3*8;;
mov b3=r3
mov b4=r5
mov b5=r7;;
ld8 r3=[r2],2*8
ld8 r5=[r4],2*8;;
mov b6=r3
mov b7=r5;;
restore_CRs:
add r4=8,r2 // duplicate r2 in r4
add r6=2*8,r2;; // duplicate r2 in r4
ld8 r3=[r2],8*8
ld8 r5=[r4],3*8
ld8 r7=[r6],3*8;; // 48 byte increments
mov cr.dcr=r3
mov cr.itm=r5
mov cr.iva=r7;;
ld8 r3=[r2],8*8;; // 64 byte increments
// mov cr.pta=r3
// if PSR.ic=1, reading interruption registers causes an illegal operation fault
mov r3=psr;;
tbit.nz.unc p6,p0=r3,PSR_IC;; // PSI Valid Log bit pos. test
(p6) st8 [r2]=r0,9*8+160 // increment by 232 byte inc.
begin_rskip_intr_regs:
(p6) br rSkipIntrRegs;;
add r4=8,r2 // duplicate r2 in r4
add r6=2*8,r2;; // duplicate r2 in r4
ld8 r3=[r2],3*8
ld8 r5=[r4],3*8
ld8 r7=[r6],3*8;;
mov cr.ipsr=r3
// mov cr.isr=r5 // cr.isr is read only
ld8 r3=[r2],3*8
ld8 r5=[r4],3*8
ld8 r7=[r6],3*8;;
mov cr.iip=r3
mov cr.ifa=r5
mov cr.itir=r7;;
ld8 r3=[r2],3*8
ld8 r5=[r4],3*8
ld8 r7=[r6],3*8;;
mov cr.iipa=r3
mov cr.ifs=r5
mov cr.iim=r7
ld8 r3=[r2],160;; // 160 byte increment
mov cr.iha=r3
rSkipIntrRegs:
ld8 r3=[r2],152;; // another 152 byte inc.
add r4=8,r2 // duplicate r2 in r4
add r6=2*8,r2;; // duplicate r2 in r6
ld8 r3=[r2],8*3
ld8 r5=[r4],8*3
ld8 r7=[r6],8*3;;
mov cr.lid=r3
// mov cr.ivr=r5 // cr.ivr is read only
mov cr.tpr=r7;;
ld8 r3=[r2],8*3
ld8 r5=[r4],8*3
ld8 r7=[r6],8*3;;
// mov cr.eoi=r3
// mov cr.irr0=r5 // cr.irr0 is read only
// mov cr.irr1=r7;; // cr.irr1 is read only
ld8 r3=[r2],8*3
ld8 r5=[r4],8*3
ld8 r7=[r6],8*3;;
// mov cr.irr2=r3 // cr.irr2 is read only
// mov cr.irr3=r5 // cr.irr3 is read only
mov cr.itv=r7;;
ld8 r3=[r2],8*7
ld8 r5=[r4],8*7;;
mov cr.pmv=r3
mov cr.cmcv=r5;;
ld8 r3=[r2],8*23
ld8 r5=[r4],8*23;;
adds r2=8*23,r2
adds r4=8*23,r4;;
// mov cr.lrr0=r3
// mov cr.lrr1=r5
adds r2=8*2,r2;;
restore_ARs:
add r4=8,r2 // duplicate r2 in r4
add r6=2*8,r2;; // duplicate r2 in r4
ld8 r3=[r2],3*8
ld8 r5=[r4],3*8
ld8 r7=[r6],3*8;;
mov ar.k0=r3
mov ar.k1=r5
mov ar.k2=r7;;
ld8 r3=[r2],3*8
ld8 r5=[r4],3*8
ld8 r7=[r6],3*8;;
mov ar.k3=r3
mov ar.k4=r5
mov ar.k5=r7;;
ld8 r3=[r2],10*8
ld8 r5=[r4],10*8
ld8 r7=[r6],10*8;;
mov ar.k6=r3
mov ar.k7=r5
;;
ld8 r3=[r2],3*8
ld8 r5=[r4],3*8
ld8 r7=[r6],3*8;;
// mov ar.rsc=r3
// mov ar.bsp=r5 // ar.bsp is read only
mov ar.rsc=r0 // make sure that RSE is in enforced lazy mode
;;
mov ar.bspstore=r7;;
ld8 r9=[r2],8*13;;
mov ar.rnat=r9
mov ar.rsc=r3
ld8 r3=[r2],8*4;;
mov ar.ccv=r3
ld8 r3=[r2],8*4;;
mov ar.unat=r3
ld8 r3=[r2],8*4;;
mov ar.fpsr=r3
ld8 r3=[r2],160;; // 160
// mov ar.itc=r3
ld8 r3=[r2],8;;
mov ar.pfs=r3
ld8 r3=[r2],8;;
mov ar.lc=r3
ld8 r3=[r2];;
mov ar.ec=r3
add r2=8*62,r2;; // padding
restore_RRs:
mov r5=ar.lc
mov ar.lc=0x08-1
movl r4=0x00;;
cStRRr:
dep.z r7=r4,61,3
ld8 r3=[r2],8;;
mov rr[r7]=r3 // what are its access previledges?
add r4=1,r4
br.cloop.sptk.few cStRRr
;;
mov ar.lc=r5
;;
end_os_mca_restore:
br ia64_os_mca_done_restore;;
add temp1=IA64_SAL_OS_STATE_COMMON_OFFSET, regs
add temp2=IA64_SAL_OS_STATE_COMMON_OFFSET+8, regs
;;
ld8 r12=[temp1],16 // sal_ra
ld8 r9=[temp2],16 // sal_gp
;;
ld8 r22=[temp1],24 // pal_min_state, virtual. skip prev_task
ld8 r21=[temp2],16 // prev_IA64_KR_CURRENT
;;
ld8 temp3=[temp1],16 // cr.isr
ld8 temp4=[temp2],16 // cr.ifa
;;
mov cr.isr=temp3
mov cr.ifa=temp4
ld8 temp3=[temp1],16 // cr.itir
ld8 temp4=[temp2],16 // cr.iipa
;;
mov cr.itir=temp3
mov cr.iipa=temp4
ld8 temp3=[temp1],16 // cr.iim
ld8 temp4=[temp2],16 // cr.iha
;;
mov cr.iim=temp3
mov cr.iha=temp4
dep r22=0,r22,62,2 // pal_min_state, physical, uncached
mov IA64_KR(CURRENT)=r21
ld8 r8=[temp1] // os_status
ld8 r10=[temp2] // context
br.sptk b0
//EndStub//////////////////////////////////////////////////////////////////////
// ok, the issue here is that we need to save state information so
// it can be useable by the kernel debugger and show regs routines.
// In order to do this, our best bet is save the current state (plus
// the state information obtain from the MIN_STATE_AREA) into a pt_regs
// format. This way we can pass it on in a useable format.
//++
// Name:
// ia64_new_stack()
//
// Stub Description:
//
// SAL to OS entry point for INIT on the monarch processor
// This has been defined for registration purposes with SAL
// as a part of ia64_mca_init.
// Switch to the MCA/INIT stack.
//
// When we get here, the following registers have been
// set by the SAL for our use
// r2 contains the return address, r3 contains either
// IA64_MCA_CPU_MCA_STACK_OFFSET or IA64_MCA_CPU_INIT_STACK_OFFSET.
//
// 1. GR1 = OS INIT GP
// 2. GR8 = PAL_PROC physical address
// 3. GR9 = SAL_PROC physical address
// 4. GR10 = SAL GP (physical)
// 5. GR11 = Init Reason
// 0 = Received INIT for event other than crash dump switch
// 1 = Received wakeup at the end of an OS_MCA corrected machine check
// 2 = Received INIT dude to CrashDump switch assertion
// On entry RBS is still on the original stack, this routine switches RBS
// to use the MCA/INIT stack.
//
// 6. GR12 = Return address to location within SAL_INIT procedure
// On entry, sos->pal_min_state is physical, on exit it is virtual.
//
//--
GLOBAL_ENTRY(ia64_monarch_init_handler)
.prologue
// stash the information the SAL passed to os
SAL_TO_OS_MCA_HANDOFF_STATE_SAVE(r2)
ia64_new_stack:
add regs=MCA_PT_REGS_OFFSET, r3
add temp2=MCA_SOS_OFFSET+IA64_SAL_OS_STATE_PAL_MIN_STATE_OFFSET, r3
mov b0=r2 // save return address
GET_IA64_MCA_DATA(temp1)
invala
;;
SAVE_MIN_WITH_COVER
add temp2=temp2, temp1 // struct ia64_sal_os_state.pal_min_state on MCA or INIT stack
add regs=regs, temp1 // struct pt_regs on MCA or INIT stack
;;
mov r8=cr.ifa
mov r9=cr.isr
adds r3=8,r2 // set up second base pointer
// Address of minstate area provided by PAL is physical, uncacheable.
// Convert to Linux virtual address in region 6 for C code.
ld8 ms=[temp2] // pal_min_state, physical
;;
SAVE_REST
// ok, enough should be saved at this point to be dangerous, and supply
// information for a dump
// We need to switch to Virtual mode before hitting the C functions.
dep temp1=-1,ms,62,2 // set region 6
mov temp3=IA64_RBS_OFFSET-MCA_PT_REGS_OFFSET
;;
st8 [temp2]=temp1 // pal_min_state, virtual
movl r2=IA64_PSR_IT|IA64_PSR_IC|IA64_PSR_DT|IA64_PSR_RT|IA64_PSR_DFH|IA64_PSR_BN
mov r3=psr // get the current psr, minimum enabled at this point
add temp4=temp3, regs // start of bspstore on new stack
;;
or r2=r2,r3
mov ar.bspstore=temp4 // switch RBS to MCA/INIT stack
;;
movl r3=IVirtual_Switch
flushrs // must be first in group
br.sptk b0
//EndStub//////////////////////////////////////////////////////////////////////
//++
// Name:
// ia64_old_stack()
//
// Stub Description:
//
// Switch to the old stack.
//
// r2 contains the return address, r3 contains either
// IA64_MCA_CPU_MCA_STACK_OFFSET or IA64_MCA_CPU_INIT_STACK_OFFSET.
//
// On entry, pal_min_state is virtual, on exit it is physical.
//
// On entry RBS is on the MCA/INIT stack, this routine switches RBS
// back to the previous stack.
//
// The psr is set to all zeroes. SAL return requires either all zeroes or
// just psr.mc set. Leaving psr.mc off allows INIT to be issued if this
// code does not perform correctly.
//
// The dirty registers at the time of the event were flushed to the
// MCA/INIT stack in ia64_pt_regs_save(). Restore the dirty registers
// before reverting to the previous bspstore.
//--
ia64_old_stack:
add regs=MCA_PT_REGS_OFFSET, r3
mov b0=r2 // save return address
GET_IA64_MCA_DATA(temp2)
LOAD_PHYSICAL(p0,temp1,1f)
;;
mov cr.iip=r3 // short return to set the appropriate bits
mov cr.ipsr=r2 // need to do an rfi to set appropriate bits
mov cr.ipsr=r0
mov cr.ifs=r0
mov cr.iip=temp1
;;
invala
rfi
1:
add regs=regs, temp2 // struct pt_regs on MCA or INIT stack
;;
IVirtual_Switch:
//
// We should now be running virtual
//
// Let's call the C handler to get the rest of the state info
//
alloc r14=ar.pfs,0,0,2,0 // now it's safe (must be first in insn group!)
add temp1=PT(LOADRS), regs
;;
adds out0=16,sp // out0 = pointer to pt_regs
ld8 temp2=[temp1],PT(AR_BSPSTORE)-PT(LOADRS) // restore loadrs
;;
DO_SAVE_SWITCH_STACK
.body
adds out1=16,sp // out0 = pointer to switch_stack
ld8 temp3=[temp1],PT(AR_RNAT)-PT(AR_BSPSTORE) // restore ar.bspstore
mov ar.rsc=temp2
;;
loadrs
ld8 temp4=[temp1] // restore ar.rnat
;;
mov ar.bspstore=temp3 // back to old stack
;;
mov ar.rnat=temp4
;;
br.sptk b0
br.call.sptk.many rp=ia64_init_handler
.ret1:
//EndStub//////////////////////////////////////////////////////////////////////
return_from_init:
br.sptk return_from_init
END(ia64_monarch_init_handler)
//++
// Name:
// ia64_set_kernel_registers()
//
// SAL to OS entry point for INIT on the slave processor
// This has been defined for registration purposes with SAL
// as a part of ia64_mca_init.
// Stub Description:
//
// Set the registers that are required by the C code in order to run on an
// MCA/INIT stack.
//
// r2 contains the return address, r3 contains either
// IA64_MCA_CPU_MCA_STACK_OFFSET or IA64_MCA_CPU_INIT_STACK_OFFSET.
//
//--
ia64_set_kernel_registers:
add temp3=MCA_SP_OFFSET, r3
add temp4=MCA_SOS_OFFSET+IA64_SAL_OS_STATE_OS_GP_OFFSET, r3
mov b0=r2 // save return address
GET_IA64_MCA_DATA(temp1)
;;
add temp4=temp4, temp1 // &struct ia64_sal_os_state.os_gp
add r12=temp1, temp3 // kernel stack pointer on MCA/INIT stack
add r13=temp1, r3 // set current to start of MCA/INIT stack
;;
ld8 r1=[temp4] // OS GP from SAL OS state
;;
DATA_PA_TO_VA(r1,temp1)
DATA_PA_TO_VA(r12,temp2)
DATA_PA_TO_VA(r13,temp3)
;;
mov IA64_KR(CURRENT)=r13
// FIXME: do I need to wire IA64_KR_CURRENT_STACK and IA64_TR_CURRENT_STACK?
br.sptk b0
//EndStub//////////////////////////////////////////////////////////////////////
#undef ms
#undef regs
#undef temp1
#undef temp2
#undef temp3
#undef temp4
GLOBAL_ENTRY(ia64_slave_init_handler)
1: br.sptk 1b
END(ia64_slave_init_handler)
// Support function for mca.c, it is here to avoid using inline asm. Given the
// address of an rnat slot, if that address is below the current ar.bspstore
// then return the contents of that slot, otherwise return the contents of
// ar.rnat.
GLOBAL_ENTRY(ia64_get_rnat)
alloc r14=ar.pfs,1,0,0,0
mov ar.rsc=0
;;
mov r14=ar.bspstore
;;
cmp.lt p6,p7=in0,r14
;;
(p6) ld8 r8=[in0]
(p7) mov r8=ar.rnat
mov ar.rsc=3
br.ret.sptk.many rp
END(ia64_get_rnat)
......@@ -4,6 +4,8 @@
*
* Copyright (C) 2004 FUJITSU LIMITED
* Copyright (C) Hidetoshi Seto (seto.hidetoshi@jp.fujitsu.com)
* Copyright (C) 2005 Silicon Graphics, Inc
* Copyright (C) 2005 Keith Owens <kaos@sgi.com>
*/
#include <linux/config.h>
#include <linux/types.h>
......@@ -38,10 +40,6 @@
/* max size of SAL error record (default) */
static int sal_rec_max = 10000;
/* from mca.c */
static ia64_mca_sal_to_os_state_t *sal_to_os_handoff_state;
static ia64_mca_os_to_sal_state_t *os_to_sal_handoff_state;
/* from mca_drv_asm.S */
extern void *mca_handler_bhhook(void);
......@@ -316,7 +314,8 @@ init_record_index_pools(void)
*/
static mca_type_t
is_mca_global(peidx_table_t *peidx, pal_bus_check_info_t *pbci)
is_mca_global(peidx_table_t *peidx, pal_bus_check_info_t *pbci,
struct ia64_sal_os_state *sos)
{
pal_processor_state_info_t *psp = (pal_processor_state_info_t*)peidx_psp(peidx);
......@@ -327,7 +326,7 @@ is_mca_global(peidx_table_t *peidx, pal_bus_check_info_t *pbci)
* Therefore it is local MCA when rendezvous has not been requested.
* Failed to rendezvous, the system must be down.
*/
switch (sal_to_os_handoff_state->imsto_rendez_state) {
switch (sos->rv_rc) {
case -1: /* SAL rendezvous unsuccessful */
return MCA_IS_GLOBAL;
case 0: /* SAL rendezvous not required */
......@@ -388,7 +387,8 @@ is_mca_global(peidx_table_t *peidx, pal_bus_check_info_t *pbci)
*/
static int
recover_from_read_error(slidx_table_t *slidx, peidx_table_t *peidx, pal_bus_check_info_t *pbci)
recover_from_read_error(slidx_table_t *slidx, peidx_table_t *peidx, pal_bus_check_info_t *pbci,
struct ia64_sal_os_state *sos)
{
sal_log_mod_error_info_t *smei;
pal_min_state_area_t *pmsa;
......@@ -426,7 +426,7 @@ recover_from_read_error(slidx_table_t *slidx, peidx_table_t *peidx, pal_bus_chec
* setup for resume to bottom half of MCA,
* "mca_handler_bhhook"
*/
pmsa = (pal_min_state_area_t *)(sal_to_os_handoff_state->pal_min_state | (6ul<<61));
pmsa = sos->pal_min_state;
/* pass to bhhook as 1st argument (gr8) */
pmsa->pmsa_gr[8-1] = smei->target_identifier;
/* set interrupted return address (but no use) */
......@@ -459,7 +459,8 @@ recover_from_read_error(slidx_table_t *slidx, peidx_table_t *peidx, pal_bus_chec
*/
static int
recover_from_platform_error(slidx_table_t *slidx, peidx_table_t *peidx, pal_bus_check_info_t *pbci)
recover_from_platform_error(slidx_table_t *slidx, peidx_table_t *peidx, pal_bus_check_info_t *pbci,
struct ia64_sal_os_state *sos)
{
int status = 0;
pal_processor_state_info_t *psp = (pal_processor_state_info_t*)peidx_psp(peidx);
......@@ -469,7 +470,7 @@ recover_from_platform_error(slidx_table_t *slidx, peidx_table_t *peidx, pal_bus_
case 1: /* partial read */
case 3: /* full line(cpu) read */
case 9: /* I/O space read */
status = recover_from_read_error(slidx, peidx, pbci);
status = recover_from_read_error(slidx, peidx, pbci, sos);
break;
case 0: /* unknown */
case 2: /* partial write */
......@@ -508,7 +509,8 @@ recover_from_platform_error(slidx_table_t *slidx, peidx_table_t *peidx, pal_bus_
*/
static int
recover_from_processor_error(int platform, slidx_table_t *slidx, peidx_table_t *peidx, pal_bus_check_info_t *pbci)
recover_from_processor_error(int platform, slidx_table_t *slidx, peidx_table_t *peidx, pal_bus_check_info_t *pbci,
struct ia64_sal_os_state *sos)
{
pal_processor_state_info_t *psp = (pal_processor_state_info_t*)peidx_psp(peidx);
......@@ -545,7 +547,7 @@ recover_from_processor_error(int platform, slidx_table_t *slidx, peidx_table_t *
* This means "there are some platform errors".
*/
if (platform)
return recover_from_platform_error(slidx, peidx, pbci);
return recover_from_platform_error(slidx, peidx, pbci, sos);
/*
* On account of strange SAL error record, we cannot recover.
*/
......@@ -562,8 +564,7 @@ recover_from_processor_error(int platform, slidx_table_t *slidx, peidx_table_t *
static int
mca_try_to_recover(void *rec,
ia64_mca_sal_to_os_state_t *sal_to_os_state,
ia64_mca_os_to_sal_state_t *os_to_sal_state)
struct ia64_sal_os_state *sos)
{
int platform_err;
int n_proc_err;
......@@ -571,10 +572,6 @@ mca_try_to_recover(void *rec,
peidx_table_t peidx;
pal_bus_check_info_t pbci;
/* handoff state from/to mca.c */
sal_to_os_handoff_state = sal_to_os_state;
os_to_sal_handoff_state = os_to_sal_state;
/* Make index of SAL error record */
platform_err = mca_make_slidx(rec, &slidx);
......@@ -597,11 +594,11 @@ mca_try_to_recover(void *rec,
*((u64*)&pbci) = peidx_check_info(&peidx, bus_check, 0);
/* Check whether MCA is global or not */
if (is_mca_global(&peidx, &pbci))
if (is_mca_global(&peidx, &pbci, sos))
return 0;
/* Try to recover a processor error */
return recover_from_processor_error(platform_err, &slidx, &peidx, &pbci);
return recover_from_processor_error(platform_err, &slidx, &peidx, &pbci, sos);
}
/*
......
......@@ -11,8 +11,6 @@
#ifndef _ASM_IA64_MCA_H
#define _ASM_IA64_MCA_H
#define IA64_MCA_STACK_SIZE 8192
#if !defined(__ASSEMBLY__)
#include <linux/interrupt.h>
......@@ -48,7 +46,8 @@ typedef union cmcv_reg_u {
enum {
IA64_MCA_RENDEZ_CHECKIN_NOTDONE = 0x0,
IA64_MCA_RENDEZ_CHECKIN_DONE = 0x1
IA64_MCA_RENDEZ_CHECKIN_DONE = 0x1,
IA64_MCA_RENDEZ_CHECKIN_INIT = 0x2,
};
/* Information maintained by the MC infrastructure */
......@@ -63,18 +62,42 @@ typedef struct ia64_mc_info_s {
} ia64_mc_info_t;
typedef struct ia64_mca_sal_to_os_state_s {
u64 imsto_os_gp; /* GP of the os registered with the SAL */
u64 imsto_pal_proc; /* PAL_PROC entry point - physical addr */
u64 imsto_sal_proc; /* SAL_PROC entry point - physical addr */
u64 imsto_sal_gp; /* GP of the SAL - physical */
u64 imsto_rendez_state; /* Rendez state information */
u64 imsto_sal_check_ra; /* Return address in SAL_CHECK while going
* back to SAL from OS after MCA handling.
/* Handover state from SAL to OS and vice versa, for both MCA and INIT events.
* Besides the handover state, it also contains some saved registers from the
* time of the event.
* Note: mca_asm.S depends on the precise layout of this structure.
*/
struct ia64_sal_os_state {
/* SAL to OS, must be at offset 0 */
u64 os_gp; /* GP of the os registered with the SAL, physical */
u64 pal_proc; /* PAL_PROC entry point, physical */
u64 sal_proc; /* SAL_PROC entry point, physical */
u64 rv_rc; /* MCA - Rendezvous state, INIT - reason code */
u64 proc_state_param; /* from R18 */
u64 monarch; /* 1 for a monarch event, 0 for a slave */
/* common, must follow SAL to OS */
u64 sal_ra; /* Return address in SAL, physical */
u64 sal_gp; /* GP of the SAL - physical */
pal_min_state_area_t *pal_min_state; /* from R17. physical in asm, virtual in C */
u64 prev_IA64_KR_CURRENT; /* previous value of IA64_KR(CURRENT) */
struct task_struct *prev_task; /* previous task, NULL if it is not useful */
/* Some interrupt registers are not saved in minstate, pt_regs or
* switch_stack. Because MCA/INIT can occur when interrupts are
* disabled, we need to save the additional interrupt registers over
* MCA/INIT and resume.
*/
u64 pal_min_state; /* from PAL in r17 */
u64 proc_state_param; /* from PAL in r18. See SDV 2:268 11.3.2.1 */
} ia64_mca_sal_to_os_state_t;
u64 isr;
u64 ifa;
u64 itir;
u64 iipa;
u64 iim;
u64 iha;
/* OS to SAL, must follow common */
u64 os_status; /* OS status to SAL, enum below */
u64 context; /* 0 if return to same context
1 if return to new context */
};
enum {
IA64_MCA_CORRECTED = 0x0, /* Error has been corrected by OS_MCA */
......@@ -83,36 +106,22 @@ enum {
IA64_MCA_HALT = -3 /* System to be halted by SAL */
};
enum {
IA64_INIT_RESUME = 0x0, /* Resume after return from INIT */
IA64_INIT_WARM_BOOT = -1, /* Warm boot of the system need from SAL */
};
enum {
IA64_MCA_SAME_CONTEXT = 0x0, /* SAL to return to same context */
IA64_MCA_NEW_CONTEXT = -1 /* SAL to return to new context */
};
typedef struct ia64_mca_os_to_sal_state_s {
u64 imots_os_status; /* OS status to SAL as to what happened
* with the MCA handling.
*/
u64 imots_sal_gp; /* GP of the SAL - physical */
u64 imots_context; /* 0 if return to same context
1 if return to new context */
u64 *imots_new_min_state; /* Pointer to structure containing
* new values of registers in the min state
* save area.
*/
u64 imots_sal_check_ra; /* Return address in SAL_CHECK while going
* back to SAL from OS after MCA handling.
*/
} ia64_mca_os_to_sal_state_t;
/* Per-CPU MCA state that is too big for normal per-CPU variables. */
struct ia64_mca_cpu {
u64 stack[IA64_MCA_STACK_SIZE/8]; /* MCA memory-stack */
u64 proc_state_dump[512];
u64 stackframe[32];
u64 rbstore[IA64_MCA_STACK_SIZE/8]; /* MCA reg.-backing store */
u64 mca_stack[KERNEL_STACK_SIZE/8];
u64 init_stack[KERNEL_STACK_SIZE/8];
} __attribute__ ((aligned(16)));
};
/* Array of physical addresses of each CPU's MCA area. */
extern unsigned long __per_cpu_mca[NR_CPUS];
......@@ -121,12 +130,29 @@ extern void ia64_mca_init(void);
extern void ia64_mca_cpu_init(void *);
extern void ia64_os_mca_dispatch(void);
extern void ia64_os_mca_dispatch_end(void);
extern void ia64_mca_ucmc_handler(void);
extern void ia64_mca_ucmc_handler(struct pt_regs *, struct ia64_sal_os_state *);
extern void ia64_init_handler(struct pt_regs *,
struct switch_stack *,
struct ia64_sal_os_state *);
extern void ia64_monarch_init_handler(void);
extern void ia64_slave_init_handler(void);
extern void ia64_mca_cmc_vector_setup(void);
extern int ia64_reg_MCA_extension(void*);
extern int ia64_reg_MCA_extension(int (*fn)(void *, struct ia64_sal_os_state *));
extern void ia64_unreg_MCA_extension(void);
extern u64 ia64_get_rnat(u64 *);
#else /* __ASSEMBLY__ */
#define IA64_MCA_CORRECTED 0x0 /* Error has been corrected by OS_MCA */
#define IA64_MCA_WARM_BOOT -1 /* Warm boot of the system need from SAL */
#define IA64_MCA_COLD_BOOT -2 /* Cold boot of the system need from SAL */
#define IA64_MCA_HALT -3 /* System to be halted by SAL */
#define IA64_INIT_RESUME 0x0 /* Resume after return from INIT */
#define IA64_INIT_WARM_BOOT -1 /* Warm boot of the system need from SAL */
#define IA64_MCA_SAME_CONTEXT 0x0 /* SAL to return to same context */
#define IA64_MCA_NEW_CONTEXT -1 /* SAL to return to new context */
#endif /* !__ASSEMBLY__ */
#endif /* _ASM_IA64_MCA_H */
......@@ -8,6 +8,8 @@
* Copyright (C) 2000 David Mosberger-Tang <davidm@hpl.hp.com>
* Copyright (C) 2002 Intel Corp.
* Copyright (C) 2002 Jenna Hall <jenna.s.hall@intel.com>
* Copyright (C) 2005 Silicon Graphics, Inc
* Copyright (C) 2005 Keith Owens <kaos@sgi.com>
*/
#ifndef _ASM_IA64_MCA_ASM_H
#define _ASM_IA64_MCA_ASM_H
......@@ -207,106 +209,33 @@
;;
/*
* The following offsets capture the order in which the
* RSE related registers from the old context are
* saved onto the new stack frame.
* The MCA and INIT stacks in struct ia64_mca_cpu look like normal kernel
* stacks, except that the SAL/OS state and a switch_stack are stored near the
* top of the MCA/INIT stack. To support concurrent entry to MCA or INIT, as
* well as MCA over INIT, each event needs its own SAL/OS state. All entries
* are 16 byte aligned.
*
* +-----------------------+
* |NDIRTY [BSP - BSPSTORE]|
* +-----------------------+
* | RNAT |
* +-----------------------+
* | BSPSTORE |
* +-----------------------+
* | IFS |
* +-----------------------+
* | PFS |
* +-----------------------+
* | RSC |
* +-----------------------+ <-------- Bottom of new stack frame
* +---------------------------+
* | pt_regs |
* +---------------------------+
* | switch_stack |
* +---------------------------+
* | SAL/OS state |
* +---------------------------+
* | 16 byte scratch area |
* +---------------------------+ <-------- SP at start of C MCA handler
* | ..... |
* +---------------------------+
* | RBS for MCA/INIT handler |
* +---------------------------+
* | struct task for MCA/INIT |
* +---------------------------+ <-------- Bottom of MCA/INIT stack
*/
#define rse_rsc_offset 0
#define rse_pfs_offset (rse_rsc_offset+0x08)
#define rse_ifs_offset (rse_pfs_offset+0x08)
#define rse_bspstore_offset (rse_ifs_offset+0x08)
#define rse_rnat_offset (rse_bspstore_offset+0x08)
#define rse_ndirty_offset (rse_rnat_offset+0x08)
/*
* rse_switch_context
*
* 1. Save old RSC onto the new stack frame
* 2. Save PFS onto new stack frame
* 3. Cover the old frame and start a new frame.
* 4. Save IFS onto new stack frame
* 5. Save the old BSPSTORE on the new stack frame
* 6. Save the old RNAT on the new stack frame
* 7. Write BSPSTORE with the new backing store pointer
* 8. Read and save the new BSP to calculate the #dirty registers
* NOTE: Look at pages 11-10, 11-11 in PRM Vol 2
*/
#define rse_switch_context(temp,p_stackframe,p_bspstore) \
;; \
mov temp=ar.rsc;; \
st8 [p_stackframe]=temp,8;; \
mov temp=ar.pfs;; \
st8 [p_stackframe]=temp,8; \
cover ;; \
mov temp=cr.ifs;; \
st8 [p_stackframe]=temp,8;; \
mov temp=ar.bspstore;; \
st8 [p_stackframe]=temp,8;; \
mov temp=ar.rnat;; \
st8 [p_stackframe]=temp,8; \
mov ar.bspstore=p_bspstore;; \
mov temp=ar.bsp;; \
sub temp=temp,p_bspstore;; \
st8 [p_stackframe]=temp,8;;
/*
* rse_return_context
* 1. Allocate a zero-sized frame
* 2. Store the number of dirty registers RSC.loadrs field
* 3. Issue a loadrs to insure that any registers from the interrupted
* context which were saved on the new stack frame have been loaded
* back into the stacked registers
* 4. Restore BSPSTORE
* 5. Restore RNAT
* 6. Restore PFS
* 7. Restore IFS
* 8. Restore RSC
* 9. Issue an RFI
*/
#define rse_return_context(psr_mask_reg,temp,p_stackframe) \
;; \
alloc temp=ar.pfs,0,0,0,0; \
add p_stackframe=rse_ndirty_offset,p_stackframe;; \
ld8 temp=[p_stackframe];; \
shl temp=temp,16;; \
mov ar.rsc=temp;; \
loadrs;; \
add p_stackframe=-rse_ndirty_offset+rse_bspstore_offset,p_stackframe;;\
ld8 temp=[p_stackframe];; \
mov ar.bspstore=temp;; \
add p_stackframe=-rse_bspstore_offset+rse_rnat_offset,p_stackframe;;\
ld8 temp=[p_stackframe];; \
mov ar.rnat=temp;; \
add p_stackframe=-rse_rnat_offset+rse_pfs_offset,p_stackframe;; \
ld8 temp=[p_stackframe];; \
mov ar.pfs=temp;; \
add p_stackframe=-rse_pfs_offset+rse_ifs_offset,p_stackframe;; \
ld8 temp=[p_stackframe];; \
mov cr.ifs=temp;; \
add p_stackframe=-rse_ifs_offset+rse_rsc_offset,p_stackframe;; \
ld8 temp=[p_stackframe];; \
mov ar.rsc=temp ; \
mov temp=psr;; \
or temp=temp,psr_mask_reg;; \
mov cr.ipsr=temp;; \
mov temp=ip;; \
add temp=0x30,temp;; \
mov cr.iip=temp;; \
srlz.i;; \
rfi;;
#define ALIGN16(x) ((x)&~15)
#define MCA_PT_REGS_OFFSET ALIGN16(KERNEL_STACK_SIZE-IA64_PT_REGS_SIZE)
#define MCA_SWITCH_STACK_OFFSET ALIGN16(MCA_PT_REGS_OFFSET-IA64_SWITCH_STACK_SIZE)
#define MCA_SOS_OFFSET ALIGN16(MCA_SWITCH_STACK_OFFSET-IA64_SAL_OS_STATE_SIZE)
#define MCA_SP_OFFSET ALIGN16(MCA_SOS_OFFSET-16)
#endif /* _ASM_IA64_MCA_ASM_H */
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment