Commit 9730ffcb authored by Varun Prakash's avatar Varun Prakash Committed by Nicholas Bellinger

cxgbit: add files for cxgbit.ko

cxgbit.h - This file contains data structure
definitions for cxgbit.ko.

cxgbit_lro.h - This file contains data structure
definitions for LRO support.

cxgbit_main.c - This file contains code for
registering with iscsi target transport and
cxgb4 driver.

cxgbit_cm.c - This file contains code for
connection management.

cxgbit_target.c - This file contains code
for processing iSCSI PDU.

cxgbit_ddp.c - This file contains code for
Direct Data Placement.

(added check for NULL sg in cxgbit_set_one_ppod)
Reported-by: default avatarDan Carpenter <dan.carpenter@oracle.com>

(add Kconfig and Makefile v2: added dependency on INET)
Reported-by: default avatarArnd Bergmann <arnd@arndb.de>
Signed-off-by: default avatarVarun Prakash <varun@chelsio.com>
Signed-off-by: default avatarNicholas Bellinger <nab@linux-iscsi.org>
parent d2faaefb
......@@ -7,3 +7,5 @@ config ISCSI_TARGET
help
Say M here to enable the ConfigFS enabled Linux-iSCSI.org iSCSI
Target Mode Stack.
source "drivers/target/iscsi/cxgbit/Kconfig"
......@@ -18,3 +18,4 @@ iscsi_target_mod-y += iscsi_target_parameters.o \
iscsi_target_transport.o
obj-$(CONFIG_ISCSI_TARGET) += iscsi_target_mod.o
obj-$(CONFIG_ISCSI_TARGET_CXGB4) += cxgbit/
config ISCSI_TARGET_CXGB4
tristate "Chelsio iSCSI target offload driver"
depends on ISCSI_TARGET && CHELSIO_T4 && INET
select CHELSIO_T4_UWIRE
---help---
To compile this driver as module, choose M here: the module
will be called cxgbit.
ccflags-y := -Idrivers/net/ethernet/chelsio/cxgb4
ccflags-y += -Idrivers/target/iscsi
obj-$(CONFIG_ISCSI_TARGET_CXGB4) += cxgbit.o
cxgbit-y := cxgbit_main.o cxgbit_cm.o cxgbit_target.o cxgbit_ddp.o
/*
* Copyright (c) 2016 Chelsio Communications, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#ifndef __CXGBIT_H__
#define __CXGBIT_H__
#include <linux/mutex.h>
#include <linux/list.h>
#include <linux/spinlock.h>
#include <linux/idr.h>
#include <linux/completion.h>
#include <linux/netdevice.h>
#include <linux/sched.h>
#include <linux/pci.h>
#include <linux/dma-mapping.h>
#include <linux/inet.h>
#include <linux/wait.h>
#include <linux/kref.h>
#include <linux/timer.h>
#include <linux/io.h>
#include <asm/byteorder.h>
#include <net/net_namespace.h>
#include <target/iscsi/iscsi_transport.h>
#include <iscsi_target_parameters.h>
#include <iscsi_target_login.h>
#include "t4_regs.h"
#include "t4_msg.h"
#include "cxgb4.h"
#include "cxgb4_uld.h"
#include "l2t.h"
#include "cxgb4_ppm.h"
#include "cxgbit_lro.h"
extern struct mutex cdev_list_lock;
extern struct list_head cdev_list_head;
struct cxgbit_np;
struct cxgbit_sock;
struct cxgbit_cmd {
struct scatterlist sg;
struct cxgbi_task_tag_info ttinfo;
bool setup_ddp;
bool release;
};
#define CXGBIT_MAX_ISO_PAYLOAD \
min_t(u32, MAX_SKB_FRAGS * PAGE_SIZE, 65535)
struct cxgbit_iso_info {
u8 flags;
u32 mpdu;
u32 len;
u32 burst_len;
};
enum cxgbit_skcb_flags {
SKCBF_TX_NEED_HDR = (1 << 0), /* packet needs a header */
SKCBF_TX_FLAG_COMPL = (1 << 1), /* wr completion flag */
SKCBF_TX_ISO = (1 << 2), /* iso cpl in tx skb */
SKCBF_RX_LRO = (1 << 3), /* lro skb */
};
struct cxgbit_skb_rx_cb {
u8 opcode;
void *pdu_cb;
void (*backlog_fn)(struct cxgbit_sock *, struct sk_buff *);
};
struct cxgbit_skb_tx_cb {
u8 submode;
u32 extra_len;
};
union cxgbit_skb_cb {
struct {
u8 flags;
union {
struct cxgbit_skb_tx_cb tx;
struct cxgbit_skb_rx_cb rx;
};
};
struct {
/* This member must be first. */
struct l2t_skb_cb l2t;
struct sk_buff *wr_next;
};
};
#define CXGBIT_SKB_CB(skb) ((union cxgbit_skb_cb *)&((skb)->cb[0]))
#define cxgbit_skcb_flags(skb) (CXGBIT_SKB_CB(skb)->flags)
#define cxgbit_skcb_submode(skb) (CXGBIT_SKB_CB(skb)->tx.submode)
#define cxgbit_skcb_tx_wr_next(skb) (CXGBIT_SKB_CB(skb)->wr_next)
#define cxgbit_skcb_tx_extralen(skb) (CXGBIT_SKB_CB(skb)->tx.extra_len)
#define cxgbit_skcb_rx_opcode(skb) (CXGBIT_SKB_CB(skb)->rx.opcode)
#define cxgbit_skcb_rx_backlog_fn(skb) (CXGBIT_SKB_CB(skb)->rx.backlog_fn)
#define cxgbit_rx_pdu_cb(skb) (CXGBIT_SKB_CB(skb)->rx.pdu_cb)
static inline void *cplhdr(struct sk_buff *skb)
{
return skb->data;
}
enum cxgbit_cdev_flags {
CDEV_STATE_UP = 0,
CDEV_ISO_ENABLE,
CDEV_DDP_ENABLE,
};
#define NP_INFO_HASH_SIZE 32
struct np_info {
struct np_info *next;
struct cxgbit_np *cnp;
unsigned int stid;
};
struct cxgbit_list_head {
struct list_head list;
/* device lock */
spinlock_t lock;
};
struct cxgbit_device {
struct list_head list;
struct cxgb4_lld_info lldi;
struct np_info *np_hash_tab[NP_INFO_HASH_SIZE];
/* np lock */
spinlock_t np_lock;
u8 selectq[MAX_NPORTS][2];
struct cxgbit_list_head cskq;
u32 mdsl;
struct kref kref;
unsigned long flags;
};
struct cxgbit_wr_wait {
struct completion completion;
int ret;
};
enum cxgbit_csk_state {
CSK_STATE_IDLE = 0,
CSK_STATE_LISTEN,
CSK_STATE_CONNECTING,
CSK_STATE_ESTABLISHED,
CSK_STATE_ABORTING,
CSK_STATE_CLOSING,
CSK_STATE_MORIBUND,
CSK_STATE_DEAD,
};
enum cxgbit_csk_flags {
CSK_TX_DATA_SENT = 0,
CSK_LOGIN_PDU_DONE,
CSK_LOGIN_DONE,
CSK_DDP_ENABLE,
};
struct cxgbit_sock_common {
struct cxgbit_device *cdev;
struct sockaddr_storage local_addr;
struct sockaddr_storage remote_addr;
struct cxgbit_wr_wait wr_wait;
enum cxgbit_csk_state state;
unsigned long flags;
};
struct cxgbit_np {
struct cxgbit_sock_common com;
wait_queue_head_t accept_wait;
struct iscsi_np *np;
struct completion accept_comp;
struct list_head np_accept_list;
/* np accept lock */
spinlock_t np_accept_lock;
struct kref kref;
unsigned int stid;
};
struct cxgbit_sock {
struct cxgbit_sock_common com;
struct cxgbit_np *cnp;
struct iscsi_conn *conn;
struct l2t_entry *l2t;
struct dst_entry *dst;
struct list_head list;
struct sk_buff_head rxq;
struct sk_buff_head txq;
struct sk_buff_head ppodq;
struct sk_buff_head backlogq;
struct sk_buff_head skbq;
struct sk_buff *wr_pending_head;
struct sk_buff *wr_pending_tail;
struct sk_buff *skb;
struct sk_buff *lro_skb;
struct sk_buff *lro_hskb;
struct list_head accept_node;
/* socket lock */
spinlock_t lock;
wait_queue_head_t waitq;
wait_queue_head_t ack_waitq;
bool lock_owner;
struct kref kref;
u32 max_iso_npdu;
u32 wr_cred;
u32 wr_una_cred;
u32 wr_max_cred;
u32 snd_una;
u32 tid;
u32 snd_nxt;
u32 rcv_nxt;
u32 smac_idx;
u32 tx_chan;
u32 mtu;
u32 write_seq;
u32 rx_credits;
u32 snd_win;
u32 rcv_win;
u16 mss;
u16 emss;
u16 plen;
u16 rss_qid;
u16 txq_idx;
u16 ctrlq_idx;
u8 tos;
u8 port_id;
#define CXGBIT_SUBMODE_HCRC 0x1
#define CXGBIT_SUBMODE_DCRC 0x2
u8 submode;
#ifdef CONFIG_CHELSIO_T4_DCB
u8 dcb_priority;
#endif
u8 snd_wscale;
};
void _cxgbit_free_cdev(struct kref *kref);
void _cxgbit_free_csk(struct kref *kref);
void _cxgbit_free_cnp(struct kref *kref);
static inline void cxgbit_get_cdev(struct cxgbit_device *cdev)
{
kref_get(&cdev->kref);
}
static inline void cxgbit_put_cdev(struct cxgbit_device *cdev)
{
kref_put(&cdev->kref, _cxgbit_free_cdev);
}
static inline void cxgbit_get_csk(struct cxgbit_sock *csk)
{
kref_get(&csk->kref);
}
static inline void cxgbit_put_csk(struct cxgbit_sock *csk)
{
kref_put(&csk->kref, _cxgbit_free_csk);
}
static inline void cxgbit_get_cnp(struct cxgbit_np *cnp)
{
kref_get(&cnp->kref);
}
static inline void cxgbit_put_cnp(struct cxgbit_np *cnp)
{
kref_put(&cnp->kref, _cxgbit_free_cnp);
}
static inline void cxgbit_sock_reset_wr_list(struct cxgbit_sock *csk)
{
csk->wr_pending_tail = NULL;
csk->wr_pending_head = NULL;
}
static inline struct sk_buff *cxgbit_sock_peek_wr(const struct cxgbit_sock *csk)
{
return csk->wr_pending_head;
}
static inline void
cxgbit_sock_enqueue_wr(struct cxgbit_sock *csk, struct sk_buff *skb)
{
cxgbit_skcb_tx_wr_next(skb) = NULL;
skb_get(skb);
if (!csk->wr_pending_head)
csk->wr_pending_head = skb;
else
cxgbit_skcb_tx_wr_next(csk->wr_pending_tail) = skb;
csk->wr_pending_tail = skb;
}
static inline struct sk_buff *cxgbit_sock_dequeue_wr(struct cxgbit_sock *csk)
{
struct sk_buff *skb = csk->wr_pending_head;
if (likely(skb)) {
csk->wr_pending_head = cxgbit_skcb_tx_wr_next(skb);
cxgbit_skcb_tx_wr_next(skb) = NULL;
}
return skb;
}
typedef void (*cxgbit_cplhandler_func)(struct cxgbit_device *,
struct sk_buff *);
int cxgbit_setup_np(struct iscsi_np *, struct sockaddr_storage *);
int cxgbit_setup_conn_digest(struct cxgbit_sock *);
int cxgbit_accept_np(struct iscsi_np *, struct iscsi_conn *);
void cxgbit_free_np(struct iscsi_np *);
void cxgbit_free_conn(struct iscsi_conn *);
extern cxgbit_cplhandler_func cxgbit_cplhandlers[NUM_CPL_CMDS];
int cxgbit_get_login_rx(struct iscsi_conn *, struct iscsi_login *);
int cxgbit_rx_data_ack(struct cxgbit_sock *);
int cxgbit_l2t_send(struct cxgbit_device *, struct sk_buff *,
struct l2t_entry *);
void cxgbit_push_tx_frames(struct cxgbit_sock *);
int cxgbit_put_login_tx(struct iscsi_conn *, struct iscsi_login *, u32);
int cxgbit_xmit_pdu(struct iscsi_conn *, struct iscsi_cmd *,
struct iscsi_datain_req *, const void *, u32);
void cxgbit_get_r2t_ttt(struct iscsi_conn *, struct iscsi_cmd *,
struct iscsi_r2t *);
u32 cxgbit_send_tx_flowc_wr(struct cxgbit_sock *);
int cxgbit_ofld_send(struct cxgbit_device *, struct sk_buff *);
void cxgbit_get_rx_pdu(struct iscsi_conn *);
int cxgbit_validate_params(struct iscsi_conn *);
struct cxgbit_device *cxgbit_find_device(struct net_device *, u8 *);
/* DDP */
int cxgbit_ddp_init(struct cxgbit_device *);
int cxgbit_setup_conn_pgidx(struct cxgbit_sock *, u32);
int cxgbit_reserve_ttt(struct cxgbit_sock *, struct iscsi_cmd *);
void cxgbit_release_cmd(struct iscsi_conn *, struct iscsi_cmd *);
static inline
struct cxgbi_ppm *cdev2ppm(struct cxgbit_device *cdev)
{
return (struct cxgbi_ppm *)(*cdev->lldi.iscsi_ppm);
}
#endif /* __CXGBIT_H__ */
/*
* Copyright (c) 2016 Chelsio Communications, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/module.h>
#include <linux/list.h>
#include <linux/workqueue.h>
#include <linux/skbuff.h>
#include <linux/timer.h>
#include <linux/notifier.h>
#include <linux/inetdevice.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/if_vlan.h>
#include <net/neighbour.h>
#include <net/netevent.h>
#include <net/route.h>
#include <net/tcp.h>
#include <net/ip6_route.h>
#include <net/addrconf.h>
#include "cxgbit.h"
#include "clip_tbl.h"
static void cxgbit_init_wr_wait(struct cxgbit_wr_wait *wr_waitp)
{
wr_waitp->ret = 0;
reinit_completion(&wr_waitp->completion);
}
static void
cxgbit_wake_up(struct cxgbit_wr_wait *wr_waitp, const char *func, u8 ret)
{
if (ret == CPL_ERR_NONE)
wr_waitp->ret = 0;
else
wr_waitp->ret = -EIO;
if (wr_waitp->ret)
pr_err("%s: err:%u", func, ret);
complete(&wr_waitp->completion);
}
static int
cxgbit_wait_for_reply(struct cxgbit_device *cdev,
struct cxgbit_wr_wait *wr_waitp, u32 tid, u32 timeout,
const char *func)
{
int ret;
if (!test_bit(CDEV_STATE_UP, &cdev->flags)) {
wr_waitp->ret = -EIO;
goto out;
}
ret = wait_for_completion_timeout(&wr_waitp->completion, timeout * HZ);
if (!ret) {
pr_info("%s - Device %s not responding tid %u\n",
func, pci_name(cdev->lldi.pdev), tid);
wr_waitp->ret = -ETIMEDOUT;
}
out:
if (wr_waitp->ret)
pr_info("%s: FW reply %d tid %u\n",
pci_name(cdev->lldi.pdev), wr_waitp->ret, tid);
return wr_waitp->ret;
}
/* Returns whether a CPL status conveys negative advice.
*/
static int cxgbit_is_neg_adv(unsigned int status)
{
return status == CPL_ERR_RTX_NEG_ADVICE ||
status == CPL_ERR_PERSIST_NEG_ADVICE ||
status == CPL_ERR_KEEPALV_NEG_ADVICE;
}
static int cxgbit_np_hashfn(const struct cxgbit_np *cnp)
{
return ((unsigned long)cnp >> 10) & (NP_INFO_HASH_SIZE - 1);
}
static struct np_info *
cxgbit_np_hash_add(struct cxgbit_device *cdev, struct cxgbit_np *cnp,
unsigned int stid)
{
struct np_info *p = kzalloc(sizeof(*p), GFP_KERNEL);
if (p) {
int bucket = cxgbit_np_hashfn(cnp);
p->cnp = cnp;
p->stid = stid;
spin_lock(&cdev->np_lock);
p->next = cdev->np_hash_tab[bucket];
cdev->np_hash_tab[bucket] = p;
spin_unlock(&cdev->np_lock);
}
return p;
}
static int
cxgbit_np_hash_find(struct cxgbit_device *cdev, struct cxgbit_np *cnp)
{
int stid = -1, bucket = cxgbit_np_hashfn(cnp);
struct np_info *p;
spin_lock(&cdev->np_lock);
for (p = cdev->np_hash_tab[bucket]; p; p = p->next) {
if (p->cnp == cnp) {
stid = p->stid;
break;
}
}
spin_unlock(&cdev->np_lock);
return stid;
}
static int cxgbit_np_hash_del(struct cxgbit_device *cdev, struct cxgbit_np *cnp)
{
int stid = -1, bucket = cxgbit_np_hashfn(cnp);
struct np_info *p, **prev = &cdev->np_hash_tab[bucket];
spin_lock(&cdev->np_lock);
for (p = *prev; p; prev = &p->next, p = p->next) {
if (p->cnp == cnp) {
stid = p->stid;
*prev = p->next;
kfree(p);
break;
}
}
spin_unlock(&cdev->np_lock);
return stid;
}
void _cxgbit_free_cnp(struct kref *kref)
{
struct cxgbit_np *cnp;
cnp = container_of(kref, struct cxgbit_np, kref);
kfree(cnp);
}
static int
cxgbit_create_server6(struct cxgbit_device *cdev, unsigned int stid,
struct cxgbit_np *cnp)
{
struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)
&cnp->com.local_addr;
int addr_type;
int ret;
pr_debug("%s: dev = %s; stid = %u; sin6_port = %u\n",
__func__, cdev->lldi.ports[0]->name, stid, sin6->sin6_port);
addr_type = ipv6_addr_type((const struct in6_addr *)
&sin6->sin6_addr);
if (addr_type != IPV6_ADDR_ANY) {
ret = cxgb4_clip_get(cdev->lldi.ports[0],
(const u32 *)&sin6->sin6_addr.s6_addr, 1);
if (ret) {
pr_err("Unable to find clip table entry. laddr %pI6. Error:%d.\n",
sin6->sin6_addr.s6_addr, ret);
return -ENOMEM;
}
}
cxgbit_get_cnp(cnp);
cxgbit_init_wr_wait(&cnp->com.wr_wait);
ret = cxgb4_create_server6(cdev->lldi.ports[0],
stid, &sin6->sin6_addr,
sin6->sin6_port,
cdev->lldi.rxq_ids[0]);
if (!ret)
ret = cxgbit_wait_for_reply(cdev, &cnp->com.wr_wait,
0, 10, __func__);
else if (ret > 0)
ret = net_xmit_errno(ret);
else
cxgbit_put_cnp(cnp);
if (ret) {
if (ret != -ETIMEDOUT)
cxgb4_clip_release(cdev->lldi.ports[0],
(const u32 *)&sin6->sin6_addr.s6_addr, 1);
pr_err("create server6 err %d stid %d laddr %pI6 lport %d\n",
ret, stid, sin6->sin6_addr.s6_addr,
ntohs(sin6->sin6_port));
}
return ret;
}
static int
cxgbit_create_server4(struct cxgbit_device *cdev, unsigned int stid,
struct cxgbit_np *cnp)
{
struct sockaddr_in *sin = (struct sockaddr_in *)
&cnp->com.local_addr;
int ret;
pr_debug("%s: dev = %s; stid = %u; sin_port = %u\n",
__func__, cdev->lldi.ports[0]->name, stid, sin->sin_port);
cxgbit_get_cnp(cnp);
cxgbit_init_wr_wait(&cnp->com.wr_wait);
ret = cxgb4_create_server(cdev->lldi.ports[0],
stid, sin->sin_addr.s_addr,
sin->sin_port, 0,
cdev->lldi.rxq_ids[0]);
if (!ret)
ret = cxgbit_wait_for_reply(cdev,
&cnp->com.wr_wait,
0, 10, __func__);
else if (ret > 0)
ret = net_xmit_errno(ret);
else
cxgbit_put_cnp(cnp);
if (ret)
pr_err("create server failed err %d stid %d laddr %pI4 lport %d\n",
ret, stid, &sin->sin_addr, ntohs(sin->sin_port));
return ret;
}
struct cxgbit_device *cxgbit_find_device(struct net_device *ndev, u8 *port_id)
{
struct cxgbit_device *cdev;
u8 i;
list_for_each_entry(cdev, &cdev_list_head, list) {
struct cxgb4_lld_info *lldi = &cdev->lldi;
for (i = 0; i < lldi->nports; i++) {
if (lldi->ports[i] == ndev) {
if (port_id)
*port_id = i;
return cdev;
}
}
}
return NULL;
}
static struct net_device *cxgbit_get_real_dev(struct net_device *ndev)
{
if (ndev->priv_flags & IFF_BONDING) {
pr_err("Bond devices are not supported. Interface:%s\n",
ndev->name);
return NULL;
}
if (is_vlan_dev(ndev))
return vlan_dev_real_dev(ndev);
return ndev;
}
static struct net_device *cxgbit_ipv4_netdev(__be32 saddr)
{
struct net_device *ndev;
ndev = __ip_dev_find(&init_net, saddr, false);
if (!ndev)
return NULL;
return cxgbit_get_real_dev(ndev);
}
static struct net_device *cxgbit_ipv6_netdev(struct in6_addr *addr6)
{
struct net_device *ndev = NULL;
bool found = false;
if (IS_ENABLED(CONFIG_IPV6)) {
for_each_netdev_rcu(&init_net, ndev)
if (ipv6_chk_addr(&init_net, addr6, ndev, 1)) {
found = true;
break;
}
}
if (!found)
return NULL;
return cxgbit_get_real_dev(ndev);
}
static struct cxgbit_device *cxgbit_find_np_cdev(struct cxgbit_np *cnp)
{
struct sockaddr_storage *sockaddr = &cnp->com.local_addr;
int ss_family = sockaddr->ss_family;
struct net_device *ndev = NULL;
struct cxgbit_device *cdev = NULL;
rcu_read_lock();
if (ss_family == AF_INET) {
struct sockaddr_in *sin;
sin = (struct sockaddr_in *)sockaddr;
ndev = cxgbit_ipv4_netdev(sin->sin_addr.s_addr);
} else if (ss_family == AF_INET6) {
struct sockaddr_in6 *sin6;
sin6 = (struct sockaddr_in6 *)sockaddr;
ndev = cxgbit_ipv6_netdev(&sin6->sin6_addr);
}
if (!ndev)
goto out;
cdev = cxgbit_find_device(ndev, NULL);
out:
rcu_read_unlock();
return cdev;
}
static bool cxgbit_inaddr_any(struct cxgbit_np *cnp)
{
struct sockaddr_storage *sockaddr = &cnp->com.local_addr;
int ss_family = sockaddr->ss_family;
int addr_type;
if (ss_family == AF_INET) {
struct sockaddr_in *sin;
sin = (struct sockaddr_in *)sockaddr;
if (sin->sin_addr.s_addr == htonl(INADDR_ANY))
return true;
} else if (ss_family == AF_INET6) {
struct sockaddr_in6 *sin6;
sin6 = (struct sockaddr_in6 *)sockaddr;
addr_type = ipv6_addr_type((const struct in6_addr *)
&sin6->sin6_addr);
if (addr_type == IPV6_ADDR_ANY)
return true;
}
return false;
}
static int
__cxgbit_setup_cdev_np(struct cxgbit_device *cdev, struct cxgbit_np *cnp)
{
int stid, ret;
int ss_family = cnp->com.local_addr.ss_family;
if (!test_bit(CDEV_STATE_UP, &cdev->flags))
return -EINVAL;
stid = cxgb4_alloc_stid(cdev->lldi.tids, ss_family, cnp);
if (stid < 0)
return -EINVAL;
if (!cxgbit_np_hash_add(cdev, cnp, stid)) {
cxgb4_free_stid(cdev->lldi.tids, stid, ss_family);
return -EINVAL;
}
if (ss_family == AF_INET)
ret = cxgbit_create_server4(cdev, stid, cnp);
else
ret = cxgbit_create_server6(cdev, stid, cnp);
if (ret) {
if (ret != -ETIMEDOUT)
cxgb4_free_stid(cdev->lldi.tids, stid,
ss_family);
cxgbit_np_hash_del(cdev, cnp);
return ret;
}
return ret;
}
static int cxgbit_setup_cdev_np(struct cxgbit_np *cnp)
{
struct cxgbit_device *cdev;
int ret = -1;
mutex_lock(&cdev_list_lock);
cdev = cxgbit_find_np_cdev(cnp);
if (!cdev)
goto out;
if (cxgbit_np_hash_find(cdev, cnp) >= 0)
goto out;
if (__cxgbit_setup_cdev_np(cdev, cnp))
goto out;
cnp->com.cdev = cdev;
ret = 0;
out:
mutex_unlock(&cdev_list_lock);
return ret;
}
static int cxgbit_setup_all_np(struct cxgbit_np *cnp)
{
struct cxgbit_device *cdev;
int ret;
u32 count = 0;
mutex_lock(&cdev_list_lock);
list_for_each_entry(cdev, &cdev_list_head, list) {
if (cxgbit_np_hash_find(cdev, cnp) >= 0) {
mutex_unlock(&cdev_list_lock);
return -1;
}
}
list_for_each_entry(cdev, &cdev_list_head, list) {
ret = __cxgbit_setup_cdev_np(cdev, cnp);
if (ret == -ETIMEDOUT)
break;
if (ret != 0)
continue;
count++;
}
mutex_unlock(&cdev_list_lock);
return count ? 0 : -1;
}
int cxgbit_setup_np(struct iscsi_np *np, struct sockaddr_storage *ksockaddr)
{
struct cxgbit_np *cnp;
int ret;
if ((ksockaddr->ss_family != AF_INET) &&
(ksockaddr->ss_family != AF_INET6))
return -EINVAL;
cnp = kzalloc(sizeof(*cnp), GFP_KERNEL);
if (!cnp)
return -ENOMEM;
init_waitqueue_head(&cnp->accept_wait);
init_completion(&cnp->com.wr_wait.completion);
init_completion(&cnp->accept_comp);
INIT_LIST_HEAD(&cnp->np_accept_list);
spin_lock_init(&cnp->np_accept_lock);
kref_init(&cnp->kref);
memcpy(&np->np_sockaddr, ksockaddr,
sizeof(struct sockaddr_storage));
memcpy(&cnp->com.local_addr, &np->np_sockaddr,
sizeof(cnp->com.local_addr));
cnp->np = np;
cnp->com.cdev = NULL;
if (cxgbit_inaddr_any(cnp))
ret = cxgbit_setup_all_np(cnp);
else
ret = cxgbit_setup_cdev_np(cnp);
if (ret) {
cxgbit_put_cnp(cnp);
return -EINVAL;
}
np->np_context = cnp;
cnp->com.state = CSK_STATE_LISTEN;
return 0;
}
static void
cxgbit_set_conn_info(struct iscsi_np *np, struct iscsi_conn *conn,
struct cxgbit_sock *csk)
{
conn->login_family = np->np_sockaddr.ss_family;
conn->login_sockaddr = csk->com.remote_addr;
conn->local_sockaddr = csk->com.local_addr;
}
int cxgbit_accept_np(struct iscsi_np *np, struct iscsi_conn *conn)
{
struct cxgbit_np *cnp = np->np_context;
struct cxgbit_sock *csk;
int ret = 0;
accept_wait:
ret = wait_for_completion_interruptible(&cnp->accept_comp);
if (ret)
return -ENODEV;
spin_lock_bh(&np->np_thread_lock);
if (np->np_thread_state >= ISCSI_NP_THREAD_RESET) {
spin_unlock_bh(&np->np_thread_lock);
/**
* No point in stalling here when np_thread
* is in state RESET/SHUTDOWN/EXIT - bail
**/
return -ENODEV;
}
spin_unlock_bh(&np->np_thread_lock);
spin_lock_bh(&cnp->np_accept_lock);
if (list_empty(&cnp->np_accept_list)) {
spin_unlock_bh(&cnp->np_accept_lock);
goto accept_wait;
}
csk = list_first_entry(&cnp->np_accept_list,
struct cxgbit_sock,
accept_node);
list_del_init(&csk->accept_node);
spin_unlock_bh(&cnp->np_accept_lock);
conn->context = csk;
csk->conn = conn;
cxgbit_set_conn_info(np, conn, csk);
return 0;
}
static int
__cxgbit_free_cdev_np(struct cxgbit_device *cdev, struct cxgbit_np *cnp)
{
int stid, ret;
bool ipv6 = false;
stid = cxgbit_np_hash_del(cdev, cnp);
if (stid < 0)
return -EINVAL;
if (!test_bit(CDEV_STATE_UP, &cdev->flags))
return -EINVAL;
if (cnp->np->np_sockaddr.ss_family == AF_INET6)
ipv6 = true;
cxgbit_get_cnp(cnp);
cxgbit_init_wr_wait(&cnp->com.wr_wait);
ret = cxgb4_remove_server(cdev->lldi.ports[0], stid,
cdev->lldi.rxq_ids[0], ipv6);
if (ret > 0)
ret = net_xmit_errno(ret);
if (ret) {
cxgbit_put_cnp(cnp);
return ret;
}
ret = cxgbit_wait_for_reply(cdev, &cnp->com.wr_wait,
0, 10, __func__);
if (ret == -ETIMEDOUT)
return ret;
if (ipv6 && cnp->com.cdev) {
struct sockaddr_in6 *sin6;
sin6 = (struct sockaddr_in6 *)&cnp->com.local_addr;
cxgb4_clip_release(cdev->lldi.ports[0],
(const u32 *)&sin6->sin6_addr.s6_addr,
1);
}
cxgb4_free_stid(cdev->lldi.tids, stid,
cnp->com.local_addr.ss_family);
return 0;
}
static void cxgbit_free_all_np(struct cxgbit_np *cnp)
{
struct cxgbit_device *cdev;
int ret;
mutex_lock(&cdev_list_lock);
list_for_each_entry(cdev, &cdev_list_head, list) {
ret = __cxgbit_free_cdev_np(cdev, cnp);
if (ret == -ETIMEDOUT)
break;
}
mutex_unlock(&cdev_list_lock);
}
static void cxgbit_free_cdev_np(struct cxgbit_np *cnp)
{
struct cxgbit_device *cdev;
bool found = false;
mutex_lock(&cdev_list_lock);
list_for_each_entry(cdev, &cdev_list_head, list) {
if (cdev == cnp->com.cdev) {
found = true;
break;
}
}
if (!found)
goto out;
__cxgbit_free_cdev_np(cdev, cnp);
out:
mutex_unlock(&cdev_list_lock);
}
void cxgbit_free_np(struct iscsi_np *np)
{
struct cxgbit_np *cnp = np->np_context;
cnp->com.state = CSK_STATE_DEAD;
if (cnp->com.cdev)
cxgbit_free_cdev_np(cnp);
else
cxgbit_free_all_np(cnp);
np->np_context = NULL;
cxgbit_put_cnp(cnp);
}
static void cxgbit_send_halfclose(struct cxgbit_sock *csk)
{
struct sk_buff *skb;
struct cpl_close_con_req *req;
unsigned int len = roundup(sizeof(struct cpl_close_con_req), 16);
skb = alloc_skb(len, GFP_ATOMIC);
if (!skb)
return;
req = (struct cpl_close_con_req *)__skb_put(skb, len);
memset(req, 0, len);
set_wr_txq(skb, CPL_PRIORITY_DATA, csk->txq_idx);
INIT_TP_WR(req, csk->tid);
OPCODE_TID(req) = cpu_to_be32(MK_OPCODE_TID(CPL_CLOSE_CON_REQ,
csk->tid));
req->rsvd = 0;
cxgbit_skcb_flags(skb) |= SKCBF_TX_FLAG_COMPL;
__skb_queue_tail(&csk->txq, skb);
cxgbit_push_tx_frames(csk);
}
static void cxgbit_arp_failure_discard(void *handle, struct sk_buff *skb)
{
pr_debug("%s cxgbit_device %p\n", __func__, handle);
kfree_skb(skb);
}
static void cxgbit_abort_arp_failure(void *handle, struct sk_buff *skb)
{
struct cxgbit_device *cdev = handle;
struct cpl_abort_req *req = cplhdr(skb);
pr_debug("%s cdev %p\n", __func__, cdev);
req->cmd = CPL_ABORT_NO_RST;
cxgbit_ofld_send(cdev, skb);
}
static int cxgbit_send_abort_req(struct cxgbit_sock *csk)
{
struct cpl_abort_req *req;
unsigned int len = roundup(sizeof(*req), 16);
struct sk_buff *skb;
pr_debug("%s: csk %p tid %u; state %d\n",
__func__, csk, csk->tid, csk->com.state);
__skb_queue_purge(&csk->txq);
if (!test_and_set_bit(CSK_TX_DATA_SENT, &csk->com.flags))
cxgbit_send_tx_flowc_wr(csk);
skb = __skb_dequeue(&csk->skbq);
req = (struct cpl_abort_req *)__skb_put(skb, len);
memset(req, 0, len);
set_wr_txq(skb, CPL_PRIORITY_DATA, csk->txq_idx);
t4_set_arp_err_handler(skb, csk->com.cdev, cxgbit_abort_arp_failure);
INIT_TP_WR(req, csk->tid);
OPCODE_TID(req) = cpu_to_be32(MK_OPCODE_TID(CPL_ABORT_REQ,
csk->tid));
req->cmd = CPL_ABORT_SEND_RST;
return cxgbit_l2t_send(csk->com.cdev, skb, csk->l2t);
}
void cxgbit_free_conn(struct iscsi_conn *conn)
{
struct cxgbit_sock *csk = conn->context;
bool release = false;
pr_debug("%s: state %d\n",
__func__, csk->com.state);
spin_lock_bh(&csk->lock);
switch (csk->com.state) {
case CSK_STATE_ESTABLISHED:
if (conn->conn_state == TARG_CONN_STATE_IN_LOGOUT) {
csk->com.state = CSK_STATE_CLOSING;
cxgbit_send_halfclose(csk);
} else {
csk->com.state = CSK_STATE_ABORTING;
cxgbit_send_abort_req(csk);
}
break;
case CSK_STATE_CLOSING:
csk->com.state = CSK_STATE_MORIBUND;
cxgbit_send_halfclose(csk);
break;
case CSK_STATE_DEAD:
release = true;
break;
default:
pr_err("%s: csk %p; state %d\n",
__func__, csk, csk->com.state);
}
spin_unlock_bh(&csk->lock);
if (release)
cxgbit_put_csk(csk);
}
static void cxgbit_set_emss(struct cxgbit_sock *csk, u16 opt)
{
csk->emss = csk->com.cdev->lldi.mtus[TCPOPT_MSS_G(opt)] -
((csk->com.remote_addr.ss_family == AF_INET) ?
sizeof(struct iphdr) : sizeof(struct ipv6hdr)) -
sizeof(struct tcphdr);
csk->mss = csk->emss;
if (TCPOPT_TSTAMP_G(opt))
csk->emss -= round_up(TCPOLEN_TIMESTAMP, 4);
if (csk->emss < 128)
csk->emss = 128;
if (csk->emss & 7)
pr_info("Warning: misaligned mtu idx %u mss %u emss=%u\n",
TCPOPT_MSS_G(opt), csk->mss, csk->emss);
pr_debug("%s mss_idx %u mss %u emss=%u\n", __func__, TCPOPT_MSS_G(opt),
csk->mss, csk->emss);
}
static void cxgbit_free_skb(struct cxgbit_sock *csk)
{
struct sk_buff *skb;
__skb_queue_purge(&csk->txq);
__skb_queue_purge(&csk->rxq);
__skb_queue_purge(&csk->backlogq);
__skb_queue_purge(&csk->ppodq);
__skb_queue_purge(&csk->skbq);
while ((skb = cxgbit_sock_dequeue_wr(csk)))
kfree_skb(skb);
__kfree_skb(csk->lro_hskb);
}
void _cxgbit_free_csk(struct kref *kref)
{
struct cxgbit_sock *csk;
struct cxgbit_device *cdev;
csk = container_of(kref, struct cxgbit_sock, kref);
pr_debug("%s csk %p state %d\n", __func__, csk, csk->com.state);
if (csk->com.local_addr.ss_family == AF_INET6) {
struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)
&csk->com.local_addr;
cxgb4_clip_release(csk->com.cdev->lldi.ports[0],
(const u32 *)
&sin6->sin6_addr.s6_addr, 1);
}
cxgb4_remove_tid(csk->com.cdev->lldi.tids, 0, csk->tid);
dst_release(csk->dst);
cxgb4_l2t_release(csk->l2t);
cdev = csk->com.cdev;
spin_lock_bh(&cdev->cskq.lock);
list_del(&csk->list);
spin_unlock_bh(&cdev->cskq.lock);
cxgbit_free_skb(csk);
cxgbit_put_cdev(cdev);
kfree(csk);
}
static void
cxgbit_get_tuple_info(struct cpl_pass_accept_req *req, int *iptype,
__u8 *local_ip, __u8 *peer_ip, __be16 *local_port,
__be16 *peer_port)
{
u32 eth_len = ETH_HDR_LEN_G(be32_to_cpu(req->hdr_len));
u32 ip_len = IP_HDR_LEN_G(be32_to_cpu(req->hdr_len));
struct iphdr *ip = (struct iphdr *)((u8 *)(req + 1) + eth_len);
struct ipv6hdr *ip6 = (struct ipv6hdr *)((u8 *)(req + 1) + eth_len);
struct tcphdr *tcp = (struct tcphdr *)
((u8 *)(req + 1) + eth_len + ip_len);
if (ip->version == 4) {
pr_debug("%s saddr 0x%x daddr 0x%x sport %u dport %u\n",
__func__,
ntohl(ip->saddr), ntohl(ip->daddr),
ntohs(tcp->source),
ntohs(tcp->dest));
*iptype = 4;
memcpy(peer_ip, &ip->saddr, 4);
memcpy(local_ip, &ip->daddr, 4);
} else {
pr_debug("%s saddr %pI6 daddr %pI6 sport %u dport %u\n",
__func__,
ip6->saddr.s6_addr, ip6->daddr.s6_addr,
ntohs(tcp->source),
ntohs(tcp->dest));
*iptype = 6;
memcpy(peer_ip, ip6->saddr.s6_addr, 16);
memcpy(local_ip, ip6->daddr.s6_addr, 16);
}
*peer_port = tcp->source;
*local_port = tcp->dest;
}
static int
cxgbit_our_interface(struct cxgbit_device *cdev, struct net_device *egress_dev)
{
u8 i;
egress_dev = cxgbit_get_real_dev(egress_dev);
for (i = 0; i < cdev->lldi.nports; i++)
if (cdev->lldi.ports[i] == egress_dev)
return 1;
return 0;
}
static struct dst_entry *
cxgbit_find_route6(struct cxgbit_device *cdev, __u8 *local_ip, __u8 *peer_ip,
__be16 local_port, __be16 peer_port, u8 tos,
__u32 sin6_scope_id)
{
struct dst_entry *dst = NULL;
if (IS_ENABLED(CONFIG_IPV6)) {
struct flowi6 fl6;
memset(&fl6, 0, sizeof(fl6));
memcpy(&fl6.daddr, peer_ip, 16);
memcpy(&fl6.saddr, local_ip, 16);
if (ipv6_addr_type(&fl6.daddr) & IPV6_ADDR_LINKLOCAL)
fl6.flowi6_oif = sin6_scope_id;
dst = ip6_route_output(&init_net, NULL, &fl6);
if (!dst)
goto out;
if (!cxgbit_our_interface(cdev, ip6_dst_idev(dst)->dev) &&
!(ip6_dst_idev(dst)->dev->flags & IFF_LOOPBACK)) {
dst_release(dst);
dst = NULL;
}
}
out:
return dst;
}
static struct dst_entry *
cxgbit_find_route(struct cxgbit_device *cdev, __be32 local_ip, __be32 peer_ip,
__be16 local_port, __be16 peer_port, u8 tos)
{
struct rtable *rt;
struct flowi4 fl4;
struct neighbour *n;
rt = ip_route_output_ports(&init_net, &fl4, NULL, peer_ip,
local_ip,
peer_port, local_port, IPPROTO_TCP,
tos, 0);
if (IS_ERR(rt))
return NULL;
n = dst_neigh_lookup(&rt->dst, &peer_ip);
if (!n)
return NULL;
if (!cxgbit_our_interface(cdev, n->dev) &&
!(n->dev->flags & IFF_LOOPBACK)) {
neigh_release(n);
dst_release(&rt->dst);
return NULL;
}
neigh_release(n);
return &rt->dst;
}
static void cxgbit_set_tcp_window(struct cxgbit_sock *csk, struct port_info *pi)
{
unsigned int linkspeed;
u8 scale;
linkspeed = pi->link_cfg.speed;
scale = linkspeed / SPEED_10000;
#define CXGBIT_10G_RCV_WIN (256 * 1024)
csk->rcv_win = CXGBIT_10G_RCV_WIN;
if (scale)
csk->rcv_win *= scale;
#define CXGBIT_10G_SND_WIN (256 * 1024)
csk->snd_win = CXGBIT_10G_SND_WIN;
if (scale)
csk->snd_win *= scale;
pr_debug("%s snd_win %d rcv_win %d\n",
__func__, csk->snd_win, csk->rcv_win);
}
#ifdef CONFIG_CHELSIO_T4_DCB
static u8 cxgbit_get_iscsi_dcb_state(struct net_device *ndev)
{
return ndev->dcbnl_ops->getstate(ndev);
}
static int cxgbit_select_priority(int pri_mask)
{
if (!pri_mask)
return 0;
return (ffs(pri_mask) - 1);
}
static u8 cxgbit_get_iscsi_dcb_priority(struct net_device *ndev, u16 local_port)
{
int ret;
u8 caps;
struct dcb_app iscsi_dcb_app = {
.protocol = local_port
};
ret = (int)ndev->dcbnl_ops->getcap(ndev, DCB_CAP_ATTR_DCBX, &caps);
if (ret)
return 0;
if (caps & DCB_CAP_DCBX_VER_IEEE) {
iscsi_dcb_app.selector = IEEE_8021QAZ_APP_SEL_ANY;
ret = dcb_ieee_getapp_mask(ndev, &iscsi_dcb_app);
} else if (caps & DCB_CAP_DCBX_VER_CEE) {
iscsi_dcb_app.selector = DCB_APP_IDTYPE_PORTNUM;
ret = dcb_getapp(ndev, &iscsi_dcb_app);
}
pr_info("iSCSI priority is set to %u\n", cxgbit_select_priority(ret));
return cxgbit_select_priority(ret);
}
#endif
static int
cxgbit_offload_init(struct cxgbit_sock *csk, int iptype, __u8 *peer_ip,
u16 local_port, struct dst_entry *dst,
struct cxgbit_device *cdev)
{
struct neighbour *n;
int ret, step;
struct net_device *ndev;
u16 rxq_idx, port_id;
#ifdef CONFIG_CHELSIO_T4_DCB
u8 priority = 0;
#endif
n = dst_neigh_lookup(dst, peer_ip);
if (!n)
return -ENODEV;
rcu_read_lock();
ret = -ENOMEM;
if (n->dev->flags & IFF_LOOPBACK) {
if (iptype == 4)
ndev = cxgbit_ipv4_netdev(*(__be32 *)peer_ip);
else if (IS_ENABLED(CONFIG_IPV6))
ndev = cxgbit_ipv6_netdev((struct in6_addr *)peer_ip);
else
ndev = NULL;
if (!ndev) {
ret = -ENODEV;
goto out;
}
csk->l2t = cxgb4_l2t_get(cdev->lldi.l2t,
n, ndev, 0);
if (!csk->l2t)
goto out;
csk->mtu = ndev->mtu;
csk->tx_chan = cxgb4_port_chan(ndev);
csk->smac_idx = (cxgb4_port_viid(ndev) & 0x7F) << 1;
step = cdev->lldi.ntxq /
cdev->lldi.nchan;
csk->txq_idx = cxgb4_port_idx(ndev) * step;
step = cdev->lldi.nrxq /
cdev->lldi.nchan;
csk->ctrlq_idx = cxgb4_port_idx(ndev);
csk->rss_qid = cdev->lldi.rxq_ids[
cxgb4_port_idx(ndev) * step];
csk->port_id = cxgb4_port_idx(ndev);
cxgbit_set_tcp_window(csk,
(struct port_info *)netdev_priv(ndev));
} else {
ndev = cxgbit_get_real_dev(n->dev);
if (!ndev) {
ret = -ENODEV;
goto out;
}
#ifdef CONFIG_CHELSIO_T4_DCB
if (cxgbit_get_iscsi_dcb_state(ndev))
priority = cxgbit_get_iscsi_dcb_priority(ndev,
local_port);
csk->dcb_priority = priority;
csk->l2t = cxgb4_l2t_get(cdev->lldi.l2t, n, ndev, priority);
#else
csk->l2t = cxgb4_l2t_get(cdev->lldi.l2t, n, ndev, 0);
#endif
if (!csk->l2t)
goto out;
port_id = cxgb4_port_idx(ndev);
csk->mtu = dst_mtu(dst);
csk->tx_chan = cxgb4_port_chan(ndev);
csk->smac_idx = (cxgb4_port_viid(ndev) & 0x7F) << 1;
step = cdev->lldi.ntxq /
cdev->lldi.nports;
csk->txq_idx = (port_id * step) +
(cdev->selectq[port_id][0]++ % step);
csk->ctrlq_idx = cxgb4_port_idx(ndev);
step = cdev->lldi.nrxq /
cdev->lldi.nports;
rxq_idx = (port_id * step) +
(cdev->selectq[port_id][1]++ % step);
csk->rss_qid = cdev->lldi.rxq_ids[rxq_idx];
csk->port_id = port_id;
cxgbit_set_tcp_window(csk,
(struct port_info *)netdev_priv(ndev));
}
ret = 0;
out:
rcu_read_unlock();
neigh_release(n);
return ret;
}
int cxgbit_ofld_send(struct cxgbit_device *cdev, struct sk_buff *skb)
{
int ret = 0;
if (!test_bit(CDEV_STATE_UP, &cdev->flags)) {
kfree_skb(skb);
pr_err("%s - device not up - dropping\n", __func__);
return -EIO;
}
ret = cxgb4_ofld_send(cdev->lldi.ports[0], skb);
if (ret < 0)
kfree_skb(skb);
return ret < 0 ? ret : 0;
}
static void cxgbit_release_tid(struct cxgbit_device *cdev, u32 tid)
{
struct cpl_tid_release *req;
unsigned int len = roundup(sizeof(*req), 16);
struct sk_buff *skb;
skb = alloc_skb(len, GFP_ATOMIC);
if (!skb)
return;
req = (struct cpl_tid_release *)__skb_put(skb, len);
memset(req, 0, len);
INIT_TP_WR(req, tid);
OPCODE_TID(req) = cpu_to_be32(MK_OPCODE_TID(
CPL_TID_RELEASE, tid));
set_wr_txq(skb, CPL_PRIORITY_SETUP, 0);
cxgbit_ofld_send(cdev, skb);
}
int
cxgbit_l2t_send(struct cxgbit_device *cdev, struct sk_buff *skb,
struct l2t_entry *l2e)
{
int ret = 0;
if (!test_bit(CDEV_STATE_UP, &cdev->flags)) {
kfree_skb(skb);
pr_err("%s - device not up - dropping\n", __func__);
return -EIO;
}
ret = cxgb4_l2t_send(cdev->lldi.ports[0], skb, l2e);
if (ret < 0)
kfree_skb(skb);
return ret < 0 ? ret : 0;
}
static void
cxgbit_best_mtu(const unsigned short *mtus, unsigned short mtu,
unsigned int *idx, int use_ts, int ipv6)
{
unsigned short hdr_size = (ipv6 ? sizeof(struct ipv6hdr) :
sizeof(struct iphdr)) +
sizeof(struct tcphdr) +
(use_ts ? round_up(TCPOLEN_TIMESTAMP,
4) : 0);
unsigned short data_size = mtu - hdr_size;
cxgb4_best_aligned_mtu(mtus, hdr_size, data_size, 8, idx);
}
static void cxgbit_send_rx_credits(struct cxgbit_sock *csk, struct sk_buff *skb)
{
if (csk->com.state != CSK_STATE_ESTABLISHED) {
__kfree_skb(skb);
return;
}
cxgbit_ofld_send(csk->com.cdev, skb);
}
/*
* CPL connection rx data ack: host ->
* Send RX credits through an RX_DATA_ACK CPL message.
* Returns the number of credits sent.
*/
int cxgbit_rx_data_ack(struct cxgbit_sock *csk)
{
struct sk_buff *skb;
struct cpl_rx_data_ack *req;
unsigned int len = roundup(sizeof(*req), 16);
skb = alloc_skb(len, GFP_KERNEL);
if (!skb)
return -1;
req = (struct cpl_rx_data_ack *)__skb_put(skb, len);
memset(req, 0, len);
set_wr_txq(skb, CPL_PRIORITY_ACK, csk->ctrlq_idx);
INIT_TP_WR(req, csk->tid);
OPCODE_TID(req) = cpu_to_be32(MK_OPCODE_TID(CPL_RX_DATA_ACK,
csk->tid));
req->credit_dack = cpu_to_be32(RX_DACK_CHANGE_F | RX_DACK_MODE_V(1) |
RX_CREDITS_V(csk->rx_credits));
csk->rx_credits = 0;
spin_lock_bh(&csk->lock);
if (csk->lock_owner) {
cxgbit_skcb_rx_backlog_fn(skb) = cxgbit_send_rx_credits;
__skb_queue_tail(&csk->backlogq, skb);
spin_unlock_bh(&csk->lock);
return 0;
}
cxgbit_send_rx_credits(csk, skb);
spin_unlock_bh(&csk->lock);
return 0;
}
#define FLOWC_WR_NPARAMS_MIN 9
#define FLOWC_WR_NPARAMS_MAX 11
static int cxgbit_alloc_csk_skb(struct cxgbit_sock *csk)
{
struct sk_buff *skb;
u32 len, flowclen;
u8 i;
flowclen = offsetof(struct fw_flowc_wr,
mnemval[FLOWC_WR_NPARAMS_MAX]);
len = max_t(u32, sizeof(struct cpl_abort_req),
sizeof(struct cpl_abort_rpl));
len = max(len, flowclen);
len = roundup(len, 16);
for (i = 0; i < 3; i++) {
skb = alloc_skb(len, GFP_ATOMIC);
if (!skb)
goto out;
__skb_queue_tail(&csk->skbq, skb);
}
skb = alloc_skb(LRO_SKB_MIN_HEADROOM, GFP_ATOMIC);
if (!skb)
goto out;
memset(skb->data, 0, LRO_SKB_MIN_HEADROOM);
csk->lro_hskb = skb;
return 0;
out:
__skb_queue_purge(&csk->skbq);
return -ENOMEM;
}
static u32 cxgbit_compute_wscale(u32 win)
{
u32 wscale = 0;
while (wscale < 14 && (65535 << wscale) < win)
wscale++;
return wscale;
}
static void
cxgbit_pass_accept_rpl(struct cxgbit_sock *csk, struct cpl_pass_accept_req *req)
{
struct sk_buff *skb;
const struct tcphdr *tcph;
struct cpl_t5_pass_accept_rpl *rpl5;
unsigned int len = roundup(sizeof(*rpl5), 16);
unsigned int mtu_idx;
u64 opt0;
u32 opt2, hlen;
u32 wscale;
u32 win;
pr_debug("%s csk %p tid %u\n", __func__, csk, csk->tid);
skb = alloc_skb(len, GFP_ATOMIC);
if (!skb) {
cxgbit_put_csk(csk);
return;
}
rpl5 = (struct cpl_t5_pass_accept_rpl *)__skb_put(skb, len);
memset(rpl5, 0, len);
INIT_TP_WR(rpl5, csk->tid);
OPCODE_TID(rpl5) = cpu_to_be32(MK_OPCODE_TID(CPL_PASS_ACCEPT_RPL,
csk->tid));
cxgbit_best_mtu(csk->com.cdev->lldi.mtus, csk->mtu, &mtu_idx,
req->tcpopt.tstamp,
(csk->com.remote_addr.ss_family == AF_INET) ? 0 : 1);
wscale = cxgbit_compute_wscale(csk->rcv_win);
/*
* Specify the largest window that will fit in opt0. The
* remainder will be specified in the rx_data_ack.
*/
win = csk->rcv_win >> 10;
if (win > RCV_BUFSIZ_M)
win = RCV_BUFSIZ_M;
opt0 = TCAM_BYPASS_F |
WND_SCALE_V(wscale) |
MSS_IDX_V(mtu_idx) |
L2T_IDX_V(csk->l2t->idx) |
TX_CHAN_V(csk->tx_chan) |
SMAC_SEL_V(csk->smac_idx) |
DSCP_V(csk->tos >> 2) |
ULP_MODE_V(ULP_MODE_ISCSI) |
RCV_BUFSIZ_V(win);
opt2 = RX_CHANNEL_V(0) |
RSS_QUEUE_VALID_F | RSS_QUEUE_V(csk->rss_qid);
if (req->tcpopt.tstamp)
opt2 |= TSTAMPS_EN_F;
if (req->tcpopt.sack)
opt2 |= SACK_EN_F;
if (wscale)
opt2 |= WND_SCALE_EN_F;
hlen = ntohl(req->hdr_len);
tcph = (const void *)(req + 1) + ETH_HDR_LEN_G(hlen) +
IP_HDR_LEN_G(hlen);
if (tcph->ece && tcph->cwr)
opt2 |= CCTRL_ECN_V(1);
opt2 |= RX_COALESCE_V(3);
opt2 |= CONG_CNTRL_V(CONG_ALG_NEWRENO);
opt2 |= T5_ISS_F;
rpl5->iss = cpu_to_be32((prandom_u32() & ~7UL) - 1);
opt2 |= T5_OPT_2_VALID_F;
rpl5->opt0 = cpu_to_be64(opt0);
rpl5->opt2 = cpu_to_be32(opt2);
set_wr_txq(skb, CPL_PRIORITY_SETUP, csk->ctrlq_idx);
t4_set_arp_err_handler(skb, NULL, cxgbit_arp_failure_discard);
cxgbit_l2t_send(csk->com.cdev, skb, csk->l2t);
}
static void
cxgbit_pass_accept_req(struct cxgbit_device *cdev, struct sk_buff *skb)
{
struct cxgbit_sock *csk = NULL;
struct cxgbit_np *cnp;
struct cpl_pass_accept_req *req = cplhdr(skb);
unsigned int stid = PASS_OPEN_TID_G(ntohl(req->tos_stid));
struct tid_info *t = cdev->lldi.tids;
unsigned int tid = GET_TID(req);
u16 peer_mss = ntohs(req->tcpopt.mss);
unsigned short hdrs;
struct dst_entry *dst;
__u8 local_ip[16], peer_ip[16];
__be16 local_port, peer_port;
int ret;
int iptype;
pr_debug("%s: cdev = %p; stid = %u; tid = %u\n",
__func__, cdev, stid, tid);
cnp = lookup_stid(t, stid);
if (!cnp) {
pr_err("%s connect request on invalid stid %d\n",
__func__, stid);
goto rel_skb;
}
if (cnp->com.state != CSK_STATE_LISTEN) {
pr_err("%s - listening parent not in CSK_STATE_LISTEN\n",
__func__);
goto reject;
}
csk = lookup_tid(t, tid);
if (csk) {
pr_err("%s csk not null tid %u\n",
__func__, tid);
goto rel_skb;
}
cxgbit_get_tuple_info(req, &iptype, local_ip, peer_ip,
&local_port, &peer_port);
/* Find output route */
if (iptype == 4) {
pr_debug("%s parent sock %p tid %u laddr %pI4 raddr %pI4 "
"lport %d rport %d peer_mss %d\n"
, __func__, cnp, tid,
local_ip, peer_ip, ntohs(local_port),
ntohs(peer_port), peer_mss);
dst = cxgbit_find_route(cdev, *(__be32 *)local_ip,
*(__be32 *)peer_ip,
local_port, peer_port,
PASS_OPEN_TOS_G(ntohl(req->tos_stid)));
} else {
pr_debug("%s parent sock %p tid %u laddr %pI6 raddr %pI6 "
"lport %d rport %d peer_mss %d\n"
, __func__, cnp, tid,
local_ip, peer_ip, ntohs(local_port),
ntohs(peer_port), peer_mss);
dst = cxgbit_find_route6(cdev, local_ip, peer_ip,
local_port, peer_port,
PASS_OPEN_TOS_G(ntohl(req->tos_stid)),
((struct sockaddr_in6 *)
&cnp->com.local_addr)->sin6_scope_id);
}
if (!dst) {
pr_err("%s - failed to find dst entry!\n",
__func__);
goto reject;
}
csk = kzalloc(sizeof(*csk), GFP_ATOMIC);
if (!csk) {
dst_release(dst);
goto rel_skb;
}
ret = cxgbit_offload_init(csk, iptype, peer_ip, ntohs(local_port),
dst, cdev);
if (ret) {
pr_err("%s - failed to allocate l2t entry!\n",
__func__);
dst_release(dst);
kfree(csk);
goto reject;
}
kref_init(&csk->kref);
init_completion(&csk->com.wr_wait.completion);
INIT_LIST_HEAD(&csk->accept_node);
hdrs = (iptype == 4 ? sizeof(struct iphdr) : sizeof(struct ipv6hdr)) +
sizeof(struct tcphdr) + (req->tcpopt.tstamp ? 12 : 0);
if (peer_mss && csk->mtu > (peer_mss + hdrs))
csk->mtu = peer_mss + hdrs;
csk->com.state = CSK_STATE_CONNECTING;
csk->com.cdev = cdev;
csk->cnp = cnp;
csk->tos = PASS_OPEN_TOS_G(ntohl(req->tos_stid));
csk->dst = dst;
csk->tid = tid;
csk->wr_cred = cdev->lldi.wr_cred -
DIV_ROUND_UP(sizeof(struct cpl_abort_req), 16);
csk->wr_max_cred = csk->wr_cred;
csk->wr_una_cred = 0;
if (iptype == 4) {
struct sockaddr_in *sin = (struct sockaddr_in *)
&csk->com.local_addr;
sin->sin_family = AF_INET;
sin->sin_port = local_port;
sin->sin_addr.s_addr = *(__be32 *)local_ip;
sin = (struct sockaddr_in *)&csk->com.remote_addr;
sin->sin_family = AF_INET;
sin->sin_port = peer_port;
sin->sin_addr.s_addr = *(__be32 *)peer_ip;
} else {
struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)
&csk->com.local_addr;
sin6->sin6_family = PF_INET6;
sin6->sin6_port = local_port;
memcpy(sin6->sin6_addr.s6_addr, local_ip, 16);
cxgb4_clip_get(cdev->lldi.ports[0],
(const u32 *)&sin6->sin6_addr.s6_addr,
1);
sin6 = (struct sockaddr_in6 *)&csk->com.remote_addr;
sin6->sin6_family = PF_INET6;
sin6->sin6_port = peer_port;
memcpy(sin6->sin6_addr.s6_addr, peer_ip, 16);
}
skb_queue_head_init(&csk->rxq);
skb_queue_head_init(&csk->txq);
skb_queue_head_init(&csk->ppodq);
skb_queue_head_init(&csk->backlogq);
skb_queue_head_init(&csk->skbq);
cxgbit_sock_reset_wr_list(csk);
spin_lock_init(&csk->lock);
init_waitqueue_head(&csk->waitq);
init_waitqueue_head(&csk->ack_waitq);
csk->lock_owner = false;
if (cxgbit_alloc_csk_skb(csk)) {
dst_release(dst);
kfree(csk);
goto rel_skb;
}
cxgbit_get_cdev(cdev);
spin_lock(&cdev->cskq.lock);
list_add_tail(&csk->list, &cdev->cskq.list);
spin_unlock(&cdev->cskq.lock);
cxgb4_insert_tid(t, csk, tid);
cxgbit_pass_accept_rpl(csk, req);
goto rel_skb;
reject:
cxgbit_release_tid(cdev, tid);
rel_skb:
__kfree_skb(skb);
}
static u32
cxgbit_tx_flowc_wr_credits(struct cxgbit_sock *csk, u32 *nparamsp,
u32 *flowclenp)
{
u32 nparams, flowclen16, flowclen;
nparams = FLOWC_WR_NPARAMS_MIN;
if (csk->snd_wscale)
nparams++;
#ifdef CONFIG_CHELSIO_T4_DCB
nparams++;
#endif
flowclen = offsetof(struct fw_flowc_wr, mnemval[nparams]);
flowclen16 = DIV_ROUND_UP(flowclen, 16);
flowclen = flowclen16 * 16;
/*
* Return the number of 16-byte credits used by the flowc request.
* Pass back the nparams and actual flowc length if requested.
*/
if (nparamsp)
*nparamsp = nparams;
if (flowclenp)
*flowclenp = flowclen;
return flowclen16;
}
u32 cxgbit_send_tx_flowc_wr(struct cxgbit_sock *csk)
{
struct cxgbit_device *cdev = csk->com.cdev;
struct fw_flowc_wr *flowc;
u32 nparams, flowclen16, flowclen;
struct sk_buff *skb;
u8 index;
#ifdef CONFIG_CHELSIO_T4_DCB
u16 vlan = ((struct l2t_entry *)csk->l2t)->vlan;
#endif
flowclen16 = cxgbit_tx_flowc_wr_credits(csk, &nparams, &flowclen);
skb = __skb_dequeue(&csk->skbq);
flowc = (struct fw_flowc_wr *)__skb_put(skb, flowclen);
memset(flowc, 0, flowclen);
flowc->op_to_nparams = cpu_to_be32(FW_WR_OP_V(FW_FLOWC_WR) |
FW_FLOWC_WR_NPARAMS_V(nparams));
flowc->flowid_len16 = cpu_to_be32(FW_WR_LEN16_V(flowclen16) |
FW_WR_FLOWID_V(csk->tid));
flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_PFNVFN;
flowc->mnemval[0].val = cpu_to_be32(FW_PFVF_CMD_PFN_V
(csk->com.cdev->lldi.pf));
flowc->mnemval[1].mnemonic = FW_FLOWC_MNEM_CH;
flowc->mnemval[1].val = cpu_to_be32(csk->tx_chan);
flowc->mnemval[2].mnemonic = FW_FLOWC_MNEM_PORT;
flowc->mnemval[2].val = cpu_to_be32(csk->tx_chan);
flowc->mnemval[3].mnemonic = FW_FLOWC_MNEM_IQID;
flowc->mnemval[3].val = cpu_to_be32(csk->rss_qid);
flowc->mnemval[4].mnemonic = FW_FLOWC_MNEM_SNDNXT;
flowc->mnemval[4].val = cpu_to_be32(csk->snd_nxt);
flowc->mnemval[5].mnemonic = FW_FLOWC_MNEM_RCVNXT;
flowc->mnemval[5].val = cpu_to_be32(csk->rcv_nxt);
flowc->mnemval[6].mnemonic = FW_FLOWC_MNEM_SNDBUF;
flowc->mnemval[6].val = cpu_to_be32(csk->snd_win);
flowc->mnemval[7].mnemonic = FW_FLOWC_MNEM_MSS;
flowc->mnemval[7].val = cpu_to_be32(csk->emss);
flowc->mnemval[8].mnemonic = FW_FLOWC_MNEM_TXDATAPLEN_MAX;
if (test_bit(CDEV_ISO_ENABLE, &cdev->flags))
flowc->mnemval[8].val = cpu_to_be32(CXGBIT_MAX_ISO_PAYLOAD);
else
flowc->mnemval[8].val = cpu_to_be32(16384);
index = 9;
if (csk->snd_wscale) {
flowc->mnemval[index].mnemonic = FW_FLOWC_MNEM_RCV_SCALE;
flowc->mnemval[index].val = cpu_to_be32(csk->snd_wscale);
index++;
}
#ifdef CONFIG_CHELSIO_T4_DCB
flowc->mnemval[index].mnemonic = FW_FLOWC_MNEM_DCBPRIO;
if (vlan == VLAN_NONE) {
pr_warn("csk %u without VLAN Tag on DCB Link\n", csk->tid);
flowc->mnemval[index].val = cpu_to_be32(0);
} else
flowc->mnemval[index].val = cpu_to_be32(
(vlan & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT);
#endif
pr_debug("%s: csk %p; tx_chan = %u; rss_qid = %u; snd_seq = %u;"
" rcv_seq = %u; snd_win = %u; emss = %u\n",
__func__, csk, csk->tx_chan, csk->rss_qid, csk->snd_nxt,
csk->rcv_nxt, csk->snd_win, csk->emss);
set_wr_txq(skb, CPL_PRIORITY_DATA, csk->txq_idx);
cxgbit_ofld_send(csk->com.cdev, skb);
return flowclen16;
}
int cxgbit_setup_conn_digest(struct cxgbit_sock *csk)
{
struct sk_buff *skb;
struct cpl_set_tcb_field *req;
u8 hcrc = csk->submode & CXGBIT_SUBMODE_HCRC;
u8 dcrc = csk->submode & CXGBIT_SUBMODE_DCRC;
unsigned int len = roundup(sizeof(*req), 16);
int ret;
skb = alloc_skb(len, GFP_KERNEL);
if (!skb)
return -ENOMEM;
/* set up ulp submode */
req = (struct cpl_set_tcb_field *)__skb_put(skb, len);
memset(req, 0, len);
INIT_TP_WR(req, csk->tid);
OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, csk->tid));
req->reply_ctrl = htons(NO_REPLY_V(0) | QUEUENO_V(csk->rss_qid));
req->word_cookie = htons(0);
req->mask = cpu_to_be64(0x3 << 4);
req->val = cpu_to_be64(((hcrc ? ULP_CRC_HEADER : 0) |
(dcrc ? ULP_CRC_DATA : 0)) << 4);
set_wr_txq(skb, CPL_PRIORITY_CONTROL, csk->ctrlq_idx);
cxgbit_get_csk(csk);
cxgbit_init_wr_wait(&csk->com.wr_wait);
cxgbit_ofld_send(csk->com.cdev, skb);
ret = cxgbit_wait_for_reply(csk->com.cdev,
&csk->com.wr_wait,
csk->tid, 5, __func__);
if (ret)
return -1;
return 0;
}
int cxgbit_setup_conn_pgidx(struct cxgbit_sock *csk, u32 pg_idx)
{
struct sk_buff *skb;
struct cpl_set_tcb_field *req;
unsigned int len = roundup(sizeof(*req), 16);
int ret;
skb = alloc_skb(len, GFP_KERNEL);
if (!skb)
return -ENOMEM;
req = (struct cpl_set_tcb_field *)__skb_put(skb, len);
memset(req, 0, len);
INIT_TP_WR(req, csk->tid);
OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, csk->tid));
req->reply_ctrl = htons(NO_REPLY_V(0) | QUEUENO_V(csk->rss_qid));
req->word_cookie = htons(0);
req->mask = cpu_to_be64(0x3 << 8);
req->val = cpu_to_be64(pg_idx << 8);
set_wr_txq(skb, CPL_PRIORITY_CONTROL, csk->ctrlq_idx);
cxgbit_get_csk(csk);
cxgbit_init_wr_wait(&csk->com.wr_wait);
cxgbit_ofld_send(csk->com.cdev, skb);
ret = cxgbit_wait_for_reply(csk->com.cdev,
&csk->com.wr_wait,
csk->tid, 5, __func__);
if (ret)
return -1;
return 0;
}
static void
cxgbit_pass_open_rpl(struct cxgbit_device *cdev, struct sk_buff *skb)
{
struct cpl_pass_open_rpl *rpl = cplhdr(skb);
struct tid_info *t = cdev->lldi.tids;
unsigned int stid = GET_TID(rpl);
struct cxgbit_np *cnp = lookup_stid(t, stid);
pr_debug("%s: cnp = %p; stid = %u; status = %d\n",
__func__, cnp, stid, rpl->status);
if (!cnp) {
pr_info("%s stid %d lookup failure\n", __func__, stid);
return;
}
cxgbit_wake_up(&cnp->com.wr_wait, __func__, rpl->status);
cxgbit_put_cnp(cnp);
}
static void
cxgbit_close_listsrv_rpl(struct cxgbit_device *cdev, struct sk_buff *skb)
{
struct cpl_close_listsvr_rpl *rpl = cplhdr(skb);
struct tid_info *t = cdev->lldi.tids;
unsigned int stid = GET_TID(rpl);
struct cxgbit_np *cnp = lookup_stid(t, stid);
pr_debug("%s: cnp = %p; stid = %u; status = %d\n",
__func__, cnp, stid, rpl->status);
if (!cnp) {
pr_info("%s stid %d lookup failure\n", __func__, stid);
return;
}
cxgbit_wake_up(&cnp->com.wr_wait, __func__, rpl->status);
cxgbit_put_cnp(cnp);
}
static void
cxgbit_pass_establish(struct cxgbit_device *cdev, struct sk_buff *skb)
{
struct cpl_pass_establish *req = cplhdr(skb);
struct tid_info *t = cdev->lldi.tids;
unsigned int tid = GET_TID(req);
struct cxgbit_sock *csk;
struct cxgbit_np *cnp;
u16 tcp_opt = be16_to_cpu(req->tcp_opt);
u32 snd_isn = be32_to_cpu(req->snd_isn);
u32 rcv_isn = be32_to_cpu(req->rcv_isn);
csk = lookup_tid(t, tid);
if (unlikely(!csk)) {
pr_err("can't find connection for tid %u.\n", tid);
goto rel_skb;
}
cnp = csk->cnp;
pr_debug("%s: csk %p; tid %u; cnp %p\n",
__func__, csk, tid, cnp);
csk->write_seq = snd_isn;
csk->snd_una = snd_isn;
csk->snd_nxt = snd_isn;
csk->rcv_nxt = rcv_isn;
if (csk->rcv_win > (RCV_BUFSIZ_M << 10))
csk->rx_credits = (csk->rcv_win - (RCV_BUFSIZ_M << 10));
csk->snd_wscale = TCPOPT_SND_WSCALE_G(tcp_opt);
cxgbit_set_emss(csk, tcp_opt);
dst_confirm(csk->dst);
csk->com.state = CSK_STATE_ESTABLISHED;
spin_lock_bh(&cnp->np_accept_lock);
list_add_tail(&csk->accept_node, &cnp->np_accept_list);
spin_unlock_bh(&cnp->np_accept_lock);
complete(&cnp->accept_comp);
rel_skb:
__kfree_skb(skb);
}
static void cxgbit_queue_rx_skb(struct cxgbit_sock *csk, struct sk_buff *skb)
{
cxgbit_skcb_flags(skb) = 0;
spin_lock_bh(&csk->rxq.lock);
__skb_queue_tail(&csk->rxq, skb);
spin_unlock_bh(&csk->rxq.lock);
wake_up(&csk->waitq);
}
static void cxgbit_peer_close(struct cxgbit_sock *csk, struct sk_buff *skb)
{
pr_debug("%s: csk %p; tid %u; state %d\n",
__func__, csk, csk->tid, csk->com.state);
switch (csk->com.state) {
case CSK_STATE_ESTABLISHED:
csk->com.state = CSK_STATE_CLOSING;
cxgbit_queue_rx_skb(csk, skb);
return;
case CSK_STATE_CLOSING:
/* simultaneous close */
csk->com.state = CSK_STATE_MORIBUND;
break;
case CSK_STATE_MORIBUND:
csk->com.state = CSK_STATE_DEAD;
cxgbit_put_csk(csk);
break;
case CSK_STATE_ABORTING:
break;
default:
pr_info("%s: cpl_peer_close in bad state %d\n",
__func__, csk->com.state);
}
__kfree_skb(skb);
}
static void cxgbit_close_con_rpl(struct cxgbit_sock *csk, struct sk_buff *skb)
{
pr_debug("%s: csk %p; tid %u; state %d\n",
__func__, csk, csk->tid, csk->com.state);
switch (csk->com.state) {
case CSK_STATE_CLOSING:
csk->com.state = CSK_STATE_MORIBUND;
break;
case CSK_STATE_MORIBUND:
csk->com.state = CSK_STATE_DEAD;
cxgbit_put_csk(csk);
break;
case CSK_STATE_ABORTING:
case CSK_STATE_DEAD:
break;
default:
pr_info("%s: cpl_close_con_rpl in bad state %d\n",
__func__, csk->com.state);
}
__kfree_skb(skb);
}
static void cxgbit_abort_req_rss(struct cxgbit_sock *csk, struct sk_buff *skb)
{
struct cpl_abort_req_rss *hdr = cplhdr(skb);
unsigned int tid = GET_TID(hdr);
struct cpl_abort_rpl *rpl;
struct sk_buff *rpl_skb;
bool release = false;
bool wakeup_thread = false;
unsigned int len = roundup(sizeof(*rpl), 16);
pr_debug("%s: csk %p; tid %u; state %d\n",
__func__, csk, tid, csk->com.state);
if (cxgbit_is_neg_adv(hdr->status)) {
pr_err("%s: got neg advise %d on tid %u\n",
__func__, hdr->status, tid);
goto rel_skb;
}
switch (csk->com.state) {
case CSK_STATE_CONNECTING:
case CSK_STATE_MORIBUND:
csk->com.state = CSK_STATE_DEAD;
release = true;
break;
case CSK_STATE_ESTABLISHED:
csk->com.state = CSK_STATE_DEAD;
wakeup_thread = true;
break;
case CSK_STATE_CLOSING:
csk->com.state = CSK_STATE_DEAD;
if (!csk->conn)
release = true;
break;
case CSK_STATE_ABORTING:
break;
default:
pr_info("%s: cpl_abort_req_rss in bad state %d\n",
__func__, csk->com.state);
csk->com.state = CSK_STATE_DEAD;
}
__skb_queue_purge(&csk->txq);
if (!test_and_set_bit(CSK_TX_DATA_SENT, &csk->com.flags))
cxgbit_send_tx_flowc_wr(csk);
rpl_skb = __skb_dequeue(&csk->skbq);
set_wr_txq(skb, CPL_PRIORITY_DATA, csk->txq_idx);
rpl = (struct cpl_abort_rpl *)__skb_put(rpl_skb, len);
memset(rpl, 0, len);
INIT_TP_WR(rpl, csk->tid);
OPCODE_TID(rpl) = cpu_to_be32(MK_OPCODE_TID(CPL_ABORT_RPL, tid));
rpl->cmd = CPL_ABORT_NO_RST;
cxgbit_ofld_send(csk->com.cdev, rpl_skb);
if (wakeup_thread) {
cxgbit_queue_rx_skb(csk, skb);
return;
}
if (release)
cxgbit_put_csk(csk);
rel_skb:
__kfree_skb(skb);
}
static void cxgbit_abort_rpl_rss(struct cxgbit_sock *csk, struct sk_buff *skb)
{
pr_debug("%s: csk %p; tid %u; state %d\n",
__func__, csk, csk->tid, csk->com.state);
switch (csk->com.state) {
case CSK_STATE_ABORTING:
csk->com.state = CSK_STATE_DEAD;
cxgbit_put_csk(csk);
break;
default:
pr_info("%s: cpl_abort_rpl_rss in state %d\n",
__func__, csk->com.state);
}
__kfree_skb(skb);
}
static bool cxgbit_credit_err(const struct cxgbit_sock *csk)
{
const struct sk_buff *skb = csk->wr_pending_head;
u32 credit = 0;
if (unlikely(csk->wr_cred > csk->wr_max_cred)) {
pr_err("csk 0x%p, tid %u, credit %u > %u\n",
csk, csk->tid, csk->wr_cred, csk->wr_max_cred);
return true;
}
while (skb) {
credit += skb->csum;
skb = cxgbit_skcb_tx_wr_next(skb);
}
if (unlikely((csk->wr_cred + credit) != csk->wr_max_cred)) {
pr_err("csk 0x%p, tid %u, credit %u + %u != %u.\n",
csk, csk->tid, csk->wr_cred,
credit, csk->wr_max_cred);
return true;
}
return false;
}
static void cxgbit_fw4_ack(struct cxgbit_sock *csk, struct sk_buff *skb)
{
struct cpl_fw4_ack *rpl = (struct cpl_fw4_ack *)cplhdr(skb);
u32 credits = rpl->credits;
u32 snd_una = ntohl(rpl->snd_una);
csk->wr_cred += credits;
if (csk->wr_una_cred > (csk->wr_max_cred - csk->wr_cred))
csk->wr_una_cred = csk->wr_max_cred - csk->wr_cred;
while (credits) {
struct sk_buff *p = cxgbit_sock_peek_wr(csk);
if (unlikely(!p)) {
pr_err("csk 0x%p,%u, cr %u,%u+%u, empty.\n",
csk, csk->tid, credits,
csk->wr_cred, csk->wr_una_cred);
break;
}
if (unlikely(credits < p->csum)) {
pr_warn("csk 0x%p,%u, cr %u,%u+%u, < %u.\n",
csk, csk->tid,
credits, csk->wr_cred, csk->wr_una_cred,
p->csum);
p->csum -= credits;
break;
}
cxgbit_sock_dequeue_wr(csk);
credits -= p->csum;
kfree_skb(p);
}
if (unlikely(cxgbit_credit_err(csk))) {
cxgbit_queue_rx_skb(csk, skb);
return;
}
if (rpl->seq_vld & CPL_FW4_ACK_FLAGS_SEQVAL) {
if (unlikely(before(snd_una, csk->snd_una))) {
pr_warn("csk 0x%p,%u, snd_una %u/%u.",
csk, csk->tid, snd_una,
csk->snd_una);
goto rel_skb;
}
if (csk->snd_una != snd_una) {
csk->snd_una = snd_una;
dst_confirm(csk->dst);
wake_up(&csk->ack_waitq);
}
}
if (skb_queue_len(&csk->txq))
cxgbit_push_tx_frames(csk);
rel_skb:
__kfree_skb(skb);
}
static void cxgbit_set_tcb_rpl(struct cxgbit_device *cdev, struct sk_buff *skb)
{
struct cxgbit_sock *csk;
struct cpl_set_tcb_rpl *rpl = (struct cpl_set_tcb_rpl *)skb->data;
unsigned int tid = GET_TID(rpl);
struct cxgb4_lld_info *lldi = &cdev->lldi;
struct tid_info *t = lldi->tids;
csk = lookup_tid(t, tid);
if (unlikely(!csk))
pr_err("can't find connection for tid %u.\n", tid);
else
cxgbit_wake_up(&csk->com.wr_wait, __func__, rpl->status);
cxgbit_put_csk(csk);
}
static void cxgbit_rx_data(struct cxgbit_device *cdev, struct sk_buff *skb)
{
struct cxgbit_sock *csk;
struct cpl_rx_data *cpl = cplhdr(skb);
unsigned int tid = GET_TID(cpl);
struct cxgb4_lld_info *lldi = &cdev->lldi;
struct tid_info *t = lldi->tids;
csk = lookup_tid(t, tid);
if (unlikely(!csk)) {
pr_err("can't find conn. for tid %u.\n", tid);
goto rel_skb;
}
cxgbit_queue_rx_skb(csk, skb);
return;
rel_skb:
__kfree_skb(skb);
}
static void
__cxgbit_process_rx_cpl(struct cxgbit_sock *csk, struct sk_buff *skb)
{
spin_lock(&csk->lock);
if (csk->lock_owner) {
__skb_queue_tail(&csk->backlogq, skb);
spin_unlock(&csk->lock);
return;
}
cxgbit_skcb_rx_backlog_fn(skb)(csk, skb);
spin_unlock(&csk->lock);
}
static void cxgbit_process_rx_cpl(struct cxgbit_sock *csk, struct sk_buff *skb)
{
cxgbit_get_csk(csk);
__cxgbit_process_rx_cpl(csk, skb);
cxgbit_put_csk(csk);
}
static void cxgbit_rx_cpl(struct cxgbit_device *cdev, struct sk_buff *skb)
{
struct cxgbit_sock *csk;
struct cpl_tx_data *cpl = cplhdr(skb);
struct cxgb4_lld_info *lldi = &cdev->lldi;
struct tid_info *t = lldi->tids;
unsigned int tid = GET_TID(cpl);
u8 opcode = cxgbit_skcb_rx_opcode(skb);
bool ref = true;
switch (opcode) {
case CPL_FW4_ACK:
cxgbit_skcb_rx_backlog_fn(skb) = cxgbit_fw4_ack;
ref = false;
break;
case CPL_PEER_CLOSE:
cxgbit_skcb_rx_backlog_fn(skb) = cxgbit_peer_close;
break;
case CPL_CLOSE_CON_RPL:
cxgbit_skcb_rx_backlog_fn(skb) = cxgbit_close_con_rpl;
break;
case CPL_ABORT_REQ_RSS:
cxgbit_skcb_rx_backlog_fn(skb) = cxgbit_abort_req_rss;
break;
case CPL_ABORT_RPL_RSS:
cxgbit_skcb_rx_backlog_fn(skb) = cxgbit_abort_rpl_rss;
break;
default:
goto rel_skb;
}
csk = lookup_tid(t, tid);
if (unlikely(!csk)) {
pr_err("can't find conn. for tid %u.\n", tid);
goto rel_skb;
}
if (ref)
cxgbit_process_rx_cpl(csk, skb);
else
__cxgbit_process_rx_cpl(csk, skb);
return;
rel_skb:
__kfree_skb(skb);
}
cxgbit_cplhandler_func cxgbit_cplhandlers[NUM_CPL_CMDS] = {
[CPL_PASS_OPEN_RPL] = cxgbit_pass_open_rpl,
[CPL_CLOSE_LISTSRV_RPL] = cxgbit_close_listsrv_rpl,
[CPL_PASS_ACCEPT_REQ] = cxgbit_pass_accept_req,
[CPL_PASS_ESTABLISH] = cxgbit_pass_establish,
[CPL_SET_TCB_RPL] = cxgbit_set_tcb_rpl,
[CPL_RX_DATA] = cxgbit_rx_data,
[CPL_FW4_ACK] = cxgbit_rx_cpl,
[CPL_PEER_CLOSE] = cxgbit_rx_cpl,
[CPL_CLOSE_CON_RPL] = cxgbit_rx_cpl,
[CPL_ABORT_REQ_RSS] = cxgbit_rx_cpl,
[CPL_ABORT_RPL_RSS] = cxgbit_rx_cpl,
};
/*
* Copyright (c) 2016 Chelsio Communications, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include "cxgbit.h"
static void
cxgbit_set_one_ppod(struct cxgbi_pagepod *ppod,
struct cxgbi_task_tag_info *ttinfo,
struct scatterlist **sg_pp, unsigned int *sg_off)
{
struct scatterlist *sg = sg_pp ? *sg_pp : NULL;
unsigned int offset = sg_off ? *sg_off : 0;
dma_addr_t addr = 0UL;
unsigned int len = 0;
int i;
memcpy(ppod, &ttinfo->hdr, sizeof(struct cxgbi_pagepod_hdr));
if (sg) {
addr = sg_dma_address(sg);
len = sg_dma_len(sg);
}
for (i = 0; i < PPOD_PAGES_MAX; i++) {
if (sg) {
ppod->addr[i] = cpu_to_be64(addr + offset);
offset += PAGE_SIZE;
if (offset == (len + sg->offset)) {
offset = 0;
sg = sg_next(sg);
if (sg) {
addr = sg_dma_address(sg);
len = sg_dma_len(sg);
}
}
} else {
ppod->addr[i] = 0ULL;
}
}
/*
* the fifth address needs to be repeated in the next ppod, so do
* not move sg
*/
if (sg_pp) {
*sg_pp = sg;
*sg_off = offset;
}
if (offset == len) {
offset = 0;
if (sg) {
sg = sg_next(sg);
if (sg)
addr = sg_dma_address(sg);
}
}
ppod->addr[i] = sg ? cpu_to_be64(addr + offset) : 0ULL;
}
static struct sk_buff *
cxgbit_ppod_init_idata(struct cxgbit_device *cdev, struct cxgbi_ppm *ppm,
unsigned int idx, unsigned int npods, unsigned int tid)
{
struct ulp_mem_io *req;
struct ulptx_idata *idata;
unsigned int pm_addr = (idx << PPOD_SIZE_SHIFT) + ppm->llimit;
unsigned int dlen = npods << PPOD_SIZE_SHIFT;
unsigned int wr_len = roundup(sizeof(struct ulp_mem_io) +
sizeof(struct ulptx_idata) + dlen, 16);
struct sk_buff *skb;
skb = alloc_skb(wr_len, GFP_KERNEL);
if (!skb)
return NULL;
req = (struct ulp_mem_io *)__skb_put(skb, wr_len);
INIT_ULPTX_WR(req, wr_len, 0, tid);
req->wr.wr_hi = htonl(FW_WR_OP_V(FW_ULPTX_WR) |
FW_WR_ATOMIC_V(0));
req->cmd = htonl(ULPTX_CMD_V(ULP_TX_MEM_WRITE) |
ULP_MEMIO_ORDER_V(0) |
T5_ULP_MEMIO_IMM_V(1));
req->dlen = htonl(ULP_MEMIO_DATA_LEN_V(dlen >> 5));
req->lock_addr = htonl(ULP_MEMIO_ADDR_V(pm_addr >> 5));
req->len16 = htonl(DIV_ROUND_UP(wr_len - sizeof(req->wr), 16));
idata = (struct ulptx_idata *)(req + 1);
idata->cmd_more = htonl(ULPTX_CMD_V(ULP_TX_SC_IMM));
idata->len = htonl(dlen);
return skb;
}
static int
cxgbit_ppod_write_idata(struct cxgbi_ppm *ppm, struct cxgbit_sock *csk,
struct cxgbi_task_tag_info *ttinfo, unsigned int idx,
unsigned int npods, struct scatterlist **sg_pp,
unsigned int *sg_off)
{
struct cxgbit_device *cdev = csk->com.cdev;
struct sk_buff *skb;
struct ulp_mem_io *req;
struct ulptx_idata *idata;
struct cxgbi_pagepod *ppod;
unsigned int i;
skb = cxgbit_ppod_init_idata(cdev, ppm, idx, npods, csk->tid);
if (!skb)
return -ENOMEM;
req = (struct ulp_mem_io *)skb->data;
idata = (struct ulptx_idata *)(req + 1);
ppod = (struct cxgbi_pagepod *)(idata + 1);
for (i = 0; i < npods; i++, ppod++)
cxgbit_set_one_ppod(ppod, ttinfo, sg_pp, sg_off);
__skb_queue_tail(&csk->ppodq, skb);
return 0;
}
static int
cxgbit_ddp_set_map(struct cxgbi_ppm *ppm, struct cxgbit_sock *csk,
struct cxgbi_task_tag_info *ttinfo)
{
unsigned int pidx = ttinfo->idx;
unsigned int npods = ttinfo->npods;
unsigned int i, cnt;
struct scatterlist *sg = ttinfo->sgl;
unsigned int offset = 0;
int ret = 0;
for (i = 0; i < npods; i += cnt, pidx += cnt) {
cnt = npods - i;
if (cnt > ULPMEM_IDATA_MAX_NPPODS)
cnt = ULPMEM_IDATA_MAX_NPPODS;
ret = cxgbit_ppod_write_idata(ppm, csk, ttinfo, pidx, cnt,
&sg, &offset);
if (ret < 0)
break;
}
return ret;
}
static int cxgbit_ddp_sgl_check(struct scatterlist *sg,
unsigned int nents)
{
unsigned int last_sgidx = nents - 1;
unsigned int i;
for (i = 0; i < nents; i++, sg = sg_next(sg)) {
unsigned int len = sg->length + sg->offset;
if ((sg->offset & 0x3) || (i && sg->offset) ||
((i != last_sgidx) && (len != PAGE_SIZE))) {
return -EINVAL;
}
}
return 0;
}
static int
cxgbit_ddp_reserve(struct cxgbit_sock *csk, struct cxgbi_task_tag_info *ttinfo,
unsigned int xferlen)
{
struct cxgbit_device *cdev = csk->com.cdev;
struct cxgbi_ppm *ppm = cdev2ppm(cdev);
struct scatterlist *sgl = ttinfo->sgl;
unsigned int sgcnt = ttinfo->nents;
unsigned int sg_offset = sgl->offset;
int ret;
if ((xferlen < DDP_THRESHOLD) || (!sgcnt)) {
pr_debug("ppm 0x%p, pgidx %u, xfer %u, sgcnt %u, NO ddp.\n",
ppm, ppm->tformat.pgsz_idx_dflt,
xferlen, ttinfo->nents);
return -EINVAL;
}
if (cxgbit_ddp_sgl_check(sgl, sgcnt) < 0)
return -EINVAL;
ttinfo->nr_pages = (xferlen + sgl->offset +
(1 << PAGE_SHIFT) - 1) >> PAGE_SHIFT;
/*
* the ddp tag will be used for the ttt in the outgoing r2t pdu
*/
ret = cxgbi_ppm_ppods_reserve(ppm, ttinfo->nr_pages, 0, &ttinfo->idx,
&ttinfo->tag, 0);
if (ret < 0)
return ret;
ttinfo->npods = ret;
sgl->offset = 0;
ret = dma_map_sg(&ppm->pdev->dev, sgl, sgcnt, DMA_FROM_DEVICE);
sgl->offset = sg_offset;
if (!ret) {
pr_info("%s: 0x%x, xfer %u, sgl %u dma mapping err.\n",
__func__, 0, xferlen, sgcnt);
goto rel_ppods;
}
cxgbi_ppm_make_ppod_hdr(ppm, ttinfo->tag, csk->tid, sgl->offset,
xferlen, &ttinfo->hdr);
ret = cxgbit_ddp_set_map(ppm, csk, ttinfo);
if (ret < 0) {
__skb_queue_purge(&csk->ppodq);
dma_unmap_sg(&ppm->pdev->dev, sgl, sgcnt, DMA_FROM_DEVICE);
goto rel_ppods;
}
return 0;
rel_ppods:
cxgbi_ppm_ppod_release(ppm, ttinfo->idx);
return -EINVAL;
}
void
cxgbit_get_r2t_ttt(struct iscsi_conn *conn, struct iscsi_cmd *cmd,
struct iscsi_r2t *r2t)
{
struct cxgbit_sock *csk = conn->context;
struct cxgbit_device *cdev = csk->com.cdev;
struct cxgbit_cmd *ccmd = iscsit_priv_cmd(cmd);
struct cxgbi_task_tag_info *ttinfo = &ccmd->ttinfo;
int ret = -EINVAL;
if ((!ccmd->setup_ddp) ||
(!test_bit(CSK_DDP_ENABLE, &csk->com.flags)))
goto out;
ccmd->setup_ddp = false;
ttinfo->sgl = cmd->se_cmd.t_data_sg;
ttinfo->nents = cmd->se_cmd.t_data_nents;
ret = cxgbit_ddp_reserve(csk, ttinfo, cmd->se_cmd.data_length);
if (ret < 0) {
pr_info("csk 0x%p, cmd 0x%p, xfer len %u, sgcnt %u no ddp.\n",
csk, cmd, cmd->se_cmd.data_length, ttinfo->nents);
ttinfo->sgl = NULL;
ttinfo->nents = 0;
} else {
ccmd->release = true;
}
out:
pr_debug("cdev 0x%p, cmd 0x%p, tag 0x%x\n", cdev, cmd, ttinfo->tag);
r2t->targ_xfer_tag = ttinfo->tag;
}
void cxgbit_release_cmd(struct iscsi_conn *conn, struct iscsi_cmd *cmd)
{
struct cxgbit_cmd *ccmd = iscsit_priv_cmd(cmd);
if (ccmd->release) {
struct cxgbi_task_tag_info *ttinfo = &ccmd->ttinfo;
if (ttinfo->sgl) {
struct cxgbit_sock *csk = conn->context;
struct cxgbit_device *cdev = csk->com.cdev;
struct cxgbi_ppm *ppm = cdev2ppm(cdev);
cxgbi_ppm_ppod_release(ppm, ttinfo->idx);
dma_unmap_sg(&ppm->pdev->dev, ttinfo->sgl,
ttinfo->nents, DMA_FROM_DEVICE);
} else {
put_page(sg_page(&ccmd->sg));
}
ccmd->release = false;
}
}
int cxgbit_ddp_init(struct cxgbit_device *cdev)
{
struct cxgb4_lld_info *lldi = &cdev->lldi;
struct net_device *ndev = cdev->lldi.ports[0];
struct cxgbi_tag_format tformat;
unsigned int ppmax;
int ret, i;
if (!lldi->vr->iscsi.size) {
pr_warn("%s, iscsi NOT enabled, check config!\n", ndev->name);
return -EACCES;
}
ppmax = lldi->vr->iscsi.size >> PPOD_SIZE_SHIFT;
memset(&tformat, 0, sizeof(struct cxgbi_tag_format));
for (i = 0; i < 4; i++)
tformat.pgsz_order[i] = (lldi->iscsi_pgsz_order >> (i << 3))
& 0xF;
cxgbi_tagmask_check(lldi->iscsi_tagmask, &tformat);
ret = cxgbi_ppm_init(lldi->iscsi_ppm, cdev->lldi.ports[0],
cdev->lldi.pdev, &cdev->lldi, &tformat,
ppmax, lldi->iscsi_llimit,
lldi->vr->iscsi.start, 2);
if (ret >= 0) {
struct cxgbi_ppm *ppm = (struct cxgbi_ppm *)(*lldi->iscsi_ppm);
if ((ppm->tformat.pgsz_idx_dflt < DDP_PGIDX_MAX) &&
(ppm->ppmax >= 1024))
set_bit(CDEV_DDP_ENABLE, &cdev->flags);
ret = 0;
}
return ret;
}
/*
* Copyright (c) 2016 Chelsio Communications, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation.
*
*/
#ifndef __CXGBIT_LRO_H__
#define __CXGBIT_LRO_H__
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/types.h>
#include <linux/skbuff.h>
#define LRO_FLUSH_LEN_MAX 65535
struct cxgbit_lro_cb {
struct cxgbit_sock *csk;
u32 pdu_totallen;
u32 offset;
u8 pdu_idx;
bool complete;
};
enum cxgbit_pducb_flags {
PDUCBF_RX_HDR = (1 << 0), /* received pdu header */
PDUCBF_RX_DATA = (1 << 1), /* received pdu payload */
PDUCBF_RX_STATUS = (1 << 2), /* received ddp status */
PDUCBF_RX_DATA_DDPD = (1 << 3), /* pdu payload ddp'd */
PDUCBF_RX_HCRC_ERR = (1 << 4), /* header digest error */
PDUCBF_RX_DCRC_ERR = (1 << 5), /* data digest error */
};
struct cxgbit_lro_pdu_cb {
u8 flags;
u8 frags;
u8 hfrag_idx;
u8 nr_dfrags;
u8 dfrag_idx;
bool complete;
u32 seq;
u32 pdulen;
u32 hlen;
u32 dlen;
u32 doffset;
u32 ddigest;
void *hdr;
};
#define LRO_SKB_MAX_HEADROOM \
(sizeof(struct cxgbit_lro_cb) + \
(MAX_SKB_FRAGS * sizeof(struct cxgbit_lro_pdu_cb)))
#define LRO_SKB_MIN_HEADROOM \
(sizeof(struct cxgbit_lro_cb) + \
sizeof(struct cxgbit_lro_pdu_cb))
#define cxgbit_skb_lro_cb(skb) ((struct cxgbit_lro_cb *)skb->data)
#define cxgbit_skb_lro_pdu_cb(skb, i) \
((struct cxgbit_lro_pdu_cb *)(skb->data + sizeof(struct cxgbit_lro_cb) \
+ (i * sizeof(struct cxgbit_lro_pdu_cb))))
#define CPL_RX_ISCSI_DDP_STATUS_DDP_SHIFT 16 /* ddp'able */
#define CPL_RX_ISCSI_DDP_STATUS_PAD_SHIFT 19 /* pad error */
#define CPL_RX_ISCSI_DDP_STATUS_HCRC_SHIFT 20 /* hcrc error */
#define CPL_RX_ISCSI_DDP_STATUS_DCRC_SHIFT 21 /* dcrc error */
#endif /*__CXGBIT_LRO_H_*/
/*
* Copyright (c) 2016 Chelsio Communications, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#define DRV_NAME "cxgbit"
#define DRV_VERSION "1.0.0-ko"
#define pr_fmt(fmt) DRV_NAME ": " fmt
#include "cxgbit.h"
#ifdef CONFIG_CHELSIO_T4_DCB
#include <net/dcbevent.h>
#include "cxgb4_dcb.h"
#endif
LIST_HEAD(cdev_list_head);
/* cdev list lock */
DEFINE_MUTEX(cdev_list_lock);
void _cxgbit_free_cdev(struct kref *kref)
{
struct cxgbit_device *cdev;
cdev = container_of(kref, struct cxgbit_device, kref);
kfree(cdev);
}
static void cxgbit_set_mdsl(struct cxgbit_device *cdev)
{
struct cxgb4_lld_info *lldi = &cdev->lldi;
u32 mdsl;
#define ULP2_MAX_PKT_LEN 16224
#define ISCSI_PDU_NONPAYLOAD_LEN 312
mdsl = min_t(u32, lldi->iscsi_iolen - ISCSI_PDU_NONPAYLOAD_LEN,
ULP2_MAX_PKT_LEN - ISCSI_PDU_NONPAYLOAD_LEN);
mdsl = min_t(u32, mdsl, 8192);
mdsl = min_t(u32, mdsl, (MAX_SKB_FRAGS - 1) * PAGE_SIZE);
cdev->mdsl = mdsl;
}
static void *cxgbit_uld_add(const struct cxgb4_lld_info *lldi)
{
struct cxgbit_device *cdev;
if (is_t4(lldi->adapter_type))
return ERR_PTR(-ENODEV);
cdev = kzalloc(sizeof(*cdev), GFP_KERNEL);
if (!cdev)
return ERR_PTR(-ENOMEM);
kref_init(&cdev->kref);
cdev->lldi = *lldi;
cxgbit_set_mdsl(cdev);
if (cxgbit_ddp_init(cdev) < 0) {
kfree(cdev);
return ERR_PTR(-EINVAL);
}
if (!test_bit(CDEV_DDP_ENABLE, &cdev->flags))
pr_info("cdev %s ddp init failed\n",
pci_name(lldi->pdev));
if (lldi->fw_vers >= 0x10d2b00)
set_bit(CDEV_ISO_ENABLE, &cdev->flags);
spin_lock_init(&cdev->cskq.lock);
INIT_LIST_HEAD(&cdev->cskq.list);
mutex_lock(&cdev_list_lock);
list_add_tail(&cdev->list, &cdev_list_head);
mutex_unlock(&cdev_list_lock);
pr_info("cdev %s added for iSCSI target transport\n",
pci_name(lldi->pdev));
return cdev;
}
static void cxgbit_close_conn(struct cxgbit_device *cdev)
{
struct cxgbit_sock *csk;
struct sk_buff *skb;
bool wakeup_thread = false;
spin_lock_bh(&cdev->cskq.lock);
list_for_each_entry(csk, &cdev->cskq.list, list) {
skb = alloc_skb(0, GFP_ATOMIC);
if (!skb)
continue;
spin_lock_bh(&csk->rxq.lock);
__skb_queue_tail(&csk->rxq, skb);
if (skb_queue_len(&csk->rxq) == 1)
wakeup_thread = true;
spin_unlock_bh(&csk->rxq.lock);
if (wakeup_thread) {
wake_up(&csk->waitq);
wakeup_thread = false;
}
}
spin_unlock_bh(&cdev->cskq.lock);
}
static void cxgbit_detach_cdev(struct cxgbit_device *cdev)
{
bool free_cdev = false;
spin_lock_bh(&cdev->cskq.lock);
if (list_empty(&cdev->cskq.list))
free_cdev = true;
spin_unlock_bh(&cdev->cskq.lock);
if (free_cdev) {
mutex_lock(&cdev_list_lock);
list_del(&cdev->list);
mutex_unlock(&cdev_list_lock);
cxgbit_put_cdev(cdev);
} else {
cxgbit_close_conn(cdev);
}
}
static int cxgbit_uld_state_change(void *handle, enum cxgb4_state state)
{
struct cxgbit_device *cdev = handle;
switch (state) {
case CXGB4_STATE_UP:
set_bit(CDEV_STATE_UP, &cdev->flags);
pr_info("cdev %s state UP.\n", pci_name(cdev->lldi.pdev));
break;
case CXGB4_STATE_START_RECOVERY:
clear_bit(CDEV_STATE_UP, &cdev->flags);
cxgbit_close_conn(cdev);
pr_info("cdev %s state RECOVERY.\n", pci_name(cdev->lldi.pdev));
break;
case CXGB4_STATE_DOWN:
pr_info("cdev %s state DOWN.\n", pci_name(cdev->lldi.pdev));
break;
case CXGB4_STATE_DETACH:
clear_bit(CDEV_STATE_UP, &cdev->flags);
pr_info("cdev %s state DETACH.\n", pci_name(cdev->lldi.pdev));
cxgbit_detach_cdev(cdev);
break;
default:
pr_info("cdev %s unknown state %d.\n",
pci_name(cdev->lldi.pdev), state);
break;
}
return 0;
}
static void
cxgbit_proc_ddp_status(unsigned int tid, struct cpl_rx_data_ddp *cpl,
struct cxgbit_lro_pdu_cb *pdu_cb)
{
unsigned int status = ntohl(cpl->ddpvld);
pdu_cb->flags |= PDUCBF_RX_STATUS;
pdu_cb->ddigest = ntohl(cpl->ulp_crc);
pdu_cb->pdulen = ntohs(cpl->len);
if (status & (1 << CPL_RX_ISCSI_DDP_STATUS_HCRC_SHIFT)) {
pr_info("tid 0x%x, status 0x%x, hcrc bad.\n", tid, status);
pdu_cb->flags |= PDUCBF_RX_HCRC_ERR;
}
if (status & (1 << CPL_RX_ISCSI_DDP_STATUS_DCRC_SHIFT)) {
pr_info("tid 0x%x, status 0x%x, dcrc bad.\n", tid, status);
pdu_cb->flags |= PDUCBF_RX_DCRC_ERR;
}
if (status & (1 << CPL_RX_ISCSI_DDP_STATUS_PAD_SHIFT))
pr_info("tid 0x%x, status 0x%x, pad bad.\n", tid, status);
if ((status & (1 << CPL_RX_ISCSI_DDP_STATUS_DDP_SHIFT)) &&
(!(pdu_cb->flags & PDUCBF_RX_DATA))) {
pdu_cb->flags |= PDUCBF_RX_DATA_DDPD;
}
}
static void
cxgbit_lro_add_packet_rsp(struct sk_buff *skb, u8 op, const __be64 *rsp)
{
struct cxgbit_lro_cb *lro_cb = cxgbit_skb_lro_cb(skb);
struct cxgbit_lro_pdu_cb *pdu_cb = cxgbit_skb_lro_pdu_cb(skb,
lro_cb->pdu_idx);
struct cpl_rx_iscsi_ddp *cpl = (struct cpl_rx_iscsi_ddp *)(rsp + 1);
cxgbit_proc_ddp_status(lro_cb->csk->tid, cpl, pdu_cb);
if (pdu_cb->flags & PDUCBF_RX_HDR)
pdu_cb->complete = true;
lro_cb->complete = true;
lro_cb->pdu_totallen += pdu_cb->pdulen;
lro_cb->pdu_idx++;
}
static void
cxgbit_copy_frags(struct sk_buff *skb, const struct pkt_gl *gl,
unsigned int offset)
{
u8 skb_frag_idx = skb_shinfo(skb)->nr_frags;
u8 i;
/* usually there's just one frag */
__skb_fill_page_desc(skb, skb_frag_idx, gl->frags[0].page,
gl->frags[0].offset + offset,
gl->frags[0].size - offset);
for (i = 1; i < gl->nfrags; i++)
__skb_fill_page_desc(skb, skb_frag_idx + i,
gl->frags[i].page,
gl->frags[i].offset,
gl->frags[i].size);
skb_shinfo(skb)->nr_frags += gl->nfrags;
/* get a reference to the last page, we don't own it */
get_page(gl->frags[gl->nfrags - 1].page);
}
static void
cxgbit_lro_add_packet_gl(struct sk_buff *skb, u8 op, const struct pkt_gl *gl)
{
struct cxgbit_lro_cb *lro_cb = cxgbit_skb_lro_cb(skb);
struct cxgbit_lro_pdu_cb *pdu_cb = cxgbit_skb_lro_pdu_cb(skb,
lro_cb->pdu_idx);
u32 len, offset;
if (op == CPL_ISCSI_HDR) {
struct cpl_iscsi_hdr *cpl = (struct cpl_iscsi_hdr *)gl->va;
offset = sizeof(struct cpl_iscsi_hdr);
pdu_cb->flags |= PDUCBF_RX_HDR;
pdu_cb->seq = ntohl(cpl->seq);
len = ntohs(cpl->len);
pdu_cb->hdr = gl->va + offset;
pdu_cb->hlen = len;
pdu_cb->hfrag_idx = skb_shinfo(skb)->nr_frags;
if (unlikely(gl->nfrags > 1))
cxgbit_skcb_flags(skb) = 0;
lro_cb->complete = false;
} else {
struct cpl_iscsi_data *cpl = (struct cpl_iscsi_data *)gl->va;
offset = sizeof(struct cpl_iscsi_data);
pdu_cb->flags |= PDUCBF_RX_DATA;
len = ntohs(cpl->len);
pdu_cb->dlen = len;
pdu_cb->doffset = lro_cb->offset;
pdu_cb->nr_dfrags = gl->nfrags;
pdu_cb->dfrag_idx = skb_shinfo(skb)->nr_frags;
}
cxgbit_copy_frags(skb, gl, offset);
pdu_cb->frags += gl->nfrags;
lro_cb->offset += len;
skb->len += len;
skb->data_len += len;
skb->truesize += len;
}
static struct sk_buff *
cxgbit_lro_init_skb(struct cxgbit_sock *csk, u8 op, const struct pkt_gl *gl,
const __be64 *rsp, struct napi_struct *napi)
{
struct sk_buff *skb;
struct cxgbit_lro_cb *lro_cb;
skb = napi_alloc_skb(napi, LRO_SKB_MAX_HEADROOM);
if (unlikely(!skb))
return NULL;
memset(skb->data, 0, LRO_SKB_MAX_HEADROOM);
cxgbit_skcb_flags(skb) |= SKCBF_RX_LRO;
lro_cb = cxgbit_skb_lro_cb(skb);
cxgbit_get_csk(csk);
lro_cb->csk = csk;
return skb;
}
static void cxgbit_queue_lro_skb(struct cxgbit_sock *csk, struct sk_buff *skb)
{
bool wakeup_thread = false;
spin_lock(&csk->rxq.lock);
__skb_queue_tail(&csk->rxq, skb);
if (skb_queue_len(&csk->rxq) == 1)
wakeup_thread = true;
spin_unlock(&csk->rxq.lock);
if (wakeup_thread)
wake_up(&csk->waitq);
}
static void cxgbit_lro_flush(struct t4_lro_mgr *lro_mgr, struct sk_buff *skb)
{
struct cxgbit_lro_cb *lro_cb = cxgbit_skb_lro_cb(skb);
struct cxgbit_sock *csk = lro_cb->csk;
csk->lro_skb = NULL;
__skb_unlink(skb, &lro_mgr->lroq);
cxgbit_queue_lro_skb(csk, skb);
cxgbit_put_csk(csk);
lro_mgr->lro_pkts++;
lro_mgr->lro_session_cnt--;
}
static void cxgbit_uld_lro_flush(struct t4_lro_mgr *lro_mgr)
{
struct sk_buff *skb;
while ((skb = skb_peek(&lro_mgr->lroq)))
cxgbit_lro_flush(lro_mgr, skb);
}
static int
cxgbit_lro_receive(struct cxgbit_sock *csk, u8 op, const __be64 *rsp,
const struct pkt_gl *gl, struct t4_lro_mgr *lro_mgr,
struct napi_struct *napi)
{
struct sk_buff *skb;
struct cxgbit_lro_cb *lro_cb;
if (!csk) {
pr_err("%s: csk NULL, op 0x%x.\n", __func__, op);
goto out;
}
if (csk->lro_skb)
goto add_packet;
start_lro:
if (lro_mgr->lro_session_cnt >= MAX_LRO_SESSIONS) {
cxgbit_uld_lro_flush(lro_mgr);
goto start_lro;
}
skb = cxgbit_lro_init_skb(csk, op, gl, rsp, napi);
if (unlikely(!skb))
goto out;
csk->lro_skb = skb;
__skb_queue_tail(&lro_mgr->lroq, skb);
lro_mgr->lro_session_cnt++;
add_packet:
skb = csk->lro_skb;
lro_cb = cxgbit_skb_lro_cb(skb);
if ((gl && (((skb_shinfo(skb)->nr_frags + gl->nfrags) >
MAX_SKB_FRAGS) || (lro_cb->pdu_totallen >= LRO_FLUSH_LEN_MAX))) ||
(lro_cb->pdu_idx >= MAX_SKB_FRAGS)) {
cxgbit_lro_flush(lro_mgr, skb);
goto start_lro;
}
if (gl)
cxgbit_lro_add_packet_gl(skb, op, gl);
else
cxgbit_lro_add_packet_rsp(skb, op, rsp);
lro_mgr->lro_merged++;
return 0;
out:
return -1;
}
static int
cxgbit_uld_lro_rx_handler(void *hndl, const __be64 *rsp,
const struct pkt_gl *gl, struct t4_lro_mgr *lro_mgr,
struct napi_struct *napi)
{
struct cxgbit_device *cdev = hndl;
struct cxgb4_lld_info *lldi = &cdev->lldi;
struct cpl_tx_data *rpl = NULL;
struct cxgbit_sock *csk = NULL;
unsigned int tid = 0;
struct sk_buff *skb;
unsigned int op = *(u8 *)rsp;
bool lro_flush = true;
switch (op) {
case CPL_ISCSI_HDR:
case CPL_ISCSI_DATA:
case CPL_RX_ISCSI_DDP:
case CPL_FW4_ACK:
lro_flush = false;
case CPL_ABORT_RPL_RSS:
case CPL_PASS_ESTABLISH:
case CPL_PEER_CLOSE:
case CPL_CLOSE_CON_RPL:
case CPL_ABORT_REQ_RSS:
case CPL_SET_TCB_RPL:
case CPL_RX_DATA:
rpl = gl ? (struct cpl_tx_data *)gl->va :
(struct cpl_tx_data *)(rsp + 1);
tid = GET_TID(rpl);
csk = lookup_tid(lldi->tids, tid);
break;
default:
break;
}
if (csk && csk->lro_skb && lro_flush)
cxgbit_lro_flush(lro_mgr, csk->lro_skb);
if (!gl) {
unsigned int len;
if (op == CPL_RX_ISCSI_DDP) {
if (!cxgbit_lro_receive(csk, op, rsp, NULL, lro_mgr,
napi))
return 0;
}
len = 64 - sizeof(struct rsp_ctrl) - 8;
skb = napi_alloc_skb(napi, len);
if (!skb)
goto nomem;
__skb_put(skb, len);
skb_copy_to_linear_data(skb, &rsp[1], len);
} else {
if (unlikely(op != *(u8 *)gl->va)) {
pr_info("? FL 0x%p,RSS%#llx,FL %#llx,len %u.\n",
gl->va, be64_to_cpu(*rsp),
be64_to_cpu(*(u64 *)gl->va),
gl->tot_len);
return 0;
}
if (op == CPL_ISCSI_HDR || op == CPL_ISCSI_DATA) {
if (!cxgbit_lro_receive(csk, op, rsp, gl, lro_mgr,
napi))
return 0;
}
#define RX_PULL_LEN 128
skb = cxgb4_pktgl_to_skb(gl, RX_PULL_LEN, RX_PULL_LEN);
if (unlikely(!skb))
goto nomem;
}
rpl = (struct cpl_tx_data *)skb->data;
op = rpl->ot.opcode;
cxgbit_skcb_rx_opcode(skb) = op;
pr_debug("cdev %p, opcode 0x%x(0x%x,0x%x), skb %p.\n",
cdev, op, rpl->ot.opcode_tid,
ntohl(rpl->ot.opcode_tid), skb);
if (op < NUM_CPL_CMDS && cxgbit_cplhandlers[op]) {
cxgbit_cplhandlers[op](cdev, skb);
} else {
pr_err("No handler for opcode 0x%x.\n", op);
__kfree_skb(skb);
}
return 0;
nomem:
pr_err("%s OOM bailing out.\n", __func__);
return 1;
}
#ifdef CONFIG_CHELSIO_T4_DCB
struct cxgbit_dcb_work {
struct dcb_app_type dcb_app;
struct work_struct work;
};
static void
cxgbit_update_dcb_priority(struct cxgbit_device *cdev, u8 port_id,
u8 dcb_priority, u16 port_num)
{
struct cxgbit_sock *csk;
struct sk_buff *skb;
u16 local_port;
bool wakeup_thread = false;
spin_lock_bh(&cdev->cskq.lock);
list_for_each_entry(csk, &cdev->cskq.list, list) {
if (csk->port_id != port_id)
continue;
if (csk->com.local_addr.ss_family == AF_INET6) {
struct sockaddr_in6 *sock_in6;
sock_in6 = (struct sockaddr_in6 *)&csk->com.local_addr;
local_port = ntohs(sock_in6->sin6_port);
} else {
struct sockaddr_in *sock_in;
sock_in = (struct sockaddr_in *)&csk->com.local_addr;
local_port = ntohs(sock_in->sin_port);
}
if (local_port != port_num)
continue;
if (csk->dcb_priority == dcb_priority)
continue;
skb = alloc_skb(0, GFP_ATOMIC);
if (!skb)
continue;
spin_lock(&csk->rxq.lock);
__skb_queue_tail(&csk->rxq, skb);
if (skb_queue_len(&csk->rxq) == 1)
wakeup_thread = true;
spin_unlock(&csk->rxq.lock);
if (wakeup_thread) {
wake_up(&csk->waitq);
wakeup_thread = false;
}
}
spin_unlock_bh(&cdev->cskq.lock);
}
static void cxgbit_dcb_workfn(struct work_struct *work)
{
struct cxgbit_dcb_work *dcb_work;
struct net_device *ndev;
struct cxgbit_device *cdev = NULL;
struct dcb_app_type *iscsi_app;
u8 priority, port_id = 0xff;
dcb_work = container_of(work, struct cxgbit_dcb_work, work);
iscsi_app = &dcb_work->dcb_app;
if (iscsi_app->dcbx & DCB_CAP_DCBX_VER_IEEE) {
if (iscsi_app->app.selector != IEEE_8021QAZ_APP_SEL_ANY)
goto out;
priority = iscsi_app->app.priority;
} else if (iscsi_app->dcbx & DCB_CAP_DCBX_VER_CEE) {
if (iscsi_app->app.selector != DCB_APP_IDTYPE_PORTNUM)
goto out;
if (!iscsi_app->app.priority)
goto out;
priority = ffs(iscsi_app->app.priority) - 1;
} else {
goto out;
}
pr_debug("priority for ifid %d is %u\n",
iscsi_app->ifindex, priority);
ndev = dev_get_by_index(&init_net, iscsi_app->ifindex);
if (!ndev)
goto out;
mutex_lock(&cdev_list_lock);
cdev = cxgbit_find_device(ndev, &port_id);
dev_put(ndev);
if (!cdev) {
mutex_unlock(&cdev_list_lock);
goto out;
}
cxgbit_update_dcb_priority(cdev, port_id, priority,
iscsi_app->app.protocol);
mutex_unlock(&cdev_list_lock);
out:
kfree(dcb_work);
}
static int
cxgbit_dcbevent_notify(struct notifier_block *nb, unsigned long action,
void *data)
{
struct cxgbit_dcb_work *dcb_work;
struct dcb_app_type *dcb_app = data;
dcb_work = kzalloc(sizeof(*dcb_work), GFP_ATOMIC);
if (!dcb_work)
return NOTIFY_DONE;
dcb_work->dcb_app = *dcb_app;
INIT_WORK(&dcb_work->work, cxgbit_dcb_workfn);
schedule_work(&dcb_work->work);
return NOTIFY_OK;
}
#endif
static enum target_prot_op cxgbit_get_sup_prot_ops(struct iscsi_conn *conn)
{
return TARGET_PROT_NORMAL;
}
static struct iscsit_transport cxgbit_transport = {
.name = DRV_NAME,
.transport_type = ISCSI_HW_OFFLOAD,
.priv_size = sizeof(struct cxgbit_cmd),
.owner = THIS_MODULE,
.iscsit_setup_np = cxgbit_setup_np,
.iscsit_accept_np = cxgbit_accept_np,
.iscsit_free_np = cxgbit_free_np,
.iscsit_free_conn = cxgbit_free_conn,
.iscsit_get_login_rx = cxgbit_get_login_rx,
.iscsit_put_login_tx = cxgbit_put_login_tx,
.iscsit_immediate_queue = iscsit_immediate_queue,
.iscsit_response_queue = iscsit_response_queue,
.iscsit_get_dataout = iscsit_build_r2ts_for_cmd,
.iscsit_queue_data_in = iscsit_queue_rsp,
.iscsit_queue_status = iscsit_queue_rsp,
.iscsit_xmit_pdu = cxgbit_xmit_pdu,
.iscsit_get_r2t_ttt = cxgbit_get_r2t_ttt,
.iscsit_get_rx_pdu = cxgbit_get_rx_pdu,
.iscsit_validate_params = cxgbit_validate_params,
.iscsit_release_cmd = cxgbit_release_cmd,
.iscsit_aborted_task = iscsit_aborted_task,
.iscsit_get_sup_prot_ops = cxgbit_get_sup_prot_ops,
};
static struct cxgb4_uld_info cxgbit_uld_info = {
.name = DRV_NAME,
.add = cxgbit_uld_add,
.state_change = cxgbit_uld_state_change,
.lro_rx_handler = cxgbit_uld_lro_rx_handler,
.lro_flush = cxgbit_uld_lro_flush,
};
#ifdef CONFIG_CHELSIO_T4_DCB
static struct notifier_block cxgbit_dcbevent_nb = {
.notifier_call = cxgbit_dcbevent_notify,
};
#endif
static int __init cxgbit_init(void)
{
cxgb4_register_uld(CXGB4_ULD_ISCSIT, &cxgbit_uld_info);
iscsit_register_transport(&cxgbit_transport);
#ifdef CONFIG_CHELSIO_T4_DCB
pr_info("%s dcb enabled.\n", DRV_NAME);
register_dcbevent_notifier(&cxgbit_dcbevent_nb);
#endif
BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, cb) <
sizeof(union cxgbit_skb_cb));
return 0;
}
static void __exit cxgbit_exit(void)
{
struct cxgbit_device *cdev, *tmp;
#ifdef CONFIG_CHELSIO_T4_DCB
unregister_dcbevent_notifier(&cxgbit_dcbevent_nb);
#endif
mutex_lock(&cdev_list_lock);
list_for_each_entry_safe(cdev, tmp, &cdev_list_head, list) {
list_del(&cdev->list);
cxgbit_put_cdev(cdev);
}
mutex_unlock(&cdev_list_lock);
iscsit_unregister_transport(&cxgbit_transport);
cxgb4_unregister_uld(CXGB4_ULD_ISCSIT);
}
module_init(cxgbit_init);
module_exit(cxgbit_exit);
MODULE_DESCRIPTION("Chelsio iSCSI target offload driver");
MODULE_AUTHOR("Chelsio Communications");
MODULE_VERSION(DRV_VERSION);
MODULE_LICENSE("GPL");
/*
* Copyright (c) 2016 Chelsio Communications, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/workqueue.h>
#include <linux/kthread.h>
#include <asm/unaligned.h>
#include <target/target_core_base.h>
#include <target/target_core_fabric.h>
#include "cxgbit.h"
struct sge_opaque_hdr {
void *dev;
dma_addr_t addr[MAX_SKB_FRAGS + 1];
};
static const u8 cxgbit_digest_len[] = {0, 4, 4, 8};
#define TX_HDR_LEN (sizeof(struct sge_opaque_hdr) + \
sizeof(struct fw_ofld_tx_data_wr))
static struct sk_buff *
__cxgbit_alloc_skb(struct cxgbit_sock *csk, u32 len, bool iso)
{
struct sk_buff *skb = NULL;
u8 submode = 0;
int errcode;
static const u32 hdr_len = TX_HDR_LEN + ISCSI_HDR_LEN;
if (len) {
skb = alloc_skb_with_frags(hdr_len, len,
0, &errcode,
GFP_KERNEL);
if (!skb)
return NULL;
skb_reserve(skb, TX_HDR_LEN);
skb_reset_transport_header(skb);
__skb_put(skb, ISCSI_HDR_LEN);
skb->data_len = len;
skb->len += len;
submode |= (csk->submode & CXGBIT_SUBMODE_DCRC);
} else {
u32 iso_len = iso ? sizeof(struct cpl_tx_data_iso) : 0;
skb = alloc_skb(hdr_len + iso_len, GFP_KERNEL);
if (!skb)
return NULL;
skb_reserve(skb, TX_HDR_LEN + iso_len);
skb_reset_transport_header(skb);
__skb_put(skb, ISCSI_HDR_LEN);
}
submode |= (csk->submode & CXGBIT_SUBMODE_HCRC);
cxgbit_skcb_submode(skb) = submode;
cxgbit_skcb_tx_extralen(skb) = cxgbit_digest_len[submode];
cxgbit_skcb_flags(skb) |= SKCBF_TX_NEED_HDR;
return skb;
}
static struct sk_buff *cxgbit_alloc_skb(struct cxgbit_sock *csk, u32 len)
{
return __cxgbit_alloc_skb(csk, len, false);
}
/*
* cxgbit_is_ofld_imm - check whether a packet can be sent as immediate data
* @skb: the packet
*
* Returns true if a packet can be sent as an offload WR with immediate
* data. We currently use the same limit as for Ethernet packets.
*/
static int cxgbit_is_ofld_imm(const struct sk_buff *skb)
{
int length = skb->len;
if (likely(cxgbit_skcb_flags(skb) & SKCBF_TX_NEED_HDR))
length += sizeof(struct fw_ofld_tx_data_wr);
if (likely(cxgbit_skcb_flags(skb) & SKCBF_TX_ISO))
length += sizeof(struct cpl_tx_data_iso);
#define MAX_IMM_TX_PKT_LEN 256
return length <= MAX_IMM_TX_PKT_LEN;
}
/*
* cxgbit_sgl_len - calculates the size of an SGL of the given capacity
* @n: the number of SGL entries
* Calculates the number of flits needed for a scatter/gather list that
* can hold the given number of entries.
*/
static inline unsigned int cxgbit_sgl_len(unsigned int n)
{
n--;
return (3 * n) / 2 + (n & 1) + 2;
}
/*
* cxgbit_calc_tx_flits_ofld - calculate # of flits for an offload packet
* @skb: the packet
*
* Returns the number of flits needed for the given offload packet.
* These packets are already fully constructed and no additional headers
* will be added.
*/
static unsigned int cxgbit_calc_tx_flits_ofld(const struct sk_buff *skb)
{
unsigned int flits, cnt;
if (cxgbit_is_ofld_imm(skb))
return DIV_ROUND_UP(skb->len, 8);
flits = skb_transport_offset(skb) / 8;
cnt = skb_shinfo(skb)->nr_frags;
if (skb_tail_pointer(skb) != skb_transport_header(skb))
cnt++;
return flits + cxgbit_sgl_len(cnt);
}
#define CXGBIT_ISO_FSLICE 0x1
#define CXGBIT_ISO_LSLICE 0x2
static void
cxgbit_cpl_tx_data_iso(struct sk_buff *skb, struct cxgbit_iso_info *iso_info)
{
struct cpl_tx_data_iso *cpl;
unsigned int submode = cxgbit_skcb_submode(skb);
unsigned int fslice = !!(iso_info->flags & CXGBIT_ISO_FSLICE);
unsigned int lslice = !!(iso_info->flags & CXGBIT_ISO_LSLICE);
cpl = (struct cpl_tx_data_iso *)__skb_push(skb, sizeof(*cpl));
cpl->op_to_scsi = htonl(CPL_TX_DATA_ISO_OP_V(CPL_TX_DATA_ISO) |
CPL_TX_DATA_ISO_FIRST_V(fslice) |
CPL_TX_DATA_ISO_LAST_V(lslice) |
CPL_TX_DATA_ISO_CPLHDRLEN_V(0) |
CPL_TX_DATA_ISO_HDRCRC_V(submode & 1) |
CPL_TX_DATA_ISO_PLDCRC_V(((submode >> 1) & 1)) |
CPL_TX_DATA_ISO_IMMEDIATE_V(0) |
CPL_TX_DATA_ISO_SCSI_V(2));
cpl->ahs_len = 0;
cpl->mpdu = htons(DIV_ROUND_UP(iso_info->mpdu, 4));
cpl->burst_size = htonl(DIV_ROUND_UP(iso_info->burst_len, 4));
cpl->len = htonl(iso_info->len);
cpl->reserved2_seglen_offset = htonl(0);
cpl->datasn_offset = htonl(0);
cpl->buffer_offset = htonl(0);
cpl->reserved3 = 0;
__skb_pull(skb, sizeof(*cpl));
}
static void
cxgbit_tx_data_wr(struct cxgbit_sock *csk, struct sk_buff *skb, u32 dlen,
u32 len, u32 credits, u32 compl)
{
struct fw_ofld_tx_data_wr *req;
u32 submode = cxgbit_skcb_submode(skb);
u32 wr_ulp_mode = 0;
u32 hdr_size = sizeof(*req);
u32 opcode = FW_OFLD_TX_DATA_WR;
u32 immlen = 0;
u32 force = TX_FORCE_V(!submode);
if (cxgbit_skcb_flags(skb) & SKCBF_TX_ISO) {
opcode = FW_ISCSI_TX_DATA_WR;
immlen += sizeof(struct cpl_tx_data_iso);
hdr_size += sizeof(struct cpl_tx_data_iso);
submode |= 8;
}
if (cxgbit_is_ofld_imm(skb))
immlen += dlen;
req = (struct fw_ofld_tx_data_wr *)__skb_push(skb,
hdr_size);
req->op_to_immdlen = cpu_to_be32(FW_WR_OP_V(opcode) |
FW_WR_COMPL_V(compl) |
FW_WR_IMMDLEN_V(immlen));
req->flowid_len16 = cpu_to_be32(FW_WR_FLOWID_V(csk->tid) |
FW_WR_LEN16_V(credits));
req->plen = htonl(len);
wr_ulp_mode = FW_OFLD_TX_DATA_WR_ULPMODE_V(ULP_MODE_ISCSI) |
FW_OFLD_TX_DATA_WR_ULPSUBMODE_V(submode);
req->tunnel_to_proxy = htonl((wr_ulp_mode) | force |
FW_OFLD_TX_DATA_WR_SHOVE_V(skb_peek(&csk->txq) ? 0 : 1));
}
static void cxgbit_arp_failure_skb_discard(void *handle, struct sk_buff *skb)
{
kfree_skb(skb);
}
void cxgbit_push_tx_frames(struct cxgbit_sock *csk)
{
struct sk_buff *skb;
while (csk->wr_cred && ((skb = skb_peek(&csk->txq)) != NULL)) {
u32 dlen = skb->len;
u32 len = skb->len;
u32 credits_needed;
u32 compl = 0;
u32 flowclen16 = 0;
u32 iso_cpl_len = 0;
if (cxgbit_skcb_flags(skb) & SKCBF_TX_ISO)
iso_cpl_len = sizeof(struct cpl_tx_data_iso);
if (cxgbit_is_ofld_imm(skb))
credits_needed = DIV_ROUND_UP(dlen + iso_cpl_len, 16);
else
credits_needed = DIV_ROUND_UP((8 *
cxgbit_calc_tx_flits_ofld(skb)) +
iso_cpl_len, 16);
if (likely(cxgbit_skcb_flags(skb) & SKCBF_TX_NEED_HDR))
credits_needed += DIV_ROUND_UP(
sizeof(struct fw_ofld_tx_data_wr), 16);
/*
* Assumes the initial credits is large enough to support
* fw_flowc_wr plus largest possible first payload
*/
if (!test_and_set_bit(CSK_TX_DATA_SENT, &csk->com.flags)) {
flowclen16 = cxgbit_send_tx_flowc_wr(csk);
csk->wr_cred -= flowclen16;
csk->wr_una_cred += flowclen16;
}
if (csk->wr_cred < credits_needed) {
pr_debug("csk 0x%p, skb %u/%u, wr %d < %u.\n",
csk, skb->len, skb->data_len,
credits_needed, csk->wr_cred);
break;
}
__skb_unlink(skb, &csk->txq);
set_wr_txq(skb, CPL_PRIORITY_DATA, csk->txq_idx);
skb->csum = credits_needed + flowclen16;
csk->wr_cred -= credits_needed;
csk->wr_una_cred += credits_needed;
pr_debug("csk 0x%p, skb %u/%u, wr %d, left %u, unack %u.\n",
csk, skb->len, skb->data_len, credits_needed,
csk->wr_cred, csk->wr_una_cred);
if (likely(cxgbit_skcb_flags(skb) & SKCBF_TX_NEED_HDR)) {
len += cxgbit_skcb_tx_extralen(skb);
if ((csk->wr_una_cred >= (csk->wr_max_cred / 2)) ||
(!before(csk->write_seq,
csk->snd_una + csk->snd_win))) {
compl = 1;
csk->wr_una_cred = 0;
}
cxgbit_tx_data_wr(csk, skb, dlen, len, credits_needed,
compl);
csk->snd_nxt += len;
} else if ((cxgbit_skcb_flags(skb) & SKCBF_TX_FLAG_COMPL) ||
(csk->wr_una_cred >= (csk->wr_max_cred / 2))) {
struct cpl_close_con_req *req =
(struct cpl_close_con_req *)skb->data;
req->wr.wr_hi |= htonl(FW_WR_COMPL_F);
csk->wr_una_cred = 0;
}
cxgbit_sock_enqueue_wr(csk, skb);
t4_set_arp_err_handler(skb, csk,
cxgbit_arp_failure_skb_discard);
pr_debug("csk 0x%p,%u, skb 0x%p, %u.\n",
csk, csk->tid, skb, len);
cxgbit_l2t_send(csk->com.cdev, skb, csk->l2t);
}
}
static bool cxgbit_lock_sock(struct cxgbit_sock *csk)
{
spin_lock_bh(&csk->lock);
if (before(csk->write_seq, csk->snd_una + csk->snd_win))
csk->lock_owner = true;
spin_unlock_bh(&csk->lock);
return csk->lock_owner;
}
static void cxgbit_unlock_sock(struct cxgbit_sock *csk)
{
struct sk_buff_head backlogq;
struct sk_buff *skb;
void (*fn)(struct cxgbit_sock *, struct sk_buff *);
skb_queue_head_init(&backlogq);
spin_lock_bh(&csk->lock);
while (skb_queue_len(&csk->backlogq)) {
skb_queue_splice_init(&csk->backlogq, &backlogq);
spin_unlock_bh(&csk->lock);
while ((skb = __skb_dequeue(&backlogq))) {
fn = cxgbit_skcb_rx_backlog_fn(skb);
fn(csk, skb);
}
spin_lock_bh(&csk->lock);
}
csk->lock_owner = false;
spin_unlock_bh(&csk->lock);
}
static int cxgbit_queue_skb(struct cxgbit_sock *csk, struct sk_buff *skb)
{
int ret = 0;
wait_event_interruptible(csk->ack_waitq, cxgbit_lock_sock(csk));
if (unlikely((csk->com.state != CSK_STATE_ESTABLISHED) ||
signal_pending(current))) {
__kfree_skb(skb);
__skb_queue_purge(&csk->ppodq);
ret = -1;
spin_lock_bh(&csk->lock);
if (csk->lock_owner) {
spin_unlock_bh(&csk->lock);
goto unlock;
}
spin_unlock_bh(&csk->lock);
return ret;
}
csk->write_seq += skb->len +
cxgbit_skcb_tx_extralen(skb);
skb_queue_splice_tail_init(&csk->ppodq, &csk->txq);
__skb_queue_tail(&csk->txq, skb);
cxgbit_push_tx_frames(csk);
unlock:
cxgbit_unlock_sock(csk);
return ret;
}
static int
cxgbit_map_skb(struct iscsi_cmd *cmd, struct sk_buff *skb, u32 data_offset,
u32 data_length)
{
u32 i = 0, nr_frags = MAX_SKB_FRAGS;
u32 padding = ((-data_length) & 3);
struct scatterlist *sg;
struct page *page;
unsigned int page_off;
if (padding)
nr_frags--;
/*
* We know each entry in t_data_sg contains a page.
*/
sg = &cmd->se_cmd.t_data_sg[data_offset / PAGE_SIZE];
page_off = (data_offset % PAGE_SIZE);
while (data_length && (i < nr_frags)) {
u32 cur_len = min_t(u32, data_length, sg->length - page_off);
page = sg_page(sg);
get_page(page);
skb_fill_page_desc(skb, i, page, sg->offset + page_off,
cur_len);
skb->data_len += cur_len;
skb->len += cur_len;
skb->truesize += cur_len;
data_length -= cur_len;
page_off = 0;
sg = sg_next(sg);
i++;
}
if (data_length)
return -1;
if (padding) {
page = alloc_page(GFP_KERNEL | __GFP_ZERO);
if (!page)
return -1;
skb_fill_page_desc(skb, i, page, 0, padding);
skb->data_len += padding;
skb->len += padding;
skb->truesize += padding;
}
return 0;
}
static int
cxgbit_tx_datain_iso(struct cxgbit_sock *csk, struct iscsi_cmd *cmd,
struct iscsi_datain_req *dr)
{
struct iscsi_conn *conn = csk->conn;
struct sk_buff *skb;
struct iscsi_datain datain;
struct cxgbit_iso_info iso_info;
u32 data_length = cmd->se_cmd.data_length;
u32 mrdsl = conn->conn_ops->MaxRecvDataSegmentLength;
u32 num_pdu, plen, tx_data = 0;
bool task_sense = !!(cmd->se_cmd.se_cmd_flags &
SCF_TRANSPORT_TASK_SENSE);
bool set_statsn = false;
int ret = -1;
while (data_length) {
num_pdu = (data_length + mrdsl - 1) / mrdsl;
if (num_pdu > csk->max_iso_npdu)
num_pdu = csk->max_iso_npdu;
plen = num_pdu * mrdsl;
if (plen > data_length)
plen = data_length;
skb = __cxgbit_alloc_skb(csk, 0, true);
if (unlikely(!skb))
return -ENOMEM;
memset(skb->data, 0, ISCSI_HDR_LEN);
cxgbit_skcb_flags(skb) |= SKCBF_TX_ISO;
cxgbit_skcb_submode(skb) |= (csk->submode &
CXGBIT_SUBMODE_DCRC);
cxgbit_skcb_tx_extralen(skb) = (num_pdu *
cxgbit_digest_len[cxgbit_skcb_submode(skb)]) +
((num_pdu - 1) * ISCSI_HDR_LEN);
memset(&datain, 0, sizeof(struct iscsi_datain));
memset(&iso_info, 0, sizeof(iso_info));
if (!tx_data)
iso_info.flags |= CXGBIT_ISO_FSLICE;
if (!(data_length - plen)) {
iso_info.flags |= CXGBIT_ISO_LSLICE;
if (!task_sense) {
datain.flags = ISCSI_FLAG_DATA_STATUS;
iscsit_increment_maxcmdsn(cmd, conn->sess);
cmd->stat_sn = conn->stat_sn++;
set_statsn = true;
}
}
iso_info.burst_len = num_pdu * mrdsl;
iso_info.mpdu = mrdsl;
iso_info.len = ISCSI_HDR_LEN + plen;
cxgbit_cpl_tx_data_iso(skb, &iso_info);
datain.offset = tx_data;
datain.data_sn = cmd->data_sn - 1;
iscsit_build_datain_pdu(cmd, conn, &datain,
(struct iscsi_data_rsp *)skb->data,
set_statsn);
ret = cxgbit_map_skb(cmd, skb, tx_data, plen);
if (unlikely(ret)) {
__kfree_skb(skb);
goto out;
}
ret = cxgbit_queue_skb(csk, skb);
if (unlikely(ret))
goto out;
tx_data += plen;
data_length -= plen;
cmd->read_data_done += plen;
cmd->data_sn += num_pdu;
}
dr->dr_complete = DATAIN_COMPLETE_NORMAL;
return 0;
out:
return ret;
}
static int
cxgbit_tx_datain(struct cxgbit_sock *csk, struct iscsi_cmd *cmd,
const struct iscsi_datain *datain)
{
struct sk_buff *skb;
int ret = 0;
skb = cxgbit_alloc_skb(csk, 0);
if (unlikely(!skb))
return -ENOMEM;
memcpy(skb->data, cmd->pdu, ISCSI_HDR_LEN);
if (datain->length) {
cxgbit_skcb_submode(skb) |= (csk->submode &
CXGBIT_SUBMODE_DCRC);
cxgbit_skcb_tx_extralen(skb) =
cxgbit_digest_len[cxgbit_skcb_submode(skb)];
}
ret = cxgbit_map_skb(cmd, skb, datain->offset, datain->length);
if (ret < 0) {
__kfree_skb(skb);
return ret;
}
return cxgbit_queue_skb(csk, skb);
}
static int
cxgbit_xmit_datain_pdu(struct iscsi_conn *conn, struct iscsi_cmd *cmd,
struct iscsi_datain_req *dr,
const struct iscsi_datain *datain)
{
struct cxgbit_sock *csk = conn->context;
u32 data_length = cmd->se_cmd.data_length;
u32 padding = ((-data_length) & 3);
u32 mrdsl = conn->conn_ops->MaxRecvDataSegmentLength;
if ((data_length > mrdsl) && (!dr->recovery) &&
(!padding) && (!datain->offset) && csk->max_iso_npdu) {
atomic_long_add(data_length - datain->length,
&conn->sess->tx_data_octets);
return cxgbit_tx_datain_iso(csk, cmd, dr);
}
return cxgbit_tx_datain(csk, cmd, datain);
}
static int
cxgbit_xmit_nondatain_pdu(struct iscsi_conn *conn, struct iscsi_cmd *cmd,
const void *data_buf, u32 data_buf_len)
{
struct cxgbit_sock *csk = conn->context;
struct sk_buff *skb;
u32 padding = ((-data_buf_len) & 3);
skb = cxgbit_alloc_skb(csk, data_buf_len + padding);
if (unlikely(!skb))
return -ENOMEM;
memcpy(skb->data, cmd->pdu, ISCSI_HDR_LEN);
if (data_buf_len) {
u32 pad_bytes = 0;
skb_store_bits(skb, ISCSI_HDR_LEN, data_buf, data_buf_len);
if (padding)
skb_store_bits(skb, ISCSI_HDR_LEN + data_buf_len,
&pad_bytes, padding);
}
cxgbit_skcb_tx_extralen(skb) = cxgbit_digest_len[
cxgbit_skcb_submode(skb)];
return cxgbit_queue_skb(csk, skb);
}
int
cxgbit_xmit_pdu(struct iscsi_conn *conn, struct iscsi_cmd *cmd,
struct iscsi_datain_req *dr, const void *buf, u32 buf_len)
{
if (dr)
return cxgbit_xmit_datain_pdu(conn, cmd, dr, buf);
else
return cxgbit_xmit_nondatain_pdu(conn, cmd, buf, buf_len);
}
int cxgbit_validate_params(struct iscsi_conn *conn)
{
struct cxgbit_sock *csk = conn->context;
struct cxgbit_device *cdev = csk->com.cdev;
struct iscsi_param *param;
u32 max_xmitdsl;
param = iscsi_find_param_from_key(MAXXMITDATASEGMENTLENGTH,
conn->param_list);
if (!param)
return -1;
if (kstrtou32(param->value, 0, &max_xmitdsl) < 0)
return -1;
if (max_xmitdsl > cdev->mdsl) {
if (iscsi_change_param_sprintf(
conn, "MaxXmitDataSegmentLength=%u", cdev->mdsl))
return -1;
}
return 0;
}
static int cxgbit_set_digest(struct cxgbit_sock *csk)
{
struct iscsi_conn *conn = csk->conn;
struct iscsi_param *param;
param = iscsi_find_param_from_key(HEADERDIGEST, conn->param_list);
if (!param) {
pr_err("param not found key %s\n", HEADERDIGEST);
return -1;
}
if (!strcmp(param->value, CRC32C))
csk->submode |= CXGBIT_SUBMODE_HCRC;
param = iscsi_find_param_from_key(DATADIGEST, conn->param_list);
if (!param) {
csk->submode = 0;
pr_err("param not found key %s\n", DATADIGEST);
return -1;
}
if (!strcmp(param->value, CRC32C))
csk->submode |= CXGBIT_SUBMODE_DCRC;
if (cxgbit_setup_conn_digest(csk)) {
csk->submode = 0;
return -1;
}
return 0;
}
static int cxgbit_set_iso_npdu(struct cxgbit_sock *csk)
{
struct iscsi_conn *conn = csk->conn;
struct iscsi_conn_ops *conn_ops = conn->conn_ops;
struct iscsi_param *param;
u32 mrdsl, mbl;
u32 max_npdu, max_iso_npdu;
if (conn->login->leading_connection) {
param = iscsi_find_param_from_key(DATASEQUENCEINORDER,
conn->param_list);
if (!param) {
pr_err("param not found key %s\n", DATASEQUENCEINORDER);
return -1;
}
if (strcmp(param->value, YES))
return 0;
param = iscsi_find_param_from_key(DATAPDUINORDER,
conn->param_list);
if (!param) {
pr_err("param not found key %s\n", DATAPDUINORDER);
return -1;
}
if (strcmp(param->value, YES))
return 0;
param = iscsi_find_param_from_key(MAXBURSTLENGTH,
conn->param_list);
if (!param) {
pr_err("param not found key %s\n", MAXBURSTLENGTH);
return -1;
}
if (kstrtou32(param->value, 0, &mbl) < 0)
return -1;
} else {
if (!conn->sess->sess_ops->DataSequenceInOrder)
return 0;
if (!conn->sess->sess_ops->DataPDUInOrder)
return 0;
mbl = conn->sess->sess_ops->MaxBurstLength;
}
mrdsl = conn_ops->MaxRecvDataSegmentLength;
max_npdu = mbl / mrdsl;
max_iso_npdu = CXGBIT_MAX_ISO_PAYLOAD /
(ISCSI_HDR_LEN + mrdsl +
cxgbit_digest_len[csk->submode]);
csk->max_iso_npdu = min(max_npdu, max_iso_npdu);
if (csk->max_iso_npdu <= 1)
csk->max_iso_npdu = 0;
return 0;
}
static int cxgbit_set_params(struct iscsi_conn *conn)
{
struct cxgbit_sock *csk = conn->context;
struct cxgbit_device *cdev = csk->com.cdev;
struct cxgbi_ppm *ppm = *csk->com.cdev->lldi.iscsi_ppm;
struct iscsi_conn_ops *conn_ops = conn->conn_ops;
struct iscsi_param *param;
u8 erl;
if (conn_ops->MaxRecvDataSegmentLength > cdev->mdsl)
conn_ops->MaxRecvDataSegmentLength = cdev->mdsl;
if (conn->login->leading_connection) {
param = iscsi_find_param_from_key(ERRORRECOVERYLEVEL,
conn->param_list);
if (!param) {
pr_err("param not found key %s\n", ERRORRECOVERYLEVEL);
return -1;
}
if (kstrtou8(param->value, 0, &erl) < 0)
return -1;
} else {
erl = conn->sess->sess_ops->ErrorRecoveryLevel;
}
if (!erl) {
if (test_bit(CDEV_ISO_ENABLE, &cdev->flags)) {
if (cxgbit_set_iso_npdu(csk))
return -1;
}
if (test_bit(CDEV_DDP_ENABLE, &cdev->flags)) {
if (cxgbit_setup_conn_pgidx(csk,
ppm->tformat.pgsz_idx_dflt))
return -1;
set_bit(CSK_DDP_ENABLE, &csk->com.flags);
}
}
if (cxgbit_set_digest(csk))
return -1;
return 0;
}
int
cxgbit_put_login_tx(struct iscsi_conn *conn, struct iscsi_login *login,
u32 length)
{
struct cxgbit_sock *csk = conn->context;
struct sk_buff *skb;
u32 padding_buf = 0;
u8 padding = ((-length) & 3);
skb = cxgbit_alloc_skb(csk, length + padding);
if (!skb)
return -ENOMEM;
skb_store_bits(skb, 0, login->rsp, ISCSI_HDR_LEN);
skb_store_bits(skb, ISCSI_HDR_LEN, login->rsp_buf, length);
if (padding)
skb_store_bits(skb, ISCSI_HDR_LEN + length,
&padding_buf, padding);
if (login->login_complete) {
if (cxgbit_set_params(conn)) {
kfree_skb(skb);
return -1;
}
set_bit(CSK_LOGIN_DONE, &csk->com.flags);
}
if (cxgbit_queue_skb(csk, skb))
return -1;
if ((!login->login_complete) && (!login->login_failed))
schedule_delayed_work(&conn->login_work, 0);
return 0;
}
static void
cxgbit_skb_copy_to_sg(struct sk_buff *skb, struct scatterlist *sg,
unsigned int nents)
{
struct skb_seq_state st;
const u8 *buf;
unsigned int consumed = 0, buf_len;
struct cxgbit_lro_pdu_cb *pdu_cb = cxgbit_rx_pdu_cb(skb);
skb_prepare_seq_read(skb, pdu_cb->doffset,
pdu_cb->doffset + pdu_cb->dlen,
&st);
while (true) {
buf_len = skb_seq_read(consumed, &buf, &st);
if (!buf_len) {
skb_abort_seq_read(&st);
break;
}
consumed += sg_pcopy_from_buffer(sg, nents, (void *)buf,
buf_len, consumed);
}
}
static struct iscsi_cmd *cxgbit_allocate_cmd(struct cxgbit_sock *csk)
{
struct iscsi_conn *conn = csk->conn;
struct cxgbi_ppm *ppm = cdev2ppm(csk->com.cdev);
struct cxgbit_cmd *ccmd;
struct iscsi_cmd *cmd;
cmd = iscsit_allocate_cmd(conn, TASK_INTERRUPTIBLE);
if (!cmd) {
pr_err("Unable to allocate iscsi_cmd + cxgbit_cmd\n");
return NULL;
}
ccmd = iscsit_priv_cmd(cmd);
ccmd->ttinfo.tag = ppm->tformat.no_ddp_mask;
ccmd->setup_ddp = true;
return cmd;
}
static int
cxgbit_handle_immediate_data(struct iscsi_cmd *cmd, struct iscsi_scsi_req *hdr,
u32 length)
{
struct iscsi_conn *conn = cmd->conn;
struct cxgbit_sock *csk = conn->context;
struct cxgbit_lro_pdu_cb *pdu_cb = cxgbit_rx_pdu_cb(csk->skb);
if (pdu_cb->flags & PDUCBF_RX_DCRC_ERR) {
pr_err("ImmediateData CRC32C DataDigest error\n");
if (!conn->sess->sess_ops->ErrorRecoveryLevel) {
pr_err("Unable to recover from"
" Immediate Data digest failure while"
" in ERL=0.\n");
iscsit_reject_cmd(cmd, ISCSI_REASON_DATA_DIGEST_ERROR,
(unsigned char *)hdr);
return IMMEDIATE_DATA_CANNOT_RECOVER;
}
iscsit_reject_cmd(cmd, ISCSI_REASON_DATA_DIGEST_ERROR,
(unsigned char *)hdr);
return IMMEDIATE_DATA_ERL1_CRC_FAILURE;
}
if (cmd->se_cmd.se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) {
struct cxgbit_cmd *ccmd = iscsit_priv_cmd(cmd);
struct skb_shared_info *ssi = skb_shinfo(csk->skb);
skb_frag_t *dfrag = &ssi->frags[pdu_cb->dfrag_idx];
sg_init_table(&ccmd->sg, 1);
sg_set_page(&ccmd->sg, dfrag->page.p, skb_frag_size(dfrag),
dfrag->page_offset);
get_page(dfrag->page.p);
cmd->se_cmd.t_data_sg = &ccmd->sg;
cmd->se_cmd.t_data_nents = 1;
ccmd->release = true;
} else {
struct scatterlist *sg = &cmd->se_cmd.t_data_sg[0];
u32 sg_nents = max(1UL, DIV_ROUND_UP(pdu_cb->dlen, PAGE_SIZE));
cxgbit_skb_copy_to_sg(csk->skb, sg, sg_nents);
}
cmd->write_data_done += pdu_cb->dlen;
if (cmd->write_data_done == cmd->se_cmd.data_length) {
spin_lock_bh(&cmd->istate_lock);
cmd->cmd_flags |= ICF_GOT_LAST_DATAOUT;
cmd->i_state = ISTATE_RECEIVED_LAST_DATAOUT;
spin_unlock_bh(&cmd->istate_lock);
}
return IMMEDIATE_DATA_NORMAL_OPERATION;
}
static int
cxgbit_get_immediate_data(struct iscsi_cmd *cmd, struct iscsi_scsi_req *hdr,
bool dump_payload)
{
struct iscsi_conn *conn = cmd->conn;
int cmdsn_ret = 0, immed_ret = IMMEDIATE_DATA_NORMAL_OPERATION;
/*
* Special case for Unsupported SAM WRITE Opcodes and ImmediateData=Yes.
*/
if (dump_payload)
goto after_immediate_data;
immed_ret = cxgbit_handle_immediate_data(cmd, hdr,
cmd->first_burst_len);
after_immediate_data:
if (immed_ret == IMMEDIATE_DATA_NORMAL_OPERATION) {
/*
* A PDU/CmdSN carrying Immediate Data passed
* DataCRC, check against ExpCmdSN/MaxCmdSN if
* Immediate Bit is not set.
*/
cmdsn_ret = iscsit_sequence_cmd(conn, cmd,
(unsigned char *)hdr,
hdr->cmdsn);
if (cmdsn_ret == CMDSN_ERROR_CANNOT_RECOVER)
return -1;
if (cmd->sense_reason || cmdsn_ret == CMDSN_LOWER_THAN_EXP) {
target_put_sess_cmd(&cmd->se_cmd);
return 0;
} else if (cmd->unsolicited_data) {
iscsit_set_unsoliticed_dataout(cmd);
}
} else if (immed_ret == IMMEDIATE_DATA_ERL1_CRC_FAILURE) {
/*
* Immediate Data failed DataCRC and ERL>=1,
* silently drop this PDU and let the initiator
* plug the CmdSN gap.
*
* FIXME: Send Unsolicited NOPIN with reserved
* TTT here to help the initiator figure out
* the missing CmdSN, although they should be
* intelligent enough to determine the missing
* CmdSN and issue a retry to plug the sequence.
*/
cmd->i_state = ISTATE_REMOVE;
iscsit_add_cmd_to_immediate_queue(cmd, conn, cmd->i_state);
} else /* immed_ret == IMMEDIATE_DATA_CANNOT_RECOVER */
return -1;
return 0;
}
static int
cxgbit_handle_scsi_cmd(struct cxgbit_sock *csk, struct iscsi_cmd *cmd)
{
struct iscsi_conn *conn = csk->conn;
struct cxgbit_lro_pdu_cb *pdu_cb = cxgbit_rx_pdu_cb(csk->skb);
struct iscsi_scsi_req *hdr = (struct iscsi_scsi_req *)pdu_cb->hdr;
int rc;
bool dump_payload = false;
rc = iscsit_setup_scsi_cmd(conn, cmd, (unsigned char *)hdr);
if (rc < 0)
return rc;
if (pdu_cb->dlen && (pdu_cb->dlen == cmd->se_cmd.data_length) &&
(pdu_cb->nr_dfrags == 1))
cmd->se_cmd.se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
rc = iscsit_process_scsi_cmd(conn, cmd, hdr);
if (rc < 0)
return 0;
else if (rc > 0)
dump_payload = true;
if (!pdu_cb->dlen)
return 0;
return cxgbit_get_immediate_data(cmd, hdr, dump_payload);
}
static int cxgbit_handle_iscsi_dataout(struct cxgbit_sock *csk)
{
struct scatterlist *sg_start;
struct iscsi_conn *conn = csk->conn;
struct iscsi_cmd *cmd = NULL;
struct cxgbit_lro_pdu_cb *pdu_cb = cxgbit_rx_pdu_cb(csk->skb);
struct iscsi_data *hdr = (struct iscsi_data *)pdu_cb->hdr;
u32 data_offset = be32_to_cpu(hdr->offset);
u32 data_len = pdu_cb->dlen;
int rc, sg_nents, sg_off;
bool dcrc_err = false;
rc = iscsit_check_dataout_hdr(conn, (unsigned char *)hdr, &cmd);
if (rc < 0)
return rc;
else if (!cmd)
return 0;
if (pdu_cb->flags & PDUCBF_RX_DCRC_ERR) {
pr_err("ITT: 0x%08x, Offset: %u, Length: %u,"
" DataSN: 0x%08x\n",
hdr->itt, hdr->offset, data_len,
hdr->datasn);
dcrc_err = true;
goto check_payload;
}
pr_debug("DataOut data_len: %u, "
"write_data_done: %u, data_length: %u\n",
data_len, cmd->write_data_done,
cmd->se_cmd.data_length);
if (!(pdu_cb->flags & PDUCBF_RX_DATA_DDPD)) {
sg_off = data_offset / PAGE_SIZE;
sg_start = &cmd->se_cmd.t_data_sg[sg_off];
sg_nents = max(1UL, DIV_ROUND_UP(data_len, PAGE_SIZE));
cxgbit_skb_copy_to_sg(csk->skb, sg_start, sg_nents);
}
check_payload:
rc = iscsit_check_dataout_payload(cmd, hdr, dcrc_err);
if (rc < 0)
return rc;
return 0;
}
static int cxgbit_handle_nop_out(struct cxgbit_sock *csk, struct iscsi_cmd *cmd)
{
struct iscsi_conn *conn = csk->conn;
struct cxgbit_lro_pdu_cb *pdu_cb = cxgbit_rx_pdu_cb(csk->skb);
struct iscsi_nopout *hdr = (struct iscsi_nopout *)pdu_cb->hdr;
unsigned char *ping_data = NULL;
u32 payload_length = pdu_cb->dlen;
int ret;
ret = iscsit_setup_nop_out(conn, cmd, hdr);
if (ret < 0)
return 0;
if (pdu_cb->flags & PDUCBF_RX_DCRC_ERR) {
if (!conn->sess->sess_ops->ErrorRecoveryLevel) {
pr_err("Unable to recover from"
" NOPOUT Ping DataCRC failure while in"
" ERL=0.\n");
ret = -1;
goto out;
} else {
/*
* drop this PDU and let the
* initiator plug the CmdSN gap.
*/
pr_info("Dropping NOPOUT"
" Command CmdSN: 0x%08x due to"
" DataCRC error.\n", hdr->cmdsn);
ret = 0;
goto out;
}
}
/*
* Handle NOP-OUT payload for traditional iSCSI sockets
*/
if (payload_length && hdr->ttt == cpu_to_be32(0xFFFFFFFF)) {
ping_data = kzalloc(payload_length + 1, GFP_KERNEL);
if (!ping_data) {
pr_err("Unable to allocate memory for"
" NOPOUT ping data.\n");
ret = -1;
goto out;
}
skb_copy_bits(csk->skb, pdu_cb->doffset,
ping_data, payload_length);
ping_data[payload_length] = '\0';
/*
* Attach ping data to struct iscsi_cmd->buf_ptr.
*/
cmd->buf_ptr = ping_data;
cmd->buf_ptr_size = payload_length;
pr_debug("Got %u bytes of NOPOUT ping"
" data.\n", payload_length);
pr_debug("Ping Data: \"%s\"\n", ping_data);
}
return iscsit_process_nop_out(conn, cmd, hdr);
out:
if (cmd)
iscsit_free_cmd(cmd, false);
return ret;
}
static int
cxgbit_handle_text_cmd(struct cxgbit_sock *csk, struct iscsi_cmd *cmd)
{
struct iscsi_conn *conn = csk->conn;
struct cxgbit_lro_pdu_cb *pdu_cb = cxgbit_rx_pdu_cb(csk->skb);
struct iscsi_text *hdr = (struct iscsi_text *)pdu_cb->hdr;
u32 payload_length = pdu_cb->dlen;
int rc;
unsigned char *text_in = NULL;
rc = iscsit_setup_text_cmd(conn, cmd, hdr);
if (rc < 0)
return rc;
if (pdu_cb->flags & PDUCBF_RX_DCRC_ERR) {
if (!conn->sess->sess_ops->ErrorRecoveryLevel) {
pr_err("Unable to recover from"
" Text Data digest failure while in"
" ERL=0.\n");
goto reject;
} else {
/*
* drop this PDU and let the
* initiator plug the CmdSN gap.
*/
pr_info("Dropping Text"
" Command CmdSN: 0x%08x due to"
" DataCRC error.\n", hdr->cmdsn);
return 0;
}
}
if (payload_length) {
text_in = kzalloc(payload_length, GFP_KERNEL);
if (!text_in) {
pr_err("Unable to allocate text_in of payload_length: %u\n",
payload_length);
return -ENOMEM;
}
skb_copy_bits(csk->skb, pdu_cb->doffset,
text_in, payload_length);
text_in[payload_length - 1] = '\0';
cmd->text_in_ptr = text_in;
}
return iscsit_process_text_cmd(conn, cmd, hdr);
reject:
return iscsit_reject_cmd(cmd, ISCSI_REASON_PROTOCOL_ERROR,
pdu_cb->hdr);
}
static int cxgbit_target_rx_opcode(struct cxgbit_sock *csk)
{
struct cxgbit_lro_pdu_cb *pdu_cb = cxgbit_rx_pdu_cb(csk->skb);
struct iscsi_hdr *hdr = (struct iscsi_hdr *)pdu_cb->hdr;
struct iscsi_conn *conn = csk->conn;
struct iscsi_cmd *cmd = NULL;
u8 opcode = (hdr->opcode & ISCSI_OPCODE_MASK);
int ret = -EINVAL;
switch (opcode) {
case ISCSI_OP_SCSI_CMD:
cmd = cxgbit_allocate_cmd(csk);
if (!cmd)
goto reject;
ret = cxgbit_handle_scsi_cmd(csk, cmd);
break;
case ISCSI_OP_SCSI_DATA_OUT:
ret = cxgbit_handle_iscsi_dataout(csk);
break;
case ISCSI_OP_NOOP_OUT:
if (hdr->ttt == cpu_to_be32(0xFFFFFFFF)) {
cmd = cxgbit_allocate_cmd(csk);
if (!cmd)
goto reject;
}
ret = cxgbit_handle_nop_out(csk, cmd);
break;
case ISCSI_OP_SCSI_TMFUNC:
cmd = cxgbit_allocate_cmd(csk);
if (!cmd)
goto reject;
ret = iscsit_handle_task_mgt_cmd(conn, cmd,
(unsigned char *)hdr);
break;
case ISCSI_OP_TEXT:
if (hdr->ttt != cpu_to_be32(0xFFFFFFFF)) {
cmd = iscsit_find_cmd_from_itt(conn, hdr->itt);
if (!cmd)
goto reject;
} else {
cmd = cxgbit_allocate_cmd(csk);
if (!cmd)
goto reject;
}
ret = cxgbit_handle_text_cmd(csk, cmd);
break;
case ISCSI_OP_LOGOUT:
cmd = cxgbit_allocate_cmd(csk);
if (!cmd)
goto reject;
ret = iscsit_handle_logout_cmd(conn, cmd, (unsigned char *)hdr);
if (ret > 0)
wait_for_completion_timeout(&conn->conn_logout_comp,
SECONDS_FOR_LOGOUT_COMP
* HZ);
break;
case ISCSI_OP_SNACK:
ret = iscsit_handle_snack(conn, (unsigned char *)hdr);
break;
default:
pr_err("Got unknown iSCSI OpCode: 0x%02x\n", opcode);
dump_stack();
break;
}
return ret;
reject:
return iscsit_add_reject(conn, ISCSI_REASON_BOOKMARK_NO_RESOURCES,
(unsigned char *)hdr);
return ret;
}
static int cxgbit_rx_opcode(struct cxgbit_sock *csk)
{
struct cxgbit_lro_pdu_cb *pdu_cb = cxgbit_rx_pdu_cb(csk->skb);
struct iscsi_conn *conn = csk->conn;
struct iscsi_hdr *hdr = pdu_cb->hdr;
u8 opcode;
if (pdu_cb->flags & PDUCBF_RX_HCRC_ERR) {
atomic_long_inc(&conn->sess->conn_digest_errors);
goto transport_err;
}
if (conn->conn_state == TARG_CONN_STATE_IN_LOGOUT)
goto transport_err;
opcode = hdr->opcode & ISCSI_OPCODE_MASK;
if (conn->sess->sess_ops->SessionType &&
((!(opcode & ISCSI_OP_TEXT)) ||
(!(opcode & ISCSI_OP_LOGOUT)))) {
pr_err("Received illegal iSCSI Opcode: 0x%02x"
" while in Discovery Session, rejecting.\n", opcode);
iscsit_add_reject(conn, ISCSI_REASON_PROTOCOL_ERROR,
(unsigned char *)hdr);
goto transport_err;
}
if (cxgbit_target_rx_opcode(csk) < 0)
goto transport_err;
return 0;
transport_err:
return -1;
}
static int cxgbit_rx_login_pdu(struct cxgbit_sock *csk)
{
struct iscsi_conn *conn = csk->conn;
struct iscsi_login *login = conn->login;
struct cxgbit_lro_pdu_cb *pdu_cb = cxgbit_rx_pdu_cb(csk->skb);
struct iscsi_login_req *login_req;
login_req = (struct iscsi_login_req *)login->req;
memcpy(login_req, pdu_cb->hdr, sizeof(*login_req));
pr_debug("Got Login Command, Flags 0x%02x, ITT: 0x%08x,"
" CmdSN: 0x%08x, ExpStatSN: 0x%08x, CID: %hu, Length: %u\n",
login_req->flags, login_req->itt, login_req->cmdsn,
login_req->exp_statsn, login_req->cid, pdu_cb->dlen);
/*
* Setup the initial iscsi_login values from the leading
* login request PDU.
*/
if (login->first_request) {
login_req = (struct iscsi_login_req *)login->req;
login->leading_connection = (!login_req->tsih) ? 1 : 0;
login->current_stage = ISCSI_LOGIN_CURRENT_STAGE(
login_req->flags);
login->version_min = login_req->min_version;
login->version_max = login_req->max_version;
memcpy(login->isid, login_req->isid, 6);
login->cmd_sn = be32_to_cpu(login_req->cmdsn);
login->init_task_tag = login_req->itt;
login->initial_exp_statsn = be32_to_cpu(login_req->exp_statsn);
login->cid = be16_to_cpu(login_req->cid);
login->tsih = be16_to_cpu(login_req->tsih);
}
if (iscsi_target_check_login_request(conn, login) < 0)
return -1;
memset(login->req_buf, 0, MAX_KEY_VALUE_PAIRS);
skb_copy_bits(csk->skb, pdu_cb->doffset, login->req_buf, pdu_cb->dlen);
return 0;
}
static int
cxgbit_process_iscsi_pdu(struct cxgbit_sock *csk, struct sk_buff *skb, int idx)
{
struct cxgbit_lro_pdu_cb *pdu_cb = cxgbit_skb_lro_pdu_cb(skb, idx);
int ret;
cxgbit_rx_pdu_cb(skb) = pdu_cb;
csk->skb = skb;
if (!test_bit(CSK_LOGIN_DONE, &csk->com.flags)) {
ret = cxgbit_rx_login_pdu(csk);
set_bit(CSK_LOGIN_PDU_DONE, &csk->com.flags);
} else {
ret = cxgbit_rx_opcode(csk);
}
return ret;
}
static void cxgbit_lro_skb_dump(struct sk_buff *skb)
{
struct skb_shared_info *ssi = skb_shinfo(skb);
struct cxgbit_lro_cb *lro_cb = cxgbit_skb_lro_cb(skb);
struct cxgbit_lro_pdu_cb *pdu_cb = cxgbit_skb_lro_pdu_cb(skb, 0);
u8 i;
pr_info("skb 0x%p, head 0x%p, 0x%p, len %u,%u, frags %u.\n",
skb, skb->head, skb->data, skb->len, skb->data_len,
ssi->nr_frags);
pr_info("skb 0x%p, lro_cb, csk 0x%p, pdu %u, %u.\n",
skb, lro_cb->csk, lro_cb->pdu_idx, lro_cb->pdu_totallen);
for (i = 0; i < lro_cb->pdu_idx; i++, pdu_cb++)
pr_info("skb 0x%p, pdu %d, %u, f 0x%x, seq 0x%x, dcrc 0x%x, "
"frags %u.\n",
skb, i, pdu_cb->pdulen, pdu_cb->flags, pdu_cb->seq,
pdu_cb->ddigest, pdu_cb->frags);
for (i = 0; i < ssi->nr_frags; i++)
pr_info("skb 0x%p, frag %d, off %u, sz %u.\n",
skb, i, ssi->frags[i].page_offset, ssi->frags[i].size);
}
static void cxgbit_lro_hskb_reset(struct cxgbit_sock *csk)
{
struct sk_buff *skb = csk->lro_hskb;
struct skb_shared_info *ssi = skb_shinfo(skb);
u8 i;
memset(skb->data, 0, LRO_SKB_MIN_HEADROOM);
for (i = 0; i < ssi->nr_frags; i++)
put_page(skb_frag_page(&ssi->frags[i]));
ssi->nr_frags = 0;
}
static void
cxgbit_lro_skb_merge(struct cxgbit_sock *csk, struct sk_buff *skb, u8 pdu_idx)
{
struct sk_buff *hskb = csk->lro_hskb;
struct cxgbit_lro_pdu_cb *hpdu_cb = cxgbit_skb_lro_pdu_cb(hskb, 0);
struct cxgbit_lro_pdu_cb *pdu_cb = cxgbit_skb_lro_pdu_cb(skb, pdu_idx);
struct skb_shared_info *hssi = skb_shinfo(hskb);
struct skb_shared_info *ssi = skb_shinfo(skb);
unsigned int len = 0;
if (pdu_cb->flags & PDUCBF_RX_HDR) {
hpdu_cb->flags = pdu_cb->flags;
hpdu_cb->seq = pdu_cb->seq;
hpdu_cb->hdr = pdu_cb->hdr;
hpdu_cb->hlen = pdu_cb->hlen;
memcpy(&hssi->frags[0], &ssi->frags[pdu_cb->hfrag_idx],
sizeof(skb_frag_t));
get_page(skb_frag_page(&hssi->frags[0]));
hssi->nr_frags = 1;
hpdu_cb->frags = 1;
hpdu_cb->hfrag_idx = 0;
len = hssi->frags[0].size;
hskb->len = len;
hskb->data_len = len;
hskb->truesize = len;
}
if (pdu_cb->flags & PDUCBF_RX_DATA) {
u8 hfrag_idx = 1, i;
hpdu_cb->flags |= pdu_cb->flags;
len = 0;
for (i = 0; i < pdu_cb->nr_dfrags; hfrag_idx++, i++) {
memcpy(&hssi->frags[hfrag_idx],
&ssi->frags[pdu_cb->dfrag_idx + i],
sizeof(skb_frag_t));
get_page(skb_frag_page(&hssi->frags[hfrag_idx]));
len += hssi->frags[hfrag_idx].size;
hssi->nr_frags++;
hpdu_cb->frags++;
}
hpdu_cb->dlen = pdu_cb->dlen;
hpdu_cb->doffset = hpdu_cb->hlen;
hpdu_cb->nr_dfrags = pdu_cb->nr_dfrags;
hpdu_cb->dfrag_idx = 1;
hskb->len += len;
hskb->data_len += len;
hskb->truesize += len;
}
if (pdu_cb->flags & PDUCBF_RX_STATUS) {
hpdu_cb->flags |= pdu_cb->flags;
if (hpdu_cb->flags & PDUCBF_RX_DATA)
hpdu_cb->flags &= ~PDUCBF_RX_DATA_DDPD;
hpdu_cb->ddigest = pdu_cb->ddigest;
hpdu_cb->pdulen = pdu_cb->pdulen;
}
}
static int cxgbit_process_lro_skb(struct cxgbit_sock *csk, struct sk_buff *skb)
{
struct cxgbit_lro_cb *lro_cb = cxgbit_skb_lro_cb(skb);
struct cxgbit_lro_pdu_cb *pdu_cb = cxgbit_skb_lro_pdu_cb(skb, 0);
u8 pdu_idx = 0, last_idx = 0;
int ret = 0;
if (!pdu_cb->complete) {
cxgbit_lro_skb_merge(csk, skb, 0);
if (pdu_cb->flags & PDUCBF_RX_STATUS) {
struct sk_buff *hskb = csk->lro_hskb;
ret = cxgbit_process_iscsi_pdu(csk, hskb, 0);
cxgbit_lro_hskb_reset(csk);
if (ret < 0)
goto out;
}
pdu_idx = 1;
}
if (lro_cb->pdu_idx)
last_idx = lro_cb->pdu_idx - 1;
for (; pdu_idx <= last_idx; pdu_idx++) {
ret = cxgbit_process_iscsi_pdu(csk, skb, pdu_idx);
if (ret < 0)
goto out;
}
if ((!lro_cb->complete) && lro_cb->pdu_idx)
cxgbit_lro_skb_merge(csk, skb, lro_cb->pdu_idx);
out:
return ret;
}
static int cxgbit_rx_lro_skb(struct cxgbit_sock *csk, struct sk_buff *skb)
{
struct cxgbit_lro_cb *lro_cb = cxgbit_skb_lro_cb(skb);
struct cxgbit_lro_pdu_cb *pdu_cb = cxgbit_skb_lro_pdu_cb(skb, 0);
int ret = -1;
if ((pdu_cb->flags & PDUCBF_RX_HDR) &&
(pdu_cb->seq != csk->rcv_nxt)) {
pr_info("csk 0x%p, tid 0x%x, seq 0x%x != 0x%x.\n",
csk, csk->tid, pdu_cb->seq, csk->rcv_nxt);
cxgbit_lro_skb_dump(skb);
return ret;
}
csk->rcv_nxt += lro_cb->pdu_totallen;
ret = cxgbit_process_lro_skb(csk, skb);
csk->rx_credits += lro_cb->pdu_totallen;
if (csk->rx_credits >= (csk->rcv_win / 4))
cxgbit_rx_data_ack(csk);
return ret;
}
static int cxgbit_rx_skb(struct cxgbit_sock *csk, struct sk_buff *skb)
{
int ret = -1;
if (likely(cxgbit_skcb_flags(skb) & SKCBF_RX_LRO))
ret = cxgbit_rx_lro_skb(csk, skb);
__kfree_skb(skb);
return ret;
}
static bool cxgbit_rxq_len(struct cxgbit_sock *csk, struct sk_buff_head *rxq)
{
spin_lock_bh(&csk->rxq.lock);
if (skb_queue_len(&csk->rxq)) {
skb_queue_splice_init(&csk->rxq, rxq);
spin_unlock_bh(&csk->rxq.lock);
return true;
}
spin_unlock_bh(&csk->rxq.lock);
return false;
}
static int cxgbit_wait_rxq(struct cxgbit_sock *csk)
{
struct sk_buff *skb;
struct sk_buff_head rxq;
skb_queue_head_init(&rxq);
wait_event_interruptible(csk->waitq, cxgbit_rxq_len(csk, &rxq));
if (signal_pending(current))
goto out;
while ((skb = __skb_dequeue(&rxq))) {
if (cxgbit_rx_skb(csk, skb))
goto out;
}
return 0;
out:
__skb_queue_purge(&rxq);
return -1;
}
int cxgbit_get_login_rx(struct iscsi_conn *conn, struct iscsi_login *login)
{
struct cxgbit_sock *csk = conn->context;
int ret = -1;
while (!test_and_clear_bit(CSK_LOGIN_PDU_DONE, &csk->com.flags)) {
ret = cxgbit_wait_rxq(csk);
if (ret) {
clear_bit(CSK_LOGIN_PDU_DONE, &csk->com.flags);
break;
}
}
return ret;
}
void cxgbit_get_rx_pdu(struct iscsi_conn *conn)
{
struct cxgbit_sock *csk = conn->context;
while (!kthread_should_stop()) {
iscsit_thread_check_cpumask(conn, current, 0);
if (cxgbit_wait_rxq(csk))
return;
}
}
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment