Commit 96ffb14f authored by Alan Cox's avatar Alan Cox Committed by Linus Torvalds

[PATCH] Add HAL2 driver

(Ladislav Michl)
parent 80e38dd5
/*
* Driver for HAL2 sound processors
* Copyright (c) 2001, 2002 Ladislav Michl <ladis@psi.cz>
*
* Based on Ulf Carlsson's code.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
* Supported devices:
* /dev/dsp standard dsp device, (mostly) OSS compatible
* /dev/mixer standard mixer device, (mostly) OSS compatible
*
* BUGS:
* + Driver currently supports indigo mode only.
* + Recording doesn't work. I guess that it is caused by PBUS channel
* misconfiguration, but until I get relevant info I'm unable to fix it.
*/
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/poll.h>
#include <linux/sound.h>
#include <linux/soundcard.h>
#include <asm/io.h>
#include <asm/uaccess.h>
#include <asm/sgi/sgint23.h>
#include "hal2.h"
#if 0
#define DEBUG(args...) printk(args)
#else
#define DEBUG(args...)
#endif
#if 0
#define DEBUG_MIX(args...) printk(args)
#else
#define DEBUG_MIX(args...)
#endif
#define H2_INDIRECT_WAIT(regs) while (regs->isr & H2_ISR_TSTATUS);
#define H2_READ_ADDR(addr) (addr | (1<<7))
#define H2_WRITE_ADDR(addr) (addr)
static char *hal2str = "HAL2 audio";
static int ibuffers = 32;
static int obuffers = 32;
/* I doubt anyone has a machine with two HAL2 cards. It's possible to
* have two HPC's, so it is probably possible to have two HAL2 cards.
* Try to deal with it, but note that it is not tested.
*/
#define MAXCARDS 2
static hal2_card_t* hal2_card[MAXCARDS];
static const struct {
unsigned char idx:4, avail:1;
} mixtable[SOUND_MIXER_NRDEVICES] = {
[SOUND_MIXER_PCM] = { H2_MIX_OUTPUT_ATT, 1 }, /* voice */
[SOUND_MIXER_MIC] = { H2_MIX_INPUT_GAIN, 1 }, /* mic */
};
#define H2_SUPPORTED_FORMATS (AFMT_S16_LE | AFMT_S16_BE)
static inline void hal2_isr_write(hal2_card_t *hal2, u32 val)
{
hal2->ctl_regs->isr = val;
}
static inline u32 hal2_isr_look(hal2_card_t *hal2)
{
return hal2->ctl_regs->isr;
}
static inline u32 hal2_rev_look(hal2_card_t *hal2)
{
return hal2->ctl_regs->rev;
}
#if 0
static u16 hal2_i_look16(hal2_card_t *hal2, u32 addr)
{
hal2_ctl_regs_t *regs = hal2->ctl_regs;
regs->iar = H2_READ_ADDR(addr);
H2_INDIRECT_WAIT(regs);
return (regs->idr0 & 0xffff);
}
#endif
static u32 hal2_i_look32(hal2_card_t *hal2, u32 addr)
{
u32 ret;
hal2_ctl_regs_t *regs = hal2->ctl_regs;
regs->iar = H2_READ_ADDR(addr);
H2_INDIRECT_WAIT(regs);
ret = regs->idr0 & 0xffff;
regs->iar = H2_READ_ADDR(addr | 0x1);
H2_INDIRECT_WAIT(regs);
ret |= (regs->idr0 & 0xffff) << 16;
return ret;
}
static void hal2_i_write16(hal2_card_t *hal2, u32 addr, u16 val)
{
hal2_ctl_regs_t *regs = hal2->ctl_regs;
regs->idr0 = val;
regs->idr1 = 0;
regs->idr2 = 0;
regs->idr3 = 0;
regs->iar = H2_WRITE_ADDR(addr);
H2_INDIRECT_WAIT(regs);
}
static void hal2_i_write32(hal2_card_t *hal2, u32 addr, u32 val)
{
hal2_ctl_regs_t *regs = hal2->ctl_regs;
regs->idr0 = val & 0xffff;
regs->idr1 = val >> 16;
regs->idr2 = 0;
regs->idr3 = 0;
regs->iar = H2_WRITE_ADDR(addr);
H2_INDIRECT_WAIT(regs);
}
static void hal2_i_setbit16(hal2_card_t *hal2, u32 addr, u16 bit)
{
hal2_ctl_regs_t *regs = hal2->ctl_regs;
regs->iar = H2_READ_ADDR(addr);
H2_INDIRECT_WAIT(regs);
regs->idr0 = regs->idr0 | bit;
regs->idr1 = 0;
regs->idr2 = 0;
regs->idr3 = 0;
regs->iar = H2_WRITE_ADDR(addr);
H2_INDIRECT_WAIT(regs);
}
static void hal2_i_setbit32(hal2_card_t *hal2, u32 addr, u32 bit)
{
u32 tmp;
hal2_ctl_regs_t *regs = hal2->ctl_regs;
regs->iar = H2_READ_ADDR(addr);
H2_INDIRECT_WAIT(regs);
tmp = regs->idr0 | (regs->idr1 << 16) | bit;
regs->idr0 = tmp & 0xffff;
regs->idr1 = tmp >> 16;
regs->idr2 = 0;
regs->idr3 = 0;
regs->iar = H2_WRITE_ADDR(addr);
H2_INDIRECT_WAIT(regs);
}
static void hal2_i_clearbit16(hal2_card_t *hal2, u32 addr, u16 bit)
{
hal2_ctl_regs_t *regs = hal2->ctl_regs;
regs->iar = H2_READ_ADDR(addr);
H2_INDIRECT_WAIT(regs);
regs->idr0 = regs->idr0 & ~bit;
regs->idr1 = 0;
regs->idr2 = 0;
regs->idr3 = 0;
regs->iar = H2_WRITE_ADDR(addr);
H2_INDIRECT_WAIT(regs);
}
#if 0
static void hal2_i_clearbit32(hal2_card_t *hal2, u32 addr, u32 bit)
{
u32 tmp;
hal2_ctl_regs_t *regs = hal2->ctl_regs;
regs->iar = H2_READ_ADDR(addr);
H2_INDIRECT_WAIT(regs);
tmp = (regs->idr0 | (regs->idr1 << 16)) & ~bit;
regs->idr0 = tmp & 0xffff;
regs->idr1 = tmp >> 16;
regs->idr2 = 0;
regs->idr3 = 0;
regs->iar = H2_WRITE_ADDR(addr);
H2_INDIRECT_WAIT(regs);
}
#endif
#ifdef HAL2_DEBUG
static void hal2_dump_regs(hal2_card_t *hal2)
{
printk("isr: %08hx ", hal2_isr_look(hal2));
printk("rev: %08hx\n", hal2_rev_look(hal2));
printk("relay: %04hx\n", hal2_i_look16(hal2, H2I_RELAY_C));
printk("port en: %04hx ", hal2_i_look16(hal2, H2I_DMA_PORT_EN));
printk("dma end: %04hx ", hal2_i_look16(hal2, H2I_DMA_END));
printk("dma drv: %04hx\n", hal2_i_look16(hal2, H2I_DMA_DRV));
printk("syn ctl: %04hx ", hal2_i_look16(hal2, H2I_SYNTH_C));
printk("aesrx ctl: %04hx ", hal2_i_look16(hal2, H2I_AESRX_C));
printk("aestx ctl: %04hx ", hal2_i_look16(hal2, H2I_AESTX_C));
printk("dac ctl1: %04hx ", hal2_i_look16(hal2, H2I_ADC_C1));
printk("dac ctl2: %08lx ", hal2_i_look32(hal2, H2I_ADC_C2));
printk("adc ctl1: %04hx ", hal2_i_look16(hal2, H2I_DAC_C1));
printk("adc ctl2: %08lx ", hal2_i_look32(hal2, H2I_DAC_C2));
printk("syn map: %04hx\n", hal2_i_look16(hal2, H2I_SYNTH_MAP_C));
printk("bres1 ctl1: %04hx ", hal2_i_look16(hal2, H2I_BRES1_C1));
printk("bres1 ctl2: %04lx ", hal2_i_look32(hal2, H2I_BRES1_C2));
printk("bres2 ctl1: %04hx ", hal2_i_look16(hal2, H2I_BRES2_C1));
printk("bres2 ctl2: %04lx ", hal2_i_look32(hal2, H2I_BRES2_C2));
printk("bres3 ctl1: %04hx ", hal2_i_look16(hal2, H2I_BRES3_C1));
printk("bres3 ctl2: %04lx\n", hal2_i_look32(hal2, H2I_BRES3_C2));
}
#endif
static hal2_card_t* hal2_dsp_find_card(int minor)
{
int i;
for (i = 0; i < MAXCARDS; i++)
if (hal2_card[i] != NULL && hal2_card[i]->dev_dsp == minor)
return hal2_card[i];
return NULL;
}
static hal2_card_t* hal2_mixer_find_card(int minor)
{
int i;
for (i = 0; i < MAXCARDS; i++)
if (hal2_card[i] != NULL && hal2_card[i]->dev_mixer == minor)
return hal2_card[i];
return NULL;
}
static void hal2_dac_interrupt(hal2_codec_t *dac)
{
int running;
spin_lock(&dac->lock);
/* if tail buffer contains zero samples DMA stream was already
* stopped */
running = dac->tail->info.cnt;
dac->tail->info.cnt = 0;
dac->tail->info.desc.cntinfo = HPCDMA_XIE | HPCDMA_EOX;
dma_cache_wback_inv((unsigned long) dac->tail,
sizeof(struct hpc_dma_desc));
/* we just proccessed empty buffer, don't update tail pointer */
if (running)
dac->tail = dac->tail->info.next;
spin_unlock(&dac->lock);
wake_up(&dac->dma_wait);
}
static void hal2_adc_interrupt(hal2_codec_t *adc)
{
int running;
spin_lock(&adc->lock);
/* if head buffer contains nonzero samples DMA stream was already
* stopped */
running = !adc->head->info.cnt;
adc->head->info.cnt = H2_BUFFER_SIZE;
adc->head->info.desc.cntinfo = HPCDMA_XIE | HPCDMA_EOX;
dma_cache_wback_inv((unsigned long) adc->head,
sizeof(struct hpc_dma_desc));
/* we just proccessed empty buffer, don't update head pointer */
if (running) {
dma_cache_inv((unsigned long) adc->head->data, H2_BUFFER_SIZE);
adc->head = adc->head->info.next;
}
spin_unlock(&adc->lock);
wake_up(&adc->dma_wait);
}
static irqreturn_t hal2_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
hal2_card_t *hal2 = (hal2_card_t*)dev_id;
/* decide what caused this interrupt */
if (hal2->dac.pbus.pbus->pbdma_ctrl & HPC3_PDMACTRL_INT)
hal2_dac_interrupt(&hal2->dac);
if (hal2->adc.pbus.pbus->pbdma_ctrl & HPC3_PDMACTRL_INT)
hal2_adc_interrupt(&hal2->adc);
return IRQ_HANDLED;
}
static int hal2_compute_rate(hal2_codec_t *codec, unsigned int rate)
{
unsigned short inc;
/* We default to 44.1 kHz and if it isn't possible to fall back to
* 48.0 kHz with the needed adjustments of real_rate.
*/
DEBUG("rate: %d\n", rate);
/* Refer to CS4216 data sheet */
if (rate < 4000)
rate = 4000;
if (rate > 50000)
rate = 50000;
/* Note: This is NOT the way they set up the bresenham clock generators
* in the specification. I've tried to implement that method but it
* doesn't work. It's probably another silly bug in the spec.
*
* I accidently discovered this method while I was testing and it seems
* to work very well with all frequencies, and thee shall follow rule #1
* of programming :-)
*/
if (44100 % rate == 0) {
inc = 44100 / rate;
if (inc < 1) inc = 1;
codec->master = 44100;
} else {
inc = 48000 / rate;
if (inc < 1) inc = 1;
rate = 48000 / inc;
codec->master = 48000;
}
codec->inc = inc;
codec->mod = 1;
DEBUG("real_rate: %d\n", rate);
return rate;
}
static void hal2_set_dac_rate(hal2_card_t *hal2)
{
unsigned int master = hal2->dac.master;
int inc = hal2->dac.inc;
int mod = hal2->dac.mod;
DEBUG("master: %d inc: %d mod: %d\n", master, inc, mod);
hal2_i_write16(hal2, H2I_BRES1_C1, (master == 44100) ? 1 : 0);
hal2_i_write32(hal2, H2I_BRES1_C2, ((0xffff & (mod - inc - 1)) << 16) | 1);
}
static void hal2_set_adc_rate(hal2_card_t *hal2)
{
unsigned int master = hal2->adc.master;
int inc = hal2->adc.inc;
int mod = hal2->adc.mod;
DEBUG("master: %d inc: %d mod: %d\n", master, inc, mod);
hal2_i_write16(hal2, H2I_BRES2_C1, (master == 44100) ? 1 : 0);
hal2_i_write32(hal2, H2I_BRES2_C2, ((0xffff & (mod - inc - 1)) << 16) | 1);
}
static void hal2_setup_dac(hal2_card_t *hal2)
{
unsigned int fifobeg, fifoend, highwater, sample_size;
hal2_pbus_t *pbus = &hal2->dac.pbus;
DEBUG("hal2_setup_dac\n");
/* Now we set up some PBUS information. The PBUS needs information about
* what portion of the fifo it will use. If it's receiving or
* transmitting, and finally whether the stream is little endian or big
* endian. The information is written later, on the start call.
*/
sample_size = 2 * hal2->dac.voices;
/* Fifo should be set to hold exactly four samples. Highwater mark
* should be set to two samples. */
highwater = (sample_size * 2) >> 1; /* halfwords */
fifobeg = 0; /* playback is first */
fifoend = (sample_size * 4) >> 3; /* doublewords */
pbus->ctrl = HPC3_PDMACTRL_RT | HPC3_PDMACTRL_LD |
(highwater << 8) | (fifobeg << 16) | (fifoend << 24);
/* We disable everything before we do anything at all */
pbus->pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
hal2_i_clearbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECTX);
hal2_i_clearbit16(hal2, H2I_DMA_DRV, (1 << pbus->pbusnr));
/* Setup the HAL2 for playback */
hal2_set_dac_rate(hal2);
/* We are using 1st Bresenham clock generator for playback */
hal2_i_write16(hal2, H2I_DAC_C1, (pbus->pbusnr << H2I_C1_DMA_SHIFT)
| (1 << H2I_C1_CLKID_SHIFT)
| (hal2->dac.voices << H2I_C1_DATAT_SHIFT));
}
static void hal2_setup_adc(hal2_card_t *hal2)
{
unsigned int fifobeg, fifoend, highwater, sample_size;
hal2_pbus_t *pbus = &hal2->adc.pbus;
DEBUG("hal2_setup_adc\n");
sample_size = 2 * hal2->adc.voices;
highwater = (sample_size * 2) >> 1; /* halfwords */
fifobeg = (4 * 4) >> 3; /* record is second */
fifoend = (4 * 4 + sample_size * 4) >> 3; /* doublewords */
pbus->ctrl = HPC3_PDMACTRL_RT | HPC3_PDMACTRL_RCV | HPC3_PDMACTRL_LD |
(highwater << 8) | (fifobeg << 16) | (fifoend << 24);
pbus->pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
hal2_i_clearbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECR);
hal2_i_clearbit16(hal2, H2I_DMA_DRV, (1 << pbus->pbusnr));
/* Setup the HAL2 for record */
hal2_set_adc_rate(hal2);
/* We are using 2nd Bresenham clock generator for record */
hal2_i_write16(hal2, H2I_ADC_C1, (pbus->pbusnr << H2I_C1_DMA_SHIFT)
| (2 << H2I_C1_CLKID_SHIFT)
| (hal2->adc.voices << H2I_C1_DATAT_SHIFT));
}
static void hal2_start_dac(hal2_card_t *hal2)
{
hal2_pbus_t *pbus = &hal2->dac.pbus;
DEBUG("hal2_start_dac\n");
pbus->pbus->pbdma_dptr = PHYSADDR(hal2->dac.tail);
pbus->pbus->pbdma_ctrl = pbus->ctrl | HPC3_PDMACTRL_ACT;
/* set endianess */
if (hal2->dac.format & AFMT_S16_LE)
hal2_i_setbit16(hal2, H2I_DMA_END, H2I_DMA_END_CODECTX);
else
hal2_i_clearbit16(hal2, H2I_DMA_END, H2I_DMA_END_CODECTX);
/* set DMA bus */
hal2_i_setbit16(hal2, H2I_DMA_DRV, (1 << pbus->pbusnr));
/* enable DAC */
hal2_i_setbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECTX);
}
static void hal2_start_adc(hal2_card_t *hal2)
{
hal2_pbus_t *pbus = &hal2->adc.pbus;
DEBUG("hal2_start_adc\n");
pbus->pbus->pbdma_dptr = PHYSADDR(hal2->adc.head);
pbus->pbus->pbdma_ctrl = pbus->ctrl | HPC3_PDMACTRL_ACT;
/* set endianess */
if (hal2->adc.format & AFMT_S16_LE)
hal2_i_setbit16(hal2, H2I_DMA_END, H2I_DMA_END_CODECR);
else
hal2_i_clearbit16(hal2, H2I_DMA_END, H2I_DMA_END_CODECR);
/* set DMA bus */
hal2_i_setbit16(hal2, H2I_DMA_DRV, (1 << pbus->pbusnr));
/* enable ADC */
hal2_i_setbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECR);
}
static inline void hal2_stop_dac(hal2_card_t *hal2)
{
DEBUG("hal2_stop_dac\n");
hal2->dac.pbus.pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
/* The HAL2 itself may remain enabled safely */
}
static inline void hal2_stop_adc(hal2_card_t *hal2)
{
DEBUG("hal2_stop_adc\n");
hal2->adc.pbus.pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
}
#define hal2_alloc_dac_dmabuf(hal2) hal2_alloc_dmabuf(hal2, 1)
#define hal2_alloc_adc_dmabuf(hal2) hal2_alloc_dmabuf(hal2, 0)
static int hal2_alloc_dmabuf(hal2_card_t *hal2, int is_dac)
{
int buffers, cntinfo;
hal2_buf_t *buf, *prev;
hal2_codec_t *codec;
if (is_dac) {
codec = &hal2->dac;
buffers = obuffers;
cntinfo = HPCDMA_XIE | HPCDMA_EOX;
} else {
codec = &hal2->adc;
buffers = ibuffers;
cntinfo = HPCDMA_XIE | H2_BUFFER_SIZE;
}
DEBUG("allocating %d DMA buffers.\n", buffers);
buf = (hal2_buf_t*) get_zeroed_page(GFP_KERNEL);
if (!buf)
return -ENOMEM;
codec->head = buf;
codec->tail = buf;
while (--buffers) {
buf->info.desc.pbuf = PHYSADDR(&buf->data);
buf->info.desc.cntinfo = cntinfo;
buf->info.cnt = 0;
prev = buf;
buf = (hal2_buf_t*) get_zeroed_page(GFP_KERNEL);
if (!buf) {
printk("HAL2: Not enough memory for DMA buffer.\n");
buf = codec->head;
while (buf) {
prev = buf;
free_page((unsigned long) buf);
buf = prev->info.next;
}
return -ENOMEM;
}
prev->info.next = buf;
prev->info.desc.pnext = PHYSADDR(buf);
/* The PBUS can prolly not read this stuff when it's in
* the cache so we have to flush it back to main memory
*/
dma_cache_wback_inv((unsigned long) prev, PAGE_SIZE);
}
buf->info.desc.pbuf = PHYSADDR(&buf->data);
buf->info.desc.cntinfo = cntinfo;
buf->info.cnt = 0;
buf->info.next = codec->head;
buf->info.desc.pnext = PHYSADDR(codec->head);
dma_cache_wback_inv((unsigned long) buf, PAGE_SIZE);
return 0;
}
#define hal2_free_dac_dmabuf(hal2) hal2_free_dmabuf(hal2, 1)
#define hal2_free_adc_dmabuf(hal2) hal2_free_dmabuf(hal2, 0)
static void hal2_free_dmabuf(hal2_card_t *hal2, int is_dac)
{
hal2_buf_t *buf, *next;
hal2_codec_t *codec = (is_dac) ? &hal2->dac : &hal2->adc;
if (!codec->head)
return;
buf = codec->head->info.next;
codec->head->info.next = NULL;
while (buf) {
next = buf->info.next;
free_page((unsigned long) buf);
buf = next;
}
codec->head = codec->tail = NULL;
}
/*
* Add 'count' bytes to 'buffer' from DMA ring buffers. Return number of
* bytes added or -EFAULT if copy_from_user failed.
*/
static int hal2_get_buffer(hal2_card_t *hal2, char *buffer, int count)
{
unsigned long flags;
int size, ret = 0;
hal2_codec_t *adc = &hal2->adc;
spin_lock_irqsave(&adc->lock, flags);
DEBUG("getting %d bytes ", count);
/* enable DMA stream if there are no data */
if (!(adc->pbus.pbus->pbdma_ctrl & HPC3_PDMACTRL_ISACT) &&
adc->tail->info.cnt == 0)
hal2_start_adc(hal2);
DEBUG("... ");
while (adc->tail->info.cnt > 0 && count > 0) {
size = min(adc->tail->info.cnt, count);
spin_unlock_irqrestore(&adc->lock, flags);
if (copy_to_user(buffer, &adc->tail->data[H2_BUFFER_SIZE-size],
size)) {
ret = -EFAULT;
goto out;
}
spin_lock_irqsave(&adc->lock, flags);
adc->tail->info.cnt -= size;
/* buffer is empty, update tail pointer */
if (adc->tail->info.cnt == 0) {
adc->tail->info.desc.cntinfo = HPCDMA_XIE |
H2_BUFFER_SIZE;
dma_cache_wback_inv((unsigned long) adc->tail,
sizeof(struct hpc_dma_desc));
adc->tail = adc->tail->info.next;
/* enable DMA stream again if needed */
if (!(adc->pbus.pbus->pbdma_ctrl & HPC3_PDMACTRL_ISACT))
hal2_start_adc(hal2);
}
buffer += size;
ret += size;
count -= size;
DEBUG("(%d) ", size);
}
spin_unlock_irqrestore(&adc->lock, flags);
out:
DEBUG("\n");
return ret;
}
/*
* Add 'count' bytes from 'buffer' to DMA ring buffers. Return number of
* bytes added or -EFAULT if copy_from_user failed.
*/
static int hal2_add_buffer(hal2_card_t *hal2, char *buffer, int count)
{
unsigned long flags;
int size, ret = 0;
hal2_codec_t *dac = &hal2->dac;
spin_lock_irqsave(&dac->lock, flags);
DEBUG("adding %d bytes ", count);
while (dac->head->info.cnt == 0 && count > 0) {
size = min((int)H2_BUFFER_SIZE, count);
spin_unlock_irqrestore(&dac->lock, flags);
if (copy_from_user(dac->head->data, buffer, size)) {
ret = -EFAULT;
goto out;
}
spin_lock_irqsave(&dac->lock, flags);
dac->head->info.desc.cntinfo = size | HPCDMA_XIE;
dac->head->info.cnt = size;
dma_cache_wback_inv((unsigned long) dac->head,
size + PAGE_SIZE - H2_BUFFER_SIZE);
buffer += size;
ret += size;
count -= size;
dac->head = dac->head->info.next;
DEBUG("(%d) ", size);
}
if (!(dac->pbus.pbus->pbdma_ctrl & HPC3_PDMACTRL_ISACT) && ret > 0)
hal2_start_dac(hal2);
spin_unlock_irqrestore(&dac->lock, flags);
out:
DEBUG("\n");
return ret;
}
#define hal2_reset_dac_pointer(hal2) hal2_reset_pointer(hal2, 1)
#define hal2_reset_adc_pointer(hal2) hal2_reset_pointer(hal2, 0)
static void hal2_reset_pointer(hal2_card_t *hal2, int is_dac)
{
hal2_codec_t *codec = (is_dac) ? &hal2->dac : &hal2->adc;
DEBUG("hal2_reset_pointer\n");
codec->tail = codec->head;
do {
codec->tail->info.desc.cntinfo = HPCDMA_XIE | (is_dac) ?
HPCDMA_EOX : H2_BUFFER_SIZE;
codec->tail->info.cnt = 0;
dma_cache_wback_inv((unsigned long) codec->tail,
sizeof(struct hpc_dma_desc));
codec->tail = codec->tail->info.next;
} while (codec->tail != codec->head);
}
static int hal2_sync_dac(hal2_card_t *hal2)
{
DECLARE_WAITQUEUE(wait, current);
hal2_codec_t *dac = &hal2->dac;
int ret = 0;
signed long timeout = 1000 * H2_BUFFER_SIZE * 2 * dac->voices *
HZ / dac->sample_rate / 900;
down(&dac->sem);
while (dac->pbus.pbus->pbdma_ctrl & HPC3_PDMACTRL_ISACT) {
add_wait_queue(&dac->dma_wait, &wait);
set_current_state(TASK_INTERRUPTIBLE);
if (!schedule_timeout(timeout))
/* We may get bogus timeout when system is
* heavily loaded */
if (dac->tail->info.cnt) {
printk("HAL2: timeout...\n");
ret = -ETIME;
}
if (signal_pending(current))
ret = -ERESTARTSYS;
if (ret) {
hal2_stop_dac(hal2);
hal2_reset_dac_pointer(hal2);
}
remove_wait_queue(&dac->dma_wait, &wait);
}
up(&dac->sem);
return ret;
}
static int hal2_write_mixer(hal2_card_t *hal2, int index, int vol)
{
unsigned int l, r;
DEBUG_MIX("mixer %d write\n", index);
if (index >= SOUND_MIXER_NRDEVICES || !mixtable[index].avail)
return -EINVAL;
r = (vol >> 8) & 0xff;
if (r > 100)
r = 100;
l = vol & 0xff;
if (l > 100)
l = 100;
hal2->mixer.volume[mixtable[index].idx] = l | (r << 8);
switch (mixtable[index].idx) {
case H2_MIX_OUTPUT_ATT: {
DEBUG_MIX("output attenuator %d,%d\n", l, r);
if (r | l) {
unsigned int tmp = hal2_i_look32(hal2, H2I_DAC_C2);
tmp &= ~(H2I_C2_L_ATT_M | H2I_C2_R_ATT_M | H2I_C2_MUTE);
/* Attenuator has five bits */
l = (31 * (100 - l) / 99);
r = (31 * (100 - r) / 99);
DEBUG_MIX("left: %d, right %d\n", l, r);
tmp |= (l << H2I_C2_L_ATT_SHIFT) & H2I_C2_L_ATT_M;
tmp |= (r << H2I_C2_R_ATT_SHIFT) & H2I_C2_R_ATT_M;
hal2_i_write32(hal2, H2I_DAC_C2, tmp);
} else
hal2_i_setbit32(hal2, H2I_DAC_C2, H2I_C2_MUTE);
}
case H2_MIX_INPUT_GAIN: {
/* TODO */
}
}
return 0;
}
static void hal2_init_mixer(hal2_card_t *hal2)
{
int i;
for (i = 0; i < SOUND_MIXER_NRDEVICES; i++)
hal2_write_mixer(hal2, i, 100 | (100 << 8));
}
static int hal2_mixer_ioctl(hal2_card_t *hal2, unsigned int cmd,
unsigned long arg)
{
int val;
if (cmd == SOUND_MIXER_INFO) {
mixer_info info;
strncpy(info.id, hal2str, sizeof(info.id));
strncpy(info.name, hal2str, sizeof(info.name));
info.modify_counter = hal2->mixer.modcnt;
if (copy_to_user((void *)arg, &info, sizeof(info)))
return -EFAULT;
return 0;
}
if (cmd == SOUND_OLD_MIXER_INFO) {
_old_mixer_info info;
strncpy(info.id, hal2str, sizeof(info.id));
strncpy(info.name, hal2str, sizeof(info.name));
if (copy_to_user((void *)arg, &info, sizeof(info)))
return -EFAULT;
return 0;
}
if (cmd == OSS_GETVERSION)
return put_user(SOUND_VERSION, (int *)arg);
if (_IOC_TYPE(cmd) != 'M' || _IOC_SIZE(cmd) != sizeof(int))
return -EINVAL;
if (_IOC_DIR(cmd) == _IOC_READ) {
switch (_IOC_NR(cmd)) {
/* Give the current record source */
case SOUND_MIXER_RECSRC:
val = 0; /* FIXME */
break;
/* Give the supported mixers, all of them support stereo */
case SOUND_MIXER_DEVMASK:
case SOUND_MIXER_STEREODEVS: {
int i;
for (val = i = 0; i < SOUND_MIXER_NRDEVICES; i++)
if (mixtable[i].avail)
val |= 1 << i;
break;
}
/* Arg contains a bit for each supported recording source */
case SOUND_MIXER_RECMASK:
val = 0;
break;
case SOUND_MIXER_CAPS:
val = 0;
break;
/* Read a specific mixer */
default: {
int i = _IOC_NR(cmd);
if (i >= SOUND_MIXER_NRDEVICES || !mixtable[i].avail)
return -EINVAL;
val = hal2->mixer.volume[mixtable[i].idx];
break;
}
}
return put_user(val, (int *)arg);
}
if (_IOC_DIR(cmd) != (_IOC_WRITE|_IOC_READ))
return -EINVAL;
hal2->mixer.modcnt++;
if (get_user(val, (int *)arg))
return -EFAULT;
switch (_IOC_NR(cmd)) {
/* Arg contains a bit for each recording source */
case SOUND_MIXER_RECSRC:
return 0; /* FIXME */
default:
return hal2_write_mixer(hal2, _IOC_NR(cmd), val);
}
return 0;
}
static int hal2_open_mixdev(struct inode *inode, struct file *file)
{
hal2_card_t *hal2 = hal2_mixer_find_card(MINOR(inode->i_rdev));
if (hal2) {
file->private_data = hal2;
return 0;
}
return -ENODEV;
}
static int hal2_release_mixdev(struct inode *inode, struct file *file)
{
return 0;
}
static int hal2_ioctl_mixdev(struct inode *inode, struct file *file,
unsigned int cmd, unsigned long arg)
{
return hal2_mixer_ioctl((hal2_card_t *)file->private_data, cmd, arg);
}
static int hal2_ioctl(struct inode *inode, struct file *file,
unsigned int cmd, unsigned long arg)
{
int val;
hal2_card_t *hal2 = (hal2_card_t *) file->private_data;
switch (cmd) {
case OSS_GETVERSION:
return put_user(SOUND_VERSION, (int *)arg);
case SNDCTL_DSP_SYNC:
if (file->f_mode & FMODE_WRITE)
return hal2_sync_dac(hal2);
return 0;
case SNDCTL_DSP_SETDUPLEX:
return 0;
case SNDCTL_DSP_GETCAPS:
return put_user(DSP_CAP_DUPLEX | DSP_CAP_MULTI, (int *)arg);
case SNDCTL_DSP_RESET:
if (file->f_mode & FMODE_READ) {
hal2_stop_adc(hal2);
hal2_reset_adc_pointer(hal2);
}
if (file->f_mode & FMODE_WRITE) {
hal2_stop_dac(hal2);
hal2_reset_dac_pointer(hal2);
}
return 0;
case SNDCTL_DSP_SPEED:
if (get_user(val, (int *)arg))
return -EFAULT;
if (file->f_mode & FMODE_READ) {
hal2_stop_adc(hal2);
val = hal2_compute_rate(&hal2->adc, val);
hal2->adc.sample_rate = val;
hal2_set_adc_rate(hal2);
}
if (file->f_mode & FMODE_WRITE) {
hal2_stop_dac(hal2);
val = hal2_compute_rate(&hal2->dac, val);
hal2->dac.sample_rate = val;
hal2_set_dac_rate(hal2);
}
return put_user(val, (int *)arg);
case SNDCTL_DSP_STEREO:
if (get_user(val, (int *)arg))
return -EFAULT;
if (file->f_mode & FMODE_READ) {
hal2_stop_adc(hal2);
hal2->adc.voices = (val) ? 2 : 1;
hal2_setup_adc(hal2);
}
if (file->f_mode & FMODE_WRITE) {
hal2_stop_dac(hal2);
hal2->dac.voices = (val) ? 2 : 1;
hal2_setup_dac(hal2);
}
return 0;
case SNDCTL_DSP_CHANNELS:
if (get_user(val, (int *)arg))
return -EFAULT;
if (val != 0) {
if (file->f_mode & FMODE_READ) {
hal2_stop_adc(hal2);
hal2->adc.voices = (val == 1) ? 1 : 2;
hal2_setup_adc(hal2);
}
if (file->f_mode & FMODE_WRITE) {
hal2_stop_dac(hal2);
hal2->dac.voices = (val == 1) ? 1 : 2;
hal2_setup_dac(hal2);
}
}
val = -EINVAL;
if (file->f_mode & FMODE_READ)
val = hal2->adc.voices;
if (file->f_mode & FMODE_WRITE)
val = hal2->dac.voices;
return put_user(val, (int *)arg);
case SNDCTL_DSP_GETFMTS: /* Returns a mask */
return put_user(H2_SUPPORTED_FORMATS, (int *)arg);
case SNDCTL_DSP_SETFMT: /* Selects ONE fmt*/
if (get_user(val, (int *)arg))
return -EFAULT;
if (val != AFMT_QUERY) {
if (!(val & H2_SUPPORTED_FORMATS))
return -EINVAL;
if (file->f_mode & FMODE_READ) {
hal2_stop_adc(hal2);
hal2->adc.format = val;
hal2_setup_adc(hal2);
}
if (file->f_mode & FMODE_WRITE) {
hal2_stop_dac(hal2);
hal2->dac.format = val;
hal2_setup_dac(hal2);
}
} else {
val = -EINVAL;
if (file->f_mode & FMODE_READ)
val = hal2->adc.format;
if (file->f_mode & FMODE_WRITE)
val = hal2->dac.format;
}
return put_user(val, (int *)arg);
case SNDCTL_DSP_POST:
return 0;
case SNDCTL_DSP_GETOSPACE: {
unsigned long flags;
audio_buf_info info;
hal2_buf_t *buf;
hal2_codec_t *dac = &hal2->dac;
if (!(file->f_mode & FMODE_WRITE))
return -EINVAL;
spin_lock_irqsave(&dac->lock, flags);
info.fragments = 0;
buf = dac->head;
while (buf->info.cnt == 0 && buf != dac->tail) {
info.fragments++;
buf = buf->info.next;
}
spin_unlock_irqrestore(&dac->lock, flags);
info.fragstotal = obuffers;
info.fragsize = H2_BUFFER_SIZE;
info.bytes = info.fragsize * info.fragments;
return copy_to_user((void *)arg, &info, sizeof(info)) ? -EFAULT : 0;
}
case SNDCTL_DSP_GETISPACE: {
unsigned long flags;
audio_buf_info info;
hal2_buf_t *buf;
hal2_codec_t *adc = &hal2->adc;
if (!(file->f_mode & FMODE_READ))
return -EINVAL;
spin_lock_irqsave(&adc->lock, flags);
info.fragments = 0;
info.bytes = 0;
buf = adc->tail;
while (buf->info.cnt > 0 && buf != adc->head) {
info.fragments++;
info.bytes += buf->info.cnt;
buf = buf->info.next;
}
spin_unlock_irqrestore(&adc->lock, flags);
info.fragstotal = ibuffers;
info.fragsize = H2_BUFFER_SIZE;
return copy_to_user((void *)arg, &info, sizeof(info)) ? -EFAULT : 0;
}
case SNDCTL_DSP_NONBLOCK:
file->f_flags |= O_NONBLOCK;
return 0;
case SNDCTL_DSP_GETBLKSIZE:
return put_user(H2_BUFFER_SIZE, (int *)arg);
case SNDCTL_DSP_SETFRAGMENT:
return 0;
case SOUND_PCM_READ_RATE:
val = -EINVAL;
if (file->f_mode & FMODE_READ)
val = hal2->adc.sample_rate;
if (file->f_mode & FMODE_WRITE)
val = hal2->dac.sample_rate;
return put_user(val, (int *)arg);
case SOUND_PCM_READ_CHANNELS:
val = -EINVAL;
if (file->f_mode & FMODE_READ)
val = hal2->adc.voices;
if (file->f_mode & FMODE_WRITE)
val = hal2->dac.voices;
return put_user(val, (int *)arg);
case SOUND_PCM_READ_BITS:
val = 16;
return put_user(val, (int *)arg);
}
return hal2_mixer_ioctl(hal2, cmd, arg);
}
static ssize_t hal2_read(struct file *file, char *buffer,
size_t count, loff_t *ppos)
{
ssize_t err;
hal2_card_t *hal2 = (hal2_card_t *) file->private_data;
hal2_codec_t *adc = &hal2->adc;
if (count == 0)
return 0;
if (ppos != &file->f_pos)
return -ESPIPE;
down(&adc->sem);
if (file->f_flags & O_NONBLOCK) {
err = hal2_get_buffer(hal2, buffer, count);
err = err == 0 ? -EAGAIN : err;
} else {
do {
/* ~10% longer */
signed long timeout = 1000 * H2_BUFFER_SIZE *
2 * adc->voices * HZ / adc->sample_rate / 900;
DECLARE_WAITQUEUE(wait, current);
ssize_t cnt = 0;
err = hal2_get_buffer(hal2, buffer, count);
if (err > 0) {
count -= err;
cnt += err;
buffer += err;
err = cnt;
}
if (count > 0 && err >= 0) {
add_wait_queue(&adc->dma_wait, &wait);
set_current_state(TASK_INTERRUPTIBLE);
/* Well, it is possible, that interrupt already
* arrived. Hmm, shit happens, we have one more
* buffer filled ;) */
if (!schedule_timeout(timeout))
/* We may get bogus timeout when system
* is heavily loaded */
if (!adc->tail->info.cnt) {
printk("HAL2: timeout...\n");
hal2_stop_adc(hal2);
hal2_reset_adc_pointer(hal2);
err = -EAGAIN;
}
if (signal_pending(current))
err = -ERESTARTSYS;
remove_wait_queue(&adc->dma_wait, &wait);
}
} while (count > 0 && err >= 0);
}
up(&adc->sem);
return err;
}
static ssize_t hal2_write(struct file *file, const char *buffer,
size_t count, loff_t *ppos)
{
ssize_t err;
char *buf = (char*) buffer;
hal2_card_t *hal2 = (hal2_card_t *) file->private_data;
hal2_codec_t *dac = &hal2->dac;
if (count == 0)
return 0;
if (ppos != &file->f_pos)
return -ESPIPE;
down(&dac->sem);
if (file->f_flags & O_NONBLOCK) {
err = hal2_add_buffer(hal2, buf, count);
err = err == 0 ? -EAGAIN : err;
} else {
do {
/* ~10% longer */
signed long timeout = 1000 * H2_BUFFER_SIZE *
2 * dac->voices * HZ / dac->sample_rate / 900;
DECLARE_WAITQUEUE(wait, current);
ssize_t cnt = 0;
err = hal2_add_buffer(hal2, buf, count);
if (err > 0) {
count -= err;
cnt += err;
buf += err;
err = cnt;
}
if (count > 0 && err >= 0) {
add_wait_queue(&dac->dma_wait, &wait);
set_current_state(TASK_INTERRUPTIBLE);
/* Well, it is possible, that interrupt already
* arrived. Hmm, shit happens, we have one more
* buffer free ;) */
if (!schedule_timeout(timeout))
/* We may get bogus timeout when system
* is heavily loaded */
if (dac->head->info.cnt) {
printk("HAL2: timeout...\n");
hal2_stop_dac(hal2);
hal2_reset_dac_pointer(hal2);
err = -EAGAIN;
}
if (signal_pending(current))
err = -ERESTARTSYS;
remove_wait_queue(&dac->dma_wait, &wait);
}
} while (count > 0 && err >= 0);
}
up(&dac->sem);
return err;
}
static unsigned int hal2_poll(struct file *file, struct poll_table_struct *wait)
{
unsigned long flags;
unsigned int mask = 0;
hal2_card_t *hal2 = (hal2_card_t *) file->private_data;
if (file->f_mode & FMODE_READ) {
hal2_codec_t *adc = &hal2->adc;
poll_wait(file, &hal2->adc.dma_wait, wait);
spin_lock_irqsave(&adc->lock, flags);
if (adc->tail->info.cnt > 0)
mask |= POLLIN;
spin_unlock_irqrestore(&adc->lock, flags);
}
if (file->f_mode & FMODE_WRITE) {
hal2_codec_t *dac = &hal2->dac;
poll_wait(file, &dac->dma_wait, wait);
spin_lock_irqsave(&dac->lock, flags);
if (dac->head->info.cnt == 0)
mask |= POLLOUT;
spin_unlock_irqrestore(&dac->lock, flags);
}
return mask;
}
static int hal2_open(struct inode *inode, struct file *file)
{
int err;
hal2_card_t *hal2 = hal2_dsp_find_card(MINOR(inode->i_rdev));
DEBUG("opening audio device.\n");
if (!hal2) {
printk("HAL2: Whee?! Open door and go away!\n");
return -ENODEV;
}
file->private_data = hal2;
if (file->f_mode & FMODE_READ) {
if (hal2->adc.usecount)
return -EBUSY;
/* OSS spec wanted us to use 8 bit, 8 kHz mono by default,
* but HAL2 can't do 8bit audio */
hal2->adc.format = AFMT_S16_BE;
hal2->adc.voices = 1;
hal2->adc.sample_rate = hal2_compute_rate(&hal2->adc, 8000);
hal2_set_adc_rate(hal2);
/* alloc DMA buffers */
err = hal2_alloc_adc_dmabuf(hal2);
if (err)
return err;
hal2_setup_adc(hal2);
hal2->adc.usecount++;
}
if (file->f_mode & FMODE_WRITE) {
if (hal2->dac.usecount)
return -EBUSY;
hal2->dac.format = AFMT_S16_BE;
hal2->dac.voices = 1;
hal2->dac.sample_rate = hal2_compute_rate(&hal2->dac, 8000);
hal2_set_dac_rate(hal2);
/* alloc DMA buffers */
err = hal2_alloc_dac_dmabuf(hal2);
if (err)
return err;
hal2_setup_dac(hal2);
hal2->dac.usecount++;
}
return 0;
}
static int hal2_release(struct inode *inode, struct file *file)
{
hal2_card_t *hal2 = (hal2_card_t *) file->private_data;
if (file->f_mode & FMODE_READ) {
hal2_stop_adc(hal2);
hal2_free_adc_dmabuf(hal2);
hal2->adc.usecount--;
}
if (file->f_mode & FMODE_WRITE) {
hal2_sync_dac(hal2);
hal2_free_dac_dmabuf(hal2);
hal2->dac.usecount--;
}
return 0;
}
static struct file_operations hal2_audio_fops = {
owner: THIS_MODULE,
llseek: no_llseek,
read: hal2_read,
write: hal2_write,
poll: hal2_poll,
ioctl: hal2_ioctl,
open: hal2_open,
release: hal2_release,
};
static struct file_operations hal2_mixer_fops = {
owner: THIS_MODULE,
llseek: no_llseek,
ioctl: hal2_ioctl_mixdev,
open: hal2_open_mixdev,
release: hal2_release_mixdev,
};
static int hal2_request_irq(hal2_card_t *hal2, int irq)
{
unsigned long flags;
int ret = 0;
save_and_cli(flags);
if (request_irq(irq, hal2_interrupt, SA_SHIRQ, hal2str, hal2)) {
printk(KERN_ERR "HAL2: Can't get irq %d\n", irq);
ret = -EAGAIN;
}
restore_flags(flags);
return ret;
}
static int hal2_alloc_resources(hal2_card_t *hal2, struct hpc3_regs *hpc3)
{
hal2_pbus_t *pbus;
pbus = &hal2->dac.pbus;
pbus->pbusnr = 0;
pbus->pbus = &hpc3->pbdma[pbus->pbusnr];
/* The spec says that we should write 0x08248844 but that's WRONG. HAL2
* does 8 bit DMA, not 16 bit even if it generates 16 bit audio. */
hpc3->pbus_dmacfgs[pbus->pbusnr][0] = 0x08208844; /* Magic :-) */
pbus = &hal2->adc.pbus;
pbus->pbusnr = 1;
pbus->pbus = &hpc3->pbdma[pbus->pbusnr];
hpc3->pbus_dmacfgs[pbus->pbusnr][0] = 0x08208844; /* Magic :-) */
return hal2_request_irq(hal2, SGI_HPCDMA_IRQ);
}
static void hal2_init_codec(hal2_codec_t *codec)
{
init_waitqueue_head(&codec->dma_wait);
init_MUTEX(&codec->sem);
spin_lock_init(&codec->lock);
}
static void hal2_free_resources(hal2_card_t *hal2)
{
free_irq(SGI_HPCDMA_IRQ, hal2);
}
static int hal2_detect(hal2_card_t *hal2)
{
unsigned short board, major, minor;
unsigned short rev;
/* reset HAL2 */
hal2_isr_write(hal2, 0);
/* release reset */
hal2_isr_write(hal2, H2_ISR_GLOBAL_RESET_N | H2_ISR_CODEC_RESET_N);
hal2_i_write16(hal2, H2I_RELAY_C, H2I_RELAY_C_STATE);
if ((rev = hal2_rev_look(hal2)) & H2_REV_AUDIO_PRESENT) {
DEBUG("HAL2: no device detected, rev: 0x%04hx\n", rev);
return -ENODEV;
}
board = (rev & H2_REV_BOARD_M) >> 12;
major = (rev & H2_REV_MAJOR_CHIP_M) >> 4;
minor = (rev & H2_REV_MINOR_CHIP_M);
printk("SGI HAL2 Processor revision %i.%i.%i detected\n",
board, major, minor);
if (board != 4 || major != 1 || minor != 0)
printk( "Other revision than 4.1.0 detected. "
"Your card is probably unsupported\n");
return 0;
}
static int hal2_init_card(hal2_card_t **phal2, struct hpc3_regs *hpc3,
unsigned long hpc3_base)
{
int ret = 0;
hal2_card_t *hal2;
hal2 = (hal2_card_t *) kmalloc(sizeof(hal2_card_t), GFP_KERNEL);
if (!hal2)
return -ENOMEM;
memset(hal2, 0, sizeof(hal2_card_t));
hal2->ctl_regs = (hal2_ctl_regs_t *) KSEG1ADDR(hpc3_base + H2_CTL_PIO);
hal2->aes_regs = (hal2_aes_regs_t *) KSEG1ADDR(hpc3_base + H2_AES_PIO);
hal2->vol_regs = (hal2_vol_regs_t *) KSEG1ADDR(hpc3_base + H2_VOL_PIO);
hal2->syn_regs = (hal2_syn_regs_t *) KSEG1ADDR(hpc3_base + H2_SYN_PIO);
if (hal2_detect(hal2) < 0) {
printk("HAL2 audio processor not found\n");
ret = -ENODEV;
goto fail1;
}
hal2_init_codec(&hal2->dac);
hal2_init_codec(&hal2->adc);
ret = hal2_alloc_resources(hal2, hpc3);
if (ret)
goto fail1;
hal2_init_mixer(hal2);
hal2->dev_dsp = register_sound_dsp(&hal2_audio_fops, -1);
if (hal2->dev_dsp < 0) {
ret = hal2->dev_dsp;
goto fail2;
}
hal2->dev_mixer = register_sound_mixer(&hal2_mixer_fops, -1);
if (hal2->dev_mixer < 0) {
ret = hal2->dev_mixer;
goto fail3;
}
*phal2 = hal2;
return 0;
fail3:
unregister_sound_dsp(hal2->dev_dsp);
fail2:
hal2_free_resources(hal2);
fail1:
kfree(hal2);
return ret;
}
/*
* We are assuming only one HAL2 card. If you ever meet machine with more than
* one, tell immediately about it to someone. Preferably to me. --ladis
*/
static int __init init_hal2(void)
{
int i;
for (i = 0; i < MAXCARDS; i++)
hal2_card[i] = NULL;
return hal2_init_card(&hal2_card[0], hpc3c0, HPC3_CHIP0_PBASE);
}
static void __exit exit_hal2(void)
{
int i;
for (i = 0; i < MAXCARDS; i++)
if (hal2_card[i]) {
hal2_free_resources(hal2_card[i]);
unregister_sound_dsp(hal2_card[i]->dev_dsp);
unregister_sound_mixer(hal2_card[i]->dev_mixer);
kfree(hal2_card[i]);
}
}
module_init(init_hal2);
module_exit(exit_hal2);
MODULE_DESCRIPTION("OSS compatible driver for SGI HAL2 audio");
MODULE_AUTHOR("Ladislav Michl");
MODULE_LICENSE("GPL");
#ifndef __HAL2_H
#define __HAL2_H
/*
* Driver for HAL2 sound processors
* Copyright (c) 1999 Ulf Carlsson <ulfc@bun.falkenberg.se>
* Copyright (c) 2001 Ladislav Michl <ladis@psi.cz>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
*/
#include <asm/addrspace.h>
#include <asm/sgi/sgihpc.h>
#include <linux/spinlock.h>
#include <linux/types.h>
#define H2_HAL2_BASE 0x58000
#define H2_CTL_PIO (H2_HAL2_BASE + 0 * 0x400)
#define H2_AES_PIO (H2_HAL2_BASE + 1 * 0x400)
#define H2_VOL_PIO (H2_HAL2_BASE + 2 * 0x400)
#define H2_SYN_PIO (H2_HAL2_BASE + 3 * 0x400)
/* Indirect status register */
#define H2_ISR_TSTATUS 0x01 /* RO: transaction status 1=busy */
#define H2_ISR_USTATUS 0x02 /* RO: utime status bit 1=armed */
#define H2_ISR_QUAD_MODE 0x04 /* codec mode 0=indigo 1=quad */
#define H2_ISR_GLOBAL_RESET_N 0x08 /* chip global reset 0=reset */
#define H2_ISR_CODEC_RESET_N 0x10 /* codec/synth reset 0=reset */
/* Revision register */
#define H2_REV_AUDIO_PRESENT 0x8000 /* RO: audio present 0=present */
#define H2_REV_BOARD_M 0x7000 /* RO: bits 14:12, board revision */
#define H2_REV_MAJOR_CHIP_M 0x00F0 /* RO: bits 7:4, major chip revision */
#define H2_REV_MINOR_CHIP_M 0x000F /* RO: bits 3:0, minor chip revision */
/* Indirect address register */
/*
* Address of indirect internal register to be accessed. A write to this
* register initiates read or write access to the indirect registers in the
* HAL2. Note that there af four indirect data registers for write access to
* registers larger than 16 byte.
*/
#define H2_IAR_TYPE_M 0xF000 /* bits 15:12, type of functional */
/* block the register resides in */
/* 1=DMA Port */
/* 9=Global DMA Control */
/* 2=Bresenham */
/* 3=Unix Timer */
#define H2_IAR_NUM_M 0x0F00 /* bits 11:8 instance of the */
/* blockin which the indirect */
/* register resides */
/* If IAR_TYPE_M=DMA Port: */
/* 1=Synth In */
/* 2=AES In */
/* 3=AES Out */
/* 4=DAC Out */
/* 5=ADC Out */
/* 6=Synth Control */
/* If IAR_TYPE_M=Global DMA Control: */
/* 1=Control */
/* If IAR_TYPE_M=Bresenham: */
/* 1=Bresenham Clock Gen 1 */
/* 2=Bresenham Clock Gen 2 */
/* 3=Bresenham Clock Gen 3 */
/* If IAR_TYPE_M=Unix Timer: */
/* 1=Unix Timer */
#define H2_IAR_ACCESS_SELECT 0x0080 /* 1=read 0=write */
#define H2_IAR_PARAM 0x000C /* Parameter Select */
#define H2_IAR_RB_INDEX_M 0x0003 /* Read Back Index */
/* 00:word0 */
/* 01:word1 */
/* 10:word2 */
/* 11:word3 */
/*
* HAL2 internal addressing
*
* The HAL2 has "indirect registers" (idr) which are accessed by writing to the
* Indirect Data registers. Write the address to the Indirect Address register
* to transfer the data.
*
* We define the H2IR_* to the read address and H2IW_* to the write address and
* H2I_* to be fields in whatever register is referred to.
*
* When we write to indirect registers which are larger than one word (16 bit)
* we have to fill more than one indirect register before writing. When we read
* back however we have to read several times, each time with different Read
* Back Indexes (there are defs for doing this easily).
*/
/*
* Relay Control
*/
#define H2I_RELAY_C 0x9100
#define H2I_RELAY_C_STATE 0x01 /* state of RELAY pin signal */
/* DMA port enable */
#define H2I_DMA_PORT_EN 0x9104
#define H2I_DMA_PORT_EN_SY_IN 0x01 /* Synth_in DMA port */
#define H2I_DMA_PORT_EN_AESRX 0x02 /* AES receiver DMA port */
#define H2I_DMA_PORT_EN_AESTX 0x04 /* AES transmitter DMA port */
#define H2I_DMA_PORT_EN_CODECTX 0x08 /* CODEC transmit DMA port */
#define H2I_DMA_PORT_EN_CODECR 0x10 /* CODEC receive DMA port */
#define H2I_DMA_END 0x9108 /* global dma endian select */
#define H2I_DMA_END_SY_IN 0x01 /* Synth_in DMA port */
#define H2I_DMA_END_AESRX 0x02 /* AES receiver DMA port */
#define H2I_DMA_END_AESTX 0x04 /* AES transmitter DMA port */
#define H2I_DMA_END_CODECTX 0x08 /* CODEC transmit DMA port */
#define H2I_DMA_END_CODECR 0x10 /* CODEC receive DMA port */
/* 0=b_end 1=l_end */
#define H2I_DMA_DRV 0x910C /* global PBUS DMA enable */
#define H2I_SYNTH_C 0x1104 /* Synth DMA control */
#define H2I_AESRX_C 0x1204 /* AES RX dma control */
#define H2I_C_TS_EN 0x20 /* Timestamp enable */
#define H2I_C_TS_FRMT 0x40 /* Timestamp format */
#define H2I_C_NAUDIO 0x80 /* Sign extend */
/* AESRX CTL, 16 bit */
#define H2I_AESTX_C 0x1304 /* AES TX DMA control */
#define H2I_AESTX_C_CLKID_SHIFT 3 /* Bresenham Clock Gen 1-3 */
#define H2I_AESTX_C_CLKID_M 0x18
#define H2I_AESTX_C_DATAT_SHIFT 8 /* 1=mono 2=stereo (3=quad) */
#define H2I_AESTX_C_DATAT_M 0x300
/* CODEC registers */
#define H2I_DAC_C1 0x1404 /* DAC DMA control, 16 bit */
#define H2I_DAC_C2 0x1408 /* DAC DMA control, 32 bit */
#define H2I_ADC_C1 0x1504 /* ADC DMA control, 16 bit */
#define H2I_ADC_C2 0x1508 /* ADC DMA control, 32 bit */
/* Bits in CTL1 register */
#define H2I_C1_DMA_SHIFT 0 /* DMA channel */
#define H2I_C1_DMA_M 0x7
#define H2I_C1_CLKID_SHIFT 3 /* Bresenham Clock Gen 1-3 */
#define H2I_C1_CLKID_M 0x18
#define H2I_C1_DATAT_SHIFT 8 /* 1=mono 2=stereo (3=quad) */
#define H2I_C1_DATAT_M 0x300
/* Bits in CTL2 register */
#define H2I_C2_R_GAIN_SHIFT 0 /* right a/d input gain */
#define H2I_C2_R_GAIN_M 0xf
#define H2I_C2_L_GAIN_SHIFT 4 /* left a/d input gain */
#define H2I_C2_L_GAIN_M 0xf0
#define H2I_C2_R_SEL 0x100 /* right input select */
#define H2I_C2_L_SEL 0x200 /* left input select */
#define H2I_C2_MUTE 0x400 /* mute */
#define H2I_C2_DO1 0x00010000 /* digital output port bit 0 */
#define H2I_C2_DO2 0x00020000 /* digital output port bit 1 */
#define H2I_C2_R_ATT_SHIFT 18 /* right d/a output - */
#define H2I_C2_R_ATT_M 0x007c0000 /* attenuation */
#define H2I_C2_L_ATT_SHIFT 23 /* left d/a output - */
#define H2I_C2_L_ATT_M 0x0f800000 /* attenuation */
#define H2I_SYNTH_MAP_C 0x1104 /* synth dma handshake ctrl */
/* Clock generator CTL 1, 16 bit */
#define H2I_BRES1_C1 0x2104
#define H2I_BRES2_C1 0x2204
#define H2I_BRES3_C1 0x2304
#define H2I_BRES_C1_SHIFT 0 /* 0=48.0 1=44.1 2=aes_rx */
#define H2I_BRES_C1_M 0x03
/* Clock generator CTL 2, 32 bit */
#define H2I_BRES1_C2 0x2108
#define H2I_BRES2_C2 0x2208
#define H2I_BRES3_C2 0x2308
#define H2I_BRES_C2_INC_SHIFT 0 /* increment value */
#define H2I_BRES_C2_INC_M 0xffff
#define H2I_BRES_C2_MOD_SHIFT 16 /* modcontrol value */
#define H2I_BRES_C2_MOD_M 0xffff0000 /* modctrl=0xffff&(modinc-1) */
/* Unix timer, 64 bit */
#define H2I_UTIME 0x3104
#define H2I_UTIME_0_LD 0xffff /* microseconds, LSB's */
#define H2I_UTIME_1_LD0 0x0f /* microseconds, MSB's */
#define H2I_UTIME_1_LD1 0xf0 /* tenths of microseconds */
#define H2I_UTIME_2_LD 0xffff /* seconds, LSB's */
#define H2I_UTIME_3_LD 0xffff /* seconds, MSB's */
typedef volatile u32 hal2_reg_t;
typedef struct stru_hal2_ctl_regs hal2_ctl_regs_t;
struct stru_hal2_ctl_regs {
hal2_reg_t _unused0[4];
hal2_reg_t isr; /* 0x10 Status Register */
hal2_reg_t _unused1[3];
hal2_reg_t rev; /* 0x20 Revision Register */
hal2_reg_t _unused2[3];
hal2_reg_t iar; /* 0x30 Indirect Address Register */
hal2_reg_t _unused3[3];
hal2_reg_t idr0; /* 0x40 Indirect Data Register 0 */
hal2_reg_t _unused4[3];
hal2_reg_t idr1; /* 0x50 Indirect Data Register 1 */
hal2_reg_t _unused5[3];
hal2_reg_t idr2; /* 0x60 Indirect Data Register 2 */
hal2_reg_t _unused6[3];
hal2_reg_t idr3; /* 0x70 Indirect Data Register 3 */
};
typedef struct stru_hal2_aes_regs hal2_aes_regs_t;
struct stru_hal2_aes_regs {
hal2_reg_t rx_stat[2]; /* Status registers */
hal2_reg_t rx_cr[2]; /* Control registers */
hal2_reg_t rx_ud[4]; /* User data window */
hal2_reg_t rx_st[24]; /* Channel status data */
hal2_reg_t tx_stat[1]; /* Status register */
hal2_reg_t tx_cr[3]; /* Control registers */
hal2_reg_t tx_ud[4]; /* User data window */
hal2_reg_t tx_st[24]; /* Channel status data */
};
typedef struct stru_hal2_vol_regs hal2_vol_regs_t;
struct stru_hal2_vol_regs {
hal2_reg_t right; /* 0x00 Right volume */
hal2_reg_t left; /* 0x04 Left volume */
};
typedef struct stru_hal2_syn_regs hal2_syn_regs_t;
struct stru_hal2_syn_regs {
hal2_reg_t _unused0[2];
hal2_reg_t page; /* DOC Page register */
hal2_reg_t regsel; /* DOC Register selection */
hal2_reg_t dlow; /* DOC Data low */
hal2_reg_t dhigh; /* DOC Data high */
hal2_reg_t irq; /* IRQ Status */
hal2_reg_t dram; /* DRAM Access */
};
/* HAL2 specific structures */
typedef struct stru_hal2_pbus hal2_pbus_t;
struct stru_hal2_pbus {
struct hpc3_pbus_dmacregs *pbus;
int pbusnr;
unsigned int ctrl; /* Current state of pbus->pbdma_ctrl */
};
typedef struct stru_hal2_binfo hal2_binfo_t;
typedef struct stru_hal2_buffer hal2_buf_t;
struct stru_hal2_binfo {
volatile struct hpc_dma_desc desc;
hal2_buf_t *next; /* pointer to next buffer */
int cnt; /* bytes in buffer */
};
#define H2_BUFFER_SIZE (PAGE_SIZE - \
((sizeof(hal2_binfo_t) - 1) / 8 + 1) * 8)
struct stru_hal2_buffer {
hal2_binfo_t info;
char data[H2_BUFFER_SIZE] __attribute__((aligned(8)));
};
typedef struct stru_hal2_codec hal2_codec_t;
struct stru_hal2_codec {
hal2_buf_t *head;
hal2_buf_t *tail;
hal2_pbus_t pbus;
unsigned int format; /* Audio data format */
int voices; /* mono/stereo */
unsigned int sample_rate;
unsigned int master; /* Master frequency */
unsigned short mod; /* MOD value */
unsigned short inc; /* INC value */
wait_queue_head_t dma_wait;
spinlock_t lock;
struct semaphore sem;
int usecount; /* recording and playback are
* independent */
};
#define H2_MIX_OUTPUT_ATT 0
#define H2_MIX_INPUT_GAIN 1
#define H2_MIXERS 2
typedef struct stru_hal2_mixer hal2_mixer_t;
struct stru_hal2_mixer {
int modcnt;
unsigned int volume[H2_MIXERS];
};
typedef struct stru_hal2_card hal2_card_t;
struct stru_hal2_card {
int dev_dsp; /* audio device */
int dev_mixer; /* mixer device */
int dev_midi; /* midi device */
hal2_ctl_regs_t *ctl_regs; /* HAL2 ctl registers */
hal2_aes_regs_t *aes_regs; /* HAL2 vol registers */
hal2_vol_regs_t *vol_regs; /* HAL2 aes registers */
hal2_syn_regs_t *syn_regs; /* HAL2 syn registers */
hal2_codec_t dac;
hal2_codec_t adc;
hal2_mixer_t mixer;
};
#endif /* __HAL2_H */
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment