Commit 96d8e7b1 authored by Greg Ungerer's avatar Greg Ungerer Committed by Linus Torvalds

[PATCH] m68knommu: new device support for ColdFire FEC ethernet driver

A big update to the ColdFire FEC ethernet driver.
This has been in the works for a while (and thus tested for
a while too). Fundamentally through there is 3 important
changes:

. support 528x and 527x device families
. allow for multiple FEC devices to be present (for example 2 on the 5274/5)
. support the Kendein 8721 PHY
Signed-off-by: default avatarGreg Ungerer <gerg@snapgear.com>
Signed-off-by: default avatarLinus Torvalds <torvalds@osdl.org>
parent a71e27d4
......@@ -18,8 +18,8 @@
* Much better multiple PHY support by Magnus Damm.
* Copyright (c) 2000 Ericsson Radio Systems AB.
*
* Support for FEC controller of ColdFire/5272.
* Copyrught (c) 2001-2002 Greg Ungerer (gerg@snapgear.com)
* Support for FEC controller of ColdFire/5270/5271/5272/5274/5275/5280/5282.
* Copyrught (c) 2001-2004 Greg Ungerer (gerg@snapgear.com)
*/
#include <linux/config.h>
......@@ -46,7 +46,7 @@
#include <asm/io.h>
#include <asm/pgtable.h>
#ifdef CONFIG_M5272
#if defined(CONFIG_M527x) || defined(CONFIG_M5272) || defined(CONFIG_M528x)
#include <asm/coldfire.h>
#include <asm/mcfsim.h>
#include "fec.h"
......@@ -56,19 +56,31 @@
#include "commproc.h"
#endif
static int opened = 0;
static int found = 0;
#if defined(CONFIG_FEC2)
#define FEC_MAX_PORTS 2
#else
#define FEC_MAX_PORTS 1
#endif
/*
* Define the fixed address of the FEC hardware.
*/
#ifdef CONFIG_M5272
static volatile fec_t *fec_hwp = (volatile fec_t *) (MCF_MBAR + 0x840);
static ushort my_enet_addr[] = { 0x00d0, 0xcf00, 0x0072 };
static unsigned int fec_hw[] = {
#if defined(CONFIG_M5272)
(MCF_MBAR + 0x840),
#elif defined(CONFIG_M527x)
(MCF_MBAR + 0x1000),
(MCF_MBAR + 0x1800),
#elif defined(CONFIG_M528x)
(MCF_MBAR + 0x1000),
#else
static volatile fec_t *fec_hwp = &(((immap_t *)IMAP_ADDR)->im_cpm.cp_fec)
static ushort my_enet_addr[3];
#endif /* CONFIG_M5272 */
&(((immap_t *)IMAP_ADDR)->im_cpm.cp_fec),
#endif
};
static unsigned char fec_mac_default[] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
};
/*
* Some hardware gets it MAC address out of local flash memory.
......@@ -76,10 +88,12 @@ static ushort my_enet_addr[3];
*/
#if defined(CONFIG_NETtel)
#define FEC_FLASHMAC 0xf0006006
#elif defined(CONFIG_GILBARCONAP)
#elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
#define FEC_FLASHMAC 0xf0006000
#elif defined (CONFIG_MTD_KeyTechnology)
#define FEC_FLASHMAC 0xffe04000
#elif defined(CONFIG_CANCam)
#define FEC_FLASHMAC 0xf0020000
#else
#define FEC_FLASHMAC 0
#endif
......@@ -110,21 +124,14 @@ typedef struct {
* We don't need to allocate pages for the transmitter. We just use
* the skbuffer directly.
*/
#if 1
#define FEC_ENET_RX_PAGES 4
#define FEC_ENET_RX_FRSIZE 2048
#define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE)
#define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
#define TX_RING_SIZE 8 /* Must be power of two */
#define TX_RING_MOD_MASK 7 /* for this to work */
#else
#define FEC_ENET_RX_PAGES 16
#define FEC_ENET_RX_PAGES 8
#define FEC_ENET_RX_FRSIZE 2048
#define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE)
#define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
#define FEC_ENET_TX_FRSIZE 2048
#define FEC_ENET_TX_FRPPG (PAGE_SIZE / FEC_ENET_TX_FRSIZE)
#define TX_RING_SIZE 16 /* Must be power of two */
#define TX_RING_MOD_MASK 15 /* for this to work */
#endif
/* Interrupt events/masks.
*/
......@@ -145,6 +152,18 @@ typedef struct {
#define PKT_MINBUF_SIZE 64
#define PKT_MAXBLR_SIZE 1520
/*
* The 5270/5271/5280/5282 RX control register also contains maximum frame
* size bits. Other FEC hardware does not, so we need to take that into
* account when setting it.
*/
#if defined(CONFIG_M527x) || defined(CONFIG_M528x)
#define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
#else
#define OPT_FRAME_SIZE 0
#endif
/* The FEC buffer descriptors track the ring buffers. The rx_bd_base and
* tx_bd_base always point to the base of the buffer descriptors. The
* cur_rx and cur_tx point to the currently available buffer.
......@@ -154,7 +173,11 @@ typedef struct {
* the buffer descriptor determines the actual condition.
*/
struct fec_enet_private {
/* Hardware registers of the FEC device */
volatile fec_t *hwp;
/* The saved address of a sent-in-place packet/buffer, for skfree(). */
unsigned char *tx_bounce[TX_RING_SIZE];
struct sk_buff* tx_skbuff[TX_RING_SIZE];
ushort skb_cur;
ushort skb_dirty;
......@@ -177,12 +200,16 @@ struct fec_enet_private {
struct work_struct phy_task;
uint sequence_done;
uint mii_phy_task_queued;
uint phy_addr;
int index;
int opened;
int link;
int old_link;
int full_duplex;
unsigned char mac_addr[ETH_ALEN];
};
static int fec_enet_open(struct net_device *dev);
......@@ -299,6 +326,18 @@ fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
bdp->cbd_bufaddr = __pa(skb->data);
bdp->cbd_datlen = skb->len;
/*
* On some FEC implementations data must be aligned on
* 4-byte boundaries. Use bounce buffers to copy data
* and get it aligned. Ugh.
*/
if (bdp->cbd_bufaddr & 0x3) {
unsigned int index;
index = bdp - fep->tx_bd_base;
memcpy(fep->tx_bounce[index], (void *) bdp->cbd_bufaddr, bdp->cbd_datlen);
bdp->cbd_bufaddr = __pa(fep->tx_bounce[index]);
}
/* Save skb pointer.
*/
fep->tx_skbuff[fep->skb_cur] = skb;
......@@ -407,10 +446,6 @@ fec_enet_interrupt(int irq, void * dev_id, struct pt_regs * regs)
*/
while ((int_events = fecp->fec_ievent) != 0) {
fecp->fec_ievent = int_events;
if ((int_events & (FEC_ENET_HBERR | FEC_ENET_BABR |
FEC_ENET_BABT | FEC_ENET_EBERR)) != 0) {
printk("FEC ERROR %x\n", int_events);
}
/* Handle receive event in its own function.
*/
......@@ -542,7 +577,7 @@ while (!(bdp->cbd_sc & BD_ENET_RX_EMPTY)) {
printk("FEC ENET: rcv is not +last\n");
#endif
if (!opened)
if (!fep->opened)
goto rx_processing_done;
/* Check for errors. */
......@@ -646,7 +681,7 @@ fec_enet_mii(struct net_device *dev)
uint mii_reg;
fep = netdev_priv(dev);
ep = fec_hwp;
ep = fep->hwp;
mii_reg = ep->fec_mii_data;
if ((mip = mii_head) == NULL) {
......@@ -694,7 +729,7 @@ mii_queue(struct net_device *dev, int regval, void (*func)(uint, struct net_devi
}
else {
mii_head = mii_tail = mip;
fec_hwp->fec_mii_data = regval;
fep->hwp->fec_mii_data = regval;
}
}
else {
......@@ -1028,6 +1063,43 @@ static phy_info_t phy_info_am79c874 = {
},
};
/* ------------------------------------------------------------------------- */
/* Kendin KS8721BL phy */
/* register definitions for the 8721 */
#define MII_KS8721BL_RXERCR 21
#define MII_KS8721BL_ICSR 22
#define MII_KS8721BL_PHYCR 31
static phy_info_t phy_info_ks8721bl = {
0x00022161,
"KS8721BL",
(const phy_cmd_t []) { /* config */
{ mk_mii_read(MII_REG_CR), mii_parse_cr },
{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
{ mk_mii_end, }
},
(const phy_cmd_t []) { /* startup */
{ mk_mii_write(MII_KS8721BL_ICSR, 0xff00), NULL },
{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
{ mk_mii_read(MII_REG_SR), mii_parse_sr },
{ mk_mii_end, }
},
(const phy_cmd_t []) { /* ack_int */
/* find out the current status */
{ mk_mii_read(MII_REG_SR), mii_parse_sr },
/* we only need to read ISR to acknowledge */
{ mk_mii_read(MII_KS8721BL_ICSR), NULL },
{ mk_mii_end, }
},
(const phy_cmd_t []) { /* shutdown */
{ mk_mii_write(MII_KS8721BL_ICSR, 0x0000), NULL },
{ mk_mii_end, }
},
};
/* ------------------------------------------------------------------------- */
static phy_info_t *phy_info[] = {
......@@ -1035,24 +1107,26 @@ static phy_info_t *phy_info[] = {
&phy_info_lxt971,
&phy_info_qs6612,
&phy_info_am79c874,
&phy_info_ks8721bl,
NULL
};
/* ------------------------------------------------------------------------- */
static void
#ifdef CONFIG_RPXCLASSIC
static void
mii_link_interrupt(void *dev_id);
#else
static irqreturn_t
mii_link_interrupt(int irq, void * dev_id, struct pt_regs * regs);
#endif
#ifdef CONFIG_M5272
#if defined(CONFIG_M5272)
/*
* Code specific to Coldfire 5272 setup.
*/
static void __inline__ fec_request_intrs(struct net_device *dev, volatile fec_t *fecp)
static void __inline__ fec_request_intrs(struct net_device *dev)
{
volatile unsigned long *icrp;
......@@ -1076,26 +1150,29 @@ static void __inline__ fec_request_intrs(struct net_device *dev, volatile fec_t
static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
{
volatile fec_t *fecp;
fecp = fec_hwp;
fecp->fec_r_cntrl = 0x04;
fecp = fep->hwp;
fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
fecp->fec_x_cntrl = 0x00;
/* Set MII speed to 2.5 MHz
/*
* Set MII speed to 2.5 MHz
* See 5272 manual section 11.5.8: MSCR
*/
fecp->fec_mii_speed = fep->phy_speed = 0x0e;
fep->phy_speed = ((((MCF_CLK / 4) / (2500000 / 10)) + 5) / 10) * 2;
fecp->fec_mii_speed = fep->phy_speed;
fec_restart(dev, 0);
}
static void __inline__ fec_get_mac(struct net_device *dev, struct fec_enet_private *fep)
static void __inline__ fec_get_mac(struct net_device *dev)
{
struct fec_enet_private *fep = netdev_priv(dev);
volatile fec_t *fecp;
unsigned char *eap, *iap, tmpaddr[6];
unsigned char *iap, tmpaddr[6];
int i;
fecp = fec_hwp;
eap = (unsigned char *) my_enet_addr;
fecp = fep->hwp;
if (fec_flashmac) {
/*
......@@ -1105,18 +1182,24 @@ static void __inline__ fec_get_mac(struct net_device *dev, struct fec_enet_priva
iap = fec_flashmac;
if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
(iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
iap = eap;
iap = fec_mac_default;
if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
(iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
iap = eap;
iap = fec_mac_default;
} else {
*((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
*((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
iap = &tmpaddr[0];
}
for (i=0; i<6; i++)
dev->dev_addr[i] = *eap++ = *iap++;
for (i=0; i<ETH_ALEN; i++)
dev->dev_addr[i] = fep->mac_addr[i] = *iap++;
/* Adjust MAC if using default MAC address */
if (iap == fec_mac_default) {
dev->dev_addr[ETH_ALEN-1] = fep->mac_addr[ETH_ALEN-1] =
iap[ETH_ALEN-1] + fep->index;
}
}
static void __inline__ fec_enable_phy_intr(void)
......@@ -1151,12 +1234,167 @@ static void __inline__ fec_uncache(unsigned long addr)
/* ------------------------------------------------------------------------- */
#elif defined(CONFIG_M527x) || defined(CONFIG_M528x)
/*
* Code specific to Coldfire 5270/5271/5274/5275 and 5280/5282 setups.
*/
static void __inline__ fec_request_intrs(struct net_device *dev)
{
struct fec_enet_private *fep;
int b;
fep = netdev_priv(dev);
b = (fep->index) ? 128 : 64;
/* Setup interrupt handlers. */
if (request_irq(b+23, fec_enet_interrupt, 0, "fec(TXF)", dev) != 0)
printk("FEC: Could not allocate FEC(TXF) IRQ(%d+23)!\n", b);
if (request_irq(b+24, fec_enet_interrupt, 0, "fec(TXB)", dev) != 0)
printk("FEC: Could not allocate FEC(TXB) IRQ(%d+24)!\n", b);
if (request_irq(b+25, fec_enet_interrupt, 0, "fec(TXFIFO)", dev) != 0)
printk("FEC: Could not allocate FEC(TXFIFO) IRQ(%d+25)!\n", b);
if (request_irq(b+26, fec_enet_interrupt, 0, "fec(TXCR)", dev) != 0)
printk("FEC: Could not allocate FEC(TXCR) IRQ(%d+26)!\n", b);
if (request_irq(b+27, fec_enet_interrupt, 0, "fec(RXF)", dev) != 0)
printk("FEC: Could not allocate FEC(RXF) IRQ(%d+27)!\n", b);
if (request_irq(b+28, fec_enet_interrupt, 0, "fec(RXB)", dev) != 0)
printk("FEC: Could not allocate FEC(RXB) IRQ(%d+28)!\n", b);
if (request_irq(b+29, fec_enet_interrupt, 0, "fec(MII)", dev) != 0)
printk("FEC: Could not allocate FEC(MII) IRQ(%d+29)!\n", b);
if (request_irq(b+30, fec_enet_interrupt, 0, "fec(LC)", dev) != 0)
printk("FEC: Could not allocate FEC(LC) IRQ(%d+30)!\n", b);
if (request_irq(b+31, fec_enet_interrupt, 0, "fec(HBERR)", dev) != 0)
printk("FEC: Could not allocate FEC(HBERR) IRQ(%d+31)!\n", b);
if (request_irq(b+32, fec_enet_interrupt, 0, "fec(GRA)", dev) != 0)
printk("FEC: Could not allocate FEC(GRA) IRQ(%d+32)!\n", b);
if (request_irq(b+33, fec_enet_interrupt, 0, "fec(EBERR)", dev) != 0)
printk("FEC: Could not allocate FEC(EBERR) IRQ(%d+33)!\n", b);
if (request_irq(b+34, fec_enet_interrupt, 0, "fec(BABT)", dev) != 0)
printk("FEC: Could not allocate FEC(BABT) IRQ(%d+34)!\n", b);
if (request_irq(b+35, fec_enet_interrupt, 0, "fec(BABR)", dev) != 0)
printk("FEC: Could not allocate FEC(BABR) IRQ(%d+35)!\n", b);
/* Unmask interrupts at ColdFire 5280/5282 interrupt controller */
{
volatile unsigned char *icrp;
volatile unsigned long *imrp;
int i;
b = (fep->index) ? MCFICM_INTC1 : MCFICM_INTC0;
icrp = (volatile unsigned char *) (MCF_IPSBAR + b +
MCFINTC_ICR0);
for (i = 23; (i < 36); i++)
icrp[i] = 0x23;
imrp = (volatile unsigned long *) (MCF_IPSBAR + b +
MCFINTC_IMRH);
*imrp &= ~0x0000000f;
imrp = (volatile unsigned long *) (MCF_IPSBAR + b +
MCFINTC_IMRL);
*imrp &= ~0xff800001;
}
#if defined(CONFIG_M528x)
/* Set up gpio outputs for MII lines */
{
volatile unsigned short *gpio_paspar;
gpio_paspar = (volatile unsigned short *) (MCF_IPSBAR +
0x100056);
*gpio_paspar = 0x0f00;
}
#endif
}
static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
{
volatile fec_t *fecp;
fecp = fep->hwp;
fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
fecp->fec_x_cntrl = 0x00;
/*
* Set MII speed to 2.5 MHz
* See 5282 manual section 17.5.4.7: MSCR
*/
fep->phy_speed = ((((MCF_CLK / 2) / (2500000 / 10)) + 5) / 10) * 2;
fecp->fec_mii_speed = fep->phy_speed;
fec_restart(dev, 0);
}
static void __inline__ fec_get_mac(struct net_device *dev)
{
struct fec_enet_private *fep = netdev_priv(dev);
volatile fec_t *fecp;
unsigned char *iap, tmpaddr[6];
int i;
fecp = fep->hwp;
if (fec_flashmac) {
/*
* Get MAC address from FLASH.
* If it is all 1's or 0's, use the default.
*/
iap = fec_flashmac;
if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
(iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
iap = fec_mac_default;
if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
(iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
iap = fec_mac_default;
} else {
*((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
*((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
iap = &tmpaddr[0];
}
for (i=0; i<ETH_ALEN; i++)
dev->dev_addr[i] = fep->mac_addr[i] = *iap++;
/* Adjust MAC if using default MAC address */
if (iap == fec_mac_default) {
dev->dev_addr[ETH_ALEN-1] = fep->mac_addr[ETH_ALEN-1] =
iap[ETH_ALEN-1] + fep->index;
}
}
static void __inline__ fec_enable_phy_intr(void)
{
}
static void __inline__ fec_disable_phy_intr(void)
{
}
static void __inline__ fec_phy_ack_intr(void)
{
}
static void __inline__ fec_localhw_setup(void)
{
}
/*
* Do not need to make region uncached on 5272.
*/
static void __inline__ fec_uncache(unsigned long addr)
{
}
/* ------------------------------------------------------------------------- */
#else
/*
* Code sepcific to the MPC860T setup.
*/
static void __inline__ fec_request_intrs(struct net_device *dev, volatile fec_t *fecp)
static void __inline__ fec_request_intrs(struct net_device *dev)
{
volatile immap_t *immap;
......@@ -1184,13 +1422,13 @@ static void __inline__ fec_request_intrs(struct net_device *dev, volatile fec_t
#endif
}
static void __inline__ fec_get_mac(struct net_device *dev, struct fec_enet_private *fep)
static void __inline__ fec_get_mac(struct net_device *dev)
{
unsigned char *eap, *iap, tmpaddr[6];
struct fec_enet_private *fep = netdev_priv(dev);
unsigned char *iap, tmpaddr[6];
bd_t *bd;
int i;
eap = (unsigned char *)my_enet_addr;
iap = bd->bi_enetaddr;
bd = (bd_t *)__res;
......@@ -1208,7 +1446,7 @@ static void __inline__ fec_get_mac(struct net_device *dev, struct fec_enet_priva
#endif
for (i=0; i<6; i++)
dev->dev_addr[i] = *eap++ = *iap++;
dev->dev_addr[i] = fep->mac_addr[i] = *iap++;
}
static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
......@@ -1217,7 +1455,7 @@ static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_priva
volatile immap_t *immap;
volatile fec_t *fecp;
fecp = fec_hwp;
fecp = fep->hwp;
immap = (immap_t *)IMAP_ADDR; /* pointer to internal registers */
/* Configure all of port D for MII.
......@@ -1240,7 +1478,8 @@ static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_priva
static void __inline__ fec_enable_phy_intr(void)
{
volatile fec_t *fecp;
fecp = fec_hwp;
fecp = fep->hwp;
/* Enable MII command finished interrupt
*/
......@@ -1258,8 +1497,8 @@ static void __inline__ fec_phy_ack_intr(void)
static void __inline__ fec_localhw_setup(void)
{
volatile fec_t *fecp;
fecp = fec_hwp;
fecp = fep->hwp;
fecp->fec_r_hash = PKT_MAXBUF_SIZE;
/* Enable big endian and don't care about SDMA FC.
*/
......@@ -1319,6 +1558,11 @@ static void mii_display_config(struct net_device *dev)
struct fec_enet_private *fep = netdev_priv(dev);
volatile uint *s = &(fep->phy_status);
/*
** When we get here, phy_task is already removed from
** the workqueue. It is thus safe to allow to reuse it.
*/
fep->mii_phy_task_queued = 0;
printk("%s: config: auto-negotiation ", dev->name);
if (*s & PHY_CONF_ANE)
......@@ -1350,6 +1594,11 @@ static void mii_relink(struct net_device *dev)
struct fec_enet_private *fep = netdev_priv(dev);
int duplex;
/*
** When we get here, phy_task is already removed from
** the workqueue. It is thus safe to allow to reuse it.
*/
fep->mii_phy_task_queued = 0;
fep->link = (fep->phy_status & PHY_STAT_LINK) ? 1 : 0;
mii_display_status(dev);
fep->old_link = fep->link;
......@@ -1370,18 +1619,35 @@ static void mii_relink(struct net_device *dev)
}
/* mii_queue_relink is called in interrupt context from mii_link_interrupt */
static void mii_queue_relink(uint mii_reg, struct net_device *dev)
{
struct fec_enet_private *fep = netdev_priv(dev);
/*
** We cannot queue phy_task twice in the workqueue. It
** would cause an endless loop in the workqueue.
** Fortunately, if the last mii_relink entry has not yet been
** executed now, it will do the job for the current interrupt,
** which is just what we want.
*/
if (fep->mii_phy_task_queued)
return;
fep->mii_phy_task_queued = 1;
INIT_WORK(&fep->phy_task, (void*)mii_relink, dev);
schedule_work(&fep->phy_task);
}
/* mii_queue_config is called in user context from fec_enet_open */
static void mii_queue_config(uint mii_reg, struct net_device *dev)
{
struct fec_enet_private *fep = netdev_priv(dev);
if (fep->mii_phy_task_queued)
return;
fep->mii_phy_task_queued = 1;
INIT_WORK(&fep->phy_task, (void*)mii_display_config, dev);
schedule_work(&fep->phy_task);
}
......@@ -1432,7 +1698,7 @@ mii_discover_phy(uint mii_reg, struct net_device *dev)
uint phytype;
fep = netdev_priv(dev);
fecp = fec_hwp;
fecp = fep->hwp;
if (fep->phy_addr < 32) {
if ((phytype = (mii_reg & 0xffff)) != 0xffff && phytype != 0) {
......@@ -1458,10 +1724,11 @@ mii_discover_phy(uint mii_reg, struct net_device *dev)
/* This interrupt occurs when the PHY detects a link change.
*/
static void
#ifdef CONFIG_RPXCLASSIC
static void
mii_link_interrupt(void *dev_id)
#else
static irqreturn_t
mii_link_interrupt(int irq, void * dev_id, struct pt_regs * regs)
#endif
{
......@@ -1477,6 +1744,7 @@ mii_link_interrupt(int irq, void * dev_id, struct pt_regs * regs)
mii_do_cmd(dev, fep->phy->ack_int);
mii_do_cmd(dev, phy_cmd_relink); /* restart and display status */
return IRQ_HANDLED;
}
static int
......@@ -1487,7 +1755,6 @@ fec_enet_open(struct net_device *dev)
/* I should reset the ring buffers here, but I don't yet know
* a simple way to do that.
*/
fec_set_mac_address(dev);
fep->sequence_done = 0;
......@@ -1506,6 +1773,12 @@ fec_enet_open(struct net_device *dev)
schedule();
mii_do_cmd(dev, fep->phy->startup);
/* Set the initial link state to true. A lot of hardware
* based on this device does not implement a PHY interrupt,
* so we are never notified of link change.
*/
fep->link = 1;
} else {
fep->link = 1; /* lets just try it and see */
/* no phy, go full duplex, it's most likely a hub chip */
......@@ -1513,16 +1786,18 @@ fec_enet_open(struct net_device *dev)
}
netif_start_queue(dev);
opened = 1;
fep->opened = 1;
return 0; /* Success */
}
static int
fec_enet_close(struct net_device *dev)
{
struct fec_enet_private *fep = netdev_priv(dev);
/* Don't know what to do yet.
*/
opened = 0;
fep->opened = 0;
netif_stop_queue(dev);
fec_stop(dev);
......@@ -1558,7 +1833,7 @@ static void set_multicast_list(struct net_device *dev)
unsigned char hash;
fep = netdev_priv(dev);
ep = fec_hwp;
ep = fep->hwp;
if (dev->flags&IFF_PROMISC) {
/* Log any net taps. */
......@@ -1622,18 +1897,18 @@ static void set_multicast_list(struct net_device *dev)
static void
fec_set_mac_address(struct net_device *dev)
{
int i;
struct fec_enet_private *fep;
volatile fec_t *fecp;
fecp = fec_hwp;
/* Set our copy of the Ethernet address */
for (i = 0; i < (ETH_ALEN / 2); i++)
my_enet_addr[i] = (dev->dev_addr[i*2] << 8) | dev->dev_addr[i*2 + 1];
fep = netdev_priv(dev);
fecp = fep->hwp;
/* Set station address. */
fecp->fec_addr_low = (my_enet_addr[0] << 16) | my_enet_addr[1];
fecp->fec_addr_high = my_enet_addr[2] << 16;
fecp->fec_addr_low = fep->mac_addr[3] | (fep->mac_addr[2] << 8) |
(fep->mac_addr[1] << 16) | (fep->mac_addr[0] << 24);
fecp->fec_addr_high = (fep->mac_addr[5] << 16) |
(fep->mac_addr[4] << 24);
}
/* Initialize the FEC Ethernet on 860T (or ColdFire 5272).
......@@ -1649,14 +1924,18 @@ int __init fec_enet_init(struct net_device *dev)
cbd_t *cbd_base;
volatile fec_t *fecp;
int i, j;
static int index = 0;
/* Only allow us to be probed once. */
if (found)
return(-ENXIO);
if (index >= FEC_MAX_PORTS)
return -ENXIO;
/* Create an Ethernet device instance.
*/
fecp = fec_hwp;
fecp = (volatile fec_t *) fec_hw[index];
fep->index = index;
fep->hwp = fecp;
/* Whack a reset. We should wait for this.
*/
......@@ -1679,7 +1958,7 @@ int __init fec_enet_init(struct net_device *dev)
* This is our default MAC address unless the user changes
* it via eth_mac_addr (our dev->set_mac_addr handler).
*/
fec_get_mac(dev, fep);
fec_get_mac(dev);
/* Allocate memory for buffer descriptors.
*/
......@@ -1734,7 +2013,15 @@ int __init fec_enet_init(struct net_device *dev)
/* ...and the same for transmmit.
*/
bdp = fep->tx_bd_base;
for (i=0; i<TX_RING_SIZE; i++) {
for (i=0, j=FEC_ENET_TX_FRPPG; i<TX_RING_SIZE; i++) {
if (j >= FEC_ENET_TX_FRPPG) {
mem_addr = __get_free_page(GFP_KERNEL);
j = 1;
} else {
mem_addr += FEC_ENET_TX_FRSIZE;
j++;
}
fep->tx_bounce[i] = (unsigned char *) mem_addr;
/* Initialize the BD for every fragment in the page.
*/
......@@ -1756,7 +2043,7 @@ int __init fec_enet_init(struct net_device *dev)
/* Install our interrupt handlers. This varies depending on
* the architecture.
*/
fec_request_intrs(dev, fecp);
fec_request_intrs(dev);
dev->base_addr = (unsigned long)fecp;
......@@ -1788,7 +2075,7 @@ int __init fec_enet_init(struct net_device *dev)
fep->phy_addr = 0;
mii_queue(dev, mk_mii_read(MII_REG_PHYIR1), mii_discover_phy);
found++;
index++;
return 0;
}
......@@ -1800,14 +2087,12 @@ static void
fec_restart(struct net_device *dev, int duplex)
{
struct fec_enet_private *fep;
int i;
unsigned char *eap;
volatile cbd_t *bdp;
volatile fec_t *fecp;
fecp = fec_hwp;
int i;
fep = netdev_priv(dev);
fecp = fep->hwp;
/* Whack a reset. We should wait for this.
*/
......@@ -1826,12 +2111,13 @@ fec_restart(struct net_device *dev, int duplex)
/* Set station address.
*/
fecp->fec_addr_low = (my_enet_addr[0] << 16) | my_enet_addr[1];
fecp->fec_addr_high = (my_enet_addr[2] << 16);
fecp->fec_addr_low = fep->mac_addr[3] | (fep->mac_addr[2] << 8) |
(fep->mac_addr[1] << 16) | (fep->mac_addr[0] << 24);
fecp->fec_addr_high = (fep->mac_addr[5] << 16) |
(fep->mac_addr[4] << 24);
eap = (unsigned char *)&my_enet_addr[0];
for (i=0; i<6; i++)
dev->dev_addr[i] = *eap++;
for (i=0; i<ETH_ALEN; i++)
dev->dev_addr[i] = fep->mac_addr[i];
/* Reset all multicast.
*/
......@@ -1898,11 +2184,12 @@ fec_restart(struct net_device *dev, int duplex)
/* Enable MII mode.
*/
if (duplex) {
fecp->fec_r_cntrl = 0x04; /* MII enable */
fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;/* MII enable */
fecp->fec_x_cntrl = 0x04; /* FD enable */
}
else {
fecp->fec_r_cntrl = 0x06; /* MII enable|No Rcv on Xmit */
/* MII enable|No Rcv on Xmit */
fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x06;
fecp->fec_x_cntrl = 0x00;
}
fep->full_duplex = duplex;
......@@ -1923,8 +2210,8 @@ fec_stop(struct net_device *dev)
volatile fec_t *fecp;
struct fec_enet_private *fep;
fecp = fec_hwp;
fep = netdev_priv(dev);
fecp = fep->hwp;
fecp->fec_x_cntrl = 0x01; /* Graceful transmit stop */
......@@ -1944,29 +2231,27 @@ fec_stop(struct net_device *dev)
fecp->fec_mii_speed = fep->phy_speed;
}
static struct net_device *fec_dev;
static int __init fec_enet_module_init(void)
{
struct net_device *dev;
int err;
int i, err;
for (i = 0; (i < FEC_MAX_PORTS); i++) {
dev = alloc_etherdev(sizeof(struct fec_enet_private));
if (!dev)
return -ENOMEM;
err = fec_enet_init(dev);
if (err) {
free_netdev(dev);
return err;
continue;
}
if (register_netdev(dev) != 0) {
/* XXX: missing cleanup here */
free_netdev(dev);
return -EIO;
}
fec_dev = dev;
return(0);
}
return 0;
}
module_init(fec_enet_module_init);
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment