Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
L
linux
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
Analytics
Analytics
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Commits
Issue Boards
Open sidebar
nexedi
linux
Commits
908a658e
Commit
908a658e
authored
Mar 20, 2003
by
Jeb J. Cramer
Committed by
Jeff Garzik
Mar 20, 2003
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
[E1000] Added 82541 & 82547 support
* Added support for 82541 and 82547 gigabit ethernet adapters
parent
5f3529cc
Changes
6
Hide whitespace changes
Inline
Side-by-side
Showing
6 changed files
with
1608 additions
and
320 deletions
+1608
-320
drivers/net/Kconfig
drivers/net/Kconfig
+1
-0
drivers/net/e1000/e1000.h
drivers/net/e1000/e1000.h
+15
-3
drivers/net/e1000/e1000_ethtool.c
drivers/net/e1000/e1000_ethtool.c
+29
-34
drivers/net/e1000/e1000_hw.c
drivers/net/e1000/e1000_hw.c
+1124
-253
drivers/net/e1000/e1000_hw.h
drivers/net/e1000/e1000_hw.h
+242
-17
drivers/net/e1000/e1000_main.c
drivers/net/e1000/e1000_main.c
+197
-13
No files found.
drivers/net/Kconfig
View file @
908a658e
...
...
@@ -1904,6 +1904,7 @@ config E1000
82544 PRO/1000 XF Server Adapter A50484-xxx
82544 PRO/1000 T Desktop Adapter A62947-xxx
82540 PRO/1000 MT Desktop Adapter A78408-xxx
82541 PRO/1000 MT Desktop Adapter C91016-xxx
82545 PRO/1000 MT Server Adapter A92165-xxx
82546 PRO/1000 MT Dual Port Server Adapter A92111-xxx
82545 PRO/1000 MF Server Adapter A91622-xxx
...
...
drivers/net/e1000/e1000.h
View file @
908a658e
...
...
@@ -95,6 +95,15 @@ struct e1000_adapter;
#define E1000_RXBUFFER_8192 8192
#define E1000_RXBUFFER_16384 16384
/* SmartSpeed delimiters */
#define E1000_SMARTSPEED_DOWNSHIFT 3
#define E1000_SMARTSPEED_MAX 15
/* Packet Buffer allocations */
#define E1000_TX_FIFO_SIZE_SHIFT 0xA
#define E1000_TX_HEAD_ADDR_SHIFT 7
#define E1000_PBA_TX_MASK 0xFFFF0000
/* Flow Control High-Watermark: 43464 bytes */
#define E1000_FC_HIGH_THRESH 0xA9C8
...
...
@@ -109,9 +118,6 @@ struct e1000_adapter;
/* How many Rx Buffers do we bundle into one write to the hardware ? */
#define E1000_RX_BUFFER_WRITE 16
#define E1000_JUMBO_PBA 0x00000028
#define E1000_DEFAULT_PBA 0x00000030
#define AUTO_ALL_MODES 0
#define E1000_EEPROM_APME 4
...
...
@@ -155,6 +161,7 @@ struct e1000_desc_ring {
/* board specific private data structure */
struct
e1000_adapter
{
struct
timer_list
tx_fifo_stall_timer
;
struct
timer_list
watchdog_timer
;
struct
timer_list
phy_info_timer
;
struct
vlan_group
*
vlgrp
;
...
...
@@ -163,6 +170,7 @@ struct e1000_adapter {
uint32_t
rx_buffer_len
;
uint32_t
part_num
;
uint32_t
wol
;
uint32_t
smartspeed
;
uint16_t
link_speed
;
uint16_t
link_duplex
;
spinlock_t
stats_lock
;
...
...
@@ -178,6 +186,10 @@ struct e1000_adapter {
uint32_t
tx_int_delay
;
uint32_t
tx_abs_int_delay
;
int
max_data_per_txd
;
uint32_t
tx_fifo_head
;
uint32_t
tx_head_addr
;
uint32_t
tx_fifo_size
;
atomic_t
tx_fifo_stall
;
/* RX */
struct
e1000_desc_ring
rx_ring
;
...
...
drivers/net/e1000/e1000_ethtool.c
View file @
908a658e
...
...
@@ -145,16 +145,6 @@ e1000_ethtool_sset(struct e1000_adapter *adapter, struct ethtool_cmd *ecmd)
return
0
;
}
static
inline
int
e1000_eeprom_size
(
struct
e1000_hw
*
hw
)
{
if
((
hw
->
mac_type
>
e1000_82544
)
&&
(
E1000_READ_REG
(
hw
,
EECD
)
&
E1000_EECD_SIZE
))
return
512
;
else
return
128
;
}
static
void
e1000_ethtool_gdrvinfo
(
struct
e1000_adapter
*
adapter
,
struct
ethtool_drvinfo
*
drvinfo
)
...
...
@@ -166,7 +156,7 @@ e1000_ethtool_gdrvinfo(struct e1000_adapter *adapter,
drvinfo
->
n_stats
=
E1000_STATS_LEN
;
#define E1000_REGS_LEN 32
drvinfo
->
regdump_len
=
E1000_REGS_LEN
*
sizeof
(
uint32_t
);
drvinfo
->
eedump_len
=
e1000_eeprom_size
(
&
adapter
->
hw
)
;
drvinfo
->
eedump_len
=
adapter
->
hw
.
eeprom
.
word_size
*
2
;
}
static
void
...
...
@@ -200,9 +190,8 @@ e1000_ethtool_geeprom(struct e1000_adapter *adapter,
struct
ethtool_eeprom
*
eeprom
,
uint16_t
*
eeprom_buff
)
{
struct
e1000_hw
*
hw
=
&
adapter
->
hw
;
int
max_len
,
first_word
,
last_word
;
int
first_word
,
last_word
;
int
ret_val
=
0
;
int
i
;
if
(
eeprom
->
len
==
0
)
{
ret_val
=
-
EINVAL
;
...
...
@@ -211,22 +200,28 @@ e1000_ethtool_geeprom(struct e1000_adapter *adapter,
eeprom
->
magic
=
hw
->
vendor_id
|
(
hw
->
device_id
<<
16
);
max_len
=
e1000_eeprom_size
(
hw
);
if
(
eeprom
->
offset
>
eeprom
->
offset
+
eeprom
->
len
)
{
ret_val
=
-
EINVAL
;
goto
geeprom_error
;
}
if
((
eeprom
->
offset
+
eeprom
->
len
)
>
max_len
)
eeprom
->
len
=
(
max_len
-
eeprom
->
offset
);
if
((
eeprom
->
offset
+
eeprom
->
len
)
>
(
hw
->
eeprom
.
word_size
*
2
)
)
eeprom
->
len
=
(
(
hw
->
eeprom
.
word_size
*
2
)
-
eeprom
->
offset
);
first_word
=
eeprom
->
offset
>>
1
;
last_word
=
(
eeprom
->
offset
+
eeprom
->
len
-
1
)
>>
1
;
for
(
i
=
0
;
i
<=
(
last_word
-
first_word
);
i
++
)
e1000_read_eeprom
(
hw
,
first_word
+
i
,
&
eeprom_buff
[
i
]);
if
(
hw
->
eeprom
.
type
==
e1000_eeprom_spi
)
ret_val
=
e1000_read_eeprom
(
hw
,
first_word
,
last_word
-
first_word
+
1
,
eeprom_buff
);
else
{
uint16_t
i
;
for
(
i
=
0
;
i
<
last_word
-
first_word
+
1
;
i
++
)
if
((
ret_val
=
e1000_read_eeprom
(
hw
,
first_word
+
i
,
1
,
&
eeprom_buff
[
i
])))
break
;
}
geeprom_error:
return
ret_val
;
}
...
...
@@ -237,9 +232,8 @@ e1000_ethtool_seeprom(struct e1000_adapter *adapter,
{
struct
e1000_hw
*
hw
=
&
adapter
->
hw
;
uint16_t
*
eeprom_buff
;
int
max_len
,
first_word
,
last_word
;
void
*
ptr
;
int
i
;
int
max_len
,
first_word
,
last_word
,
ret_val
=
0
;
if
(
eeprom
->
len
==
0
)
return
-
EOPNOTSUPP
;
...
...
@@ -247,7 +241,7 @@ e1000_ethtool_seeprom(struct e1000_adapter *adapter,
if
(
eeprom
->
magic
!=
(
hw
->
vendor_id
|
(
hw
->
device_id
<<
16
)))
return
-
EFAULT
;
max_len
=
e1000_eeprom_size
(
hw
)
;
max_len
=
hw
->
eeprom
.
word_size
*
2
;
if
((
eeprom
->
offset
+
eeprom
->
len
)
>
max_len
)
eeprom
->
len
=
(
max_len
-
eeprom
->
offset
);
...
...
@@ -263,30 +257,31 @@ e1000_ethtool_seeprom(struct e1000_adapter *adapter,
if
(
eeprom
->
offset
&
1
)
{
/* need read/modify/write of first changed EEPROM word */
/* only the second byte of the word is being modified */
e1000_read_eeprom
(
hw
,
first_word
,
&
eeprom_buff
[
0
]);
ret_val
=
e1000_read_eeprom
(
hw
,
first_word
,
1
,
&
eeprom_buff
[
0
]);
ptr
++
;
}
if
((
eeprom
->
offset
+
eeprom
->
len
)
&
1
)
{
if
((
(
eeprom
->
offset
+
eeprom
->
len
)
&
1
)
&&
(
ret_val
==
0
)
)
{
/* need read/modify/write of last changed EEPROM word */
/* only the first byte of the word is being modified */
e1000_read_eeprom
(
hw
,
last_word
,
ret_val
=
e1000_read_eeprom
(
hw
,
last_word
,
1
,
&
eeprom_buff
[
last_word
-
first_word
]);
}
if
(
copy_from_user
(
ptr
,
user_data
,
eeprom
->
len
))
{
kfree
(
eeprom_buff
)
;
return
-
EFAULT
;
if
(
(
ret_val
!=
0
)
||
copy_from_user
(
ptr
,
user_data
,
eeprom
->
len
))
{
ret_val
=
-
EFAULT
;
goto
seeprom_error
;
}
for
(
i
=
0
;
i
<=
(
last_word
-
first_word
);
i
++
)
e1000_write_eeprom
(
hw
,
first_word
+
i
,
eeprom_buff
[
i
]
);
ret_val
=
e1000_write_eeprom
(
hw
,
first_word
,
last_word
-
first_word
+
1
,
eeprom_buff
);
/* Update the checksum over the first part of the EEPROM if needed */
if
(
first_word
<=
EEPROM_CHECKSUM_REG
)
if
(
(
ret_val
==
0
)
&&
first_word
<=
EEPROM_CHECKSUM_REG
)
e1000_update_eeprom_checksum
(
hw
);
seeprom_error:
kfree
(
eeprom_buff
);
return
0
;
return
ret_val
;
}
static
void
...
...
drivers/net/e1000/e1000_hw.c
View file @
908a658e
...
...
@@ -32,6 +32,8 @@
#include "e1000_hw.h"
static
int32_t
e1000_set_phy_type
(
struct
e1000_hw
*
hw
);
static
void
e1000_phy_init_script
(
struct
e1000_hw
*
hw
);
static
int32_t
e1000_setup_fiber_link
(
struct
e1000_hw
*
hw
);
static
int32_t
e1000_setup_copper_link
(
struct
e1000_hw
*
hw
);
static
int32_t
e1000_phy_force_speed_duplex
(
struct
e1000_hw
*
hw
);
...
...
@@ -42,19 +44,103 @@ static void e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t *ctrl);
static
void
e1000_shift_out_mdi_bits
(
struct
e1000_hw
*
hw
,
uint32_t
data
,
uint16_t
count
);
static
uint16_t
e1000_shift_in_mdi_bits
(
struct
e1000_hw
*
hw
);
static
int32_t
e1000_phy_reset_dsp
(
struct
e1000_hw
*
hw
);
static
int32_t
e1000_write_eeprom_spi
(
struct
e1000_hw
*
hw
,
uint16_t
offset
,
uint16_t
words
,
uint16_t
*
data
);
static
int32_t
e1000_write_eeprom_microwire
(
struct
e1000_hw
*
hw
,
uint16_t
offset
,
uint16_t
words
,
uint16_t
*
data
);
static
int32_t
e1000_spi_eeprom_ready
(
struct
e1000_hw
*
hw
);
static
void
e1000_raise_ee_clk
(
struct
e1000_hw
*
hw
,
uint32_t
*
eecd
);
static
void
e1000_lower_ee_clk
(
struct
e1000_hw
*
hw
,
uint32_t
*
eecd
);
static
void
e1000_shift_out_ee_bits
(
struct
e1000_hw
*
hw
,
uint16_t
data
,
uint16_t
count
);
static
uint16_t
e1000_shift_in_ee_bits
(
struct
e1000_hw
*
hw
);
static
void
e1000_setup_eeprom
(
struct
e1000_hw
*
hw
);
static
void
e1000_clock_eeprom
(
struct
e1000_hw
*
hw
);
static
void
e1000_cleanup_eeprom
(
struct
e1000_hw
*
hw
);
static
uint16_t
e1000_shift_in_ee_bits
(
struct
e1000_hw
*
hw
,
uint16_t
count
);
static
int32_t
e1000_acquire_eeprom
(
struct
e1000_hw
*
hw
);
static
void
e1000_release_eeprom
(
struct
e1000_hw
*
hw
);
static
void
e1000_standby_eeprom
(
struct
e1000_hw
*
hw
);
static
int32_t
e1000_id_led_init
(
struct
e1000_hw
*
hw
);
/******************************************************************************
* Set the phy type member in the hw struct.
*
* hw - Struct containing variables accessed by shared code
*****************************************************************************/
int32_t
e1000_set_phy_type
(
struct
e1000_hw
*
hw
)
{
DEBUGFUNC
(
"e1000_set_phy_type"
);
switch
(
hw
->
phy_id
)
{
case
M88E1000_E_PHY_ID
:
case
M88E1000_I_PHY_ID
:
case
M88E1011_I_PHY_ID
:
hw
->
phy_type
=
e1000_phy_m88
;
break
;
case
IGP01E1000_I_PHY_ID
:
hw
->
phy_type
=
e1000_phy_igp
;
break
;
default:
/* Should never have loaded on this device */
hw
->
phy_type
=
e1000_phy_undefined
;
return
-
E1000_ERR_PHY_TYPE
;
}
return
E1000_SUCCESS
;
}
/******************************************************************************
* IGP phy init script - initializes the GbE PHY
*
* hw - Struct containing variables accessed by shared code
*****************************************************************************/
static
void
e1000_phy_init_script
(
struct
e1000_hw
*
hw
)
{
DEBUGFUNC
(
"e1000_phy_init_script"
);
if
(
hw
->
phy_init_script
)
{
msec_delay
(
10
);
e1000_write_phy_reg
(
hw
,
IGP01E1000_PHY_PAGE_SELECT
,
0x0000
);
e1000_write_phy_reg
(
hw
,
0x0000
,
0x0140
);
msec_delay
(
5
);
e1000_write_phy_reg
(
hw
,
IGP01E1000_PHY_PAGE_SELECT
,
0x1F95
);
e1000_write_phy_reg
(
hw
,
0x0015
,
0x0001
);
e1000_write_phy_reg
(
hw
,
IGP01E1000_PHY_PAGE_SELECT
,
0x1F71
);
e1000_write_phy_reg
(
hw
,
0x0011
,
0xBD21
);
e1000_write_phy_reg
(
hw
,
IGP01E1000_PHY_PAGE_SELECT
,
0x1F79
);
e1000_write_phy_reg
(
hw
,
0x0019
,
0x0018
);
e1000_write_phy_reg
(
hw
,
IGP01E1000_PHY_PAGE_SELECT
,
0x1F30
);
e1000_write_phy_reg
(
hw
,
0x0010
,
0x1600
);
e1000_write_phy_reg
(
hw
,
IGP01E1000_PHY_PAGE_SELECT
,
0x1F31
);
e1000_write_phy_reg
(
hw
,
0x0011
,
0x0014
);
e1000_write_phy_reg
(
hw
,
IGP01E1000_PHY_PAGE_SELECT
,
0x1F32
);
e1000_write_phy_reg
(
hw
,
0x0012
,
0x161C
);
e1000_write_phy_reg
(
hw
,
IGP01E1000_PHY_PAGE_SELECT
,
0x1F94
);
e1000_write_phy_reg
(
hw
,
0x0014
,
0x0003
);
e1000_write_phy_reg
(
hw
,
IGP01E1000_PHY_PAGE_SELECT
,
0x1F96
);
e1000_write_phy_reg
(
hw
,
0x0016
,
0x003F
);
e1000_write_phy_reg
(
hw
,
IGP01E1000_PHY_PAGE_SELECT
,
0x2010
);
e1000_write_phy_reg
(
hw
,
0x0010
,
0x0008
);
e1000_write_phy_reg
(
hw
,
IGP01E1000_PHY_PAGE_SELECT
,
0x0000
);
e1000_write_phy_reg
(
hw
,
0x0000
,
0x3300
);
}
}
/******************************************************************************
* Set the mac type member in the hw struct.
*
*
* hw - Struct containing variables accessed by shared code
*****************************************************************************/
int32_t
...
...
@@ -101,10 +187,19 @@ e1000_set_mac_type(struct e1000_hw *hw)
case
E1000_DEV_ID_82546EB_FIBER
:
hw
->
mac_type
=
e1000_82546
;
break
;
case
E1000_DEV_ID_82541EI
:
case
E1000_DEV_ID_82541EP
:
hw
->
mac_type
=
e1000_82541
;
break
;
case
E1000_DEV_ID_82547EI
:
hw
->
mac_type
=
e1000_82547
;
break
;
default:
/* Should never have loaded on this device */
return
-
E1000_ERR_MAC_TYPE
;
}
return
E1000_SUCCESS
;
}
/******************************************************************************
...
...
@@ -119,9 +214,10 @@ e1000_reset_hw(struct e1000_hw *hw)
uint32_t
ctrl_ext
;
uint32_t
icr
;
uint32_t
manc
;
uint32_t
led_ctrl
;
DEBUGFUNC
(
"e1000_reset_hw"
);
/* For 82542 (rev 2.0), disable MWI before issuing a device reset */
if
(
hw
->
mac_type
==
e1000_82542_rev2_0
)
{
DEBUGOUT
(
"Disabling MWI on 82542 rev 2.0
\n
"
);
...
...
@@ -156,6 +252,12 @@ e1000_reset_hw(struct e1000_hw *hw)
DEBUGOUT
(
"Issuing a global reset to MAC
\n
"
);
ctrl
=
E1000_READ_REG
(
hw
,
CTRL
);
/* Must reset the PHY before resetting the MAC */
if
((
hw
->
mac_type
==
e1000_82541
)
||
(
hw
->
mac_type
==
e1000_82547
))
{
E1000_WRITE_REG_IO
(
hw
,
CTRL
,
(
ctrl
|
E1000_CTRL_PHY_RST
));
msec_delay
(
5
);
}
if
(
hw
->
mac_type
>
e1000_82543
)
E1000_WRITE_REG_IO
(
hw
,
CTRL
,
(
ctrl
|
E1000_CTRL_RST
));
else
...
...
@@ -173,13 +275,25 @@ e1000_reset_hw(struct e1000_hw *hw)
msec_delay
(
2
);
}
else
{
/* Wait for EEPROM reload (it happens automatically) */
msec_delay
(
4
);
msec_delay
(
5
);
/* Dissable HW ARPs on ASF enabled adapters */
manc
=
E1000_READ_REG
(
hw
,
MANC
);
manc
&=
~
(
E1000_MANC_ARP_EN
);
E1000_WRITE_REG
(
hw
,
MANC
,
manc
);
}
if
((
hw
->
mac_type
==
e1000_82541
)
||
(
hw
->
mac_type
==
e1000_82547
))
{
e1000_phy_init_script
(
hw
);
/* Configure activity LED after PHY reset */
led_ctrl
=
E1000_READ_REG
(
hw
,
LEDCTL
);
led_ctrl
&=
IGP_ACTIVITY_LED_MASK
;
led_ctrl
|=
IGP_ACTIVITY_LED_ENABLE
;
if
(
hw
->
mac_type
==
e1000_82547
)
led_ctrl
|=
IGP_LED3_MODE
;
E1000_WRITE_REG
(
hw
,
LEDCTL
,
led_ctrl
);
}
/* Clear interrupt mask to stop board from generating interrupts */
DEBUGOUT
(
"Masking off all interrupts
\n
"
);
E1000_WRITE_REG
(
hw
,
IMC
,
0xffffffff
);
...
...
@@ -353,7 +467,7 @@ e1000_setup_link(struct e1000_hw *hw)
* control setting, then the variable hw->fc will
* be initialized based on a value in the EEPROM.
*/
if
(
e1000_read_eeprom
(
hw
,
EEPROM_INIT_CONTROL2_REG
,
&
eeprom_data
)
<
0
)
{
if
(
e1000_read_eeprom
(
hw
,
EEPROM_INIT_CONTROL2_REG
,
1
,
&
eeprom_data
)
<
0
)
{
DEBUGOUT
(
"EEPROM Read Error
\n
"
);
return
-
E1000_ERR_EEPROM
;
}
...
...
@@ -571,10 +685,10 @@ e1000_setup_fiber_link(struct e1000_hw *hw)
*
* hw - Struct containing variables accessed by shared code
******************************************************************************/
static
int32_t
static
int32_t
e1000_setup_copper_link
(
struct
e1000_hw
*
hw
)
{
uint32_t
ctrl
;
uint32_t
ctrl
,
led_ctrl
;
int32_t
ret_val
;
uint16_t
i
;
uint16_t
phy_data
;
...
...
@@ -604,6 +718,69 @@ e1000_setup_copper_link(struct e1000_hw *hw)
}
DEBUGOUT1
(
"Phy ID = %x
\n
"
,
hw
->
phy_id
);
if
(
hw
->
phy_type
==
e1000_phy_igp
)
{
ret_val
=
e1000_phy_reset
(
hw
);
if
(
ret_val
<
0
)
{
DEBUGOUT
(
"Error Resetting the PHY
\n
"
);
return
ret_val
;
}
/* Wait 10ms for MAC to configure PHY from eeprom settings */
msec_delay
(
15
);
if
(
e1000_write_phy_reg
(
hw
,
IGP01E1000_PHY_PAGE_SELECT
,
0x0000
)
<
0
)
{
DEBUGOUT
(
"PHY Write Error
\n
"
);
return
-
E1000_ERR_PHY
;
}
/* Configure activity LED after PHY reset */
led_ctrl
=
E1000_READ_REG
(
hw
,
LEDCTL
);
led_ctrl
&=
IGP_ACTIVITY_LED_MASK
;
led_ctrl
|=
IGP_ACTIVITY_LED_ENABLE
;
if
(
hw
->
mac_type
==
e1000_82547
)
led_ctrl
|=
IGP_LED3_MODE
;
E1000_WRITE_REG
(
hw
,
LEDCTL
,
led_ctrl
);
if
(
hw
->
autoneg_advertised
==
ADVERTISE_1000_FULL
)
{
/* Disable SmartSpeed */
if
(
e1000_read_phy_reg
(
hw
,
IGP01E1000_PHY_PORT_CONFIG
,
&
phy_data
)
<
0
)
{
DEBUGOUT
(
"PHY Read Error
\n
"
);
return
-
E1000_ERR_PHY
;
}
phy_data
&=
~
IGP01E1000_PSCFR_SMART_SPEED
;
if
(
e1000_write_phy_reg
(
hw
,
IGP01E1000_PHY_PORT_CONFIG
,
phy_data
)
<
0
)
{
DEBUGOUT
(
"PHY Write Error
\n
"
);
return
-
E1000_ERR_PHY
;
}
/* Set auto Master/Slave resolution process */
if
(
e1000_read_phy_reg
(
hw
,
PHY_1000T_CTRL
,
&
phy_data
)
<
0
)
{
DEBUGOUT
(
"PHY Read Error
\n
"
);
return
-
E1000_ERR_PHY
;
}
phy_data
&=
~
CR_1000T_MS_ENABLE
;
if
(
e1000_write_phy_reg
(
hw
,
PHY_1000T_CTRL
,
phy_data
)
<
0
)
{
DEBUGOUT
(
"PHY Write Error
\n
"
);
return
-
E1000_ERR_PHY
;
}
}
if
(
e1000_read_phy_reg
(
hw
,
IGP01E1000_PHY_PORT_CTRL
,
&
phy_data
)
<
0
)
{
DEBUGOUT
(
"PHY Read Error
\n
"
);
return
-
E1000_ERR_PHY
;
}
/* Force MDI for IGP PHY */
phy_data
&=
~
(
IGP01E1000_PSCR_AUTO_MDIX
|
IGP01E1000_PSCR_FORCE_MDI_MDIX
);
hw
->
mdix
=
1
;
if
(
e1000_write_phy_reg
(
hw
,
IGP01E1000_PHY_PORT_CTRL
,
phy_data
)
<
0
)
{
DEBUGOUT
(
"PHY Write Error
\n
"
);
return
-
E1000_ERR_PHY
;
}
}
else
{
/* Enable CRS on TX. This must be set for half-duplex operation. */
if
(
e1000_read_phy_reg
(
hw
,
M88E1000_PHY_SPEC_CTRL
,
&
phy_data
)
<
0
)
{
DEBUGOUT
(
"PHY Read Error
\n
"
);
...
...
@@ -677,7 +854,8 @@ e1000_setup_copper_link(struct e1000_hw *hw)
DEBUGOUT
(
"Error Resetting the PHY
\n
"
);
return
ret_val
;
}
}
/* Options:
* autoneg = 1 (default)
* PHY will advertise value(s) parsed from
...
...
@@ -736,6 +914,7 @@ e1000_setup_copper_link(struct e1000_hw *hw)
return
ret_val
;
}
}
hw
->
get_link_status
=
TRUE
;
}
else
{
DEBUGOUT
(
"Forcing speed and duplex
\n
"
);
ret_val
=
e1000_phy_force_speed_duplex
(
hw
);
...
...
@@ -1014,6 +1193,7 @@ e1000_phy_force_speed_duplex(struct e1000_hw *hw)
/* Write the configured values back to the Device Control Reg. */
E1000_WRITE_REG
(
hw
,
CTRL
,
ctrl
);
if
(
hw
->
phy_type
==
e1000_phy_m88
)
{
if
(
e1000_read_phy_reg
(
hw
,
M88E1000_PHY_SPEC_CTRL
,
&
phy_data
)
<
0
)
{
DEBUGOUT
(
"PHY Read Error
\n
"
);
return
-
E1000_ERR_PHY
;
...
...
@@ -1031,6 +1211,23 @@ e1000_phy_force_speed_duplex(struct e1000_hw *hw)
/* Need to reset the PHY or these changes will be ignored */
mii_ctrl_reg
|=
MII_CR_RESET
;
}
else
{
/* Clear Auto-Crossover to force MDI manually. IGP requires MDI
* forced whenever speed or duplex are forced.
*/
if
(
e1000_read_phy_reg
(
hw
,
IGP01E1000_PHY_PORT_CTRL
,
&
phy_data
)
<
0
)
{
DEBUGOUT
(
"PHY Read Error
\n
"
);
return
-
E1000_ERR_PHY
;
}
phy_data
&=
~
IGP01E1000_PSCR_AUTO_MDIX
;
phy_data
&=
~
IGP01E1000_PSCR_FORCE_MDI_MDIX
;
if
(
e1000_write_phy_reg
(
hw
,
IGP01E1000_PHY_PORT_CTRL
,
phy_data
)
<
0
)
{
DEBUGOUT
(
"PHY Write Error
\n
"
);
return
-
E1000_ERR_PHY
;
}
}
/* Write back the modified PHY MII control register. */
if
(
e1000_write_phy_reg
(
hw
,
PHY_CTRL
,
mii_ctrl_reg
)
<
0
)
{
...
...
@@ -1093,7 +1290,8 @@ e1000_phy_force_speed_duplex(struct e1000_hw *hw)
}
}
}
if
(
hw
->
phy_type
==
e1000_phy_m88
)
{
/* Because we reset the PHY above, we need to re-force TX_CLK in the
* Extended PHY Specific Control Register to 25MHz clock. This value
* defaults back to a 2.5MHz clock when the PHY is reset.
...
...
@@ -1120,6 +1318,7 @@ e1000_phy_force_speed_duplex(struct e1000_hw *hw)
DEBUGOUT
(
"PHY Write Error
\n
"
);
return
-
E1000_ERR_PHY
;
}
}
return
0
;
}
...
...
@@ -1136,6 +1335,8 @@ e1000_config_collision_dist(struct e1000_hw *hw)
{
uint32_t
tctl
;
DEBUGFUNC
(
"e1000_config_collision_dist"
);
tctl
=
E1000_READ_REG
(
hw
,
TCTL
);
tctl
&=
~
E1000_TCTL_COLD
;
...
...
@@ -1172,6 +1373,26 @@ e1000_config_mac_to_phy(struct e1000_hw *hw)
/* Set up duplex in the Device Control and Transmit Control
* registers depending on negotiated values.
*/
if
(
hw
->
phy_type
==
e1000_phy_igp
)
{
if
(
e1000_read_phy_reg
(
hw
,
IGP01E1000_PHY_PORT_STATUS
,
&
phy_data
)
<
0
)
{
DEBUGOUT
(
"PHY Read Error
\n
"
);
return
-
E1000_ERR_PHY
;
}
if
(
phy_data
&
IGP01E1000_PSSR_FULL_DUPLEX
)
ctrl
|=
E1000_CTRL_FD
;
else
ctrl
&=
~
E1000_CTRL_FD
;
e1000_config_collision_dist
(
hw
);
/* Set up speed in the Device Control register depending on
* negotiated values.
*/
if
((
phy_data
&
IGP01E1000_PSSR_SPEED_MASK
)
==
IGP01E1000_PSSR_SPEED_1000MBPS
)
ctrl
|=
E1000_CTRL_SPD_1000
;
else
if
((
phy_data
&
IGP01E1000_PSSR_SPEED_MASK
)
==
IGP01E1000_PSSR_SPEED_100MBPS
)
ctrl
|=
E1000_CTRL_SPD_100
;
}
else
{
if
(
e1000_read_phy_reg
(
hw
,
M88E1000_PHY_SPEC_STATUS
,
&
phy_data
)
<
0
)
{
DEBUGOUT
(
"PHY Read Error
\n
"
);
return
-
E1000_ERR_PHY
;
...
...
@@ -1188,6 +1409,7 @@ e1000_config_mac_to_phy(struct e1000_hw *hw)
ctrl
|=
E1000_CTRL_SPD_1000
;
else
if
((
phy_data
&
M88E1000_PSSR_SPEED
)
==
M88E1000_PSSR_100MBS
)
ctrl
|=
E1000_CTRL_SPD_100
;
}
/* Write the configured values back to the Device Control Reg. */
E1000_WRITE_REG
(
hw
,
CTRL
,
ctrl
);
return
0
;
...
...
@@ -1519,6 +1741,10 @@ e1000_check_for_link(struct e1000_hw *hw)
if
(
phy_data
&
MII_SR_LINK_STATUS
)
{
hw
->
get_link_status
=
FALSE
;
/* Check if there was DownShift, must be checked immediately after
* link-up */
e1000_check_downshift
(
hw
);
}
else
{
/* No link detected */
return
0
;
...
...
@@ -2021,8 +2247,7 @@ e1000_write_phy_reg(struct e1000_hw *hw,
void
e1000_phy_hw_reset
(
struct
e1000_hw
*
hw
)
{
uint32_t
ctrl
;
uint32_t
ctrl_ext
;
uint32_t
ctrl
,
ctrl_ext
,
led_ctrl
;
DEBUGFUNC
(
"e1000_phy_hw_reset"
);
...
...
@@ -2053,6 +2278,21 @@ e1000_phy_hw_reset(struct e1000_hw *hw)
E1000_WRITE_FLUSH
(
hw
);
}
udelay
(
150
);
if
((
hw
->
mac_type
==
e1000_82541
)
||
(
hw
->
mac_type
==
e1000_82547
))
{
if
(
e1000_write_phy_reg
(
hw
,
IGP01E1000_PHY_PAGE_SELECT
,
0x0000
)
<
0
)
{
DEBUGOUT
(
"PHY Write Error
\n
"
);
return
;
}
/* Configure activity LED after PHY reset */
led_ctrl
=
E1000_READ_REG
(
hw
,
LEDCTL
);
led_ctrl
&=
IGP_ACTIVITY_LED_MASK
;
led_ctrl
|=
IGP_ACTIVITY_LED_ENABLE
;
if
(
hw
->
mac_type
==
e1000_82547
)
led_ctrl
|=
IGP_LED3_MODE
;
E1000_WRITE_REG
(
hw
,
LEDCTL
,
led_ctrl
);
}
}
/******************************************************************************
...
...
@@ -2079,6 +2319,9 @@ e1000_phy_reset(struct e1000_hw *hw)
return
-
E1000_ERR_PHY
;
}
udelay
(
1
);
if
(
hw
->
phy_type
==
e1000_phy_igp
)
{
e1000_phy_init_script
(
hw
);
}
return
0
;
}
...
...
@@ -2092,6 +2335,7 @@ e1000_detect_gig_phy(struct e1000_hw *hw)
{
uint16_t
phy_id_high
,
phy_id_low
;
boolean_t
match
=
FALSE
;
int32_t
phy_init_status
;
DEBUGFUNC
(
"e1000_detect_gig_phy"
);
...
...
@@ -2101,7 +2345,7 @@ e1000_detect_gig_phy(struct e1000_hw *hw)
return
-
E1000_ERR_PHY
;
}
hw
->
phy_id
=
(
uint32_t
)
(
phy_id_high
<<
16
);
udelay
(
2
);
udelay
(
2
0
);
if
(
e1000_read_phy_reg
(
hw
,
PHY_ID2
,
&
phy_id_low
)
<
0
)
{
DEBUGOUT
(
"PHY Read Error
\n
"
);
return
-
E1000_ERR_PHY
;
...
...
@@ -2121,11 +2365,17 @@ e1000_detect_gig_phy(struct e1000_hw *hw)
case
e1000_82546
:
if
(
hw
->
phy_id
==
M88E1011_I_PHY_ID
)
match
=
TRUE
;
break
;
case
e1000_82541
:
case
e1000_82547
:
if
(
hw
->
phy_id
==
IGP01E1000_I_PHY_ID
)
match
=
TRUE
;
break
;
default:
DEBUGOUT1
(
"Invalid MAC type %d
\n
"
,
hw
->
mac_type
);
return
-
E1000_ERR_CONFIG
;
}
if
(
match
)
{
phy_init_status
=
e1000_set_phy_type
(
hw
);
if
((
match
)
&&
(
phy_init_status
==
E1000_SUCCESS
))
{
DEBUGOUT1
(
"PHY ID 0x%X detected
\n
"
,
hw
->
phy_id
);
return
0
;
}
...
...
@@ -2155,6 +2405,133 @@ e1000_phy_reset_dsp(struct e1000_hw *hw)
return
ret_val
;
}
/******************************************************************************
* Get PHY information from various PHY registers for igp PHY only.
*
* hw - Struct containing variables accessed by shared code
* phy_info - PHY information structure
******************************************************************************/
int32_t
e1000_phy_igp_get_info
(
struct
e1000_hw
*
hw
,
struct
e1000_phy_info
*
phy_info
)
{
uint16_t
phy_data
,
polarity
,
min_length
,
max_length
,
average
;
DEBUGFUNC
(
"e1000_phy_igp_get_info"
);
/* The downshift status is checked only once, after link is established,
* and it stored in the hw->speed_downgraded parameter. */
phy_info
->
downshift
=
hw
->
speed_downgraded
;
/* IGP01E1000 does not need to support it. */
phy_info
->
extended_10bt_distance
=
e1000_10bt_ext_dist_enable_normal
;
/* IGP01E1000 always correct polarity reversal */
phy_info
->
polarity_correction
=
e1000_polarity_reversal_enabled
;
/* Check polarity status */
if
(
e1000_check_polarity
(
hw
,
&
polarity
)
<
0
)
return
-
E1000_ERR_PHY
;
phy_info
->
cable_polarity
=
polarity
;
if
(
e1000_read_phy_reg
(
hw
,
IGP01E1000_PHY_PORT_STATUS
,
&
phy_data
)
<
0
)
return
-
E1000_ERR_PHY
;
phy_info
->
mdix_mode
=
(
phy_data
&
IGP01E1000_PSSR_MDIX
)
>>
IGP01E1000_PSSR_MDIX_SHIFT
;
if
((
phy_data
&
IGP01E1000_PSSR_SPEED_MASK
)
==
IGP01E1000_PSSR_SPEED_1000MBPS
)
{
/* Local/Remote Receiver Information are only valid at 1000 Mbps */
if
(
e1000_read_phy_reg
(
hw
,
PHY_1000T_STATUS
,
&
phy_data
)
<
0
)
return
-
E1000_ERR_PHY
;
phy_info
->
local_rx
=
(
phy_data
&
SR_1000T_LOCAL_RX_STATUS
)
>>
SR_1000T_LOCAL_RX_STATUS_SHIFT
;
phy_info
->
remote_rx
=
(
phy_data
&
SR_1000T_REMOTE_RX_STATUS
)
>>
SR_1000T_REMOTE_RX_STATUS_SHIFT
;
/* Get cable length */
if
(
e1000_get_cable_length
(
hw
,
&
min_length
,
&
max_length
)
<
0
)
return
-
E1000_ERR_PHY
;
/* transalte to old method */
average
=
(
max_length
+
min_length
)
/
2
;
if
(
average
<=
e1000_igp_cable_length_50
)
phy_info
->
cable_length
=
e1000_cable_length_50
;
else
if
(
average
<=
e1000_igp_cable_length_80
)
phy_info
->
cable_length
=
e1000_cable_length_50_80
;
else
if
(
average
<=
e1000_igp_cable_length_110
)
phy_info
->
cable_length
=
e1000_cable_length_80_110
;
else
if
(
average
<=
e1000_igp_cable_length_140
)
phy_info
->
cable_length
=
e1000_cable_length_110_140
;
else
phy_info
->
cable_length
=
e1000_cable_length_140
;
}
return
E1000_SUCCESS
;
}
/******************************************************************************
* Get PHY information from various PHY registers fot m88 PHY only.
*
* hw - Struct containing variables accessed by shared code
* phy_info - PHY information structure
******************************************************************************/
int32_t
e1000_phy_m88_get_info
(
struct
e1000_hw
*
hw
,
struct
e1000_phy_info
*
phy_info
)
{
uint16_t
phy_data
,
polarity
;
DEBUGFUNC
(
"e1000_phy_m88_get_info"
);
/* The downshift status is checked only once, after link is established,
* and it stored in the hw->speed_downgraded parameter. */
phy_info
->
downshift
=
hw
->
speed_downgraded
;
if
(
e1000_read_phy_reg
(
hw
,
M88E1000_PHY_SPEC_CTRL
,
&
phy_data
)
<
0
)
return
-
E1000_ERR_PHY
;
phy_info
->
extended_10bt_distance
=
(
phy_data
&
M88E1000_PSCR_10BT_EXT_DIST_ENABLE
)
>>
M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT
;
phy_info
->
polarity_correction
=
(
phy_data
&
M88E1000_PSCR_POLARITY_REVERSAL
)
>>
M88E1000_PSCR_POLARITY_REVERSAL_SHIFT
;
/* Check polarity status */
if
(
e1000_check_polarity
(
hw
,
&
polarity
)
<
0
)
return
-
E1000_ERR_PHY
;
phy_info
->
cable_polarity
=
polarity
;
if
(
e1000_read_phy_reg
(
hw
,
M88E1000_PHY_SPEC_STATUS
,
&
phy_data
)
<
0
)
return
-
E1000_ERR_PHY
;
phy_info
->
mdix_mode
=
(
phy_data
&
M88E1000_PSSR_MDIX
)
>>
M88E1000_PSSR_MDIX_SHIFT
;
if
(
phy_data
&
M88E1000_PSSR_1000MBS
)
{
/* Cable Length Estimation and Local/Remote Receiver Informatoion
* are only valid at 1000 Mbps
*/
phy_info
->
cable_length
=
((
phy_data
&
M88E1000_PSSR_CABLE_LENGTH
)
>>
M88E1000_PSSR_CABLE_LENGTH_SHIFT
);
if
(
e1000_read_phy_reg
(
hw
,
PHY_1000T_STATUS
,
&
phy_data
)
<
0
)
return
-
E1000_ERR_PHY
;
phy_info
->
local_rx
=
(
phy_data
&
SR_1000T_LOCAL_RX_STATUS
)
>>
SR_1000T_LOCAL_RX_STATUS_SHIFT
;
phy_info
->
remote_rx
=
(
phy_data
&
SR_1000T_REMOTE_RX_STATUS
)
>>
SR_1000T_REMOTE_RX_STATUS_SHIFT
;
}
return
E1000_SUCCESS
;
}
/******************************************************************************
* Get PHY information from various PHY registers
*
...
...
@@ -2165,7 +2542,6 @@ int32_t
e1000_phy_get_info
(
struct
e1000_hw
*
hw
,
struct
e1000_phy_info
*
phy_info
)
{
int32_t
ret_val
=
-
E1000_ERR_PHY
;
uint16_t
phy_data
;
DEBUGFUNC
(
"e1000_phy_get_info"
);
...
...
@@ -2173,6 +2549,7 @@ e1000_phy_get_info(struct e1000_hw *hw,
phy_info
->
cable_length
=
e1000_cable_length_undefined
;
phy_info
->
extended_10bt_distance
=
e1000_10bt_ext_dist_enable_undefined
;
phy_info
->
cable_polarity
=
e1000_rev_polarity_undefined
;
phy_info
->
downshift
=
e1000_downshift_undefined
;
phy_info
->
polarity_correction
=
e1000_polarity_reversal_undefined
;
phy_info
->
mdix_mode
=
e1000_auto_x_mode_undefined
;
phy_info
->
local_rx
=
e1000_1000t_rx_status_undefined
;
...
...
@@ -2183,47 +2560,23 @@ e1000_phy_get_info(struct e1000_hw *hw,
return
-
E1000_ERR_CONFIG
;
}
do
{
if
(
e1000_read_phy_reg
(
hw
,
PHY_STATUS
,
&
phy_data
)
<
0
)
break
;
if
(
e1000_read_phy_reg
(
hw
,
PHY_STATUS
,
&
phy_data
)
<
0
)
break
;
if
((
phy_data
&
MII_SR_LINK_STATUS
)
!=
MII_SR_LINK_STATUS
)
{
DEBUGOUT
(
"PHY info is only valid if link is up
\n
"
);
return
-
E1000_ERR_CONFIG
;
}
if
(
e1000_read_phy_reg
(
hw
,
M88E1000_PHY_SPEC_CTRL
,
&
phy_data
)
<
0
)
break
;
phy_info
->
extended_10bt_distance
=
(
phy_data
&
M88E1000_PSCR_10BT_EXT_DIST_ENABLE
)
>>
M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT
;
phy_info
->
polarity_correction
=
(
phy_data
&
M88E1000_PSCR_POLARITY_REVERSAL
)
>>
M88E1000_PSCR_POLARITY_REVERSAL_SHIFT
;
if
(
e1000_read_phy_reg
(
hw
,
M88E1000_PHY_SPEC_STATUS
,
&
phy_data
)
<
0
)
break
;
phy_info
->
cable_polarity
=
(
phy_data
&
M88E1000_PSSR_REV_POLARITY
)
>>
M88E1000_PSSR_REV_POLARITY_SHIFT
;
phy_info
->
mdix_mode
=
(
phy_data
&
M88E1000_PSSR_MDIX
)
>>
M88E1000_PSSR_MDIX_SHIFT
;
if
(
phy_data
&
M88E1000_PSSR_1000MBS
)
{
/* Cable Length Estimation and Local/Remote Receiver Informatoion
* are only valid at 1000 Mbps
*/
phy_info
->
cable_length
=
((
phy_data
&
M88E1000_PSSR_CABLE_LENGTH
)
>>
M88E1000_PSSR_CABLE_LENGTH_SHIFT
);
if
(
e1000_read_phy_reg
(
hw
,
PHY_1000T_STATUS
,
&
phy_data
)
<
0
)
break
;
phy_info
->
local_rx
=
(
phy_data
&
SR_1000T_LOCAL_RX_STATUS
)
>>
SR_1000T_LOCAL_RX_STATUS_SHIFT
;
phy_info
->
remote_rx
=
(
phy_data
&
SR_1000T_REMOTE_RX_STATUS
)
>>
SR_1000T_REMOTE_RX_STATUS_SHIFT
;
}
ret_val
=
0
;
}
while
(
0
);
if
(
e1000_read_phy_reg
(
hw
,
PHY_STATUS
,
&
phy_data
)
<
0
)
{
DEBUGOUT
(
"PHY Read Error
\n
"
);
return
-
E1000_ERR_PHY
;
}
if
(
e1000_read_phy_reg
(
hw
,
PHY_STATUS
,
&
phy_data
)
<
0
)
{
DEBUGOUT
(
"PHY Read Error
\n
"
);
return
-
E1000_ERR_PHY
;
}
if
((
phy_data
&
MII_SR_LINK_STATUS
)
!=
MII_SR_LINK_STATUS
)
{
DEBUGOUT
(
"PHY info is only valid if link is up
\n
"
);
return
-
E1000_ERR_CONFIG
;
}
if
(
ret_val
<
0
)
DEBUGOUT
(
"PHY Read Error
\n
"
);
return
ret_val
;
if
(
hw
->
phy_type
==
e1000_phy_igp
)
return
e1000_phy_igp_get_info
(
hw
,
phy_info
);
else
return
e1000_phy_m88_get_info
(
hw
,
phy_info
);
}
int32_t
...
...
@@ -2239,6 +2592,109 @@ e1000_validate_mdi_setting(struct e1000_hw *hw)
return
0
;
}
/******************************************************************************
* Sets up eeprom variables in the hw struct. Must be called after mac_type
* is configured.
*
* hw - Struct containing variables accessed by shared code
*****************************************************************************/
void
e1000_init_eeprom_params
(
struct
e1000_hw
*
hw
)
{
struct
e1000_eeprom_info
*
eeprom
=
&
hw
->
eeprom
;
uint32_t
eecd
=
E1000_READ_REG
(
hw
,
EECD
);
uint16_t
eeprom_size
;
DEBUGFUNC
(
"e1000_init_eeprom_params"
);
switch
(
hw
->
mac_type
)
{
case
e1000_82542_rev2_0
:
case
e1000_82542_rev2_1
:
case
e1000_82543
:
case
e1000_82544
:
eeprom
->
type
=
e1000_eeprom_microwire
;
eeprom
->
word_size
=
64
;
eeprom
->
opcode_bits
=
3
;
eeprom
->
address_bits
=
6
;
eeprom
->
delay_usec
=
50
;
break
;
case
e1000_82540
:
case
e1000_82545
:
case
e1000_82546
:
eeprom
->
type
=
e1000_eeprom_microwire
;
eeprom
->
opcode_bits
=
3
;
eeprom
->
delay_usec
=
50
;
if
(
eecd
&
E1000_EECD_SIZE
)
{
eeprom
->
word_size
=
256
;
eeprom
->
address_bits
=
8
;
}
else
{
eeprom
->
word_size
=
64
;
eeprom
->
address_bits
=
6
;
}
break
;
case
e1000_82541
:
case
e1000_82547
:
default:
if
(
eecd
&
E1000_EECD_TYPE
)
{
eeprom
->
type
=
e1000_eeprom_spi
;
eeprom
->
opcode_bits
=
8
;
eeprom
->
delay_usec
=
1
;
if
(
eecd
&
E1000_EECD_ADDR_BITS
)
{
eeprom
->
page_size
=
32
;
eeprom
->
address_bits
=
16
;
}
else
{
eeprom
->
page_size
=
8
;
eeprom
->
address_bits
=
8
;
}
}
else
{
eeprom
->
type
=
e1000_eeprom_microwire
;
eeprom
->
opcode_bits
=
3
;
eeprom
->
delay_usec
=
50
;
if
(
eecd
&
E1000_EECD_ADDR_BITS
)
{
eeprom
->
word_size
=
256
;
eeprom
->
address_bits
=
8
;
}
else
{
eeprom
->
word_size
=
64
;
eeprom
->
address_bits
=
6
;
}
}
break
;
}
if
(
eeprom
->
type
==
e1000_eeprom_spi
)
{
eeprom
->
word_size
=
64
;
if
(
e1000_read_eeprom
(
hw
,
EEPROM_CFG
,
1
,
&
eeprom_size
)
==
0
)
{
eeprom_size
&=
EEPROM_SIZE_MASK
;
switch
(
eeprom_size
)
{
case
EEPROM_SIZE_16KB
:
eeprom
->
word_size
=
8192
;
break
;
case
EEPROM_SIZE_8KB
:
eeprom
->
word_size
=
4096
;
break
;
case
EEPROM_SIZE_4KB
:
eeprom
->
word_size
=
2048
;
break
;
case
EEPROM_SIZE_2KB
:
eeprom
->
word_size
=
1024
;
break
;
case
EEPROM_SIZE_1KB
:
eeprom
->
word_size
=
512
;
break
;
case
EEPROM_SIZE_512B
:
eeprom
->
word_size
=
256
;
break
;
case
EEPROM_SIZE_128B
:
default:
eeprom
->
word_size
=
64
;
break
;
}
}
}
}
/******************************************************************************
* Raises the EEPROM's clock input.
*
...
...
@@ -2255,26 +2711,26 @@ e1000_raise_ee_clk(struct e1000_hw *hw,
*
eecd
=
*
eecd
|
E1000_EECD_SK
;
E1000_WRITE_REG
(
hw
,
EECD
,
*
eecd
);
E1000_WRITE_FLUSH
(
hw
);
udelay
(
50
);
udelay
(
hw
->
eeprom
.
delay_usec
);
}
/******************************************************************************
* Lowers the EEPROM's clock input.
*
* hw - Struct containing variables accessed by shared code
* hw - Struct containing variables accessed by shared code
* eecd - EECD's current value
*****************************************************************************/
static
void
e1000_lower_ee_clk
(
struct
e1000_hw
*
hw
,
uint32_t
*
eecd
)
{
/* Lower the clock input to the EEPROM (by clearing the SK bit), and then
* wait 50 microseconds.
/* Lower the clock input to the EEPROM (by clearing the SK bit), and then
* wait 50 microseconds.
*/
*
eecd
=
*
eecd
&
~
E1000_EECD_SK
;
E1000_WRITE_REG
(
hw
,
EECD
,
*
eecd
);
E1000_WRITE_FLUSH
(
hw
);
udelay
(
50
);
udelay
(
hw
->
eeprom
.
delay_usec
);
}
/******************************************************************************
...
...
@@ -2289,16 +2745,21 @@ e1000_shift_out_ee_bits(struct e1000_hw *hw,
uint16_t
data
,
uint16_t
count
)
{
struct
e1000_eeprom_info
*
eeprom
=
&
hw
->
eeprom
;
uint32_t
eecd
;
uint32_t
mask
;
/* We need to shift "count" bits out to the EEPROM. So, value in the
* "data" parameter will be shifted out to the EEPROM one bit at a time.
* In order to do this, "data" must be broken down into bits.
* In order to do this, "data" must be broken down into bits.
*/
mask
=
0x01
<<
(
count
-
1
);
eecd
=
E1000_READ_REG
(
hw
,
EECD
);
eecd
&=
~
(
E1000_EECD_DO
|
E1000_EECD_DI
);
if
(
eeprom
->
type
==
e1000_eeprom_microwire
)
{
eecd
&=
~
E1000_EECD_DO
;
}
else
if
(
eeprom
->
type
==
e1000_eeprom_spi
)
{
eecd
|=
E1000_EECD_DO
;
}
do
{
/* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
* and then raising and then lowering the clock (the SK bit controls
...
...
@@ -2313,7 +2774,7 @@ e1000_shift_out_ee_bits(struct e1000_hw *hw,
E1000_WRITE_REG
(
hw
,
EECD
,
eecd
);
E1000_WRITE_FLUSH
(
hw
);
udelay
(
50
);
udelay
(
eeprom
->
delay_usec
);
e1000_raise_ee_clk
(
hw
,
&
eecd
);
e1000_lower_ee_clk
(
hw
,
&
eecd
);
...
...
@@ -2333,7 +2794,7 @@ e1000_shift_out_ee_bits(struct e1000_hw *hw,
* hw - Struct containing variables accessed by shared code
*****************************************************************************/
static
uint16_t
e1000_shift_in_ee_bits
(
struct
e1000_hw
*
hw
)
e1000_shift_in_ee_bits
(
struct
e1000_hw
*
hw
,
uint16_t
count
)
{
uint32_t
eecd
;
uint32_t
i
;
...
...
@@ -2351,7 +2812,7 @@ e1000_shift_in_ee_bits(struct e1000_hw *hw)
eecd
&=
~
(
E1000_EECD_DO
|
E1000_EECD_DI
);
data
=
0
;
for
(
i
=
0
;
i
<
16
;
i
++
)
{
for
(
i
=
0
;
i
<
count
;
i
++
)
{
data
=
data
<<
1
;
e1000_raise_ee_clk
(
hw
,
&
eecd
);
...
...
@@ -2372,104 +2833,196 @@ e1000_shift_in_ee_bits(struct e1000_hw *hw)
*
* hw - Struct containing variables accessed by shared code
*
* Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
* Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
* function should be called before issuing a command to the EEPROM.
*****************************************************************************/
static
void
e1000_
setup
_eeprom
(
struct
e1000_hw
*
hw
)
static
int32_t
e1000_
acquire
_eeprom
(
struct
e1000_hw
*
hw
)
{
uint32_t
eecd
;
struct
e1000_eeprom_info
*
eeprom
=
&
hw
->
eeprom
;
uint32_t
eecd
,
i
=
0
;
DEBUGFUNC
(
"e1000_acquire_eeprom"
);
eecd
=
E1000_READ_REG
(
hw
,
EECD
);
/* Clear SK and DI */
eecd
&=
~
(
E1000_EECD_SK
|
E1000_EECD_DI
);
E1000_WRITE_REG
(
hw
,
EECD
,
eecd
);
/* Request EEPROM Access */
if
(
hw
->
mac_type
>
e1000_82544
)
{
eecd
|=
E1000_EECD_REQ
;
E1000_WRITE_REG
(
hw
,
EECD
,
eecd
);
eecd
=
E1000_READ_REG
(
hw
,
EECD
);
while
((
!
(
eecd
&
E1000_EECD_GNT
))
&&
(
i
<
E1000_EEPROM_GRANT_ATTEMPTS
))
{
i
++
;
udelay
(
5
);
eecd
=
E1000_READ_REG
(
hw
,
EECD
);
}
if
(
!
(
eecd
&
E1000_EECD_GNT
))
{
eecd
&=
~
E1000_EECD_REQ
;
E1000_WRITE_REG
(
hw
,
EECD
,
eecd
);
DEBUGOUT
(
"Could not acquire EEPROM grant
\n
"
);
return
-
E1000_ERR_EEPROM
;
}
}
/* Set CS */
eecd
|=
E1000_EECD_CS
;
E1000_WRITE_REG
(
hw
,
EECD
,
eecd
);
/* Setup EEPROM for Read/Write */
if
(
eeprom
->
type
==
e1000_eeprom_microwire
)
{
/* Clear SK and DI */
eecd
&=
~
(
E1000_EECD_DI
|
E1000_EECD_SK
);
E1000_WRITE_REG
(
hw
,
EECD
,
eecd
);
/* Set CS */
eecd
|=
E1000_EECD_CS
;
E1000_WRITE_REG
(
hw
,
EECD
,
eecd
);
}
else
if
(
eeprom
->
type
==
e1000_eeprom_spi
)
{
/* Clear SK and CS */
eecd
&=
~
(
E1000_EECD_CS
|
E1000_EECD_SK
);
E1000_WRITE_REG
(
hw
,
EECD
,
eecd
);
udelay
(
1
);
}
return
E1000_SUCCESS
;
}
/******************************************************************************
* Returns EEPROM to a "standby" state
*
*
* hw - Struct containing variables accessed by shared code
*****************************************************************************/
static
void
e1000_standby_eeprom
(
struct
e1000_hw
*
hw
)
{
struct
e1000_eeprom_info
*
eeprom
=
&
hw
->
eeprom
;
uint32_t
eecd
;
eecd
=
E1000_READ_REG
(
hw
,
EECD
);
/* Deselct EEPROM */
eecd
&=
~
(
E1000_EECD_CS
|
E1000_EECD_SK
);
E1000_WRITE_REG
(
hw
,
EECD
,
eecd
);
E1000_WRITE_FLUSH
(
hw
);
udelay
(
50
);
if
(
eeprom
->
type
==
e1000_eeprom_microwire
)
{
eecd
&=
~
(
E1000_EECD_CS
|
E1000_EECD_SK
);
E1000_WRITE_REG
(
hw
,
EECD
,
eecd
);
E1000_WRITE_FLUSH
(
hw
);
udelay
(
eeprom
->
delay_usec
);
/* Clock high */
eecd
|=
E1000_EECD_SK
;
E1000_WRITE_REG
(
hw
,
EECD
,
eecd
);
E1000_WRITE_FLUSH
(
hw
);
udelay
(
50
);
/* Clock high */
eecd
|=
E1000_EECD_SK
;
E1000_WRITE_REG
(
hw
,
EECD
,
eecd
);
E1000_WRITE_FLUSH
(
hw
);
udelay
(
eeprom
->
delay_usec
);
/* Select EEPROM */
eecd
|=
E1000_EECD_CS
;
E1000_WRITE_REG
(
hw
,
EECD
,
eecd
);
E1000_WRITE_FLUSH
(
hw
);
udelay
(
50
);
/* Select EEPROM */
eecd
|=
E1000_EECD_CS
;
E1000_WRITE_REG
(
hw
,
EECD
,
eecd
);
E1000_WRITE_FLUSH
(
hw
);
udelay
(
eeprom
->
delay_usec
);
/* Clock low */
eecd
&=
~
E1000_EECD_SK
;
E1000_WRITE_REG
(
hw
,
EECD
,
eecd
);
E1000_WRITE_FLUSH
(
hw
);
udelay
(
50
);
/* Clock low */
eecd
&=
~
E1000_EECD_SK
;
E1000_WRITE_REG
(
hw
,
EECD
,
eecd
);
E1000_WRITE_FLUSH
(
hw
);
udelay
(
eeprom
->
delay_usec
);
}
else
if
(
eeprom
->
type
==
e1000_eeprom_spi
)
{
/* Toggle CS to flush commands */
eecd
|=
E1000_EECD_CS
;
E1000_WRITE_REG
(
hw
,
EECD
,
eecd
);
E1000_WRITE_FLUSH
(
hw
);
udelay
(
eeprom
->
delay_usec
);
eecd
&=
~
E1000_EECD_CS
;
E1000_WRITE_REG
(
hw
,
EECD
,
eecd
);
E1000_WRITE_FLUSH
(
hw
);
udelay
(
eeprom
->
delay_usec
);
}
}
/******************************************************************************
*
Raises then lowers the EEPROM's clock
pin
*
Terminates a command by inverting the EEPROM's chip select
pin
*
* hw - Struct containing variables accessed by shared code
*****************************************************************************/
static
void
e1000_
clock
_eeprom
(
struct
e1000_hw
*
hw
)
e1000_
release
_eeprom
(
struct
e1000_hw
*
hw
)
{
uint32_t
eecd
;
DEBUGFUNC
(
"e1000_release_eeprom"
);
eecd
=
E1000_READ_REG
(
hw
,
EECD
);
/* Rising edge of clock */
eecd
|=
E1000_EECD_SK
;
E1000_WRITE_REG
(
hw
,
EECD
,
eecd
);
E1000_WRITE_FLUSH
(
hw
);
udelay
(
50
);
if
(
hw
->
eeprom
.
type
==
e1000_eeprom_spi
)
{
eecd
|=
E1000_EECD_CS
;
/* Pull CS high */
eecd
&=
~
E1000_EECD_SK
;
/* Lower SCK */
/* Falling edge of clock */
eecd
&=
~
E1000_EECD_SK
;
E1000_WRITE_REG
(
hw
,
EECD
,
eecd
);
E1000_WRITE_FLUSH
(
hw
);
udelay
(
50
);
E1000_WRITE_REG
(
hw
,
EECD
,
eecd
);
udelay
(
hw
->
eeprom
.
delay_usec
);
}
else
if
(
hw
->
eeprom
.
type
==
e1000_eeprom_microwire
)
{
/* cleanup eeprom */
/* CS on Microwire is active-high */
eecd
&=
~
(
E1000_EECD_CS
|
E1000_EECD_DI
);
E1000_WRITE_REG
(
hw
,
EECD
,
eecd
);
/* Rising edge of clock */
eecd
|=
E1000_EECD_SK
;
E1000_WRITE_REG
(
hw
,
EECD
,
eecd
);
E1000_WRITE_FLUSH
(
hw
);
udelay
(
hw
->
eeprom
.
delay_usec
);
/* Falling edge of clock */
eecd
&=
~
E1000_EECD_SK
;
E1000_WRITE_REG
(
hw
,
EECD
,
eecd
);
E1000_WRITE_FLUSH
(
hw
);
udelay
(
hw
->
eeprom
.
delay_usec
);
}
/* Stop requesting EEPROM access */
if
(
hw
->
mac_type
>
e1000_82544
)
{
eecd
&=
~
E1000_EECD_REQ
;
E1000_WRITE_REG
(
hw
,
EECD
,
eecd
);
}
}
/******************************************************************************
*
Terminates a command by lowering the EEPROM's chip select pin
*
Reads a 16 bit word from the EEPROM.
*
* hw - Struct containing variables accessed by shared code
*****************************************************************************/
static
void
e1000_
cleanup_eeprom
(
struct
e1000_hw
*
hw
)
int32_t
e1000_
spi_eeprom_ready
(
struct
e1000_hw
*
hw
)
{
uint32_t
eecd
;
uint16_t
retry_count
=
0
;
uint8_t
spi_stat_reg
;
eecd
=
E1000_READ_REG
(
hw
,
EECD
);
DEBUGFUNC
(
"e1000_spi_eeprom_ready"
);
eecd
&=
~
(
E1000_EECD_CS
|
E1000_EECD_DI
);
/* Read "Status Register" repeatedly until the LSB is cleared. The
* EEPROM will signal that the command has been completed by clearing
* bit 0 of the internal status register. If it's not cleared within
* 5 milliseconds, then error out.
*/
retry_count
=
0
;
do
{
e1000_shift_out_ee_bits
(
hw
,
EEPROM_RDSR_OPCODE_SPI
,
hw
->
eeprom
.
opcode_bits
);
spi_stat_reg
=
(
uint8_t
)
e1000_shift_in_ee_bits
(
hw
,
8
);
if
(
!
(
spi_stat_reg
&
EEPROM_STATUS_RDY_SPI
))
break
;
E1000_WRITE_REG
(
hw
,
EECD
,
eecd
);
udelay
(
5
);
retry_count
+=
5
;
}
while
(
retry_count
<
EEPROM_MAX_RETRY_SPI
);
e1000_clock_eeprom
(
hw
);
/* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
* only 0-5mSec on 5V devices)
*/
if
(
retry_count
>=
EEPROM_MAX_RETRY_SPI
)
{
DEBUGOUT
(
"SPI EEPROM Status error
\n
"
);
return
-
E1000_ERR_EEPROM
;
}
return
E1000_SUCCESS
;
}
/******************************************************************************
...
...
@@ -2477,71 +3030,76 @@ e1000_cleanup_eeprom(struct e1000_hw *hw)
*
* hw - Struct containing variables accessed by shared code
* offset - offset of word in the EEPROM to read
* data - word read from the EEPROM
* data - word read from the EEPROM
* words - number of words to read
*****************************************************************************/
int32_t
e1000_read_eeprom
(
struct
e1000_hw
*
hw
,
uint16_t
offset
,
uint16_t
words
,
uint16_t
*
data
)
{
uint32_t
eecd
;
struct
e1000_eeprom_info
*
eeprom
=
&
hw
->
eeprom
;
uint32_t
i
=
0
;
boolean_t
large_eeprom
=
FALSE
;
DEBUGFUNC
(
"e1000_read_eeprom"
);
/* Request EEPROM Access */
if
(
hw
->
mac_type
>
e1000_82544
)
{
eecd
=
E1000_READ_REG
(
hw
,
EECD
);
if
(
eecd
&
E1000_EECD_SIZE
)
large_eeprom
=
TRUE
;
eecd
|=
E1000_EECD_REQ
;
E1000_WRITE_REG
(
hw
,
EECD
,
eecd
);
eecd
=
E1000_READ_REG
(
hw
,
EECD
);
while
((
!
(
eecd
&
E1000_EECD_GNT
))
&&
(
i
<
100
))
{
i
++
;
udelay
(
5
);
eecd
=
E1000_READ_REG
(
hw
,
EECD
);
}
if
(
!
(
eecd
&
E1000_EECD_GNT
))
{
eecd
&=
~
E1000_EECD_REQ
;
E1000_WRITE_REG
(
hw
,
EECD
,
eecd
);
DEBUGOUT
(
"Could not acquire EEPROM grant
\n
"
);
return
-
E1000_ERR_EEPROM
;
}
/* A check for invalid values: offset too large, too many words, and not
* enough words.
*/
if
((
offset
>
eeprom
->
word_size
)
||
(
words
>
eeprom
->
word_size
-
offset
)
||
(
words
==
0
))
{
DEBUGOUT
(
"
\"
words
\"
parameter out of bounds
\n
"
);
return
-
E1000_ERR_EEPROM
;
}
/* Prepare the EEPROM for reading */
e1000_setup_eeprom
(
hw
);
/* Prepare the EEPROM for reading */
if
(
e1000_acquire_eeprom
(
hw
)
!=
E1000_SUCCESS
)
return
-
E1000_ERR_EEPROM
;
/* Send the READ command (opcode + addr) */
e1000_shift_out_ee_bits
(
hw
,
EEPROM_READ_OPCODE
,
3
);
if
(
large_eeprom
)
{
/* If we have a 256 word EEPROM, there are 8 address bits */
e1000_shift_out_ee_bits
(
hw
,
offset
,
8
);
}
else
{
/* If we have a 64 word EEPROM, there are 6 address bits */
e1000_shift_out_ee_bits
(
hw
,
offset
,
6
);
}
if
(
eeprom
->
type
==
e1000_eeprom_spi
)
{
uint8_t
read_opcode
=
EEPROM_READ_OPCODE_SPI
;
/* Read the data */
*
data
=
e1000_shift_in_ee_bits
(
hw
);
if
(
e1000_spi_eeprom_ready
(
hw
))
return
-
E1000_ERR_EEPROM
;
/* End this read operation */
e1000_standby_eeprom
(
hw
);
e1000_standby_eeprom
(
hw
);
/* Stop requesting EEPROM access */
if
(
hw
->
mac_type
>
e1000_82544
)
{
eecd
=
E1000_READ_REG
(
hw
,
EECD
);
eecd
&=
~
E1000_EECD_REQ
;
E1000_WRITE_REG
(
hw
,
EECD
,
eecd
);
/* Some SPI eeproms use the 8th address bit embedded in the opcode */
if
((
eeprom
->
address_bits
==
8
)
&&
(
offset
>=
128
))
read_opcode
|=
EEPROM_A8_OPCODE_SPI
;
/* Send the READ command (opcode + addr) */
e1000_shift_out_ee_bits
(
hw
,
read_opcode
,
eeprom
->
opcode_bits
);
e1000_shift_out_ee_bits
(
hw
,
(
uint16_t
)(
offset
*
2
),
eeprom
->
address_bits
);
}
else
if
(
eeprom
->
type
==
e1000_eeprom_microwire
)
{
/* Send the READ command (opcode + addr) */
e1000_shift_out_ee_bits
(
hw
,
EEPROM_READ_OPCODE_MICROWIRE
,
eeprom
->
opcode_bits
);
e1000_shift_out_ee_bits
(
hw
,
offset
,
eeprom
->
address_bits
);
}
/* Read the data. The address of the eeprom internally increments with
* each word (microwire) or byte (spi) being read, saving on the overhead
* of eeprom setup and tear-down. The address counter will roll over if
* reading beyond the size of the eeprom, thus allowing the entire memory
* to be read starting from any offset. */
for
(
i
=
0
;
i
<
words
;
i
++
)
{
uint16_t
word_in
=
e1000_shift_in_ee_bits
(
hw
,
16
);
if
(
eeprom
->
type
==
e1000_eeprom_spi
)
word_in
=
(
word_in
>>
8
)
|
(
word_in
<<
8
);
data
[
i
]
=
word_in
;
}
/* End this read operation */
e1000_release_eeprom
(
hw
);
return
0
;
}
/******************************************************************************
* Verifies that the EEPROM has a valid checksum
*
*
* hw - Struct containing variables accessed by shared code
*
* Reads the first 64 16 bit words of the EEPROM and sums the values read.
...
...
@@ -2557,7 +3115,7 @@ e1000_validate_eeprom_checksum(struct e1000_hw *hw)
DEBUGFUNC
(
"e1000_validate_eeprom_checksum"
);
for
(
i
=
0
;
i
<
(
EEPROM_CHECKSUM_REG
+
1
);
i
++
)
{
if
(
e1000_read_eeprom
(
hw
,
i
,
&
eeprom_data
)
<
0
)
{
if
(
e1000_read_eeprom
(
hw
,
i
,
1
,
&
eeprom_data
)
<
0
)
{
DEBUGOUT
(
"EEPROM Read Error
\n
"
);
return
-
E1000_ERR_EEPROM
;
}
...
...
@@ -2589,14 +3147,14 @@ e1000_update_eeprom_checksum(struct e1000_hw *hw)
DEBUGFUNC
(
"e1000_update_eeprom_checksum"
);
for
(
i
=
0
;
i
<
EEPROM_CHECKSUM_REG
;
i
++
)
{
if
(
e1000_read_eeprom
(
hw
,
i
,
&
eeprom_data
)
<
0
)
{
if
(
e1000_read_eeprom
(
hw
,
i
,
1
,
&
eeprom_data
)
<
0
)
{
DEBUGOUT
(
"EEPROM Read Error
\n
"
);
return
-
E1000_ERR_EEPROM
;
}
checksum
+=
eeprom_data
;
}
checksum
=
(
uint16_t
)
EEPROM_SUM
-
checksum
;
if
(
e1000_write_eeprom
(
hw
,
EEPROM_CHECKSUM_REG
,
checksum
)
<
0
)
{
if
(
e1000_write_eeprom
(
hw
,
EEPROM_CHECKSUM_REG
,
1
,
&
checksum
)
<
0
)
{
DEBUGOUT
(
"EEPROM Write Error
\n
"
);
return
-
E1000_ERR_EEPROM
;
}
...
...
@@ -2604,118 +3162,201 @@ e1000_update_eeprom_checksum(struct e1000_hw *hw)
}
/******************************************************************************
*
Writes a 16 bit word to a given offset in the EEPROM
.
*
Parent function for writing words to the different EEPROM types
.
*
* hw - Struct containing variables accessed by shared code
* offset - offset within the EEPROM to be written to
* data - 16 bit word to be writen to the EEPROM
* words - number of words to write
* data - 16 bit word to be written to the EEPROM
*
* If e1000_update_eeprom_checksum is not called after this function, the
* If e1000_update_eeprom_checksum is not called after this function, the
* EEPROM will most likely contain an invalid checksum.
*****************************************************************************/
int32_t
e1000_write_eeprom
(
struct
e1000_hw
*
hw
,
uint16_t
offset
,
uint16_t
data
)
uint16_t
words
,
uint16_t
*
data
)
{
uint32_t
eecd
;
uint32_t
i
=
0
;
struct
e1000_eeprom_info
*
eeprom
=
&
hw
->
eeprom
;
int32_t
status
=
0
;
boolean_t
large_eeprom
=
FALSE
;
DEBUGFUNC
(
"e1000_write_eeprom"
);
/* Request EEPROM Access */
if
(
hw
->
mac_type
>
e1000_82544
)
{
eecd
=
E1000_READ_REG
(
hw
,
EECD
);
if
(
eecd
&
E1000_EECD_SIZE
)
large_eeprom
=
TRUE
;
eecd
|=
E1000_EECD_REQ
;
E1000_WRITE_REG
(
hw
,
EECD
,
eecd
);
eecd
=
E1000_READ_REG
(
hw
,
EECD
);
while
((
!
(
eecd
&
E1000_EECD_GNT
))
&&
(
i
<
100
))
{
i
++
;
udelay
(
5
);
eecd
=
E1000_READ_REG
(
hw
,
EECD
);
}
if
(
!
(
eecd
&
E1000_EECD_GNT
))
{
eecd
&=
~
E1000_EECD_REQ
;
E1000_WRITE_REG
(
hw
,
EECD
,
eecd
);
DEBUGOUT
(
"Could not acquire EEPROM grant
\n
"
);
return
-
E1000_ERR_EEPROM
;
}
/* A check for invalid values: offset too large, too many words, and not
* enough words.
*/
if
((
offset
>
eeprom
->
word_size
)
||
(
words
>
eeprom
->
word_size
-
offset
)
||
(
words
==
0
))
{
DEBUGOUT
(
"
\"
words
\"
parameter out of bounds
\n
"
);
return
-
E1000_ERR_EEPROM
;
}
/* Prepare the EEPROM for writing */
e1000_setup_eeprom
(
hw
);
if
(
e1000_acquire_eeprom
(
hw
)
!=
E1000_SUCCESS
)
return
-
E1000_ERR_EEPROM
;
/* Send the 9-bit (or 11-bit on large EEPROM) EWEN (write enable) command
* to the EEPROM (5-bit opcode plus 4/6-bit dummy). This puts the EEPROM
* into write/erase mode.
*/
e1000_shift_out_ee_bits
(
hw
,
EEPROM_EWEN_OPCODE
,
5
);
if
(
large_eeprom
)
e1000_shift_out_ee_bits
(
hw
,
0
,
6
);
if
(
eeprom
->
type
==
e1000_eeprom_microwire
)
status
=
e1000_write_eeprom_microwire
(
hw
,
offset
,
words
,
data
);
else
e1000_shift_out_ee_bits
(
hw
,
0
,
4
);
status
=
e1000_write_eeprom_spi
(
hw
,
offset
,
words
,
data
);
/*
Prepare the EEPROM
*/
e1000_
standby
_eeprom
(
hw
);
/*
Done with writing
*/
e1000_
release
_eeprom
(
hw
);
/* Send the Write command (3-bit opcode + addr) */
e1000_shift_out_ee_bits
(
hw
,
EEPROM_WRITE_OPCODE
,
3
);
if
(
large_eeprom
)
/* If we have a 256 word EEPROM, there are 8 address bits */
e1000_shift_out_ee_bits
(
hw
,
offset
,
8
);
else
/* If we have a 64 word EEPROM, there are 6 address bits */
e1000_shift_out_ee_bits
(
hw
,
offset
,
6
);
return
status
;
}
/******************************************************************************
* Writes a 16 bit word to a given offset in an SPI EEPROM.
*
* hw - Struct containing variables accessed by shared code
* offset - offset within the EEPROM to be written to
* words - number of words to write
* data - pointer to array of 8 bit words to be written to the EEPROM
*
*****************************************************************************/
int32_t
e1000_write_eeprom_spi
(
struct
e1000_hw
*
hw
,
uint16_t
offset
,
uint16_t
words
,
uint16_t
*
data
)
{
struct
e1000_eeprom_info
*
eeprom
=
&
hw
->
eeprom
;
uint16_t
widx
=
0
;
/* Send the data */
e1000_shift_out_ee_bits
(
hw
,
data
,
16
);
DEBUGFUNC
(
"e1000_write_eeprom_spi"
);
/* Toggle the CS line. This in effect tells to EEPROM to actually execute
* the command in question.
*/
e1000_standby_eeprom
(
hw
);
while
(
widx
<
words
)
{
uint8_t
write_opcode
=
EEPROM_WRITE_OPCODE_SPI
;
/* Now read DO repeatedly until is high (equal to '1'). The EEEPROM will
* signal that the command has been completed by raising the DO signal.
* If DO does not go high in 10 milliseconds, then error out.
*/
for
(
i
=
0
;
i
<
200
;
i
++
)
{
eecd
=
E1000_READ_REG
(
hw
,
EECD
);
if
(
eecd
&
E1000_EECD_DO
)
break
;
udelay
(
50
);
}
if
(
i
==
200
)
{
DEBUGOUT
(
"EEPROM Write did not complete
\n
"
);
status
=
-
E1000_ERR_EEPROM
;
if
(
e1000_spi_eeprom_ready
(
hw
))
return
-
E1000_ERR_EEPROM
;
e1000_standby_eeprom
(
hw
);
/* Send the WRITE ENABLE command (8 bit opcode ) */
e1000_shift_out_ee_bits
(
hw
,
EEPROM_WREN_OPCODE_SPI
,
eeprom
->
opcode_bits
);
e1000_standby_eeprom
(
hw
);
/* Some SPI eeproms use the 8th address bit embedded in the opcode */
if
((
eeprom
->
address_bits
==
8
)
&&
(
offset
>=
128
))
write_opcode
|=
EEPROM_A8_OPCODE_SPI
;
/* Send the Write command (8-bit opcode + addr) */
e1000_shift_out_ee_bits
(
hw
,
write_opcode
,
eeprom
->
opcode_bits
);
e1000_shift_out_ee_bits
(
hw
,
(
uint16_t
)((
offset
+
widx
)
*
2
),
eeprom
->
address_bits
);
/* Send the data */
/* Loop to allow for up to whole page write (32 bytes) of eeprom */
while
(
widx
<
words
)
{
uint16_t
word_out
=
data
[
widx
];
word_out
=
(
word_out
>>
8
)
|
(
word_out
<<
8
);
e1000_shift_out_ee_bits
(
hw
,
word_out
,
16
);
widx
++
;
/* Some larger eeprom sizes are capable of a 32-byte PAGE WRITE
* operation, while the smaller eeproms are capable of an 8-byte
* PAGE WRITE operation. Break the inner loop to pass new address
*/
if
((((
offset
+
widx
)
*
2
)
%
eeprom
->
page_size
)
==
0
)
{
e1000_standby_eeprom
(
hw
);
break
;
}
}
}
/* Recover from write */
e1000_standby_eeprom
(
hw
);
return
E1000_SUCCESS
;
}
/******************************************************************************
* Writes a 16 bit word to a given offset in a Microwire EEPROM.
*
* hw - Struct containing variables accessed by shared code
* offset - offset within the EEPROM to be written to
* words - number of words to write
* data - pointer to array of 16 bit words to be written to the EEPROM
*
*****************************************************************************/
int32_t
e1000_write_eeprom_microwire
(
struct
e1000_hw
*
hw
,
uint16_t
offset
,
uint16_t
words
,
uint16_t
*
data
)
{
struct
e1000_eeprom_info
*
eeprom
=
&
hw
->
eeprom
;
uint32_t
eecd
;
uint16_t
words_written
=
0
;
uint16_t
i
=
0
;
/* Send the 9-bit (or 11-bit on large EEPROM) EWDS (write disable) command
* to the EEPROM (5-bit opcode plus 4/6-bit dummy). This takes the EEPROM
* out of write/erase mode.
DEBUGFUNC
(
"e1000_write_eeprom_microwire"
);
/* Send the write enable command to the EEPROM (3-bit opcode plus
* 6/8-bit dummy address beginning with 11). It's less work to include
* the 11 of the dummy address as part of the opcode than it is to shift
* it over the correct number of bits for the address. This puts the
* EEPROM into write/erase mode.
*/
e1000_shift_out_ee_bits
(
hw
,
EEPROM_EWDS_OPCODE
,
5
);
if
(
large_eeprom
)
e1000_shift_out_ee_bits
(
hw
,
0
,
6
);
else
e1000_shift_out_ee_bits
(
hw
,
0
,
4
);
e1000_shift_out_ee_bits
(
hw
,
EEPROM_EWEN_OPCODE_MICROWIRE
,
(
uint16_t
)(
eeprom
->
opcode_bits
+
2
));
/* Done with writing */
e1000_cleanup_eeprom
(
hw
);
e1000_shift_out_ee_bits
(
hw
,
0
,
(
uint16_t
)(
eeprom
->
address_bits
-
2
));
/* Stop requesting EEPROM access */
if
(
hw
->
mac_type
>
e1000_82544
)
{
eecd
=
E1000_READ_REG
(
hw
,
EECD
);
eecd
&=
~
E1000_EECD_REQ
;
E1000_WRITE_REG
(
hw
,
EECD
,
eecd
);
/* Prepare the EEPROM */
e1000_standby_eeprom
(
hw
);
while
(
words_written
<
words
)
{
/* Send the Write command (3-bit opcode + addr) */
e1000_shift_out_ee_bits
(
hw
,
EEPROM_WRITE_OPCODE_MICROWIRE
,
eeprom
->
opcode_bits
);
e1000_shift_out_ee_bits
(
hw
,
(
uint16_t
)(
offset
+
words_written
),
eeprom
->
address_bits
);
/* Send the data */
e1000_shift_out_ee_bits
(
hw
,
data
[
words_written
],
16
);
/* Toggle the CS line. This in effect tells the EEPROM to execute
* the previous command.
*/
e1000_standby_eeprom
(
hw
);
/* Read DO repeatedly until it is high (equal to '1'). The EEPROM will
* signal that the command has been completed by raising the DO signal.
* If DO does not go high in 10 milliseconds, then error out.
*/
for
(
i
=
0
;
i
<
200
;
i
++
)
{
eecd
=
E1000_READ_REG
(
hw
,
EECD
);
if
(
eecd
&
E1000_EECD_DO
)
break
;
udelay
(
50
);
}
if
(
i
==
200
)
{
DEBUGOUT
(
"EEPROM Write did not complete
\n
"
);
return
-
E1000_ERR_EEPROM
;
}
/* Recover from write */
e1000_standby_eeprom
(
hw
);
words_written
++
;
}
return
status
;
/* Send the write disable command to the EEPROM (3-bit opcode plus
* 6/8-bit dummy address beginning with 10). It's less work to include
* the 10 of the dummy address as part of the opcode than it is to shift
* it over the correct number of bits for the address. This takes the
* EEPROM out of write/erase mode.
*/
e1000_shift_out_ee_bits
(
hw
,
EEPROM_EWDS_OPCODE_MICROWIRE
,
(
uint16_t
)(
eeprom
->
opcode_bits
+
2
));
e1000_shift_out_ee_bits
(
hw
,
0
,
(
uint16_t
)(
eeprom
->
address_bits
-
2
));
return
0
;
}
/******************************************************************************
...
...
@@ -2734,7 +3375,7 @@ e1000_read_part_num(struct e1000_hw *hw,
DEBUGFUNC
(
"e1000_read_part_num"
);
/* Get word 0 from EEPROM */
if
(
e1000_read_eeprom
(
hw
,
offset
,
&
eeprom_data
)
<
0
)
{
if
(
e1000_read_eeprom
(
hw
,
offset
,
1
,
&
eeprom_data
)
<
0
)
{
DEBUGOUT
(
"EEPROM Read Error
\n
"
);
return
-
E1000_ERR_EEPROM
;
}
...
...
@@ -2742,7 +3383,7 @@ e1000_read_part_num(struct e1000_hw *hw,
*
part_num
=
(
uint32_t
)
(
eeprom_data
<<
16
);
/* Get word 1 from EEPROM */
if
(
e1000_read_eeprom
(
hw
,
++
offset
,
&
eeprom_data
)
<
0
)
{
if
(
e1000_read_eeprom
(
hw
,
++
offset
,
1
,
&
eeprom_data
)
<
0
)
{
DEBUGOUT
(
"EEPROM Read Error
\n
"
);
return
-
E1000_ERR_EEPROM
;
}
...
...
@@ -2768,7 +3409,7 @@ e1000_read_mac_addr(struct e1000_hw * hw)
for
(
i
=
0
;
i
<
NODE_ADDRESS_SIZE
;
i
+=
2
)
{
offset
=
i
>>
1
;
if
(
e1000_read_eeprom
(
hw
,
offset
,
&
eeprom_data
)
<
0
)
{
if
(
e1000_read_eeprom
(
hw
,
offset
,
1
,
&
eeprom_data
)
<
0
)
{
DEBUGOUT
(
"EEPROM Read Error
\n
"
);
return
-
E1000_ERR_EEPROM
;
}
...
...
@@ -3055,24 +3696,24 @@ e1000_id_led_init(struct e1000_hw * hw)
const
uint32_t
ledctl_off
=
E1000_LEDCTL_MODE_LED_OFF
;
uint16_t
eeprom_data
,
i
,
temp
;
const
uint16_t
led_mask
=
0x0F
;
DEBUGFUNC
(
"e1000_id_led_init"
);
if
(
hw
->
mac_type
<
e1000_82540
)
{
/* Nothing to do */
return
0
;
}
ledctl
=
E1000_READ_REG
(
hw
,
LEDCTL
);
hw
->
ledctl_default
=
ledctl
;
hw
->
ledctl_mode1
=
hw
->
ledctl_default
;
hw
->
ledctl_mode2
=
hw
->
ledctl_default
;
if
(
e1000_read_eeprom
(
hw
,
EEPROM_ID_LED_SETTINGS
,
&
eeprom_data
)
<
0
)
{
if
(
e1000_read_eeprom
(
hw
,
EEPROM_ID_LED_SETTINGS
,
1
,
&
eeprom_data
)
<
0
)
{
DEBUGOUT
(
"EEPROM Read Error
\n
"
);
return
-
E1000_ERR_EEPROM
;
}
if
((
eeprom_data
==
ID_LED_RESERVED_0000
)
||
if
((
eeprom_data
==
ID_LED_RESERVED_0000
)
||
(
eeprom_data
==
ID_LED_RESERVED_FFFF
))
eeprom_data
=
ID_LED_DEFAULT
;
for
(
i
=
0
;
i
<
4
;
i
++
)
{
temp
=
(
eeprom_data
>>
(
i
<<
2
))
&
led_mask
;
...
...
@@ -3155,6 +3796,9 @@ e1000_setup_led(struct e1000_hw *hw)
case
E1000_DEV_ID_82540EM_LOM
:
case
E1000_DEV_ID_82545EM_COPPER
:
case
E1000_DEV_ID_82546EB_COPPER
:
case
E1000_DEV_ID_82541EI
:
case
E1000_DEV_ID_82541EP
:
case
E1000_DEV_ID_82547EI
:
E1000_WRITE_REG
(
hw
,
LEDCTL
,
hw
->
ledctl_mode1
);
break
;
default:
...
...
@@ -3193,6 +3837,9 @@ e1000_cleanup_led(struct e1000_hw *hw)
case
E1000_DEV_ID_82545EM_FIBER
:
case
E1000_DEV_ID_82546EB_COPPER
:
case
E1000_DEV_ID_82546EB_FIBER
:
case
E1000_DEV_ID_82541EI
:
case
E1000_DEV_ID_82541EP
:
case
E1000_DEV_ID_82547EI
:
/* Restore LEDCTL settings */
E1000_WRITE_REG
(
hw
,
LEDCTL
,
hw
->
ledctl_default
);
break
;
...
...
@@ -3244,6 +3891,9 @@ e1000_led_on(struct e1000_hw *hw)
case
E1000_DEV_ID_82540EM_LOM
:
case
E1000_DEV_ID_82545EM_COPPER
:
case
E1000_DEV_ID_82546EB_COPPER
:
case
E1000_DEV_ID_82541EI
:
case
E1000_DEV_ID_82541EP
:
case
E1000_DEV_ID_82547EI
:
E1000_WRITE_REG
(
hw
,
LEDCTL
,
hw
->
ledctl_mode2
);
break
;
default:
...
...
@@ -3294,6 +3944,9 @@ e1000_led_off(struct e1000_hw *hw)
case
E1000_DEV_ID_82540EM_LOM
:
case
E1000_DEV_ID_82545EM_COPPER
:
case
E1000_DEV_ID_82546EB_COPPER
:
case
E1000_DEV_ID_82541EI
:
case
E1000_DEV_ID_82541EP
:
case
E1000_DEV_ID_82547EI
:
E1000_WRITE_REG
(
hw
,
LEDCTL
,
hw
->
ledctl_mode1
);
break
;
default:
...
...
@@ -3608,3 +4261,221 @@ e1000_write_reg_io(struct e1000_hw *hw,
e1000_io_write
(
hw
,
io_data
,
value
);
}
/******************************************************************************
* Estimates the cable length.
*
* hw - Struct containing variables accessed by shared code
* min_length - The estimated minimum length
* max_length - The estimated maximum length
*
* returns: E1000_SUCCESS / -E1000_ERR_XXX
*
* This function always returns a ranged length (minimum & maximum).
* So for M88 phy's, this function interprets the one value returned from the
* register to the minimum and maximum range.
* For IGP phy's, the function calculates the range by the AGC registers.
*****************************************************************************/
int32_t
e1000_get_cable_length
(
struct
e1000_hw
*
hw
,
uint16_t
*
min_length
,
uint16_t
*
max_length
)
{
uint16_t
agc_value
=
0
;
uint16_t
cur_agc
,
min_agc
=
IGP01E1000_AGC_LENGTH_TABLE_SIZE
;
uint16_t
i
,
phy_data
;
DEBUGFUNC
(
"e1000_get_cable_length"
);
*
min_length
=
*
max_length
=
0
;
/* Use old method for Phy older than IGP */
if
(
hw
->
phy_type
==
e1000_phy_m88
)
{
if
(
e1000_read_phy_reg
(
hw
,
M88E1000_PHY_SPEC_STATUS
,
&
phy_data
)
<
0
)
return
-
E1000_ERR_PHY
;
/* Convert the enum value to ranged values */
switch
((
phy_data
&
M88E1000_PSSR_CABLE_LENGTH
)
>>
M88E1000_PSSR_CABLE_LENGTH_SHIFT
)
{
case
e1000_cable_length_50
:
*
min_length
=
0
;
*
max_length
=
e1000_igp_cable_length_50
;
break
;
case
e1000_cable_length_50_80
:
*
min_length
=
e1000_igp_cable_length_50
;
*
max_length
=
e1000_igp_cable_length_80
;
break
;
case
e1000_cable_length_80_110
:
*
min_length
=
e1000_igp_cable_length_80
;
*
max_length
=
e1000_igp_cable_length_110
;
break
;
case
e1000_cable_length_110_140
:
*
min_length
=
e1000_igp_cable_length_110
;
*
max_length
=
e1000_igp_cable_length_140
;
break
;
case
e1000_cable_length_140
:
*
min_length
=
e1000_igp_cable_length_140
;
*
max_length
=
e1000_igp_cable_length_170
;
break
;
default:
return
-
E1000_ERR_PHY
;
break
;
}
}
else
if
(
hw
->
phy_type
==
e1000_phy_igp
)
{
/* For IGP PHY */
uint16_t
agc_reg_array
[
IGP01E1000_PHY_AGC_NUM
]
=
{
IGP01E1000_PHY_AGC_A
,
IGP01E1000_PHY_AGC_B
,
IGP01E1000_PHY_AGC_C
,
IGP01E1000_PHY_AGC_D
};
/* Read the AGC registers for all channels */
for
(
i
=
0
;
i
<
IGP01E1000_PHY_AGC_NUM
;
i
++
)
{
if
(
e1000_write_phy_reg
(
hw
,
IGP01E1000_PHY_PAGE_SELECT
,
agc_reg_array
[
i
])
!=
E1000_SUCCESS
)
return
-
E1000_ERR_PHY
;
if
(
e1000_read_phy_reg
(
hw
,
agc_reg_array
[
i
]
&
IGP01E1000_PHY_PAGE_SELECT
,
&
phy_data
)
!=
E1000_SUCCESS
)
return
-
E1000_ERR_PHY
;
cur_agc
=
phy_data
>>
IGP01E1000_AGC_LENGTH_SHIFT
;
/* Array bound check. */
if
((
cur_agc
>=
IGP01E1000_AGC_LENGTH_TABLE_SIZE
-
1
)
||
(
cur_agc
==
0
))
return
-
E1000_ERR_PHY
;
agc_value
+=
cur_agc
;
/* Update minimal AGC value. */
if
(
min_agc
>
cur_agc
)
min_agc
=
cur_agc
;
}
/* Return to page 0 */
if
(
e1000_write_phy_reg
(
hw
,
IGP01E1000_PHY_PAGE_SELECT
,
0x0
)
!=
E1000_SUCCESS
)
return
-
E1000_ERR_PHY
;
/* Remove the minimal AGC result for length < 50m */
if
(
agc_value
<
IGP01E1000_PHY_AGC_NUM
*
e1000_igp_cable_length_50
)
{
agc_value
-=
min_agc
;
/* Get the average length of the remaining 3 channels */
agc_value
/=
(
IGP01E1000_PHY_AGC_NUM
-
1
);
}
else
{
/* Get the average length of all the 4 channels. */
agc_value
/=
IGP01E1000_PHY_AGC_NUM
;
}
/* Set the range of the calculated length. */
*
min_length
=
((
e1000_igp_cable_length_table
[
agc_value
]
-
IGP01E1000_AGC_RANGE
)
>
0
)
?
(
e1000_igp_cable_length_table
[
agc_value
]
-
IGP01E1000_AGC_RANGE
)
:
0
;
*
max_length
=
e1000_igp_cable_length_table
[
agc_value
]
+
IGP01E1000_AGC_RANGE
;
}
return
E1000_SUCCESS
;
}
/******************************************************************************
* Check the cable polarity
*
* hw - Struct containing variables accessed by shared code
* polarity - output parameter : 0 - Polarity is not reversed
* 1 - Polarity is reversed.
*
* returns: E1000_SUCCESS / -E1000_ERR_XXX
*
* For phy's older then IGP, this function simply reads the polarity bit in the
* Phy Status register. For IGP phy's, this bit is valid only if link speed is
* 10 Mbps. If the link speed is 100 Mbps there is no polarity so this bit will
* return 0. If the link speed is 1000 Mbps the polarity status is in the
* IGP01E1000_PHY_PCS_INIT_REG.
*****************************************************************************/
int32_t
e1000_check_polarity
(
struct
e1000_hw
*
hw
,
uint16_t
*
polarity
)
{
uint16_t
phy_data
;
DEBUGFUNC
(
"e1000_check_polarity"
);
if
(
hw
->
phy_type
==
e1000_phy_m88
)
{
/* return the Polarity bit in the Status register. */
if
(
e1000_read_phy_reg
(
hw
,
M88E1000_PHY_SPEC_STATUS
,
&
phy_data
)
<
0
)
return
-
E1000_ERR_PHY
;
*
polarity
=
(
phy_data
&
M88E1000_PSSR_REV_POLARITY
)
>>
M88E1000_PSSR_REV_POLARITY_SHIFT
;
}
else
if
(
hw
->
phy_type
==
e1000_phy_igp
)
{
/* Read the Status register to check the speed */
if
(
e1000_read_phy_reg
(
hw
,
IGP01E1000_PHY_PORT_STATUS
,
&
phy_data
)
<
0
)
return
-
E1000_ERR_PHY
;
/* If speed is 1000 Mbps, must read the IGP01E1000_PHY_PCS_INIT_REG to
* find the polarity status */
if
((
phy_data
&
IGP01E1000_PSSR_SPEED_MASK
)
==
IGP01E1000_PSSR_SPEED_1000MBPS
)
{
/* Read the GIG initialization PCS register (0x00B4) */
if
(
e1000_write_phy_reg
(
hw
,
IGP01E1000_PHY_PAGE_SELECT
,
IGP01E1000_PHY_PCS_INIT_REG
)
<
0
)
return
-
E1000_ERR_PHY
;
if
(
e1000_read_phy_reg
(
hw
,
IGP01E1000_PHY_PCS_INIT_REG
&
IGP01E1000_PHY_PAGE_SELECT
,
&
phy_data
)
<
0
)
return
-
E1000_ERR_PHY
;
/* Return to page 0 */
if
(
e1000_write_phy_reg
(
hw
,
IGP01E1000_PHY_PAGE_SELECT
,
0x0
)
!=
E1000_SUCCESS
)
return
-
E1000_ERR_PHY
;
/* Check the polarity bits */
*
polarity
=
(
phy_data
&
IGP01E1000_PHY_POLARITY_MASK
)
?
1
:
0
;
}
else
{
/* For 10 Mbps, read the polarity bit in the status register. (for
* 100 Mbps this bit is always 0) */
*
polarity
=
phy_data
&
IGP01E1000_PSSR_POLARITY_REVERSED
;
}
}
return
E1000_SUCCESS
;
}
/******************************************************************************
* Check if Downshift occured
*
* hw - Struct containing variables accessed by shared code
* downshift - output parameter : 0 - No Downshift ocured.
* 1 - Downshift ocured.
*
* returns: E1000_SUCCESS / -E1000_ERR_XXX
*
* For phy's older then IGP, this function reads the Downshift bit in the Phy
* Specific Status register. For IGP phy's, it reads the Downgrade bit in the
* Link Health register. In IGP this bit is latched high, so the driver must
* read it immediately after link is established.
*****************************************************************************/
int32_t
e1000_check_downshift
(
struct
e1000_hw
*
hw
)
{
uint16_t
phy_data
;
DEBUGFUNC
(
"e1000_check_downshift"
);
if
(
hw
->
phy_type
==
e1000_phy_igp
)
{
if
(
e1000_read_phy_reg
(
hw
,
IGP01E1000_PHY_LINK_HEALTH
,
&
phy_data
)
<
0
)
{
DEBUGOUT
(
"PHY Read Error
\n
"
);
return
-
E1000_ERR_PHY
;
}
hw
->
speed_downgraded
=
(
phy_data
&
IGP01E1000_PLHR_SS_DOWNGRADE
)
?
1
:
0
;
}
else
if
(
hw
->
phy_type
==
e1000_phy_m88
)
{
if
(
e1000_read_phy_reg
(
hw
,
M88E1000_PHY_SPEC_STATUS
,
&
phy_data
)
<
0
)
{
DEBUGOUT
(
"PHY Read Error
\n
"
);
return
-
E1000_ERR_PHY
;
}
hw
->
speed_downgraded
=
(
phy_data
&
M88E1000_PSSR_DOWNSHIFT
)
>>
M88E1000_PSSR_DOWNSHIFT_SHIFT
;
}
return
E1000_SUCCESS
;
}
drivers/net/e1000/e1000_hw.h
View file @
908a658e
...
...
@@ -50,9 +50,18 @@ typedef enum {
e1000_82540
,
e1000_82545
,
e1000_82546
,
e1000_82541
,
e1000_82547
,
e1000_num_macs
}
e1000_mac_type
;
typedef
enum
{
e1000_eeprom_uninitialized
=
0
,
e1000_eeprom_spi
,
e1000_eeprom_microwire
,
e1000_num_eeprom_types
}
e1000_eeprom_type
;
/* Media Types */
typedef
enum
{
e1000_media_type_copper
=
0
,
...
...
@@ -110,6 +119,27 @@ typedef enum {
e1000_cable_length_undefined
=
0xFF
}
e1000_cable_length
;
typedef
enum
{
e1000_igp_cable_length_10
=
10
,
e1000_igp_cable_length_20
=
20
,
e1000_igp_cable_length_30
=
30
,
e1000_igp_cable_length_40
=
40
,
e1000_igp_cable_length_50
=
50
,
e1000_igp_cable_length_60
=
60
,
e1000_igp_cable_length_70
=
70
,
e1000_igp_cable_length_80
=
80
,
e1000_igp_cable_length_90
=
90
,
e1000_igp_cable_length_100
=
100
,
e1000_igp_cable_length_110
=
110
,
e1000_igp_cable_length_120
=
120
,
e1000_igp_cable_length_130
=
130
,
e1000_igp_cable_length_140
=
140
,
e1000_igp_cable_length_150
=
150
,
e1000_igp_cable_length_160
=
160
,
e1000_igp_cable_length_170
=
170
,
e1000_igp_cable_length_180
=
180
}
e1000_igp_cable_length
;
typedef
enum
{
e1000_10bt_ext_dist_enable_normal
=
0
,
e1000_10bt_ext_dist_enable_lower
,
...
...
@@ -122,6 +152,12 @@ typedef enum {
e1000_rev_polarity_undefined
=
0xFF
}
e1000_rev_polarity
;
typedef
enum
{
e1000_downshift_normal
=
0
,
e1000_downshift_activated
,
e1000_downshift_undefined
=
0xFF
}
e1000_downshift
;
typedef
enum
{
e1000_polarity_reversal_enabled
=
0
,
e1000_polarity_reversal_disabled
,
...
...
@@ -142,10 +178,17 @@ typedef enum {
e1000_1000t_rx_status_undefined
=
0xFF
}
e1000_1000t_rx_status
;
typedef
enum
{
e1000_phy_m88
=
0
,
e1000_phy_igp
,
e1000_phy_undefined
=
0xFF
}
e1000_phy_type
;
struct
e1000_phy_info
{
e1000_cable_length
cable_length
;
e1000_10bt_ext_dist_enable
extended_10bt_distance
;
e1000_rev_polarity
cable_polarity
;
e1000_downshift
downshift
;
e1000_polarity_reversal
polarity_correction
;
e1000_auto_x_mode
mdix_mode
;
e1000_1000t_rx_status
local_rx
;
...
...
@@ -157,6 +200,15 @@ struct e1000_phy_stats {
uint32_t
receive_errors
;
};
struct
e1000_eeprom_info
{
e1000_eeprom_type
type
;
uint16_t
word_size
;
uint16_t
opcode_bits
;
uint16_t
address_bits
;
uint16_t
delay_usec
;
uint16_t
page_size
;
};
/* Error Codes */
...
...
@@ -166,6 +218,7 @@ struct e1000_phy_stats {
#define E1000_ERR_CONFIG 3
#define E1000_ERR_PARAM 4
#define E1000_ERR_MAC_TYPE 5
#define E1000_ERR_PHY_TYPE 6
/* Function prototypes */
/* Initialization */
...
...
@@ -189,13 +242,19 @@ void e1000_phy_hw_reset(struct e1000_hw *hw);
int32_t
e1000_phy_reset
(
struct
e1000_hw
*
hw
);
int32_t
e1000_detect_gig_phy
(
struct
e1000_hw
*
hw
);
int32_t
e1000_phy_get_info
(
struct
e1000_hw
*
hw
,
struct
e1000_phy_info
*
phy_info
);
int32_t
e1000_phy_m88_get_info
(
struct
e1000_hw
*
hw
,
struct
e1000_phy_info
*
phy_info
);
int32_t
e1000_phy_igp_get_info
(
struct
e1000_hw
*
hw
,
struct
e1000_phy_info
*
phy_info
);
int32_t
e1000_get_cable_length
(
struct
e1000_hw
*
hw
,
uint16_t
*
min_length
,
uint16_t
*
max_length
);
int32_t
e1000_check_polarity
(
struct
e1000_hw
*
hw
,
uint16_t
*
polarity
);
int32_t
e1000_check_downshift
(
struct
e1000_hw
*
hw
);
int32_t
e1000_validate_mdi_setting
(
struct
e1000_hw
*
hw
);
/* EEPROM Functions */
int32_t
e1000_read_eeprom
(
struct
e1000_hw
*
hw
,
uint16_t
reg
,
uint16_t
*
data
);
void
e1000_init_eeprom_params
(
struct
e1000_hw
*
hw
);
int32_t
e1000_read_eeprom
(
struct
e1000_hw
*
hw
,
uint16_t
reg
,
uint16_t
words
,
uint16_t
*
data
);
int32_t
e1000_validate_eeprom_checksum
(
struct
e1000_hw
*
hw
);
int32_t
e1000_update_eeprom_checksum
(
struct
e1000_hw
*
hw
);
int32_t
e1000_write_eeprom
(
struct
e1000_hw
*
hw
,
uint16_t
reg
,
uint16_t
data
);
int32_t
e1000_write_eeprom
(
struct
e1000_hw
*
hw
,
uint16_t
reg
,
uint16_t
words
,
uint16_t
*
data
);
int32_t
e1000_read_part_num
(
struct
e1000_hw
*
hw
,
uint32_t
*
part_num
);
int32_t
e1000_read_mac_addr
(
struct
e1000_hw
*
hw
);
...
...
@@ -253,7 +312,10 @@ void e1000_write_reg_io(struct e1000_hw *hw, uint32_t offset, uint32_t value);
#define E1000_DEV_ID_82545EM_FIBER 0x1011
#define E1000_DEV_ID_82546EB_COPPER 0x1010
#define E1000_DEV_ID_82546EB_FIBER 0x1012
#define NUM_DEV_IDS 16
#define E1000_DEV_ID_82541EI 0x1013
#define E1000_DEV_ID_82541EP 0x1018
#define E1000_DEV_ID_82547EI 0x1019
#define NUM_DEV_IDS 19
#define NODE_ADDRESS_SIZE 6
#define ETH_LENGTH_OF_ADDRESS 6
...
...
@@ -322,9 +384,9 @@ void e1000_write_reg_io(struct e1000_hw *hw, uint32_t offset, uint32_t value);
/* The number of high/low register pairs in the RAR. The RAR (Receive Address
* Registers) holds the directed and multicast addresses that we monitor. We
* reserve one of these spots for our directed address, allowing us room for
* E1000_RAR_ENTRIES - 1 multicast addresses.
* E1000_RAR_ENTRIES - 1 multicast addresses.
*/
#define E1000_RAR_ENTRIES 1
6
#define E1000_RAR_ENTRIES 1
5
#define MIN_NUMBER_OF_DESCRIPTORS 8
#define MAX_NUMBER_OF_DESCRIPTORS 0xFFF8
...
...
@@ -537,6 +599,7 @@ struct e1000_ffvt_entry {
#define E1000_EECD 0x00010
/* EEPROM/Flash Control - RW */
#define E1000_EERD 0x00014
/* EEPROM Read - RW */
#define E1000_CTRL_EXT 0x00018
/* Extended Device Control - RW */
#define E1000_FLA 0x0001C
/* Flash Access Register - RW */
#define E1000_MDIC 0x00020
/* MDI Control - RW */
#define E1000_FCAL 0x00028
/* Flow Control Address Low - RW */
#define E1000_FCAH 0x0002C
/* Flow Control Address High -RW */
...
...
@@ -569,6 +632,11 @@ struct e1000_ffvt_entry {
#define E1000_RADV 0x0282C
/* RX Interrupt Absolute Delay Timer - RW */
#define E1000_RSRPD 0x02C00
/* RX Small Packet Detect - RW */
#define E1000_TXDMAC 0x03000
/* TX DMA Control - RW */
#define E1000_TDFH 0x03410
/* TX Data FIFO Head - RW */
#define E1000_TDFT 0x03418
/* TX Data FIFO Tail - RW */
#define E1000_TDFHS 0x03420
/* TX Data FIFO Head Saved - RW */
#define E1000_TDFTS 0x03428
/* TX Data FIFO Tail Saved - RW */
#define E1000_TDFPC 0x03430
/* TX Data FIFO Packet Count - RW */
#define E1000_TDBAL 0x03800
/* TX Descriptor Base Address Low - RW */
#define E1000_TDBAH 0x03804
/* TX Descriptor Base Address High - RW */
#define E1000_TDLEN 0x03808
/* TX Descriptor Length - RW */
...
...
@@ -664,6 +732,7 @@ struct e1000_ffvt_entry {
#define E1000_82542_EECD E1000_EECD
#define E1000_82542_EERD E1000_EERD
#define E1000_82542_CTRL_EXT E1000_CTRL_EXT
#define E1000_82542_FLA E1000_FLA
#define E1000_82542_MDIC E1000_MDIC
#define E1000_82542_FCAL E1000_FCAL
#define E1000_82542_FCAH E1000_FCAH
...
...
@@ -705,6 +774,9 @@ struct e1000_ffvt_entry {
#define E1000_82542_RADV E1000_RADV
#define E1000_82542_RSRPD E1000_RSRPD
#define E1000_82542_TXDMAC E1000_TXDMAC
#define E1000_82542_TDFHS E1000_TDFHS
#define E1000_82542_TDFTS E1000_TDFTS
#define E1000_82542_TDFPC E1000_TDFPC
#define E1000_82542_TXDCTL E1000_TXDCTL
#define E1000_82542_TADV E1000_TADV
#define E1000_82542_TSPMT E1000_TSPMT
...
...
@@ -777,6 +849,8 @@ struct e1000_ffvt_entry {
#define E1000_82542_WUPL E1000_WUPL
#define E1000_82542_WUPM E1000_WUPM
#define E1000_82542_FFLT E1000_FFLT
#define E1000_82542_TDFH 0x08010
#define E1000_82542_TDFT 0x08018
#define E1000_82542_FFMT E1000_FFMT
#define E1000_82542_FFVT E1000_FFVT
...
...
@@ -846,12 +920,15 @@ struct e1000_hw_stats {
struct
e1000_hw
{
uint8_t
*
hw_addr
;
e1000_mac_type
mac_type
;
e1000_phy_type
phy_type
;
uint32_t
phy_init_script
;
e1000_media_type
media_type
;
void
*
back
;
e1000_fc_type
fc
;
e1000_bus_speed
bus_speed
;
e1000_bus_width
bus_width
;
e1000_bus_type
bus_type
;
struct
e1000_eeprom_info
eeprom
;
uint32_t
io_base
;
uint32_t
phy_id
;
uint32_t
phy_revision
;
...
...
@@ -891,6 +968,7 @@ struct e1000_hw {
uint8_t
mac_addr
[
NODE_ADDRESS_SIZE
];
uint8_t
perm_mac_addr
[
NODE_ADDRESS_SIZE
];
boolean_t
disable_polarity_correction
;
boolean_t
speed_downgraded
;
boolean_t
get_link_status
;
boolean_t
tbi_compatibility_en
;
boolean_t
tbi_compatibility_on
;
...
...
@@ -967,14 +1045,20 @@ struct e1000_hw {
#define E1000_EECD_CS 0x00000002
/* EEPROM Chip Select */
#define E1000_EECD_DI 0x00000004
/* EEPROM Data In */
#define E1000_EECD_DO 0x00000008
/* EEPROM Data Out */
#define E1000_EECD_FWE_MASK 0x00000030
#define E1000_EECD_FWE_MASK 0x00000030
#define E1000_EECD_FWE_DIS 0x00000010
/* Disable FLASH writes */
#define E1000_EECD_FWE_EN 0x00000020
/* Enable FLASH writes */
#define E1000_EECD_FWE_SHIFT 4
#define E1000_EECD_SIZE 0x00000200
/* EEPROM Size (0=64 word 1=256 word) */
#define E1000_EECD_REQ 0x00000040
/* EEPROM Access Request */
#define E1000_EECD_GNT 0x00000080
/* EEPROM Access Grant */
#define E1000_EECD_PRES 0x00000100
/* EEPROM Present */
#define E1000_EECD_SIZE 0x00000200
/* EEPROM Size (0=64 word 1=256 word) */
#define E1000_EECD_ADDR_BITS 0x00000400
/* EEPROM Addressing bits based on type
* (0-small, 1-large) */
#define E1000_EECD_TYPE 0x00002000
/* EEPROM Type (1-SPI, 0-Microwire) */
#ifndef E1000_EEPROM_GRANT_ATTEMPTS
#define E1000_EEPROM_GRANT_ATTEMPTS 1000
/* EEPROM # attempts to gain grant */
#endif
/* EEPROM Read */
#define E1000_EERD_START 0x00000001
/* Start Read */
...
...
@@ -984,8 +1068,15 @@ struct e1000_hw {
#define E1000_EERD_DATA_SHIFT 16
#define E1000_EERD_DATA_MASK 0xFFFF0000
/* Read Data */
/* SPI EEPROM Status Register */
#define EEPROM_STATUS_RDY_SPI 0x01
#define EEPROM_STATUS_WEN_SPI 0x02
#define EEPROM_STATUS_BP0_SPI 0x04
#define EEPROM_STATUS_BP1_SPI 0x08
#define EEPROM_STATUS_WPEN_SPI 0x80
/* Extended Device Control */
#define E1000_CTRL_EXT_GPI0_EN 0x00000001
/* Maps SDP4 to GPI0 */
#define E1000_CTRL_EXT_GPI0_EN 0x00000001
/* Maps SDP4 to GPI0 */
#define E1000_CTRL_EXT_GPI1_EN 0x00000002
/* Maps SDP5 to GPI1 */
#define E1000_CTRL_EXT_PHYINT_EN E1000_CTRL_EXT_GPI1_EN
#define E1000_CTRL_EXT_GPI2_EN 0x00000004
/* Maps SDP6 to GPI2 */
...
...
@@ -1239,6 +1330,7 @@ struct e1000_hw {
#define E1000_WUC_PME_EN 0x00000002
/* PME Enable */
#define E1000_WUC_PME_STATUS 0x00000004
/* PME Status */
#define E1000_WUC_APMPME 0x00000008
/* Assert PME on APM Wakeup */
#define E1000_WUC_SPM 0x80000000
/* Enable SPM */
/* Wake Up Filter Control */
#define E1000_WUFC_LNKC 0x00000001
/* Link Status Change Wakeup Enable */
...
...
@@ -1302,18 +1394,40 @@ struct e1000_hw {
#define E1000_MDALIGN 4096
/* EEPROM Commands */
#define EEPROM_READ_OPCODE 0x6
/* EERPOM read opcode */
#define EEPROM_WRITE_OPCODE 0x5
/* EERPOM write opcode */
#define EEPROM_ERASE_OPCODE 0x7
/* EERPOM erase opcode */
#define EEPROM_EWEN_OPCODE 0x13
/* EERPOM erase/write enable */
#define EEPROM_EWDS_OPCODE 0x10
/* EERPOM erast/write disable */
/* EEPROM Commands - Microwire */
#define EEPROM_READ_OPCODE_MICROWIRE 0x6
/* EEPROM read opcode */
#define EEPROM_WRITE_OPCODE_MICROWIRE 0x5
/* EEPROM write opcode */
#define EEPROM_ERASE_OPCODE_MICROWIRE 0x7
/* EEPROM erase opcode */
#define EEPROM_EWEN_OPCODE_MICROWIRE 0x13
/* EEPROM erase/write enable */
#define EEPROM_EWDS_OPCODE_MICROWIRE 0x10
/* EEPROM erast/write disable */
/* EEPROM Commands - SPI */
#define EEPROM_MAX_RETRY_SPI 5000
/* Max wait of 5ms, for RDY signal */
#define EEPROM_READ_OPCODE_SPI 0x3
/* EEPROM read opcode */
#define EEPROM_WRITE_OPCODE_SPI 0x2
/* EEPROM write opcode */
#define EEPROM_A8_OPCODE_SPI 0x8
/* opcode bit-3 = address bit-8 */
#define EEPROM_WREN_OPCODE_SPI 0x6
/* EEPROM set Write Enable latch */
#define EEPROM_WRDI_OPCODE_SPI 0x4
/* EEPROM reset Write Enable latch */
#define EEPROM_RDSR_OPCODE_SPI 0x5
/* EEPROM read Status register */
#define EEPROM_WRSR_OPCODE_SPI 0x1
/* EEPROM write Status register */
/* EEPROM Size definitions */
#define EEPROM_SIZE_16KB 0x1800
#define EEPROM_SIZE_8KB 0x1400
#define EEPROM_SIZE_4KB 0x1000
#define EEPROM_SIZE_2KB 0x0C00
#define EEPROM_SIZE_1KB 0x0800
#define EEPROM_SIZE_512B 0x0400
#define EEPROM_SIZE_128B 0x0000
#define EEPROM_SIZE_MASK 0x1C00
/* EEPROM Word Offsets */
#define EEPROM_COMPAT 0x0003
#define EEPROM_ID_LED_SETTINGS 0x0004
#define EEPROM_INIT_CONTROL1_REG 0x000A
#define EEPROM_INIT_CONTROL2_REG 0x000F
#define EEPROM_CFG 0x0012
#define EEPROM_FLASH_VERSION 0x0032
#define EEPROM_CHECKSUM_REG 0x003F
...
...
@@ -1334,9 +1448,10 @@ struct e1000_hw {
#define ID_LED_OFF1_ON2 0x8
#define ID_LED_OFF1_OFF2 0x9
/* Mask bits for fields in Word 0x03 of the EEPROM */
#define EEPROM_COMPAT_SERVER 0x0400
#define EEPROM_COMPAT_CLIENT 0x0200
#define IGP_ACTIVITY_LED_MASK 0xFFFFF0FF
#define IGP_ACTIVITY_LED_ENABLE 0x0300
#define IGP_LED3_MODE 0x07000000
/* Mask bits for fields in Word 0x0a of the EEPROM */
#define EEPROM_WORD0A_ILOS 0x0010
...
...
@@ -1409,7 +1524,9 @@ struct e1000_hw {
/* PBA constants */
#define E1000_PBA_16K 0x0010
/* 16KB, default TX allocation */
#define E1000_PBA_22K 0x0016
#define E1000_PBA_24K 0x0018
#define E1000_PBA_30K 0x001E
#define E1000_PBA_40K 0x0028
#define E1000_PBA_48K 0x0030
/* 48KB, default RX allocation */
...
...
@@ -1547,6 +1664,29 @@ struct e1000_hw {
#define M88E1000_EXT_PHY_SPEC_CTRL 0x14
/* Extended PHY Specific Control */
#define M88E1000_RX_ERR_CNTR 0x15
/* Receive Error Counter */
/* IGP01E1000 Specific Registers */
#define IGP01E1000_PHY_PORT_CONFIG 0x10
/* PHY Specific Port Config Register */
#define IGP01E1000_PHY_PORT_STATUS 0x11
/* PHY Specific Status Register */
#define IGP01E1000_PHY_PORT_CTRL 0x12
/* PHY Specific Control Register */
#define IGP01E1000_PHY_LINK_HEALTH 0x13
/* PHY Link Health Register */
#define IGP01E1000_GMII_FIFO 0x14
/* GMII FIFO Register */
#define IGP01E1000_PHY_CHANNEL_QUALITY 0x15
/* PHY Channel Quality Register */
#define IGP01E1000_PHY_PAGE_SELECT 0x1F
/* PHY Page Select Core Register */
/* IGP01E1000 AGC Registers - stores the cable length values*/
#define IGP01E1000_PHY_AGC_A 0x1172
#define IGP01E1000_PHY_AGC_B 0x1272
#define IGP01E1000_PHY_AGC_C 0x1472
#define IGP01E1000_PHY_AGC_D 0x1872
/* Number of AGC registers */
#define IGP01E1000_PHY_AGC_NUM 4
/* IGP01E1000 PCS Initialization register - stores the polarity status when
* speed = 1000 Mbps. */
#define IGP01E1000_PHY_PCS_INIT_REG 0x00B4
#define MAX_PHY_REG_ADDRESS 0x1F
/* 5 bit address bus (0-0x1F) */
/* PHY Control Register */
...
...
@@ -1712,6 +1852,7 @@ struct e1000_hw {
/* M88E1000 PHY Specific Status Register */
#define M88E1000_PSSR_JABBER 0x0001
/* 1=Jabber */
#define M88E1000_PSSR_REV_POLARITY 0x0002
/* 1=Polarity reversed */
#define M88E1000_PSSR_DOWNSHIFT 0x0020
/* 1=Downshifted */
#define M88E1000_PSSR_MDIX 0x0040
/* 1=MDIX; 0=MDI */
#define M88E1000_PSSR_CABLE_LENGTH 0x0380
/* 0=<50M;1=50-80M;2=80-110M;
* 3=110-140M;4=>140M */
...
...
@@ -1725,6 +1866,7 @@ struct e1000_hw {
#define M88E1000_PSSR_1000MBS 0x8000
/* 10=1000Mbs */
#define M88E1000_PSSR_REV_POLARITY_SHIFT 1
#define M88E1000_PSSR_DOWNSHIFT_SHIFT 5
#define M88E1000_PSSR_MDIX_SHIFT 6
#define M88E1000_PSSR_CABLE_LENGTH_SHIFT 7
...
...
@@ -1753,10 +1895,93 @@ struct e1000_hw {
#define M88E1000_EPSCR_TX_CLK_25 0x0070
/* 25 MHz TX_CLK */
#define M88E1000_EPSCR_TX_CLK_0 0x0000
/* NO TX_CLK */
/* IGP01E1000 Specific Port Config Register - R/W */
#define IGP01E1000_PSCFR_AUTO_MDIX_PAR_DETECT 0x0010
#define IGP01E1000_PSCFR_PRE_EN 0x0020
#define IGP01E1000_PSCFR_SMART_SPEED 0x0080
#define IGP01E1000_PSCFR_DISABLE_TPLOOPBACK 0x0100
#define IGP01E1000_PSCFR_DISABLE_JABBER 0x0400
#define IGP01E1000_PSCFR_DISABLE_TRANSMIT 0x2000
/* IGP01E1000 Specific Port Status Register - R/O */
#define IGP01E1000_PSSR_AUTONEG_FAILED 0x0001
/* RO LH SC */
#define IGP01E1000_PSSR_POLARITY_REVERSED 0x0002
#define IGP01E1000_PSSR_CABLE_LENGTH 0x007C
#define IGP01E1000_PSSR_FULL_DUPLEX 0x0200
#define IGP01E1000_PSSR_LINK_UP 0x0400
#define IGP01E1000_PSSR_MDIX 0x0800
#define IGP01E1000_PSSR_SPEED_MASK 0xC000
/* speed bits mask */
#define IGP01E1000_PSSR_SPEED_10MBPS 0x4000
#define IGP01E1000_PSSR_SPEED_100MBPS 0x8000
#define IGP01E1000_PSSR_SPEED_1000MBPS 0xC000
#define IGP01E1000_PSSR_CABLE_LENGTH_SHIFT 0x0002
/* shift right 2 */
#define IGP01E1000_PSSR_MDIX_SHIFT 0x000B
/* shift right 11 */
/* IGP01E1000 Specific Port Control Register - R/W */
#define IGP01E1000_PSCR_TP_LOOPBACK 0x0001
#define IGP01E1000_PSCR_CORRECT_NC_SCMBLR 0x0200
#define IGP01E1000_PSCR_TEN_CRS_SELECT 0x0400
#define IGP01E1000_PSCR_FLIP_CHIP 0x0800
#define IGP01E1000_PSCR_AUTO_MDIX 0x1000
#define IGP01E1000_PSCR_FORCE_MDI_MDIX 0x2000
/* 0-MDI, 1-MDIX */
/* IGP01E1000 Specific Port Link Health Register */
#define IGP01E1000_PLHR_SS_DOWNGRADE 0x8000
#define IGP01E1000_PLHR_GIG_SCRAMBLER_ERROR 0x4000
#define IGP01E1000_PLHR_GIG_REM_RCVR_NOK 0x0800
/* LH */
#define IGP01E1000_PLHR_IDLE_ERROR_CNT_OFLOW 0x0400
/* LH */
#define IGP01E1000_PLHR_DATA_ERR_1 0x0200
/* LH */
#define IGP01E1000_PLHR_DATA_ERR_0 0x0100
#define IGP01E1000_PLHR_AUTONEG_FAULT 0x0010
#define IGP01E1000_PLHR_AUTONEG_ACTIVE 0x0008
#define IGP01E1000_PLHR_VALID_CHANNEL_D 0x0004
#define IGP01E1000_PLHR_VALID_CHANNEL_C 0x0002
#define IGP01E1000_PLHR_VALID_CHANNEL_B 0x0001
#define IGP01E1000_PLHR_VALID_CHANNEL_A 0x0000
/* IGP01E1000 Channel Quality Register */
#define IGP01E1000_MSE_CHANNEL_D 0x000F
#define IGP01E1000_MSE_CHANNEL_C 0x00F0
#define IGP01E1000_MSE_CHANNEL_B 0x0F00
#define IGP01E1000_MSE_CHANNEL_A 0xF000
/* IGP01E1000 AGC Registers */
#define IGP01E1000_AGC_LENGTH_SHIFT 7
/* Coarse - 13:11, Fine - 10:7 */
/* 7 bits (3 Coarse + 4 Fine) --> 128 optional values */
#define IGP01E1000_AGC_LENGTH_TABLE_SIZE 128
/* The precision of the length is +/- 10 meters */
#define IGP01E1000_AGC_RANGE 10
/* IGP cable length table */
static
const
uint16_t
e1000_igp_cable_length_table
[
IGP01E1000_AGC_LENGTH_TABLE_SIZE
]
=
{
5
,
5
,
5
,
5
,
5
,
5
,
5
,
5
,
5
,
5
,
5
,
5
,
5
,
5
,
5
,
5
,
5
,
10
,
10
,
10
,
10
,
10
,
10
,
10
,
20
,
20
,
20
,
20
,
20
,
25
,
25
,
25
,
25
,
25
,
25
,
25
,
30
,
30
,
30
,
30
,
40
,
40
,
40
,
40
,
40
,
40
,
40
,
40
,
40
,
50
,
50
,
50
,
50
,
50
,
50
,
50
,
60
,
60
,
60
,
60
,
60
,
60
,
60
,
60
,
60
,
70
,
70
,
70
,
70
,
70
,
70
,
80
,
80
,
80
,
80
,
80
,
80
,
90
,
90
,
90
,
90
,
90
,
90
,
90
,
90
,
90
,
100
,
100
,
100
,
100
,
100
,
100
,
100
,
100
,
100
,
100
,
100
,
100
,
100
,
100
,
110
,
110
,
110
,
110
,
110
,
110
,
110
,
110
,
110
,
110
,
110
,
110
,
110
,
110
,
110
,
110
,
110
,
110
,
120
,
120
,
120
,
120
,
120
,
120
,
120
,
120
,
120
,
120
};
/* IGP01E1000 PCS Initialization register */
/* bits 3:6 in the PCS registers stores the channels polarity */
#define IGP01E1000_PHY_POLARITY_MASK 0x0078
/* IGP01E1000 GMII FIFO Register */
#define IGP01E1000_GMII_FLEX_SPD 0x10
/* Enable flexible speed
* on Link-Up */
#define IGP01E1000_GMII_SPD 0x20
/* Enable SPD */
/* Bit definitions for valid PHY IDs. */
#define M88E1000_E_PHY_ID 0x01410C50
#define M88E1000_I_PHY_ID 0x01410C30
#define M88E1011_I_PHY_ID 0x01410C20
#define IGP01E1000_I_PHY_ID 0x02A80380
#define M88E1000_12_PHY_ID M88E1000_E_PHY_ID
#define M88E1000_14_PHY_ID M88E1000_E_PHY_ID
#define M88E1011_I_REV_4 0x04
...
...
drivers/net/e1000/e1000_main.c
View file @
908a658e
...
...
@@ -106,6 +106,8 @@ static struct pci_device_id e1000_pci_tbl[] __devinitdata = {
{
0x8086
,
0x1016
,
PCI_ANY_ID
,
PCI_ANY_ID
,
0
,
0
,
0
},
{
0x8086
,
0x1017
,
PCI_ANY_ID
,
PCI_ANY_ID
,
0
,
0
,
0
},
{
0x8086
,
0x101E
,
PCI_ANY_ID
,
PCI_ANY_ID
,
0
,
0
,
0
},
{
0x8086
,
0x1013
,
PCI_ANY_ID
,
PCI_ANY_ID
,
0
,
0
,
0
},
{
0x8086
,
0x1019
,
PCI_ANY_ID
,
PCI_ANY_ID
,
0
,
0
,
0
},
/* required last entry */
{
0
,}
};
...
...
@@ -144,6 +146,7 @@ static void e1000_free_rx_resources(struct e1000_adapter *adapter);
static
void
e1000_set_multi
(
struct
net_device
*
netdev
);
static
void
e1000_update_phy_info
(
unsigned
long
data
);
static
void
e1000_watchdog
(
unsigned
long
data
);
static
void
e1000_82547_tx_fifo_stall
(
unsigned
long
data
);
static
int
e1000_xmit_frame
(
struct
sk_buff
*
skb
,
struct
net_device
*
netdev
);
static
struct
net_device_stats
*
e1000_get_stats
(
struct
net_device
*
netdev
);
static
int
e1000_change_mtu
(
struct
net_device
*
netdev
,
int
new_mtu
);
...
...
@@ -167,6 +170,9 @@ static inline void e1000_rx_checksum(struct e1000_adapter *adapter,
struct
sk_buff
*
skb
);
static
void
e1000_tx_timeout
(
struct
net_device
*
dev
);
static
void
e1000_tx_timeout_task
(
struct
net_device
*
dev
);
static
void
e1000_smartspeed
(
struct
e1000_adapter
*
adapter
);
static
inline
int
e1000_82547_fifo_workaround
(
struct
e1000_adapter
*
adapter
,
struct
sk_buff
*
skb
);
static
void
e1000_vlan_rx_register
(
struct
net_device
*
netdev
,
struct
vlan_group
*
grp
);
static
void
e1000_vlan_rx_add_vid
(
struct
net_device
*
netdev
,
uint16_t
vid
);
...
...
@@ -284,6 +290,7 @@ e1000_down(struct e1000_adapter *adapter)
e1000_irq_disable
(
adapter
);
free_irq
(
netdev
->
irq
,
netdev
);
del_timer_sync
(
&
adapter
->
tx_fifo_stall_timer
);
del_timer_sync
(
&
adapter
->
watchdog_timer
);
del_timer_sync
(
&
adapter
->
phy_info_timer
);
adapter
->
link_speed
=
0
;
...
...
@@ -299,14 +306,28 @@ e1000_down(struct e1000_adapter *adapter)
void
e1000_reset
(
struct
e1000_adapter
*
adapter
)
{
uint32_t
pba
;
/* Repartition Pba for greater than 9k mtu
* To take effect CTRL.RST is required.
*/
if
(
adapter
->
rx_buffer_len
>
E1000_RXBUFFER_8192
)
E1000_WRITE_REG
(
&
adapter
->
hw
,
PBA
,
E1000_JUMBO_PBA
);
else
E1000_WRITE_REG
(
&
adapter
->
hw
,
PBA
,
E1000_DEFAULT_PBA
);
if
(
adapter
->
hw
.
mac_type
<
e1000_82547
)
{
if
(
adapter
->
rx_buffer_len
>
E1000_RXBUFFER_8192
)
pba
=
E1000_PBA_40K
;
else
pba
=
E1000_PBA_48K
;
}
else
{
if
(
adapter
->
rx_buffer_len
>
E1000_RXBUFFER_8192
)
pba
=
E1000_PBA_22K
;
else
pba
=
E1000_PBA_30K
;
adapter
->
tx_fifo_head
=
0
;
adapter
->
tx_head_addr
=
pba
<<
E1000_TX_HEAD_ADDR_SHIFT
;
adapter
->
tx_fifo_size
=
(
E1000_PBA_40K
-
pba
)
<<
E1000_TX_FIFO_SIZE_SHIFT
;
atomic_set
(
&
adapter
->
tx_fifo_stall
,
0
);
}
E1000_WRITE_REG
(
&
adapter
->
hw
,
PBA
,
pba
);
adapter
->
hw
.
fc
=
adapter
->
hw
.
original_fc
;
e1000_reset_hw
(
&
adapter
->
hw
);
...
...
@@ -397,11 +418,11 @@ e1000_probe(struct pci_dev *pdev,
netdev
->
change_mtu
=
&
e1000_change_mtu
;
netdev
->
do_ioctl
=
&
e1000_ioctl
;
netdev
->
tx_timeout
=
&
e1000_tx_timeout
;
netdev
->
watchdog_timeo
=
HZ
;
#ifdef CONFIG_E1000_NAPI
netdev
->
poll
=
&
e1000_poll
;
netdev
->
weight
=
64
;
#endif
netdev
->
watchdog_timeo
=
5
*
HZ
;
netdev
->
vlan_rx_register
=
e1000_vlan_rx_register
;
netdev
->
vlan_rx_add_vid
=
e1000_vlan_rx_add_vid
;
netdev
->
vlan_rx_kill_vid
=
e1000_vlan_rx_kill_vid
;
...
...
@@ -421,17 +442,18 @@ e1000_probe(struct pci_dev *pdev,
if
(
adapter
->
hw
.
mac_type
>=
e1000_82543
)
{
netdev
->
features
=
NETIF_F_SG
|
NETIF_F_HW_CSUM
|
NETIF_F_HW_VLAN_TX
|
NETIF_F_HW_VLAN_RX
|
NETIF_F_HW_CSUM
|
NETIF_F_HW_VLAN_TX
|
NETIF_F_HW_VLAN_RX
|
NETIF_F_HW_VLAN_FILTER
;
}
else
{
netdev
->
features
=
NETIF_F_SG
;
}
if
(
adapter
->
hw
.
mac_type
>=
e1000_82544
)
if
((
adapter
->
hw
.
mac_type
>=
e1000_82544
)
&&
(
adapter
->
hw
.
mac_type
!=
e1000_82547
))
netdev
->
features
|=
NETIF_F_TSO
;
if
(
pci_using_dac
)
netdev
->
features
|=
NETIF_F_HIGHDMA
;
...
...
@@ -461,6 +483,9 @@ e1000_probe(struct pci_dev *pdev,
else
adapter
->
max_data_per_txd
=
MAX_JUMBO_FRAME_SIZE
;
init_timer
(
&
adapter
->
tx_fifo_stall_timer
);
adapter
->
tx_fifo_stall_timer
.
function
=
&
e1000_82547_tx_fifo_stall
;
adapter
->
tx_fifo_stall_timer
.
data
=
(
unsigned
long
)
adapter
;
init_timer
(
&
adapter
->
watchdog_timer
);
adapter
->
watchdog_timer
.
function
=
&
e1000_watchdog
;
...
...
@@ -490,11 +515,12 @@ e1000_probe(struct pci_dev *pdev,
* enable the ACPI Magic Packet filter
*/
e1000_read_eeprom
(
&
adapter
->
hw
,
EEPROM_INIT_CONTROL2_REG
,
&
eeprom_data
);
e1000_read_eeprom
(
&
adapter
->
hw
,
EEPROM_INIT_CONTROL2_REG
,
1
,
&
eeprom_data
);
if
((
adapter
->
hw
.
mac_type
>=
e1000_82544
)
&&
(
eeprom_data
&
E1000_EEPROM_APME
))
adapter
->
wol
|=
E1000_WUFC_MAG
;
/* reset the hardware with the new settings */
e1000_reset
(
adapter
);
...
...
@@ -586,6 +612,10 @@ e1000_sw_init(struct e1000_adapter *adapter)
return
-
1
;
}
/* initialize eeprom parameters */
e1000_init_eeprom_params
(
hw
);
/* flow control settings */
hw
->
fc_high_water
=
E1000_FC_HIGH_THRESH
;
...
...
@@ -593,6 +623,9 @@ e1000_sw_init(struct e1000_adapter *adapter)
hw
->
fc_pause_time
=
E1000_FC_PAUSE_TIME
;
hw
->
fc_send_xon
=
1
;
if
((
hw
->
mac_type
==
e1000_82541
)
||
(
hw
->
mac_type
==
e1000_82547
))
hw
->
phy_init_script
=
1
;
/* Media type - copper or fiber */
if
(
hw
->
mac_type
>=
e1000_82543
)
{
...
...
@@ -1192,9 +1225,9 @@ e1000_set_multi(struct net_device *netdev)
if
(
hw
->
mac_type
==
e1000_82542_rev2_0
)
e1000_enter_82542_rst
(
adapter
);
/* load the first 1
5 multicast address into the exact filters 1-15
/* load the first 1
4 multicast address into the exact filters 1-14
* RAR 0 is used for the station MAC adddress
* if there are not 1
5
addresses, go ahead and clear the filters
* if there are not 1
4
addresses, go ahead and clear the filters
*/
mc_ptr
=
netdev
->
mc_list
;
...
...
@@ -1234,6 +1267,48 @@ e1000_update_phy_info(unsigned long data)
e1000_phy_get_info
(
&
adapter
->
hw
,
&
adapter
->
phy_info
);
}
/**
* e1000_82547_tx_fifo_stall - Timer Call-back
* @data: pointer to adapter cast into an unsigned long
**/
static
void
e1000_82547_tx_fifo_stall
(
unsigned
long
data
)
{
struct
e1000_adapter
*
adapter
=
(
struct
e1000_adapter
*
)
data
;
struct
net_device
*
netdev
=
adapter
->
netdev
;
uint32_t
tctl
;
if
(
atomic_read
(
&
adapter
->
tx_fifo_stall
))
{
if
((
E1000_READ_REG
(
&
adapter
->
hw
,
TDT
)
==
E1000_READ_REG
(
&
adapter
->
hw
,
TDH
))
&&
(
E1000_READ_REG
(
&
adapter
->
hw
,
TDFT
)
==
E1000_READ_REG
(
&
adapter
->
hw
,
TDFH
))
&&
(
E1000_READ_REG
(
&
adapter
->
hw
,
TDFTS
)
==
E1000_READ_REG
(
&
adapter
->
hw
,
TDFHS
)))
{
tctl
=
E1000_READ_REG
(
&
adapter
->
hw
,
TCTL
);
E1000_WRITE_REG
(
&
adapter
->
hw
,
TCTL
,
tctl
&
~
E1000_TCTL_EN
);
E1000_WRITE_REG
(
&
adapter
->
hw
,
TDFT
,
adapter
->
tx_head_addr
);
E1000_WRITE_REG
(
&
adapter
->
hw
,
TDFH
,
adapter
->
tx_head_addr
);
E1000_WRITE_REG
(
&
adapter
->
hw
,
TDFTS
,
adapter
->
tx_head_addr
);
E1000_WRITE_REG
(
&
adapter
->
hw
,
TDFHS
,
adapter
->
tx_head_addr
);
E1000_WRITE_REG
(
&
adapter
->
hw
,
TCTL
,
tctl
);
E1000_WRITE_FLUSH
(
&
adapter
->
hw
);
adapter
->
tx_fifo_head
=
0
;
atomic_set
(
&
adapter
->
tx_fifo_stall
,
0
);
netif_wake_queue
(
netdev
);
}
else
{
mod_timer
(
&
adapter
->
tx_fifo_stall_timer
,
jiffies
+
1
);
}
}
}
/**
* e1000_watchdog - Timer Call-back
* @data: pointer to netdev cast into an unsigned long
...
...
@@ -1264,6 +1339,7 @@ e1000_watchdog(unsigned long data)
netif_carrier_on
(
netdev
);
netif_wake_queue
(
netdev
);
mod_timer
(
&
adapter
->
phy_info_timer
,
jiffies
+
2
*
HZ
);
adapter
->
smartspeed
=
0
;
}
}
else
{
if
(
netif_carrier_ok
(
netdev
))
{
...
...
@@ -1276,6 +1352,8 @@ e1000_watchdog(unsigned long data)
netif_stop_queue
(
netdev
);
mod_timer
(
&
adapter
->
phy_info_timer
,
jiffies
+
2
*
HZ
);
}
e1000_smartspeed
(
adapter
);
}
e1000_update_stats
(
adapter
);
...
...
@@ -1501,6 +1579,49 @@ e1000_tx_queue(struct e1000_adapter *adapter, int count, int tx_flags)
}
#define TXD_USE_COUNT(S, X) (((S) / (X)) + (((S) % (X)) ? 1 : 0))
/**
* 82547 workaround to avoid controller hang in half-duplex environment.
* The workaround is to avoid queuing a large packet that would span
* the internal Tx FIFO ring boundary by notifying the stack to resend
* the packet at a later time. This gives the Tx FIFO an opportunity to
* flush all packets. When that occurs, we reset the Tx FIFO pointers
* to the beginning of the Tx FIFO.
**/
#define E1000_FIFO_HDR 0x10
#define E1000_82547_PAD_LEN 0x3E0
static
inline
int
e1000_82547_fifo_workaround
(
struct
e1000_adapter
*
adapter
,
struct
sk_buff
*
skb
)
{
uint32_t
fifo_space
=
adapter
->
tx_fifo_size
-
adapter
->
tx_fifo_head
;
uint32_t
skb_fifo_len
=
skb
->
len
+
E1000_FIFO_HDR
;
E1000_ROUNDUP
(
skb_fifo_len
,
E1000_FIFO_HDR
);
if
(
adapter
->
link_duplex
!=
HALF_DUPLEX
)
goto
no_fifo_stall_required
;
if
(
atomic_read
(
&
adapter
->
tx_fifo_stall
))
return
1
;
if
(
skb_fifo_len
>=
(
E1000_82547_PAD_LEN
+
fifo_space
))
{
atomic_set
(
&
adapter
->
tx_fifo_stall
,
1
);
return
1
;
}
no_fifo_stall_required:
adapter
->
tx_fifo_head
+=
skb_fifo_len
;
if
(
adapter
->
tx_fifo_head
>=
adapter
->
tx_fifo_size
)
adapter
->
tx_fifo_head
-=
adapter
->
tx_fifo_size
;
return
0
;
}
/* Tx Descriptors needed, worst case */
#define TXD_USE_COUNT(S) (((S) >> E1000_MAX_TXD_PWR) + \
(((S) & (E1000_MAX_DATA_PER_TXD - 1)) ? 1 : 0))
#define DESC_NEEDED TXD_USE_COUNT(MAX_JUMBO_FRAME_SIZE) + \
MAX_SKB_FRAGS * TXD_USE_COUNT(PAGE_SIZE) + 1
static
int
e1000_xmit_frame
(
struct
sk_buff
*
skb
,
struct
net_device
*
netdev
)
...
...
@@ -1528,6 +1649,14 @@ e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
return
1
;
}
if
(
adapter
->
hw
.
mac_type
==
e1000_82547
)
{
if
(
e1000_82547_fifo_workaround
(
adapter
,
skb
))
{
netif_stop_queue
(
netdev
);
mod_timer
(
&
adapter
->
tx_fifo_stall_timer
,
jiffies
);
return
1
;
}
}
if
(
adapter
->
vlgrp
&&
vlan_tx_tag_present
(
skb
))
{
tx_flags
|=
E1000_TX_FLAGS_VLAN
;
tx_flags
|=
(
vlan_tx_tag_get
(
skb
)
<<
E1000_TX_FLAGS_VLAN_SHIFT
);
...
...
@@ -2222,6 +2351,61 @@ e1000_alloc_rx_buffers(struct e1000_adapter *adapter)
rx_ring
->
next_to_use
=
i
;
}
/**
* e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
* @adapter:
**/
static
void
e1000_smartspeed
(
struct
e1000_adapter
*
adapter
)
{
uint16_t
phy_status
;
uint16_t
phy_ctrl
;
if
((
adapter
->
hw
.
phy_type
!=
e1000_phy_igp
)
||
!
adapter
->
hw
.
autoneg
||
!
(
adapter
->
hw
.
autoneg_advertised
&
ADVERTISE_1000_FULL
))
return
;
if
(
adapter
->
smartspeed
==
0
)
{
/* If Master/Slave config fault is asserted twice,
* we assume back-to-back */
e1000_read_phy_reg
(
&
adapter
->
hw
,
PHY_1000T_STATUS
,
&
phy_status
);
if
(
!
(
phy_status
&
SR_1000T_MS_CONFIG_FAULT
))
return
;
e1000_read_phy_reg
(
&
adapter
->
hw
,
PHY_1000T_STATUS
,
&
phy_status
);
if
(
!
(
phy_status
&
SR_1000T_MS_CONFIG_FAULT
))
return
;
e1000_read_phy_reg
(
&
adapter
->
hw
,
PHY_1000T_CTRL
,
&
phy_ctrl
);
if
(
phy_ctrl
&
CR_1000T_MS_ENABLE
)
{
phy_ctrl
&=
~
CR_1000T_MS_ENABLE
;
e1000_write_phy_reg
(
&
adapter
->
hw
,
PHY_1000T_CTRL
,
phy_ctrl
);
adapter
->
smartspeed
++
;
if
(
!
e1000_phy_setup_autoneg
(
&
adapter
->
hw
)
&&
!
e1000_read_phy_reg
(
&
adapter
->
hw
,
PHY_CTRL
,
&
phy_ctrl
))
{
phy_ctrl
|=
(
MII_CR_AUTO_NEG_EN
|
MII_CR_RESTART_AUTO_NEG
);
e1000_write_phy_reg
(
&
adapter
->
hw
,
PHY_CTRL
,
phy_ctrl
);
}
}
return
;
}
else
if
(
adapter
->
smartspeed
==
E1000_SMARTSPEED_DOWNSHIFT
)
{
/* If still no link, perhaps using 2/3 pair cable */
e1000_read_phy_reg
(
&
adapter
->
hw
,
PHY_1000T_CTRL
,
&
phy_ctrl
);
phy_ctrl
|=
CR_1000T_MS_ENABLE
;
e1000_write_phy_reg
(
&
adapter
->
hw
,
PHY_1000T_CTRL
,
phy_ctrl
);
if
(
!
e1000_phy_setup_autoneg
(
&
adapter
->
hw
)
&&
!
e1000_read_phy_reg
(
&
adapter
->
hw
,
PHY_CTRL
,
&
phy_ctrl
))
{
phy_ctrl
|=
(
MII_CR_AUTO_NEG_EN
|
MII_CR_RESTART_AUTO_NEG
);
e1000_write_phy_reg
(
&
adapter
->
hw
,
PHY_CTRL
,
phy_ctrl
);
}
}
/* Restart process after E1000_SMARTSPEED_MAX iterations */
if
(
adapter
->
smartspeed
++
==
E1000_SMARTSPEED_MAX
)
adapter
->
smartspeed
=
0
;
}
/**
* e1000_ioctl -
* @netdev:
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment