Commit 8d009a0c authored by Davide Ferri's avatar Davide Ferri Committed by Mauro Carvalho Chehab

[media] dib0700: add initial code for PCTV 340e by Davide Ferri

This is initial code written by Davide Ferri for the PCTV 340e, including
a new xc4000 driver.  I am checking in all the code unmodified, and making
no assertions about its quality (other than confirming it compiles).

[mchehab@redhat.com: rebased on the top of the current tree]
Signed-off-by: default avatarDevin Heitmueller <dheitmueller@kernellabs.com>
Signed-off-by: default avatarDavide Ferri <davidef1986@gmail.com>
Cc: Patrick Boettcher <pboettcher@kernellabs.com>
Signed-off-by: default avatarMauro Carvalho Chehab <mchehab@redhat.com>
parent 32127363
......@@ -78,6 +78,7 @@ tuner=77 - TCL tuner MF02GIP-5N-E
tuner=78 - Philips FMD1216MEX MK3 Hybrid Tuner
tuner=79 - Philips PAL/SECAM multi (FM1216 MK5)
tuner=80 - Philips FQ1216LME MK3 PAL/SECAM w/active loopthrough
tuner=81 - Xceive 4000 tuner
tuner=81 - Partsnic (Daewoo) PTI-5NF05
tuner=82 - Philips CU1216L
tuner=83 - NXP TDA18271
......
......@@ -23,6 +23,7 @@ config MEDIA_TUNER
depends on VIDEO_MEDIA && I2C
select MEDIA_TUNER_XC2028 if !MEDIA_TUNER_CUSTOMISE
select MEDIA_TUNER_XC5000 if !MEDIA_TUNER_CUSTOMISE
select MEDIA_TUNER_XC4000 if !MEDIA_TUNER_CUSTOMISE
select MEDIA_TUNER_MT20XX if !MEDIA_TUNER_CUSTOMISE
select MEDIA_TUNER_TDA8290 if !MEDIA_TUNER_CUSTOMISE
select MEDIA_TUNER_TEA5761 if !MEDIA_TUNER_CUSTOMISE
......@@ -152,6 +153,15 @@ config MEDIA_TUNER_XC5000
This device is only used inside a SiP called together with a
demodulator for now.
config MEDIA_TUNER_XC4000
tristate "Xceive XC4000 silicon tuner"
depends on VIDEO_MEDIA && I2C
default m if MEDIA_TUNER_CUSTOMISE
help
A driver for the silicon tuner XC4000 from Xceive.
This device is only used inside a SiP called together with a
demodulator for now.
config MEDIA_TUNER_MXL5005S
tristate "MaxLinear MSL5005S silicon tuner"
depends on VIDEO_MEDIA && I2C
......
......@@ -16,6 +16,7 @@ obj-$(CONFIG_MEDIA_TUNER_TDA9887) += tda9887.o
obj-$(CONFIG_MEDIA_TUNER_TDA827X) += tda827x.o
obj-$(CONFIG_MEDIA_TUNER_TDA18271) += tda18271.o
obj-$(CONFIG_MEDIA_TUNER_XC5000) += xc5000.o
obj-$(CONFIG_MEDIA_TUNER_XC4000) += xc4000.o
obj-$(CONFIG_MEDIA_TUNER_MT2060) += mt2060.o
obj-$(CONFIG_MEDIA_TUNER_MT2266) += mt2266.o
obj-$(CONFIG_MEDIA_TUNER_QT1010) += qt1010.o
......
......@@ -1805,6 +1805,10 @@ struct tunertype tuners[] = {
.name = "Xceive 5000 tuner",
/* see xc5000.c for details */
},
[TUNER_XC4000] = { /* Xceive 4000 */
.name = "Xceive 4000 tuner",
/* see xc4000.c for details */
},
[TUNER_TCL_MF02GIP_5N] = { /* TCL tuner MF02GIP-5N-E */
.name = "TCL tuner MF02GIP-5N-E",
.params = tuner_tcl_mf02gip_5n_params,
......
/*
* Driver for Xceive XC4000 "QAM/8VSB single chip tuner"
*
* Copyright (c) 2007 Xceive Corporation
* Copyright (c) 2007 Steven Toth <stoth@linuxtv.org>
* Copyright (c) 2009 Devin Heitmueller <dheitmueller@kernellabs.com>
* Copyright (c) 2009 Davide Ferri <d.ferri@zero11.it>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
*
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/videodev2.h>
#include <linux/delay.h>
#include <linux/dvb/frontend.h>
#include <linux/i2c.h>
#include "dvb_frontend.h"
#include "xc4000.h"
#include "tuner-i2c.h"
static int debug;
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "Turn on/off debugging (default:off).");
static int no_poweroff;
module_param(no_poweroff, int, 0644);
MODULE_PARM_DESC(no_poweroff, "0 (default) powers device off when not used.\n"
"\t\t1 keep device energized and with tuner ready all the times.\n"
"\t\tFaster, but consumes more power and keeps the device hotter");
static DEFINE_MUTEX(xc4000_list_mutex);
static LIST_HEAD(hybrid_tuner_instance_list);
#define dprintk(level, fmt, arg...) if (debug >= level) \
printk(KERN_INFO "%s: " fmt, "xc4000", ## arg)
#define XC4000_DEFAULT_FIRMWARE "dvb-fe-xc4000-1.4.26.fw"
#define XC4000_DEFAULT_FIRMWARE_SIZE 8236
struct xc4000_priv {
struct tuner_i2c_props i2c_props;
struct list_head hybrid_tuner_instance_list;
u32 if_khz;
u32 freq_hz;
u32 bandwidth;
u8 video_standard;
u8 rf_mode;
};
/* Misc Defines */
#define MAX_TV_STANDARD 23
#define XC_MAX_I2C_WRITE_LENGTH 64
/* Signal Types */
#define XC_RF_MODE_AIR 0
#define XC_RF_MODE_CABLE 1
/* Result codes */
#define XC_RESULT_SUCCESS 0
#define XC_RESULT_RESET_FAILURE 1
#define XC_RESULT_I2C_WRITE_FAILURE 2
#define XC_RESULT_I2C_READ_FAILURE 3
#define XC_RESULT_OUT_OF_RANGE 5
/* Product id */
#define XC_PRODUCT_ID_FW_NOT_LOADED 0x2000
#define XC_PRODUCT_ID_FW_LOADED 0x0FA0 /* WAS: 0x1388*/
/* Registers */
#define XREG_INIT 0x00
#define XREG_VIDEO_MODE 0x01
#define XREG_AUDIO_MODE 0x02
#define XREG_RF_FREQ 0x03
#define XREG_D_CODE 0x04
#define XREG_IF_OUT 0x05 /* ?? */
#define XREG_SEEK_MODE 0x07 /* WAS: 0x06 */
#define XREG_POWER_DOWN 0x08 /* WAS: 0x0A Obsolete */
#define XREG_SIGNALSOURCE 0x0A /* WAS: 0x0D 0=Air, 1=Cable */
//#define XREG_SMOOTHEDCVBS 0x0E
//#define XREG_XTALFREQ 0x0F
//#define XREG_FINERFREQ 0x10
//#define XREG_DDIMODE 0x11
#define XREG_ADC_ENV 0x00
#define XREG_QUALITY 0x01
#define XREG_FRAME_LINES 0x02
#define XREG_HSYNC_FREQ 0x03
#define XREG_LOCK 0x04
#define XREG_FREQ_ERROR 0x05
#define XREG_SNR 0x06
#define XREG_VERSION 0x07
#define XREG_PRODUCT_ID 0x08
//#define XREG_BUSY 0x09
//#define XREG_BUILD 0x0D
/*
Basic firmware description. This will remain with
the driver for documentation purposes.
This represents an I2C firmware file encoded as a
string of unsigned char. Format is as follows:
char[0 ]=len0_MSB -> len = len_MSB * 256 + len_LSB
char[1 ]=len0_LSB -> length of first write transaction
char[2 ]=data0 -> first byte to be sent
char[3 ]=data1
char[4 ]=data2
char[ ]=...
char[M ]=dataN -> last byte to be sent
char[M+1]=len1_MSB -> len = len_MSB * 256 + len_LSB
char[M+2]=len1_LSB -> length of second write transaction
char[M+3]=data0
char[M+4]=data1
...
etc.
The [len] value should be interpreted as follows:
len= len_MSB _ len_LSB
len=1111_1111_1111_1111 : End of I2C_SEQUENCE
len=0000_0000_0000_0000 : Reset command: Do hardware reset
len=0NNN_NNNN_NNNN_NNNN : Normal transaction: number of bytes = {1:32767)
len=1WWW_WWWW_WWWW_WWWW : Wait command: wait for {1:32767} ms
For the RESET and WAIT commands, the two following bytes will contain
immediately the length of the following transaction.
*/
struct XC_TV_STANDARD {
char *Name;
u16 AudioMode;
u16 VideoMode;
};
/* Tuner standards */
#define MN_NTSC_PAL_BTSC 0
#define MN_NTSC_PAL_A2 1
#define MN_NTSC_PAL_EIAJ 2
#define MN_NTSC_PAL_Mono 3
#define BG_PAL_A2 4
#define BG_PAL_NICAM 5
#define BG_PAL_MONO 6
#define I_PAL_NICAM 7
#define I_PAL_NICAM_MONO 8
#define DK_PAL_A2 9
#define DK_PAL_NICAM 10
#define DK_PAL_MONO 11
#define DK_SECAM_A2DK1 12
#define DK_SECAM_A2LDK3 13
#define DK_SECAM_A2MONO 14
#define L_SECAM_NICAM 15
#define LC_SECAM_NICAM 16
#define DTV6 17
#define DTV8 18
#define DTV7_8 19
#define DTV7 20
#define FM_Radio_INPUT2 21
#define FM_Radio_INPUT1 22
/* WAS :
static struct XC_TV_STANDARD XC4000_Standard[MAX_TV_STANDARD] = {
{"M/N-NTSC/PAL-BTSC", 0x0400, 0x8020},
{"M/N-NTSC/PAL-A2", 0x0600, 0x8020},
{"M/N-NTSC/PAL-EIAJ", 0x0440, 0x8020},
{"M/N-NTSC/PAL-Mono", 0x0478, 0x8020},
{"B/G-PAL-A2", 0x0A00, 0x8049},
{"B/G-PAL-NICAM", 0x0C04, 0x8049},
{"B/G-PAL-MONO", 0x0878, 0x8059},
{"I-PAL-NICAM", 0x1080, 0x8009},
{"I-PAL-NICAM-MONO", 0x0E78, 0x8009},
{"D/K-PAL-A2", 0x1600, 0x8009},
{"D/K-PAL-NICAM", 0x0E80, 0x8009},
{"D/K-PAL-MONO", 0x1478, 0x8009},
{"D/K-SECAM-A2 DK1", 0x1200, 0x8009},
{"D/K-SECAM-A2 L/DK3", 0x0E00, 0x8009},
{"D/K-SECAM-A2 MONO", 0x1478, 0x8009},
{"L-SECAM-NICAM", 0x8E82, 0x0009},
{"L'-SECAM-NICAM", 0x8E82, 0x4009},
{"DTV6", 0x00C0, 0x8002},
{"DTV8", 0x00C0, 0x800B},
{"DTV7/8", 0x00C0, 0x801B},
{"DTV7", 0x00C0, 0x8007},
{"FM Radio-INPUT2", 0x9802, 0x9002},
{"FM Radio-INPUT1", 0x0208, 0x9002}
};*/
static struct XC_TV_STANDARD XC4000_Standard[MAX_TV_STANDARD] = {
{"M/N-NTSC/PAL-BTSC", 0x0000, 0x8020},
{"M/N-NTSC/PAL-A2", 0x0000, 0x8020},
{"M/N-NTSC/PAL-EIAJ", 0x0040, 0x8020},
{"M/N-NTSC/PAL-Mono", 0x0078, 0x8020},
{"B/G-PAL-A2", 0x0000, 0x8059},
{"B/G-PAL-NICAM", 0x0004, 0x8059},
{"B/G-PAL-MONO", 0x0078, 0x8059},
{"I-PAL-NICAM", 0x0080, 0x8049},
{"I-PAL-NICAM-MONO", 0x0078, 0x8049},
{"D/K-PAL-A2", 0x0000, 0x8049},
{"D/K-PAL-NICAM", 0x0080, 0x8049},
{"D/K-PAL-MONO", 0x0078, 0x8049},
{"D/K-SECAM-A2 DK1", 0x0000, 0x8049},
{"D/K-SECAM-A2 L/DK3", 0x0000, 0x8049},
{"D/K-SECAM-A2 MONO", 0x0078, 0x8049},
{"L-SECAM-NICAM", 0x8080, 0x0009},
{"L'-SECAM-NICAM", 0x8080, 0x4009},
{"DTV6", 0x00C0, 0x8002},
{"DTV8", 0x00C0, 0x800B},
{"DTV7/8", 0x00C0, 0x801B},
{"DTV7", 0x00C0, 0x8007},
{"FM Radio-INPUT2", 0x0008, 0x9800},
{"FM Radio-INPUT1", 0x0008, 0x9000}
};
static int xc_load_fw_and_init_tuner(struct dvb_frontend *fe);
static int xc4000_is_firmware_loaded(struct dvb_frontend *fe);
static int xc4000_readreg(struct xc4000_priv *priv, u16 reg, u16 *val);
static int xc4000_TunerReset(struct dvb_frontend *fe);
static int xc_send_i2c_data(struct xc4000_priv *priv, u8 *buf, int len)
{
struct i2c_msg msg = { .addr = priv->i2c_props.addr,
.flags = 0, .buf = buf, .len = len };
if (i2c_transfer(priv->i2c_props.adap, &msg, 1) != 1) {
printk(KERN_ERR "xc4000: I2C write failed (len=%i)\n", len);
return XC_RESULT_I2C_WRITE_FAILURE;
}
return XC_RESULT_SUCCESS;
}
/* This routine is never used because the only time we read data from the
i2c bus is when we read registers, and we want that to be an atomic i2c
transaction in case we are on a multi-master bus */
static int xc_read_i2c_data(struct xc4000_priv *priv, u8 *buf, int len)
{
struct i2c_msg msg = { .addr = priv->i2c_props.addr,
.flags = I2C_M_RD, .buf = buf, .len = len };
if (i2c_transfer(priv->i2c_props.adap, &msg, 1) != 1) {
printk(KERN_ERR "xc4000 I2C read failed (len=%i)\n", len);
return -EREMOTEIO;
}
return 0;
}
static void xc_wait(int wait_ms)
{
msleep(wait_ms);
}
static int xc4000_TunerReset(struct dvb_frontend *fe)
{
struct xc4000_priv *priv = fe->tuner_priv;
int ret;
dprintk(1, "%s()\n", __func__);
if (fe->callback) {
ret = fe->callback(((fe->dvb) && (fe->dvb->priv)) ?
fe->dvb->priv :
priv->i2c_props.adap->algo_data,
DVB_FRONTEND_COMPONENT_TUNER,
XC4000_TUNER_RESET, 0);
if (ret) {
printk(KERN_ERR "xc4000: reset failed\n");
return XC_RESULT_RESET_FAILURE;
}
} else {
printk(KERN_ERR "xc4000: no tuner reset callback function, fatal\n");
return XC_RESULT_RESET_FAILURE;
}
return XC_RESULT_SUCCESS;
}
static int xc_write_reg(struct xc4000_priv *priv, u16 regAddr, u16 i2cData)
{
u8 buf[4];
// int WatchDogTimer = 100;
int result;
buf[0] = (regAddr >> 8) & 0xFF;
buf[1] = regAddr & 0xFF;
buf[2] = (i2cData >> 8) & 0xFF;
buf[3] = i2cData & 0xFF;
result = xc_send_i2c_data(priv, buf, 4);
//WAS THERE
// if (result == XC_RESULT_SUCCESS) {
// /* wait for busy flag to clear */
// while ((WatchDogTimer > 0) && (result == XC_RESULT_SUCCESS)) {
// buf[0] = 0;
// buf[1] = XREG_BUSY;
//
// result = xc_send_i2c_data(priv, buf, 2);
// if (result == XC_RESULT_SUCCESS) {
// result = xc_read_i2c_data(priv, buf, 2);
// if (result == XC_RESULT_SUCCESS) {
// if ((buf[0] == 0) && (buf[1] == 0)) {
// /* busy flag cleared */
// break;
// } else {
// xc_wait(5); /* wait 5 ms */
// WatchDogTimer--;
// }
// }
// }
// }
// }
// if (WatchDogTimer < 0)
// result = XC_RESULT_I2C_WRITE_FAILURE;
return result;
}
static int xc_load_i2c_sequence(struct dvb_frontend *fe, const u8 *i2c_sequence)
{
struct xc4000_priv *priv = fe->tuner_priv;
int i, nbytes_to_send, result;
unsigned int len, pos, index;
u8 buf[XC_MAX_I2C_WRITE_LENGTH];
index = 0;
while ((i2c_sequence[index] != 0xFF) ||
(i2c_sequence[index + 1] != 0xFF)) {
len = i2c_sequence[index] * 256 + i2c_sequence[index+1];
if (len == 0x0000) {
/* RESET command */
result = xc4000_TunerReset(fe);
index += 2;
if (result != XC_RESULT_SUCCESS)
return result;
} else if (len & 0x8000) {
/* WAIT command */
xc_wait(len & 0x7FFF);
index += 2;
} else {
/* Send i2c data whilst ensuring individual transactions
* do not exceed XC_MAX_I2C_WRITE_LENGTH bytes.
*/
index += 2;
buf[0] = i2c_sequence[index];
buf[1] = i2c_sequence[index + 1];
pos = 2;
while (pos < len) {
if ((len - pos) > XC_MAX_I2C_WRITE_LENGTH - 2)
nbytes_to_send =
XC_MAX_I2C_WRITE_LENGTH;
else
nbytes_to_send = (len - pos + 2);
for (i = 2; i < nbytes_to_send; i++) {
buf[i] = i2c_sequence[index + pos +
i - 2];
}
result = xc_send_i2c_data(priv, buf,
nbytes_to_send);
if (result != XC_RESULT_SUCCESS)
return result;
pos += nbytes_to_send - 2;
}
index += len;
}
}
return XC_RESULT_SUCCESS;
}
static int xc_initialize(struct xc4000_priv *priv)
{
dprintk(1, "%s()\n", __func__);
return xc_write_reg(priv, XREG_INIT, 0);
}
static int xc_SetTVStandard(struct xc4000_priv *priv,
u16 VideoMode, u16 AudioMode)
{
int ret;
dprintk(1, "%s(0x%04x,0x%04x)\n", __func__, VideoMode, AudioMode);
dprintk(1, "%s() Standard = %s\n",
__func__,
XC4000_Standard[priv->video_standard].Name);
ret = xc_write_reg(priv, XREG_VIDEO_MODE, VideoMode);
if (ret == XC_RESULT_SUCCESS)
ret = xc_write_reg(priv, XREG_AUDIO_MODE, AudioMode);
return ret;
}
static int xc_SetSignalSource(struct xc4000_priv *priv, u16 rf_mode)
{
dprintk(1, "%s(%d) Source = %s\n", __func__, rf_mode,
rf_mode == XC_RF_MODE_AIR ? "ANTENNA" : "CABLE");
if ((rf_mode != XC_RF_MODE_AIR) && (rf_mode != XC_RF_MODE_CABLE)) {
rf_mode = XC_RF_MODE_CABLE;
printk(KERN_ERR
"%s(), Invalid mode, defaulting to CABLE",
__func__);
}
return xc_write_reg(priv, XREG_SIGNALSOURCE, rf_mode);
}
static const struct dvb_tuner_ops xc4000_tuner_ops;
static int xc_set_RF_frequency(struct xc4000_priv *priv, u32 freq_hz)
{
u16 freq_code;
dprintk(1, "%s(%u)\n", __func__, freq_hz);
if ((freq_hz > xc4000_tuner_ops.info.frequency_max) ||
(freq_hz < xc4000_tuner_ops.info.frequency_min))
return XC_RESULT_OUT_OF_RANGE;
freq_code = (u16)(freq_hz / 15625);
/* WAS: Starting in firmware version 1.1.44, Xceive recommends using the
FINERFREQ for all normal tuning (the doc indicates reg 0x03 should
only be used for fast scanning for channel lock) */
return xc_write_reg(priv, XREG_RF_FREQ, freq_code); /* WAS: XREG_FINERFREQ */
}
static int xc_set_IF_frequency(struct xc4000_priv *priv, u32 freq_khz)
{
u32 freq_code = (freq_khz * 1024)/1000;
dprintk(1, "%s(freq_khz = %d) freq_code = 0x%x\n",
__func__, freq_khz, freq_code);
return xc_write_reg(priv, XREG_IF_OUT, freq_code);
}
static int xc_get_ADC_Envelope(struct xc4000_priv *priv, u16 *adc_envelope)
{
return xc4000_readreg(priv, XREG_ADC_ENV, adc_envelope);
}
static int xc_get_frequency_error(struct xc4000_priv *priv, u32 *freq_error_hz)
{
int result;
u16 regData;
u32 tmp;
result = xc4000_readreg(priv, XREG_FREQ_ERROR, &regData);
if (result != XC_RESULT_SUCCESS)
return result;
tmp = (u32)regData;
(*freq_error_hz) = (tmp * 15625) / 1000;
return result;
}
static int xc_get_lock_status(struct xc4000_priv *priv, u16 *lock_status)
{
return xc4000_readreg(priv, XREG_LOCK, lock_status);
}
static int xc_get_version(struct xc4000_priv *priv,
u8 *hw_majorversion, u8 *hw_minorversion,
u8 *fw_majorversion, u8 *fw_minorversion)
{
u16 data;
int result;
result = xc4000_readreg(priv, XREG_VERSION, &data);
if (result != XC_RESULT_SUCCESS)
return result;
(*hw_majorversion) = (data >> 12) & 0x0F;
(*hw_minorversion) = (data >> 8) & 0x0F;
(*fw_majorversion) = (data >> 4) & 0x0F;
(*fw_minorversion) = data & 0x0F;
return 0;
}
/* WAS THERE
static int xc_get_buildversion(struct xc4000_priv *priv, u16 *buildrev)
{
return xc4000_readreg(priv, XREG_BUILD, buildrev);
}*/
static int xc_get_hsync_freq(struct xc4000_priv *priv, u32 *hsync_freq_hz)
{
u16 regData;
int result;
result = xc4000_readreg(priv, XREG_HSYNC_FREQ, &regData);
if (result != XC_RESULT_SUCCESS)
return result;
(*hsync_freq_hz) = ((regData & 0x0fff) * 763)/100;
return result;
}
static int xc_get_frame_lines(struct xc4000_priv *priv, u16 *frame_lines)
{
return xc4000_readreg(priv, XREG_FRAME_LINES, frame_lines);
}
static int xc_get_quality(struct xc4000_priv *priv, u16 *quality)
{
return xc4000_readreg(priv, XREG_QUALITY, quality);
}
static u16 WaitForLock(struct xc4000_priv *priv)
{
u16 lockState = 0;
int watchDogCount = 40;
while ((lockState == 0) && (watchDogCount > 0)) {
xc_get_lock_status(priv, &lockState);
if (lockState != 1) {
xc_wait(5);
watchDogCount--;
}
}
return lockState;
}
#define XC_TUNE_ANALOG 0
#define XC_TUNE_DIGITAL 1
static int xc_tune_channel(struct xc4000_priv *priv, u32 freq_hz, int mode)
{
int found = 0;
dprintk(1, "%s(%u)\n", __func__, freq_hz);
if (xc_set_RF_frequency(priv, freq_hz) != XC_RESULT_SUCCESS)
return 0;
if (mode == XC_TUNE_ANALOG) {
if (WaitForLock(priv) == 1)
found = 1;
}
return found;
}
static int xc4000_readreg(struct xc4000_priv *priv, u16 reg, u16 *val)
{
u8 buf[2] = { reg >> 8, reg & 0xff };
u8 bval[2] = { 0, 0 };
struct i2c_msg msg[2] = {
{ .addr = priv->i2c_props.addr,
.flags = 0, .buf = &buf[0], .len = 2 },
{ .addr = priv->i2c_props.addr,
.flags = I2C_M_RD, .buf = &bval[0], .len = 2 },
};
if (i2c_transfer(priv->i2c_props.adap, msg, 2) != 2) {
printk(KERN_WARNING "xc4000: I2C read failed\n");
return -EREMOTEIO;
}
*val = (bval[0] << 8) | bval[1];
return XC_RESULT_SUCCESS;
}
static int xc4000_fwupload(struct dvb_frontend *fe)
{
struct xc4000_priv *priv = fe->tuner_priv;
const struct firmware *fw;
int ret;
/* request the firmware, this will block and timeout */
printk(KERN_INFO "xc4000: waiting for firmware upload (%s)...\n",
XC4000_DEFAULT_FIRMWARE);
ret = request_firmware(&fw, XC4000_DEFAULT_FIRMWARE,
priv->i2c_props.adap->dev.parent);
if (ret) {
printk(KERN_ERR "xc4000: Upload failed. (file not found?)\n");
ret = XC_RESULT_RESET_FAILURE;
goto out;
} else {
printk(KERN_DEBUG "xc4000: firmware read %Zu bytes.\n",
fw->size);
ret = XC_RESULT_SUCCESS;
}
if (fw->size != XC4000_DEFAULT_FIRMWARE_SIZE) {
printk(KERN_ERR "xc4000: firmware incorrect size\n");
ret = XC_RESULT_RESET_FAILURE;
} else {
printk(KERN_INFO "xc4000: firmware uploading...\n");
ret = xc_load_i2c_sequence(fe, fw->data);
printk(KERN_INFO "xc4000: firmware upload complete...\n");
}
out:
release_firmware(fw);
return ret;
}
static void xc_debug_dump(struct xc4000_priv *priv)
{
u16 adc_envelope;
u32 freq_error_hz = 0;
u16 lock_status;
u32 hsync_freq_hz = 0;
u16 frame_lines;
u16 quality;
u8 hw_majorversion = 0, hw_minorversion = 0;
u8 fw_majorversion = 0, fw_minorversion = 0;
// u16 fw_buildversion = 0;
/* Wait for stats to stabilize.
* Frame Lines needs two frame times after initial lock
* before it is valid.
*/
xc_wait(100);
xc_get_ADC_Envelope(priv, &adc_envelope);
dprintk(1, "*** ADC envelope (0-1023) = %d\n", adc_envelope);
xc_get_frequency_error(priv, &freq_error_hz);
dprintk(1, "*** Frequency error = %d Hz\n", freq_error_hz);
xc_get_lock_status(priv, &lock_status);
dprintk(1, "*** Lock status (0-Wait, 1-Locked, 2-No-signal) = %d\n",
lock_status);
xc_get_version(priv, &hw_majorversion, &hw_minorversion,
&fw_majorversion, &fw_minorversion);
// WAS:
// xc_get_buildversion(priv, &fw_buildversion);
// dprintk(1, "*** HW: V%02x.%02x, FW: V%02x.%02x.%04x\n",
// hw_majorversion, hw_minorversion,
// fw_majorversion, fw_minorversion, fw_buildversion);
// NOW:
dprintk(1, "*** HW: V%02x.%02x, FW: V%02x.%02x\n",
hw_majorversion, hw_minorversion,
fw_majorversion, fw_minorversion);
xc_get_hsync_freq(priv, &hsync_freq_hz);
dprintk(1, "*** Horizontal sync frequency = %d Hz\n", hsync_freq_hz);
xc_get_frame_lines(priv, &frame_lines);
dprintk(1, "*** Frame lines = %d\n", frame_lines);
xc_get_quality(priv, &quality);
dprintk(1, "*** Quality (0:<8dB, 7:>56dB) = %d\n", quality);
}
static int xc4000_set_params(struct dvb_frontend *fe,
struct dvb_frontend_parameters *params)
{
struct xc4000_priv *priv = fe->tuner_priv;
int ret;
if (xc4000_is_firmware_loaded(fe) != XC_RESULT_SUCCESS)
xc_load_fw_and_init_tuner(fe);
dprintk(1, "%s() frequency=%d (Hz)\n", __func__, params->frequency);
if (fe->ops.info.type == FE_ATSC) {
dprintk(1, "%s() ATSC\n", __func__);
switch (params->u.vsb.modulation) {
case VSB_8:
case VSB_16:
dprintk(1, "%s() VSB modulation\n", __func__);
priv->rf_mode = XC_RF_MODE_AIR;
priv->freq_hz = params->frequency - 1750000;
priv->bandwidth = BANDWIDTH_6_MHZ;
priv->video_standard = DTV6;
break;
case QAM_64:
case QAM_256:
case QAM_AUTO:
dprintk(1, "%s() QAM modulation\n", __func__);
priv->rf_mode = XC_RF_MODE_CABLE;
priv->freq_hz = params->frequency - 1750000;
priv->bandwidth = BANDWIDTH_6_MHZ;
priv->video_standard = DTV6;
break;
default:
return -EINVAL;
}
} else if (fe->ops.info.type == FE_OFDM) {
dprintk(1, "%s() OFDM\n", __func__);
switch (params->u.ofdm.bandwidth) {
case BANDWIDTH_6_MHZ:
priv->bandwidth = BANDWIDTH_6_MHZ;
priv->video_standard = DTV6;
priv->freq_hz = params->frequency - 1750000;
break;
case BANDWIDTH_7_MHZ:
printk(KERN_ERR "xc4000 bandwidth 7MHz not supported\n");
return -EINVAL;
case BANDWIDTH_8_MHZ:
priv->bandwidth = BANDWIDTH_8_MHZ;
priv->video_standard = DTV8;
priv->freq_hz = params->frequency - 2750000;
break;
default:
printk(KERN_ERR "xc4000 bandwidth not set!\n");
return -EINVAL;
}
priv->rf_mode = XC_RF_MODE_AIR;
} else {
printk(KERN_ERR "xc4000 modulation type not supported!\n");
return -EINVAL;
}
dprintk(1, "%s() frequency=%d (compensated)\n",
__func__, priv->freq_hz);
ret = xc_SetSignalSource(priv, priv->rf_mode);
if (ret != XC_RESULT_SUCCESS) {
printk(KERN_ERR
"xc4000: xc_SetSignalSource(%d) failed\n",
priv->rf_mode);
return -EREMOTEIO;
}
ret = xc_SetTVStandard(priv,
XC4000_Standard[priv->video_standard].VideoMode,
XC4000_Standard[priv->video_standard].AudioMode);
if (ret != XC_RESULT_SUCCESS) {
printk(KERN_ERR "xc4000: xc_SetTVStandard failed\n");
return -EREMOTEIO;
}
ret = xc_set_IF_frequency(priv, priv->if_khz);
if (ret != XC_RESULT_SUCCESS) {
printk(KERN_ERR "xc4000: xc_Set_IF_frequency(%d) failed\n",
priv->if_khz);
return -EIO;
}
xc_tune_channel(priv, priv->freq_hz, XC_TUNE_DIGITAL);
if (debug)
xc_debug_dump(priv);
return 0;
}
static int xc4000_is_firmware_loaded(struct dvb_frontend *fe)
{
struct xc4000_priv *priv = fe->tuner_priv;
int ret;
u16 id;
ret = xc4000_readreg(priv, XREG_PRODUCT_ID, &id);
if (ret == XC_RESULT_SUCCESS) {
if (id == XC_PRODUCT_ID_FW_NOT_LOADED)
ret = XC_RESULT_RESET_FAILURE;
else
ret = XC_RESULT_SUCCESS;
}
dprintk(1, "%s() returns %s id = 0x%x\n", __func__,
ret == XC_RESULT_SUCCESS ? "True" : "False", id);
return ret;
}
static int xc4000_set_analog_params(struct dvb_frontend *fe,
struct analog_parameters *params)
{
struct xc4000_priv *priv = fe->tuner_priv;
int ret;
if (xc4000_is_firmware_loaded(fe) != XC_RESULT_SUCCESS)
xc_load_fw_and_init_tuner(fe);
dprintk(1, "%s() frequency=%d (in units of 62.5khz)\n",
__func__, params->frequency);
/* Fix me: it could be air. */
priv->rf_mode = params->mode;
if (params->mode > XC_RF_MODE_CABLE)
priv->rf_mode = XC_RF_MODE_CABLE;
/* params->frequency is in units of 62.5khz */
priv->freq_hz = params->frequency * 62500;
/* FIX ME: Some video standards may have several possible audio
standards. We simply default to one of them here.
*/
if (params->std & V4L2_STD_MN) {
/* default to BTSC audio standard */
priv->video_standard = MN_NTSC_PAL_BTSC;
goto tune_channel;
}
if (params->std & V4L2_STD_PAL_BG) {
/* default to NICAM audio standard */
priv->video_standard = BG_PAL_NICAM;
goto tune_channel;
}
if (params->std & V4L2_STD_PAL_I) {
/* default to NICAM audio standard */
priv->video_standard = I_PAL_NICAM;
goto tune_channel;
}
if (params->std & V4L2_STD_PAL_DK) {
/* default to NICAM audio standard */
priv->video_standard = DK_PAL_NICAM;
goto tune_channel;
}
if (params->std & V4L2_STD_SECAM_DK) {
/* default to A2 DK1 audio standard */
priv->video_standard = DK_SECAM_A2DK1;
goto tune_channel;
}
if (params->std & V4L2_STD_SECAM_L) {
priv->video_standard = L_SECAM_NICAM;
goto tune_channel;
}
if (params->std & V4L2_STD_SECAM_LC) {
priv->video_standard = LC_SECAM_NICAM;
goto tune_channel;
}
tune_channel:
ret = xc_SetSignalSource(priv, priv->rf_mode);
if (ret != XC_RESULT_SUCCESS) {
printk(KERN_ERR
"xc4000: xc_SetSignalSource(%d) failed\n",
priv->rf_mode);
return -EREMOTEIO;
}
ret = xc_SetTVStandard(priv,
XC4000_Standard[priv->video_standard].VideoMode,
XC4000_Standard[priv->video_standard].AudioMode);
if (ret != XC_RESULT_SUCCESS) {
printk(KERN_ERR "xc4000: xc_SetTVStandard failed\n");
return -EREMOTEIO;
}
xc_tune_channel(priv, priv->freq_hz, XC_TUNE_ANALOG);
if (debug)
xc_debug_dump(priv);
return 0;
}
static int xc4000_get_frequency(struct dvb_frontend *fe, u32 *freq)
{
struct xc4000_priv *priv = fe->tuner_priv;
dprintk(1, "%s()\n", __func__);
*freq = priv->freq_hz;
return 0;
}
static int xc4000_get_bandwidth(struct dvb_frontend *fe, u32 *bw)
{
struct xc4000_priv *priv = fe->tuner_priv;
dprintk(1, "%s()\n", __func__);
*bw = priv->bandwidth;
return 0;
}
static int xc4000_get_status(struct dvb_frontend *fe, u32 *status)
{
struct xc4000_priv *priv = fe->tuner_priv;
u16 lock_status = 0;
xc_get_lock_status(priv, &lock_status);
dprintk(1, "%s() lock_status = 0x%08x\n", __func__, lock_status);
*status = lock_status;
return 0;
}
static int xc_load_fw_and_init_tuner(struct dvb_frontend *fe)
{
struct xc4000_priv *priv = fe->tuner_priv;
int ret = 0;
if (xc4000_is_firmware_loaded(fe) != XC_RESULT_SUCCESS) {
ret = xc4000_fwupload(fe);
if (ret != XC_RESULT_SUCCESS)
return ret;
}
/* Start the tuner self-calibration process */
ret |= xc_initialize(priv);
/* Wait for calibration to complete.
* We could continue but XC4000 will clock stretch subsequent
* I2C transactions until calibration is complete. This way we
* don't have to rely on clock stretching working.
*/
xc_wait(100);
/* Default to "CABLE" mode */
ret |= xc_write_reg(priv, XREG_SIGNALSOURCE, XC_RF_MODE_CABLE);
return ret;
}
static int xc4000_sleep(struct dvb_frontend *fe)
{
int ret;
dprintk(1, "%s()\n", __func__);
/* Avoid firmware reload on slow devices */
if (no_poweroff)
return 0;
/* According to Xceive technical support, the "powerdown" register
was removed in newer versions of the firmware. The "supported"
way to sleep the tuner is to pull the reset pin low for 10ms */
ret = xc4000_TunerReset(fe);
if (ret != XC_RESULT_SUCCESS) {
printk(KERN_ERR
"xc4000: %s() unable to shutdown tuner\n",
__func__);
return -EREMOTEIO;
} else
return XC_RESULT_SUCCESS;
}
static int xc4000_init(struct dvb_frontend *fe)
{
struct xc4000_priv *priv = fe->tuner_priv;
dprintk(1, "%s()\n", __func__);
if (xc_load_fw_and_init_tuner(fe) != XC_RESULT_SUCCESS) {
printk(KERN_ERR "xc4000: Unable to initialise tuner\n");
return -EREMOTEIO;
}
if (debug)
xc_debug_dump(priv);
return 0;
}
static int xc4000_release(struct dvb_frontend *fe)
{
struct xc4000_priv *priv = fe->tuner_priv;
dprintk(1, "%s()\n", __func__);
mutex_lock(&xc4000_list_mutex);
if (priv)
hybrid_tuner_release_state(priv);
mutex_unlock(&xc4000_list_mutex);
fe->tuner_priv = NULL;
return 0;
}
static const struct dvb_tuner_ops xc4000_tuner_ops = {
.info = {
.name = "Xceive XC4000",
.frequency_min = 1000000,
.frequency_max = 1023000000,
.frequency_step = 50000,
},
.release = xc4000_release,
.init = xc4000_init,
.sleep = xc4000_sleep,
.set_params = xc4000_set_params,
.set_analog_params = xc4000_set_analog_params,
.get_frequency = xc4000_get_frequency,
.get_bandwidth = xc4000_get_bandwidth,
.get_status = xc4000_get_status
};
struct dvb_frontend *xc4000_attach(struct dvb_frontend *fe,
struct i2c_adapter *i2c,
struct xc4000_config *cfg)
{
struct xc4000_priv *priv = NULL;
int instance;
u16 id = 0;
dprintk(1, "%s(%d-%04x)\n", __func__,
i2c ? i2c_adapter_id(i2c) : -1,
cfg ? cfg->i2c_address : -1);
mutex_lock(&xc4000_list_mutex);
instance = hybrid_tuner_request_state(struct xc4000_priv, priv,
hybrid_tuner_instance_list,
i2c, cfg->i2c_address, "xc4000");
switch (instance) {
case 0:
goto fail;
break;
case 1:
/* new tuner instance */
priv->bandwidth = BANDWIDTH_6_MHZ;
fe->tuner_priv = priv;
break;
default:
/* existing tuner instance */
fe->tuner_priv = priv;
break;
}
if (priv->if_khz == 0) {
/* If the IF hasn't been set yet, use the value provided by
the caller (occurs in hybrid devices where the analog
call to xc4000_attach occurs before the digital side) */
priv->if_khz = cfg->if_khz;
}
/* Check if firmware has been loaded. It is possible that another
instance of the driver has loaded the firmware.
*/
if (xc4000_readreg(priv, XREG_PRODUCT_ID, &id) != XC_RESULT_SUCCESS)
goto fail;
switch (id) {
case XC_PRODUCT_ID_FW_LOADED:
printk(KERN_INFO
"xc4000: Successfully identified at address 0x%02x\n",
cfg->i2c_address);
printk(KERN_INFO
"xc4000: Firmware has been loaded previously\n");
break;
case XC_PRODUCT_ID_FW_NOT_LOADED:
printk(KERN_INFO
"xc4000: Successfully identified at address 0x%02x\n",
cfg->i2c_address);
printk(KERN_INFO
"xc4000: Firmware has not been loaded previously\n");
break;
default:
printk(KERN_ERR
"xc4000: Device not found at addr 0x%02x (0x%x)\n",
cfg->i2c_address, id);
goto fail;
}
mutex_unlock(&xc4000_list_mutex);
memcpy(&fe->ops.tuner_ops, &xc4000_tuner_ops,
sizeof(struct dvb_tuner_ops));
return fe;
fail:
mutex_unlock(&xc4000_list_mutex);
xc4000_release(fe);
return NULL;
}
EXPORT_SYMBOL(xc4000_attach);
MODULE_AUTHOR("Steven Toth, Davide Ferri");
MODULE_DESCRIPTION("Xceive xc4000 silicon tuner driver");
MODULE_LICENSE("GPL");
/*
* Driver for Xceive XC4000 "QAM/8VSB single chip tuner"
*
* Copyright (c) 2007 Steven Toth <stoth@linuxtv.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
*
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#ifndef __XC4000_H__
#define __XC4000_H__
#include <linux/firmware.h>
struct dvb_frontend;
struct i2c_adapter;
struct xc4000_config {
u8 i2c_address;
u32 if_khz;
};
/* xc4000 callback command */
#define XC4000_TUNER_RESET 0
/* For each bridge framework, when it attaches either analog or digital,
* it has to store a reference back to its _core equivalent structure,
* so that it can service the hardware by steering gpio's etc.
* Each bridge implementation is different so cast devptr accordingly.
* The xc4000 driver cares not for this value, other than ensuring
* it's passed back to a bridge during tuner_callback().
*/
#if defined(CONFIG_MEDIA_TUNER_XC4000) || \
(defined(CONFIG_MEDIA_TUNER_XC4000_MODULE) && defined(MODULE))
extern struct dvb_frontend *xc4000_attach(struct dvb_frontend *fe,
struct i2c_adapter *i2c,
struct xc4000_config *cfg);
#else
static inline struct dvb_frontend *xc4000_attach(struct dvb_frontend *fe,
struct i2c_adapter *i2c,
struct xc4000_config *cfg)
{
printk(KERN_WARNING "%s: driver disabled by Kconfig\n", __func__);
return NULL;
}
#endif
#endif
......@@ -17,6 +17,7 @@
#include "mt2266.h"
#include "tuner-xc2028.h"
#include "xc5000.h"
#include "xc4000.h"
#include "s5h1411.h"
#include "dib0070.h"
#include "dib0090.h"
......@@ -2655,6 +2656,41 @@ static int xc5000_tuner_attach(struct dvb_usb_adapter *adap)
== NULL ? -ENODEV : 0;
}
static int dib0700_xc4000_tuner_callback(void *priv, int component,
int command, int arg)
{
struct dvb_usb_adapter *adap = priv;
if (command == XC4000_TUNER_RESET) {
/* Reset the tuner */
dib0700_set_gpio(adap->dev, GPIO1, GPIO_OUT, 0);
msleep(10);
dib0700_set_gpio(adap->dev, GPIO1, GPIO_OUT, 1);
msleep(10);
} else {
err("xc4000: unknown tuner callback command: %d\n", command);
return -EINVAL;
}
return 0;
}
static struct xc4000_config s5h1411_xc4000_tunerconfig = {
.i2c_address = 0x64,
.if_khz = 5380,
};
static int xc4000_tuner_attach(struct dvb_usb_adapter *adap)
{
err("xc4000: xc4000_tuner_attach");
/* FIXME: generalize & move to common area */
adap->fe->callback = dib0700_xc4000_tuner_callback;
return dvb_attach(xc4000_attach, adap->fe, &adap->dev->i2c_adap,
&s5h1411_xc4000_tunerconfig)
== NULL ? -ENODEV : 0;
}
static struct lgdt3305_config hcw_lgdt3305_config = {
.i2c_addr = 0x0e,
.mpeg_mode = LGDT3305_MPEG_PARALLEL,
......@@ -2802,6 +2838,7 @@ struct usb_device_id dib0700_usb_id_table[] = {
{ USB_DEVICE(USB_VID_DIBCOM, USB_PID_DIBCOM_TFE7090PVR) },
{ USB_DEVICE(USB_VID_TECHNISAT, USB_PID_TECHNISAT_AIRSTAR_TELESTICK_2) },
/* 75 */{ USB_DEVICE(USB_VID_MEDION, USB_PID_CREATIX_CTX1921) },
{ USB_DEVICE(USB_VID_PINNACLE, USB_PID_PINNACLE_PCTV340E) },
{ 0 } /* Terminating entry */
};
MODULE_DEVICE_TABLE(usb, dib0700_usb_id_table);
......@@ -3762,6 +3799,37 @@ struct dvb_usb_device_properties dib0700_devices[] = {
},
},
.rc.core = {
.rc_interval = DEFAULT_RC_INTERVAL,
.rc_codes = RC_MAP_DIB0700_RC5_TABLE,
.module_name = "dib0700",
.rc_query = dib0700_rc_query_old_firmware,
.allowed_protos = RC_TYPE_RC5 |
RC_TYPE_RC6 |
RC_TYPE_NEC,
.change_protocol = dib0700_change_protocol,
},
}, { DIB0700_DEFAULT_DEVICE_PROPERTIES,
.num_adapters = 1,
.adapter = {
{
.frontend_attach = stk7700ph_frontend_attach,
.tuner_attach = xc4000_tuner_attach,
DIB0700_DEFAULT_STREAMING_CONFIG(0x02),
.size_of_priv = sizeof(struct
dib0700_adapter_state),
},
},
.num_device_descs = 1,
.devices = {
{ "Pinnacle PCTV 340e HD Pro USB Stick",
{ &dib0700_usb_id_table[76], NULL },
{ NULL },
},
},
.rc.core = {
.rc_interval = DEFAULT_RC_INTERVAL,
.rc_codes = RC_MAP_DIB0700_RC5_TABLE,
......
......@@ -228,6 +228,7 @@
#define USB_PID_PINNACLE_PCTV72E 0x0236
#define USB_PID_PINNACLE_PCTV73E 0x0237
#define USB_PID_PINNACLE_PCTV310E 0x3211
#define USB_PID_PINNACLE_PCTV340E 0x023d
#define USB_PID_PINNACLE_PCTV801E 0x023a
#define USB_PID_PINNACLE_PCTV801E_SE 0x023b
#define USB_PID_PINNACLE_PCTV73A 0x0243
......
......@@ -39,6 +39,7 @@
#include "tda9887.h"
#include "xc5000.h"
#include "tda18271.h"
#include "xc4000.h"
#define UNSET (-1U)
......@@ -391,6 +392,19 @@ static void set_type(struct i2c_client *c, unsigned int type,
tune_now = 0;
break;
}
case TUNER_XC4000:
{
struct xc4000_config xc4000_cfg = {
.i2c_address = t->i2c->addr,
/* if_khz will be set when the digital dvb_attach() occurs */
.if_khz = 0,
};
if (!dvb_attach(xc4000_attach,
&t->fe, t->i2c->adapter, &xc4000_cfg))
goto attach_failed;
tune_now = 0;
break;
}
default:
if (!dvb_attach(simple_tuner_attach, &t->fe,
t->i2c->adapter, t->i2c->addr, t->type))
......
......@@ -127,6 +127,8 @@
#define TUNER_PHILIPS_FMD1216MEX_MK3 78
#define TUNER_PHILIPS_FM1216MK5 79
#define TUNER_PHILIPS_FQ1216LME_MK3 80 /* Active loopthrough, no FM */
#define TUNER_XC4000 81 /* Xceive Silicon Tuner */
#define TUNER_PARTSNIC_PTI_5NF05 81
#define TUNER_PHILIPS_CU1216L 82
#define TUNER_NXP_TDA18271 83
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment