Commit 9850a96f authored by Jon Grimm's avatar Jon Grimm

Merge touki.austin.ibm.com:/home/jgrimm/bk/linux-2.5.66

into touki.austin.ibm.com:/home/jgrimm/bk/lksctp-2.5.work
parents 42382f86 a33b4399
...@@ -138,12 +138,10 @@ typedef enum { ...@@ -138,12 +138,10 @@ typedef enum {
*/ */
typedef union { typedef union {
sctp_cid_t chunk; sctp_cid_t chunk;
sctp_event_timeout_t timeout; sctp_event_timeout_t timeout;
sctp_event_other_t other; sctp_event_other_t other;
sctp_event_primitive_t primitive; sctp_event_primitive_t primitive;
} sctp_subtype_t; } sctp_subtype_t;
#define SCTP_SUBTYPE_CONSTRUCTOR(_name, _type, _elt) \ #define SCTP_SUBTYPE_CONSTRUCTOR(_name, _type, _elt) \
...@@ -421,9 +419,9 @@ typedef enum { ...@@ -421,9 +419,9 @@ typedef enum {
/* Reasons to retransmit. */ /* Reasons to retransmit. */
typedef enum { typedef enum {
SCTP_RETRANSMIT_T3_RTX, SCTP_RTXR_T3_RTX,
SCTP_RETRANSMIT_FAST_RTX, SCTP_RTXR_FAST_RTX,
SCTP_RETRANSMIT_PMTU_DISCOVERY, SCTP_RTXR_PMTUD,
} sctp_retransmit_reason_t; } sctp_retransmit_reason_t;
/* Reasons to lower cwnd. */ /* Reasons to lower cwnd. */
......
...@@ -123,14 +123,14 @@ ...@@ -123,14 +123,14 @@
*/ */
extern struct sctp_protocol sctp_proto; extern struct sctp_protocol sctp_proto;
extern struct sock *sctp_get_ctl_sock(void); extern struct sock *sctp_get_ctl_sock(void);
extern int sctp_copy_local_addr_list(struct sctp_protocol *, extern int sctp_copy_local_addr_list(struct sctp_protocol *,
struct sctp_bind_addr *, struct sctp_bind_addr *,
sctp_scope_t, int priority, int flags); sctp_scope_t, int priority, int flags);
extern struct sctp_pf *sctp_get_pf_specific(sa_family_t family); extern struct sctp_pf *sctp_get_pf_specific(sa_family_t family);
extern int sctp_register_pf(struct sctp_pf *, sa_family_t); extern int sctp_register_pf(struct sctp_pf *, sa_family_t);
/* /*
* sctp_socket.c * sctp/socket.c
*/ */
extern int sctp_backlog_rcv(struct sock *sk, struct sk_buff *skb); extern int sctp_backlog_rcv(struct sock *sk, struct sk_buff *skb);
extern int sctp_inet_listen(struct socket *sock, int backlog); extern int sctp_inet_listen(struct socket *sock, int backlog);
...@@ -139,7 +139,7 @@ extern unsigned int sctp_poll(struct file *file, struct socket *sock, ...@@ -139,7 +139,7 @@ extern unsigned int sctp_poll(struct file *file, struct socket *sock,
poll_table *wait); poll_table *wait);
/* /*
* sctp_primitive.c * sctp/primitive.c
*/ */
extern int sctp_primitive_ASSOCIATE(sctp_association_t *, void *arg); extern int sctp_primitive_ASSOCIATE(sctp_association_t *, void *arg);
extern int sctp_primitive_SHUTDOWN(sctp_association_t *, void *arg); extern int sctp_primitive_SHUTDOWN(sctp_association_t *, void *arg);
...@@ -148,14 +148,14 @@ extern int sctp_primitive_SEND(sctp_association_t *, void *arg); ...@@ -148,14 +148,14 @@ extern int sctp_primitive_SEND(sctp_association_t *, void *arg);
extern int sctp_primitive_REQUESTHEARTBEAT(sctp_association_t *, void *arg); extern int sctp_primitive_REQUESTHEARTBEAT(sctp_association_t *, void *arg);
/* /*
* sctp_crc32c.c * sctp/crc32c.c
*/ */
extern __u32 sctp_start_cksum(__u8 *ptr, __u16 count); extern __u32 sctp_start_cksum(__u8 *ptr, __u16 count);
extern __u32 sctp_update_cksum(__u8 *ptr, __u16 count, __u32 cksum); extern __u32 sctp_update_cksum(__u8 *ptr, __u16 count, __u32 cksum);
extern __u32 sctp_end_cksum(__u32 cksum); extern __u32 sctp_end_cksum(__u32 cksum);
/* /*
* sctp_input.c * sctp/input.c
*/ */
extern int sctp_rcv(struct sk_buff *skb); extern int sctp_rcv(struct sk_buff *skb);
extern void sctp_v4_err(struct sk_buff *skb, u32 info); extern void sctp_v4_err(struct sk_buff *skb, u32 info);
...@@ -170,9 +170,16 @@ extern void __sctp_unhash_endpoint(sctp_endpoint_t *); ...@@ -170,9 +170,16 @@ extern void __sctp_unhash_endpoint(sctp_endpoint_t *);
extern sctp_association_t *__sctp_lookup_association(const union sctp_addr *, extern sctp_association_t *__sctp_lookup_association(const union sctp_addr *,
const union sctp_addr *, const union sctp_addr *,
struct sctp_transport **); struct sctp_transport **);
extern struct sock *sctp_err_lookup(int family, struct sk_buff *,
struct sctphdr *, struct sctp_endpoint **,
struct sctp_association **,
struct sctp_transport **);
extern void sctp_err_finish(struct sock *, struct sctp_endpoint *,
struct sctp_association *);
extern void sctp_icmp_frag_needed(struct sock *, struct sctp_association *,
struct sctp_transport *t, __u32 pmtu);
/* /*
* sctp_hashdriver.c * sctp/hashdriver.c
*/ */
extern void sctp_hash_digest(const char *secret, const int secret_len, extern void sctp_hash_digest(const char *secret, const int secret_len,
const char *text, const int text_len, const char *text, const int text_len,
...@@ -184,9 +191,7 @@ extern void sctp_hash_digest(const char *secret, const int secret_len, ...@@ -184,9 +191,7 @@ extern void sctp_hash_digest(const char *secret, const int secret_len,
#ifdef TEST_FRAME #ifdef TEST_FRAME
#include <test_frame.h> #include <test_frame.h>
#else #else
/* spin lock wrappers. */ /* spin lock wrappers. */
...@@ -312,7 +317,6 @@ static inline void sctp_sysctl_register(void) { return; } ...@@ -312,7 +317,6 @@ static inline void sctp_sysctl_register(void) { return; }
static inline void sctp_sysctl_unregister(void) { return; } static inline void sctp_sysctl_unregister(void) { return; }
#endif #endif
/* Size of Supported Address Parameter for 'x' address types. */ /* Size of Supported Address Parameter for 'x' address types. */
#define SCTP_SAT_LEN(x) (sizeof(struct sctp_paramhdr) + (x) * sizeof(__u16)) #define SCTP_SAT_LEN(x) (sizeof(struct sctp_paramhdr) + (x) * sizeof(__u16))
...@@ -320,19 +324,15 @@ static inline void sctp_sysctl_unregister(void) { return; } ...@@ -320,19 +324,15 @@ static inline void sctp_sysctl_unregister(void) { return; }
extern int sctp_v6_init(void); extern int sctp_v6_init(void);
extern void sctp_v6_exit(void); extern void sctp_v6_exit(void);
static inline int sctp_ipv6_addr_type(const struct in6_addr *addr) extern void sctp_v6_err(struct sk_buff *skb, struct inet6_skb_parm *opt,
{ int type, int code, int offset, __u32 info);
return ipv6_addr_type((struct in6_addr*) addr);
}
#else /* #ifdef defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */ #else /* #ifdef defined(CONFIG_IPV6) */
#define sctp_ipv6_addr_type(a) 0
static inline int sctp_v6_init(void) { return 0; } static inline int sctp_v6_init(void) { return 0; }
static inline void sctp_v6_exit(void) { return; } static inline void sctp_v6_exit(void) { return; }
#endif /* #ifdef defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */ #endif /* #if defined(CONFIG_IPV6) */
/* Map an association to an assoc_id. */ /* Map an association to an assoc_id. */
static inline sctp_assoc_t sctp_assoc2id(const sctp_association_t *asoc) static inline sctp_assoc_t sctp_assoc2id(const sctp_association_t *asoc)
...@@ -414,13 +414,22 @@ static inline __s32 sctp_jitter(__u32 rto) ...@@ -414,13 +414,22 @@ static inline __s32 sctp_jitter(__u32 rto)
sctp_rand ^= (sctp_rand << 12); sctp_rand ^= (sctp_rand << 12);
sctp_rand ^= (sctp_rand >> 20); sctp_rand ^= (sctp_rand >> 20);
/* Choose random number from 0 to rto, then move to -50% ~ +50% /* Choose random number from 0 to rto, then move to -50% ~ +50%
* of rto. * of rto.
*/ */
ret = sctp_rand % rto - (rto >> 1); ret = sctp_rand % rto - (rto >> 1);
return ret; return ret;
} }
/* Break down data chunks at this point. */
static inline int sctp_frag_point(int pmtu)
{
pmtu -= SCTP_IP_OVERHEAD + sizeof(struct sctp_data_chunk);
pmtu -= sizeof(struct sctp_sack_chunk);
return pmtu;
}
/* Walk through a list of TLV parameters. Don't trust the /* Walk through a list of TLV parameters. Don't trust the
* individual parameter lengths and instead depend on * individual parameter lengths and instead depend on
* the chunk length to indicate when to stop. Make sure * the chunk length to indicate when to stop. Make sure
...@@ -537,7 +546,7 @@ struct sctp_sock { ...@@ -537,7 +546,7 @@ struct sctp_sock {
struct sock sk; struct sock sk;
#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
struct ipv6_pinfo *pinet6; struct ipv6_pinfo *pinet6;
#endif /* CONFIG_IPV6 || CONFIG_IPV6_MODULE */ #endif /* CONFIG_IPV6 */
struct inet_opt inet; struct inet_opt inet;
struct sctp_opt sctp; struct sctp_opt sctp;
}; };
...@@ -550,7 +559,7 @@ struct sctp6_sock { ...@@ -550,7 +559,7 @@ struct sctp6_sock {
struct sctp_opt sctp; struct sctp_opt sctp;
struct ipv6_pinfo inet6; struct ipv6_pinfo inet6;
}; };
#endif /* CONFIG_IPV6 || CONFIG_IPV6_MODULE */ #endif /* CONFIG_IPV6 */
#define sctp_sk(__sk) (&((struct sctp_sock *)__sk)->sctp) #define sctp_sk(__sk) (&((struct sctp_sock *)__sk)->sctp)
......
...@@ -590,13 +590,16 @@ struct sctp_packet { ...@@ -590,13 +590,16 @@ struct sctp_packet {
/* This packet should advertise ECN capability to the network /* This packet should advertise ECN capability to the network
* via the ECT bit. * via the ECT bit.
*/ */
int ecn_capable; char ecn_capable;
/* This packet contains a COOKIE-ECHO chunk. */ /* This packet contains a COOKIE-ECHO chunk. */
int has_cookie_echo; char has_cookie_echo;
/* This packet containsa SACK chunk. */
char has_sack;
/* SCTP cannot fragment this packet. So let ip fragment it. */ /* SCTP cannot fragment this packet. So let ip fragment it. */
int ipfragok; char ipfragok;
int malloced; int malloced;
}; };
......
...@@ -421,8 +421,7 @@ struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc, ...@@ -421,8 +421,7 @@ struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc,
SCTP_DEBUG_PRINTK("sctp_assoc_add_peer:association %p PMTU set to " SCTP_DEBUG_PRINTK("sctp_assoc_add_peer:association %p PMTU set to "
"%d\n", asoc, asoc->pmtu); "%d\n", asoc, asoc->pmtu);
asoc->frag_point = asoc->pmtu; asoc->frag_point = sctp_frag_point(asoc->pmtu);
asoc->frag_point -= SCTP_IP_OVERHEAD + sizeof(struct sctp_data_chunk);
/* The asoc->peer.port might not be meaningful yet, but /* The asoc->peer.port might not be meaningful yet, but
* initialize the packet structure anyway. * initialize the packet structure anyway.
...@@ -658,32 +657,21 @@ int sctp_cmp_addr_exact(const union sctp_addr *ss1, ...@@ -658,32 +657,21 @@ int sctp_cmp_addr_exact(const union sctp_addr *ss1,
} }
/* Return an ecne chunk to get prepended to a packet. /* Return an ecne chunk to get prepended to a packet.
* Note: We are sly and return a shared, prealloced chunk. * Note: We are sly and return a shared, prealloced chunk. FIXME:
* No we don't, but we could/should.
*/ */
sctp_chunk_t *sctp_get_ecne_prepend(sctp_association_t *asoc) sctp_chunk_t *sctp_get_ecne_prepend(struct sctp_association *asoc)
{ {
sctp_chunk_t *chunk; struct sctp_chunk *chunk;
int need_ecne;
__u32 lowest_tsn;
/* Can be called from task or bh. Both need_ecne and /* Send ECNE if needed.
* last_ecne_tsn are written during bh. * Not being able to allocate a chunk here is not deadly.
*/ */
need_ecne = asoc->need_ecne; if (asoc->need_ecne)
lowest_tsn = asoc->last_ecne_tsn; chunk = sctp_make_ecne(asoc, asoc->last_ecne_tsn);
else
if (need_ecne) {
chunk = sctp_make_ecne(asoc, lowest_tsn);
/* ECNE is not mandatory to the flow. Being unable to
* alloc mem is not deadly. We are just unable to help
* out the network. If we run out of memory, just return
* NULL.
*/
} else {
chunk = NULL; chunk = NULL;
}
return chunk; return chunk;
} }
...@@ -986,8 +974,7 @@ void sctp_assoc_sync_pmtu(sctp_association_t *asoc) ...@@ -986,8 +974,7 @@ void sctp_assoc_sync_pmtu(sctp_association_t *asoc)
if (pmtu) { if (pmtu) {
asoc->pmtu = pmtu; asoc->pmtu = pmtu;
asoc->frag_point = pmtu - (SCTP_IP_OVERHEAD + asoc->frag_point = sctp_frag_point(pmtu);
sizeof(sctp_data_chunk_t));
} }
SCTP_DEBUG_PRINTK("%s: asoc:%p, pmtu:%d, frag_point:%d\n", SCTP_DEBUG_PRINTK("%s: asoc:%p, pmtu:%d, frag_point:%d\n",
......
...@@ -207,21 +207,19 @@ int sctp_rcv(struct sk_buff *skb) ...@@ -207,21 +207,19 @@ int sctp_rcv(struct sk_buff *skb)
*/ */
sctp_bh_lock_sock(sk); sctp_bh_lock_sock(sk);
if (sock_owned_by_user(sk)) { if (sock_owned_by_user(sk))
sk_add_backlog(sk, (struct sk_buff *) chunk); sk_add_backlog(sk, (struct sk_buff *) chunk);
} else { else
sctp_backlog_rcv(sk, (struct sk_buff *) chunk); sctp_backlog_rcv(sk, (struct sk_buff *) chunk);
}
/* Release the sock and any reference counts we took in the /* Release the sock and any reference counts we took in the
* lookup calls. * lookup calls.
*/ */
sctp_bh_unlock_sock(sk); sctp_bh_unlock_sock(sk);
if (asoc) { if (asoc)
sctp_association_put(asoc); sctp_association_put(asoc);
} else { else
sctp_endpoint_put(ep); sctp_endpoint_put(ep);
}
sock_put(sk); sock_put(sk);
return ret; return ret;
...@@ -268,10 +266,8 @@ int sctp_backlog_rcv(struct sock *sk, struct sk_buff *skb) ...@@ -268,10 +266,8 @@ int sctp_backlog_rcv(struct sock *sk, struct sk_buff *skb)
} }
/* Handle icmp frag needed error. */ /* Handle icmp frag needed error. */
static inline void sctp_icmp_frag_needed(struct sock *sk, void sctp_icmp_frag_needed(struct sock *sk, struct sctp_association *asoc,
sctp_association_t *asoc, struct sctp_transport *t, __u32 pmtu)
struct sctp_transport *transport,
__u32 pmtu)
{ {
if (unlikely(pmtu < SCTP_DEFAULT_MINSEGMENT)) { if (unlikely(pmtu < SCTP_DEFAULT_MINSEGMENT)) {
printk(KERN_WARNING "%s: Reported pmtu %d too low, " printk(KERN_WARNING "%s: Reported pmtu %d too low, "
...@@ -280,54 +276,38 @@ static inline void sctp_icmp_frag_needed(struct sock *sk, ...@@ -280,54 +276,38 @@ static inline void sctp_icmp_frag_needed(struct sock *sk,
pmtu = SCTP_DEFAULT_MINSEGMENT; pmtu = SCTP_DEFAULT_MINSEGMENT;
} }
if (!sock_owned_by_user(sk) && transport && (transport->pmtu != pmtu)) { if (!sock_owned_by_user(sk) && t && (t->pmtu != pmtu)) {
transport->pmtu = pmtu; t->pmtu = pmtu;
sctp_assoc_sync_pmtu(asoc); sctp_assoc_sync_pmtu(asoc);
sctp_retransmit(&asoc->outqueue, transport, sctp_retransmit(&asoc->outqueue, t, SCTP_RTXR_PMTUD);
SCTP_RETRANSMIT_PMTU_DISCOVERY );
} }
} }
/* /* Common lookup code for icmp/icmpv6 error handler. */
* This routine is called by the ICMP module when it gets some struct sock *sctp_err_lookup(int family, struct sk_buff *skb,
* sort of error condition. If err < 0 then the socket should struct sctphdr *sctphdr,
* be closed and the error returned to the user. If err > 0 struct sctp_endpoint **epp,
* it's just the icmp type << 8 | icmp code. After adjustment struct sctp_association **app,
* header points to the first 8 bytes of the sctp header. We need struct sctp_transport **tpp)
* to find the appropriate port.
*
* The locking strategy used here is very "optimistic". When
* someone else accesses the socket the ICMP is just dropped
* and for some paths there is no check at all.
* A more general error queue to queue errors for later handling
* is probably better.
*
*/
void sctp_v4_err(struct sk_buff *skb, __u32 info)
{ {
struct iphdr *iph = (struct iphdr *)skb->data; union sctp_addr saddr;
struct sctphdr *sh = (struct sctphdr *)(skb->data + (iph->ihl <<2)); union sctp_addr daddr;
int type = skb->h.icmph->type; struct sctp_af *af;
int code = skb->h.icmph->code;
union sctp_addr saddr, daddr;
struct inet_opt *inet;
struct sock *sk = NULL; struct sock *sk = NULL;
sctp_endpoint_t *ep = NULL; struct sctp_endpoint *ep = NULL;
sctp_association_t *asoc = NULL; struct sctp_association *asoc = NULL;
struct sctp_transport *transport; struct sctp_transport *transport = NULL;
int err;
if (skb->len < ((iph->ihl << 2) + 8)) { *app = NULL; *epp = NULL; *tpp = NULL;
ICMP_INC_STATS_BH(IcmpInErrors);
return; af = sctp_get_af_specific(family);
if (unlikely(!af)) {
return NULL;
} }
saddr.v4.sin_family = AF_INET; /* Initialize local addresses for lookups. */
saddr.v4.sin_port = ntohs(sh->source); af->from_skb(&saddr, skb, 1);
memcpy(&saddr.v4.sin_addr.s_addr, &iph->saddr, sizeof(struct in_addr)); af->from_skb(&daddr, skb, 0);
daddr.v4.sin_family = AF_INET;
daddr.v4.sin_port = ntohs(sh->dest);
memcpy(&daddr.v4.sin_addr.s_addr, &iph->daddr, sizeof(struct in_addr));
/* Look for an association that matches the incoming ICMP error /* Look for an association that matches the incoming ICMP error
* packet. * packet.
...@@ -340,13 +320,12 @@ void sctp_v4_err(struct sk_buff *skb, __u32 info) ...@@ -340,13 +320,12 @@ void sctp_v4_err(struct sk_buff *skb, __u32 info)
*/ */
ep = __sctp_rcv_lookup_endpoint(&daddr); ep = __sctp_rcv_lookup_endpoint(&daddr);
if (!ep) { if (!ep) {
ICMP_INC_STATS_BH(IcmpInErrors); return NULL;
return;
} }
} }
if (asoc) { if (asoc) {
if (ntohl(sh->vtag) != asoc->c.peer_vtag) { if (ntohl(sctphdr->vtag) != asoc->c.peer_vtag) {
ICMP_INC_STATS_BH(IcmpInErrors); ICMP_INC_STATS_BH(IcmpInErrors);
goto out; goto out;
} }
...@@ -355,12 +334,90 @@ void sctp_v4_err(struct sk_buff *skb, __u32 info) ...@@ -355,12 +334,90 @@ void sctp_v4_err(struct sk_buff *skb, __u32 info)
sk = ep->base.sk; sk = ep->base.sk;
sctp_bh_lock_sock(sk); sctp_bh_lock_sock(sk);
/* If too many ICMPs get dropped on busy /* If too many ICMPs get dropped on busy
* servers this needs to be solved differently. * servers this needs to be solved differently.
*/ */
if (sock_owned_by_user(sk)) if (sock_owned_by_user(sk))
NET_INC_STATS_BH(LockDroppedIcmps); NET_INC_STATS_BH(LockDroppedIcmps);
*epp = ep;
*app = asoc;
*tpp = transport;
return sk;
out:
sock_put(sk);
if (asoc)
sctp_association_put(asoc);
if (ep)
sctp_endpoint_put(ep);
return NULL;
}
/* Common cleanup code for icmp/icmpv6 error handler. */
void sctp_err_finish(struct sock *sk, struct sctp_endpoint *ep,
struct sctp_association *asoc)
{
sctp_bh_unlock_sock(sk);
sock_put(sk);
if (asoc)
sctp_association_put(asoc);
if (ep)
sctp_endpoint_put(ep);
}
/*
* This routine is called by the ICMP module when it gets some
* sort of error condition. If err < 0 then the socket should
* be closed and the error returned to the user. If err > 0
* it's just the icmp type << 8 | icmp code. After adjustment
* header points to the first 8 bytes of the sctp header. We need
* to find the appropriate port.
*
* The locking strategy used here is very "optimistic". When
* someone else accesses the socket the ICMP is just dropped
* and for some paths there is no check at all.
* A more general error queue to queue errors for later handling
* is probably better.
*
*/
void sctp_v4_err(struct sk_buff *skb, __u32 info)
{
struct iphdr *iph = (struct iphdr *)skb->data;
struct sctphdr *sh = (struct sctphdr *)(skb->data + (iph->ihl <<2));
int type = skb->h.icmph->type;
int code = skb->h.icmph->code;
struct sock *sk;
sctp_endpoint_t *ep;
sctp_association_t *asoc;
struct sctp_transport *transport;
struct inet_opt *inet;
char *saveip, *savesctp;
int err;
if (skb->len < ((iph->ihl << 2) + 8)) {
ICMP_INC_STATS_BH(IcmpInErrors);
return;
}
/* Fix up skb to look at the embedded net header. */
saveip = skb->nh.raw;
savesctp = skb->h.raw;
skb->nh.iph = iph;
skb->h.raw = (char *)sh;
sk = sctp_err_lookup(AF_INET, skb, sh, &ep, &asoc, &transport);
/* Put back, the original pointers. */
skb->nh.raw = saveip;
skb->h.raw = savesctp;
if (!sk) {
ICMP_INC_STATS_BH(IcmpInErrors);
return;
}
/* Warning: The sock lock is held. Remember to call
* sctp_err_finish!
*/
switch (type) { switch (type) {
case ICMP_PARAMETERPROB: case ICMP_PARAMETERPROB:
err = EPROTO; err = EPROTO;
...@@ -399,13 +456,7 @@ void sctp_v4_err(struct sk_buff *skb, __u32 info) ...@@ -399,13 +456,7 @@ void sctp_v4_err(struct sk_buff *skb, __u32 info)
} }
out_unlock: out_unlock:
sctp_bh_unlock_sock(sk); sctp_err_finish(sk, ep, asoc);
out:
sock_put(sk);
if (asoc)
sctp_association_put(asoc);
if (ep)
sctp_endpoint_put(ep);
} }
/* /*
...@@ -782,8 +833,3 @@ sctp_association_t *__sctp_rcv_lookup(struct sk_buff *skb, ...@@ -782,8 +833,3 @@ sctp_association_t *__sctp_rcv_lookup(struct sk_buff *skb,
return asoc; return asoc;
} }
/* SCTP kernel reference Implementation /* SCTP kernel reference Implementation
* Copyright (c) 2001 Nokia, Inc. * Copyright (c) 2001 Nokia, Inc.
* Copyright (c) 2001 La Monte H.P. Yarroll * Copyright (c) 2001 La Monte H.P. Yarroll
* Copyright (c) 2002 International Business Machines, Corp. * Copyright (c) 2002-2003 International Business Machines, Corp.
* *
* This file is part of the SCTP kernel reference Implementation * This file is part of the SCTP kernel reference Implementation
* *
...@@ -88,17 +88,62 @@ extern struct notifier_block sctp_inetaddr_notifier; ...@@ -88,17 +88,62 @@ extern struct notifier_block sctp_inetaddr_notifier;
ntohs((addr)->s6_addr16[6]), \ ntohs((addr)->s6_addr16[6]), \
ntohs((addr)->s6_addr16[7]) ntohs((addr)->s6_addr16[7])
/* FIXME: Comments. */ /* ICMP error handler. */
static inline void sctp_v6_err(struct sk_buff *skb, void sctp_v6_err(struct sk_buff *skb, struct inet6_skb_parm *opt,
struct inet6_skb_parm *opt, int type, int code, int offset, __u32 info)
int type, int code, int offset, __u32 info)
{ {
/* BUG. WRITE ME. */ struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
struct sctphdr *sh = (struct sctphdr *)(skb->data + offset);
struct sock *sk;
sctp_endpoint_t *ep;
sctp_association_t *asoc;
struct sctp_transport *transport;
struct ipv6_pinfo *np;
char *saveip, *savesctp;
int err;
/* Fix up skb to look at the embedded net header. */
saveip = skb->nh.raw;
savesctp = skb->h.raw;
skb->nh.ipv6h = iph;
skb->h.raw = (char *)sh;
sk = sctp_err_lookup(AF_INET6, skb, sh, &ep, &asoc, &transport);
/* Put back, the original pointers. */
skb->nh.raw = saveip;
skb->h.raw = savesctp;
if (!sk) {
ICMP6_INC_STATS_BH(Icmp6InErrors);
return;
}
/* Warning: The sock lock is held. Remember to call
* sctp_err_finish!
*/
switch (type) {
case ICMPV6_PKT_TOOBIG:
sctp_icmp_frag_needed(sk, asoc, transport, ntohl(info));
goto out_unlock;
default:
break;
}
np = inet6_sk(sk);
icmpv6_err_convert(type, code, &err);
if (!sock_owned_by_user(sk) && np->recverr) {
sk->err = err;
sk->error_report(sk);
} else { /* Only an error on timeout */
sk->err_soft = err;
}
out_unlock:
sctp_err_finish(sk, ep, asoc);
} }
/* Based on tcp_v6_xmit() in tcp_ipv6.c. */ /* Based on tcp_v6_xmit() in tcp_ipv6.c. */
static inline int sctp_v6_xmit(struct sk_buff *skb, static int sctp_v6_xmit(struct sk_buff *skb, struct sctp_transport *transport,
struct sctp_transport *transport, int ipfragok) int ipfragok)
{ {
struct sock *sk = skb->sk; struct sock *sk = skb->sk;
struct ipv6_pinfo *np = inet6_sk(sk); struct ipv6_pinfo *np = inet6_sk(sk);
...@@ -110,9 +155,9 @@ static inline int sctp_v6_xmit(struct sk_buff *skb, ...@@ -110,9 +155,9 @@ static inline int sctp_v6_xmit(struct sk_buff *skb,
/* Fill in the dest address from the route entry passed with the skb /* Fill in the dest address from the route entry passed with the skb
* and the source address from the transport. * and the source address from the transport.
*/ */
fl.fl6_dst = &rt6->rt6i_dst.addr; fl.fl6_dst = &rt6->rt6i_dst.addr;
fl.fl6_src = &transport->saddr.v6.sin6_addr; fl.fl6_src = &transport->saddr.v6.sin6_addr;
fl.fl6_flowlabel = np->flow_label; fl.fl6_flowlabel = np->flow_label;
IP6_ECN_flow_xmit(sk, fl.fl6_flowlabel); IP6_ECN_flow_xmit(sk, fl.fl6_flowlabel);
...@@ -174,7 +219,7 @@ struct dst_entry *sctp_v6_get_dst(sctp_association_t *asoc, ...@@ -174,7 +219,7 @@ struct dst_entry *sctp_v6_get_dst(sctp_association_t *asoc,
/* Returns the number of consecutive initial bits that match in the 2 ipv6 /* Returns the number of consecutive initial bits that match in the 2 ipv6
* addresses. * addresses.
*/ */
static inline int sctp_v6_addr_match_len(union sctp_addr *s1, static inline int sctp_v6_addr_match_len(union sctp_addr *s1,
union sctp_addr *s2) union sctp_addr *s2)
{ {
...@@ -186,7 +231,7 @@ static inline int sctp_v6_addr_match_len(union sctp_addr *s1, ...@@ -186,7 +231,7 @@ static inline int sctp_v6_addr_match_len(union sctp_addr *s1,
__u32 a1xora2; __u32 a1xora2;
a1xora2 = a1->s6_addr32[i] ^ a2->s6_addr32[i]; a1xora2 = a1->s6_addr32[i] ^ a2->s6_addr32[i];
if ((j = fls(ntohl(a1xora2)))) if ((j = fls(ntohl(a1xora2))))
return (i * 32 + 32 - j); return (i * 32 + 32 - j);
} }
...@@ -196,7 +241,7 @@ static inline int sctp_v6_addr_match_len(union sctp_addr *s1, ...@@ -196,7 +241,7 @@ static inline int sctp_v6_addr_match_len(union sctp_addr *s1,
/* Fills in the source address(saddr) based on the destination address(daddr) /* Fills in the source address(saddr) based on the destination address(daddr)
* and asoc's bind address list. * and asoc's bind address list.
*/ */
void sctp_v6_get_saddr(sctp_association_t *asoc, struct dst_entry *dst, void sctp_v6_get_saddr(sctp_association_t *asoc, struct dst_entry *dst,
union sctp_addr *daddr, union sctp_addr *saddr) union sctp_addr *daddr, union sctp_addr *saddr)
{ {
...@@ -432,7 +477,7 @@ static sctp_scope_t sctp_v6_scope(union sctp_addr *addr) ...@@ -432,7 +477,7 @@ static sctp_scope_t sctp_v6_scope(union sctp_addr *addr)
return retval; return retval;
} }
/* Create and initialize a new sk for the socket to be returned by accept(). */ /* Create and initialize a new sk for the socket to be returned by accept(). */
struct sock *sctp_v6_create_accept_sk(struct sock *sk, struct sock *sctp_v6_create_accept_sk(struct sock *sk,
struct sctp_association *asoc) struct sctp_association *asoc)
{ {
...@@ -469,11 +514,11 @@ struct sock *sctp_v6_create_accept_sk(struct sock *sk, ...@@ -469,11 +514,11 @@ struct sock *sctp_v6_create_accept_sk(struct sock *sk,
memcpy(newnp, np, sizeof(struct ipv6_pinfo)); memcpy(newnp, np, sizeof(struct ipv6_pinfo));
ipv6_addr_copy(&newnp->daddr, &asoc->peer.primary_addr.v6.sin6_addr); ipv6_addr_copy(&newnp->daddr, &asoc->peer.primary_addr.v6.sin6_addr);
newinet->sport = inet->sport; newinet->sport = inet->sport;
newinet->dport = asoc->peer.port; newinet->dport = asoc->peer.port;
#ifdef INET_REFCNT_DEBUG #ifdef INET_REFCNT_DEBUG
atomic_inc(&inet6_sock_nr); atomic_inc(&inet6_sock_nr);
atomic_inc(&inet_sock_nr); atomic_inc(&inet_sock_nr);
...@@ -623,11 +668,11 @@ static int sctp_inet6_bind_verify(struct sctp_opt *opt, union sctp_addr *addr) ...@@ -623,11 +668,11 @@ static int sctp_inet6_bind_verify(struct sctp_opt *opt, union sctp_addr *addr)
/* Fill in Supported Address Type information for INIT and INIT-ACK /* Fill in Supported Address Type information for INIT and INIT-ACK
* chunks. Note: In the future, we may want to look at sock options * chunks. Note: In the future, we may want to look at sock options
* to determine whether a PF_INET6 socket really wants to have IPV4 * to determine whether a PF_INET6 socket really wants to have IPV4
* addresses. * addresses.
* Returns number of addresses supported. * Returns number of addresses supported.
*/ */
static int sctp_inet6_supported_addrs(const struct sctp_opt *opt, static int sctp_inet6_supported_addrs(const struct sctp_opt *opt,
__u16 *types) __u16 *types)
{ {
types[0] = SCTP_PARAM_IPV4_ADDRESS; types[0] = SCTP_PARAM_IPV4_ADDRESS;
types[1] = SCTP_PARAM_IPV6_ADDRESS; types[1] = SCTP_PARAM_IPV6_ADDRESS;
......
...@@ -79,6 +79,7 @@ struct sctp_packet *sctp_packet_config(struct sctp_packet *packet, ...@@ -79,6 +79,7 @@ struct sctp_packet *sctp_packet_config(struct sctp_packet *packet,
packet->ecn_capable = ecn_capable; packet->ecn_capable = ecn_capable;
packet->get_prepend_chunk = prepend_handler; packet->get_prepend_chunk = prepend_handler;
packet->has_cookie_echo = 0; packet->has_cookie_echo = 0;
packet->has_sack = 0;
packet->ipfragok = 0; packet->ipfragok = 0;
/* We might need to call the prepend_handler right away. */ /* We might need to call the prepend_handler right away. */
...@@ -100,6 +101,7 @@ struct sctp_packet *sctp_packet_init(struct sctp_packet *packet, ...@@ -100,6 +101,7 @@ struct sctp_packet *sctp_packet_init(struct sctp_packet *packet,
packet->ecn_capable = 0; packet->ecn_capable = 0;
packet->get_prepend_chunk = NULL; packet->get_prepend_chunk = NULL;
packet->has_cookie_echo = 0; packet->has_cookie_echo = 0;
packet->has_sack = 0;
packet->ipfragok = 0; packet->ipfragok = 0;
packet->malloced = 0; packet->malloced = 0;
sctp_packet_reset(packet); sctp_packet_reset(packet);
...@@ -155,6 +157,37 @@ sctp_xmit_t sctp_packet_transmit_chunk(struct sctp_packet *packet, ...@@ -155,6 +157,37 @@ sctp_xmit_t sctp_packet_transmit_chunk(struct sctp_packet *packet,
return retval; return retval;
} }
/* Try to bundle a SACK with the packet. */
static sctp_xmit_t sctp_packet_bundle_sack(struct sctp_packet *pkt,
struct sctp_chunk *chunk)
{
sctp_xmit_t retval = SCTP_XMIT_OK;
/* If sending DATA and haven't aleady bundled a SACK, try to
* bundle one in to the packet.
*/
if (sctp_chunk_is_data(chunk) && !pkt->has_sack &&
!pkt->has_cookie_echo) {
struct sctp_association *asoc;
asoc = pkt->transport->asoc;
if (asoc->a_rwnd > asoc->rwnd) {
struct sctp_chunk *sack;
asoc->a_rwnd = asoc->rwnd;
sack = sctp_make_sack(asoc);
if (sack) {
struct timer_list *timer;
retval = sctp_packet_append_chunk(pkt, sack);
asoc->peer.sack_needed = 0;
timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK];
if (timer_pending(timer) && del_timer(timer))
sctp_association_put(asoc);
}
}
}
return retval;
}
/* Append a chunk to the offered packet reporting back any inability to do /* Append a chunk to the offered packet reporting back any inability to do
* so. * so.
*/ */
...@@ -167,6 +200,10 @@ sctp_xmit_t sctp_packet_append_chunk(struct sctp_packet *packet, ...@@ -167,6 +200,10 @@ sctp_xmit_t sctp_packet_append_chunk(struct sctp_packet *packet,
size_t pmtu; size_t pmtu;
int too_big; int too_big;
retval = sctp_packet_bundle_sack(packet, chunk);
if (retval != SCTP_XMIT_OK)
goto finish;
pmtu = ((packet->transport->asoc) ? pmtu = ((packet->transport->asoc) ?
(packet->transport->asoc->pmtu) : (packet->transport->asoc->pmtu) :
(packet->transport->pmtu)); (packet->transport->pmtu));
...@@ -216,9 +253,10 @@ sctp_xmit_t sctp_packet_append_chunk(struct sctp_packet *packet, ...@@ -216,9 +253,10 @@ sctp_xmit_t sctp_packet_append_chunk(struct sctp_packet *packet,
retval = sctp_packet_append_data(packet, chunk); retval = sctp_packet_append_data(packet, chunk);
if (SCTP_XMIT_OK != retval) if (SCTP_XMIT_OK != retval)
goto finish; goto finish;
} else if (SCTP_CID_COOKIE_ECHO == chunk->chunk_hdr->type) { } else if (SCTP_CID_COOKIE_ECHO == chunk->chunk_hdr->type)
packet->has_cookie_echo = 1; packet->has_cookie_echo = 1;
} else if (SCTP_CID_SACK == chunk->chunk_hdr->type)
packet->has_sack = 1;
/* It is OK to send this chunk. */ /* It is OK to send this chunk. */
__skb_queue_tail(&packet->chunks, (struct sk_buff *)chunk); __skb_queue_tail(&packet->chunks, (struct sk_buff *)chunk);
......
...@@ -357,7 +357,7 @@ void sctp_retransmit(struct sctp_outq *q, struct sctp_transport *transport, ...@@ -357,7 +357,7 @@ void sctp_retransmit(struct sctp_outq *q, struct sctp_transport *transport,
__u8 fast_retransmit = 0; __u8 fast_retransmit = 0;
switch(reason) { switch(reason) {
case SCTP_RETRANSMIT_T3_RTX: case SCTP_RTXR_T3_RTX:
sctp_transport_lower_cwnd(transport, SCTP_LOWER_CWND_T3_RTX); sctp_transport_lower_cwnd(transport, SCTP_LOWER_CWND_T3_RTX);
/* Update the retran path if the T3-rtx timer has expired for /* Update the retran path if the T3-rtx timer has expired for
* the current retran path. * the current retran path.
...@@ -365,10 +365,11 @@ void sctp_retransmit(struct sctp_outq *q, struct sctp_transport *transport, ...@@ -365,10 +365,11 @@ void sctp_retransmit(struct sctp_outq *q, struct sctp_transport *transport,
if (transport == transport->asoc->peer.retran_path) if (transport == transport->asoc->peer.retran_path)
sctp_assoc_update_retran_path(transport->asoc); sctp_assoc_update_retran_path(transport->asoc);
break; break;
case SCTP_RETRANSMIT_FAST_RTX: case SCTP_RTXR_FAST_RTX:
sctp_transport_lower_cwnd(transport, SCTP_LOWER_CWND_FAST_RTX); sctp_transport_lower_cwnd(transport, SCTP_LOWER_CWND_FAST_RTX);
fast_retransmit = 1; fast_retransmit = 1;
break; break;
case SCTP_RTXR_PMTUD:
default: default:
break; break;
} }
...@@ -876,7 +877,7 @@ int sctp_outq_flush(struct sctp_outq *q, int rtx_timeout) ...@@ -876,7 +877,7 @@ int sctp_outq_flush(struct sctp_outq *q, int rtx_timeout)
start_timer = 0; start_timer = 0;
queue = &q->out; queue = &q->out;
while (NULL != (chunk = sctp_outq_dequeue_data(q))) { while ((chunk = sctp_outq_dequeue_data(q))) {
/* RFC 2960 6.5 Every DATA chunk MUST carry a valid /* RFC 2960 6.5 Every DATA chunk MUST carry a valid
* stream identifier. * stream identifier.
*/ */
...@@ -891,9 +892,7 @@ int sctp_outq_flush(struct sctp_outq *q, int rtx_timeout) ...@@ -891,9 +892,7 @@ int sctp_outq_flush(struct sctp_outq *q, int rtx_timeout)
if (ev) if (ev)
sctp_ulpq_tail_event(&asoc->ulpq, ev); sctp_ulpq_tail_event(&asoc->ulpq, ev);
/* Free the chunk. This chunk is not on any /* Free the chunk. */
* list yet, just free it.
*/
sctp_free_chunk(chunk); sctp_free_chunk(chunk);
continue; continue;
} }
...@@ -1572,7 +1571,7 @@ static void sctp_check_transmitted(struct sctp_outq *q, ...@@ -1572,7 +1571,7 @@ static void sctp_check_transmitted(struct sctp_outq *q,
if (transport) { if (transport) {
if (do_fast_retransmit) if (do_fast_retransmit)
sctp_retransmit(q, transport, SCTP_RETRANSMIT_FAST_RTX); sctp_retransmit(q, transport, SCTP_RTXR_FAST_RTX);
SCTP_DEBUG_PRINTK("%s: transport: %p, cwnd: %d, " SCTP_DEBUG_PRINTK("%s: transport: %p, cwnd: %d, "
"ssthresh: %d, flight_size: %d, pba: %d\n", "ssthresh: %d, flight_size: %d, pba: %d\n",
......
...@@ -55,1202 +55,1128 @@ ...@@ -55,1202 +55,1128 @@
#include <net/sctp/sctp.h> #include <net/sctp/sctp.h>
#include <net/sctp/sm.h> #include <net/sctp/sm.h>
/* Do forward declarations of static functions. */ /********************************************************************
static void sctp_do_ecn_ce_work(sctp_association_t *,__u32 lowest_tsn); * Helper functions
static sctp_chunk_t *sctp_do_ecn_ecne_work(sctp_association_t *asoc, ********************************************************************/
__u32 lowest_tsn,
sctp_chunk_t *);
static void sctp_do_ecn_cwr_work(sctp_association_t *,__u32 lowest_tsn);
static void sctp_do_8_2_transport_strike(sctp_association_t *,
struct sctp_transport *);
static void sctp_cmd_init_failed(sctp_cmd_seq_t *, sctp_association_t *);
static void sctp_cmd_assoc_failed(sctp_cmd_seq_t *, sctp_association_t *,
sctp_event_t, sctp_subtype_t,
sctp_chunk_t *chunk);
static int sctp_cmd_process_init(sctp_cmd_seq_t *, sctp_association_t *,
sctp_chunk_t *chunk,
sctp_init_chunk_t *peer_init,
int priority);
static void sctp_cmd_hb_timers_start(sctp_cmd_seq_t *, sctp_association_t *);
static void sctp_cmd_hb_timers_stop(sctp_cmd_seq_t *, sctp_association_t *);
static void sctp_cmd_hb_timer_update(sctp_cmd_seq_t *, sctp_association_t *,
struct sctp_transport *);
static void sctp_cmd_transport_reset(sctp_cmd_seq_t *, sctp_association_t *,
struct sctp_transport *);
static void sctp_cmd_transport_on(sctp_cmd_seq_t *, sctp_association_t *,
struct sctp_transport *, sctp_chunk_t *);
static int sctp_cmd_process_sack(sctp_cmd_seq_t *, sctp_association_t *,
sctp_sackhdr_t *);
static void sctp_cmd_setup_t2(sctp_cmd_seq_t *, sctp_association_t *,
sctp_chunk_t *);
static void sctp_cmd_new_state(sctp_cmd_seq_t *, sctp_association_t *,
sctp_state_t);
/* These three macros allow us to pull the debugging code out of the
* main flow of sctp_do_sm() to keep attention focused on the real
* functionality there.
*/
#define DEBUG_PRE \
SCTP_DEBUG_PRINTK("sctp_do_sm prefn: " \
"ep %p, %s, %s, asoc %p[%s], %s\n", \
ep, sctp_evttype_tbl[event_type], \
(*debug_fn)(subtype), asoc, \
sctp_state_tbl[state], state_fn->name)
#define DEBUG_POST \ /* A helper function for delayed processing of INET ECN CE bit. */
SCTP_DEBUG_PRINTK("sctp_do_sm postfn: " \ static void sctp_do_ecn_ce_work(sctp_association_t *asoc, __u32 lowest_tsn)
"asoc %p, status: %s\n", \ {
asoc, sctp_status_tbl[status]) /* Save the TSN away for comparison when we receive CWR */
#define DEBUG_POST_SFX \ asoc->last_ecne_tsn = lowest_tsn;
SCTP_DEBUG_PRINTK("sctp_do_sm post sfx: error %d, asoc %p[%s]\n", \ asoc->need_ecne = 1;
error, asoc, \ }
sctp_state_tbl[(asoc && sctp_id2assoc(ep->base.sk, \
sctp_assoc2id(asoc)))?asoc->state:SCTP_STATE_CLOSED])
/* /* Helper function for delayed processing of SCTP ECNE chunk. */
* This is the master state machine processing function. /* RFC 2960 Appendix A
* *
* If you want to understand all of lksctp, this is a * RFC 2481 details a specific bit for a sender to send in
* good place to start. * the header of its next outbound TCP segment to indicate to
* its peer that it has reduced its congestion window. This
* is termed the CWR bit. For SCTP the same indication is made
* by including the CWR chunk. This chunk contains one data
* element, i.e. the TSN number that was sent in the ECNE chunk.
* This element represents the lowest TSN number in the datagram
* that was originally marked with the CE bit.
*/ */
int sctp_do_sm(sctp_event_t event_type, sctp_subtype_t subtype, static sctp_chunk_t *sctp_do_ecn_ecne_work(sctp_association_t *asoc,
sctp_state_t state, __u32 lowest_tsn,
sctp_endpoint_t *ep, sctp_chunk_t *chunk)
sctp_association_t *asoc,
void *event_arg,
int priority)
{ {
sctp_cmd_seq_t commands; sctp_chunk_t *repl;
sctp_sm_table_entry_t *state_fn;
sctp_disposition_t status;
int error = 0;
typedef const char *(printfn_t)(sctp_subtype_t);
static printfn_t *table[] = { /* Our previously transmitted packet ran into some congestion
NULL, sctp_cname, sctp_tname, sctp_oname, sctp_pname, * so we should take action by reducing cwnd and ssthresh
}; * and then ACK our peer that we we've done so by
printfn_t *debug_fn __attribute__ ((unused)) = table[event_type]; * sending a CWR.
*/
/* Look up the state function, run it, and then process the /* First, try to determine if we want to actually lower
* side effects. These three steps are the heart of lksctp. * our cwnd variables. Only lower them if the ECNE looks more
* recent than the last response.
*/ */
state_fn = sctp_sm_lookup_event(event_type, state, subtype); if (TSN_lt(asoc->last_cwr_tsn, lowest_tsn)) {
struct sctp_transport *transport;
sctp_init_cmd_seq(&commands); /* Find which transport's congestion variables
* need to be adjusted.
*/
transport = sctp_assoc_lookup_tsn(asoc, lowest_tsn);
DEBUG_PRE; /* Update the congestion variables. */
status = (*state_fn->fn)(ep, asoc, subtype, event_arg, &commands); if (transport)
DEBUG_POST; sctp_transport_lower_cwnd(transport,
SCTP_LOWER_CWND_ECNE);
asoc->last_cwr_tsn = lowest_tsn;
}
error = sctp_side_effects(event_type, subtype, state, /* Always try to quiet the other end. In case of lost CWR,
ep, asoc, event_arg, * resend last_cwr_tsn.
status, &commands, */
priority); repl = sctp_make_cwr(asoc, asoc->last_cwr_tsn, chunk);
DEBUG_POST_SFX;
return error; /* If we run out of memory, it will look like a lost CWR. We'll
* get back in sync eventually.
*/
return repl;
} }
#undef DEBUG_PRE /* Helper function to do delayed processing of ECN CWR chunk. */
#undef DEBUG_POST static void sctp_do_ecn_cwr_work(sctp_association_t *asoc,
__u32 lowest_tsn)
/*****************************************************************
* This the master state function side effect processing function.
*****************************************************************/
int sctp_side_effects(sctp_event_t event_type, sctp_subtype_t subtype,
sctp_state_t state,
sctp_endpoint_t *ep,
sctp_association_t *asoc,
void *event_arg,
sctp_disposition_t status,
sctp_cmd_seq_t *commands,
int priority)
{ {
int error; /* Turn off ECNE getting auto-prepended to every outgoing
* packet
/* FIXME - Most of the dispositions left today would be categorized
* as "exceptional" dispositions. For those dispositions, it
* may not be proper to run through any of the commands at all.
* For example, the command interpreter might be run only with
* disposition SCTP_DISPOSITION_CONSUME.
*/ */
if (0 != (error = sctp_cmd_interpreter(event_type, subtype, state, asoc->need_ecne = 0;
ep, asoc, }
event_arg, status,
commands, priority)))
goto bail;
switch (status) {
case SCTP_DISPOSITION_DISCARD:
SCTP_DEBUG_PRINTK("Ignored sctp protocol event - state %d, "
"event_type %d, event_id %d\n",
state, event_type, subtype.chunk);
break;
case SCTP_DISPOSITION_NOMEM: /* Generate SACK if necessary. We call this at the end of a packet. */
/* We ran out of memory, so we need to discard this int sctp_gen_sack(struct sctp_association *asoc, int force,
* packet. sctp_cmd_seq_t *commands)
*/ {
/* BUG--we should now recover some memory, probably by __u32 ctsn, max_tsn_seen;
* reneging... struct sctp_chunk *sack;
*/ int error = 0;
error = -ENOMEM;
break;
case SCTP_DISPOSITION_DELETE_TCB: if (force)
/* This should now be a command. */ asoc->peer.sack_needed = 1;
break;
case SCTP_DISPOSITION_CONSUME: ctsn = sctp_tsnmap_get_ctsn(&asoc->peer.tsn_map);
case SCTP_DISPOSITION_ABORT: max_tsn_seen = sctp_tsnmap_get_max_tsn_seen(&asoc->peer.tsn_map);
/*
* We should no longer have much work to do here as the
* real work has been done as explicit commands above.
*/
break;
case SCTP_DISPOSITION_VIOLATION: /* From 12.2 Parameters necessary per association (i.e. the TCB):
printk(KERN_ERR "sctp protocol violation state %d " *
"chunkid %d\n", state, subtype.chunk); * Ack State : This flag indicates if the next received packet
break; * : is to be responded to with a SACK. ...
* : When DATA chunks are out of order, SACK's
* : are not delayed (see Section 6).
*
* [This is actually not mentioned in Section 6, but we
* implement it here anyway. --piggy]
*/
if (max_tsn_seen != ctsn)
asoc->peer.sack_needed = 1;
case SCTP_DISPOSITION_NOT_IMPL: /* From 6.2 Acknowledgement on Reception of DATA Chunks:
printk(KERN_WARNING "sctp unimplemented feature in state %d, " *
"event_type %d, event_id %d\n", * Section 4.2 of [RFC2581] SHOULD be followed. Specifically,
state, event_type, subtype.chunk); * an acknowledgement SHOULD be generated for at least every
break; * second packet (not every second DATA chunk) received, and
* SHOULD be generated within 200 ms of the arrival of any
* unacknowledged DATA chunk. ...
*/
if (!asoc->peer.sack_needed) {
/* We will need a SACK for the next packet. */
asoc->peer.sack_needed = 1;
goto out;
} else {
if (asoc->a_rwnd > asoc->rwnd)
asoc->a_rwnd = asoc->rwnd;
sack = sctp_make_sack(asoc);
if (!sack)
goto nomem;
case SCTP_DISPOSITION_BUG: asoc->peer.sack_needed = 0;
printk(KERN_ERR "sctp bug in state %d, "
"event_type %d, event_id %d\n",
state, event_type, subtype.chunk);
BUG();
break;
default: error = sctp_outq_tail(&asoc->outqueue, sack);
printk(KERN_ERR "sctp impossible disposition %d "
"in state %d, event_type %d, event_id %d\n",
status, state, event_type, subtype.chunk);
BUG();
break;
};
bail: /* Stop the SACK timer. */
sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_STOP,
SCTP_TO(SCTP_EVENT_TIMEOUT_SACK));
}
out:
return error;
nomem:
error = -ENOMEM;
return error; return error;
} }
/******************************************************************** /* When the T3-RTX timer expires, it calls this function to create the
* 2nd Level Abstractions * relevant state machine event.
********************************************************************/ */
void sctp_generate_t3_rtx_event(unsigned long peer)
/* This is the side-effect interpreter. */
int sctp_cmd_interpreter(sctp_event_t event_type, sctp_subtype_t subtype,
sctp_state_t state, sctp_endpoint_t *ep,
sctp_association_t *asoc, void *event_arg,
sctp_disposition_t status, sctp_cmd_seq_t *commands,
int priority)
{ {
int error = 0; int error;
int force; struct sctp_transport *transport = (struct sctp_transport *) peer;
sctp_cmd_t *cmd; sctp_association_t *asoc = transport->asoc;
sctp_chunk_t *new_obj;
sctp_chunk_t *chunk = NULL;
struct sctp_packet *packet;
struct list_head *pos;
struct timer_list *timer;
unsigned long timeout;
struct sctp_transport *t;
sctp_sackhdr_t sackh;
if(SCTP_EVENT_T_TIMEOUT != event_type) /* Check whether a task is in the sock. */
chunk = (sctp_chunk_t *) event_arg;
/* Note: This whole file is a huge candidate for rework. sctp_bh_lock_sock(asoc->base.sk);
* For example, each command could either have its own handler, so if (sock_owned_by_user(asoc->base.sk)) {
* the loop would look like: SCTP_DEBUG_PRINTK("%s:Sock is busy.\n", __FUNCTION__);
* while (cmds)
* cmd->handle(x, y, z)
* --jgrimm
*/
while (NULL != (cmd = sctp_next_cmd(commands))) {
switch (cmd->verb) {
case SCTP_CMD_NOP:
/* Do nothing. */
break;
case SCTP_CMD_NEW_ASOC: /* Try again later. */
/* Register a new association. */ if (!mod_timer(&transport->T3_rtx_timer, jiffies + (HZ/20)))
asoc = cmd->obj.ptr; sctp_transport_hold(transport);
/* Register with the endpoint. */ goto out_unlock;
sctp_endpoint_add_asoc(ep, asoc); }
sctp_hash_established(asoc);
break;
case SCTP_CMD_UPDATE_ASSOC: /* Is this transport really dead and just waiting around for
sctp_assoc_update(asoc, cmd->obj.ptr); * the timer to let go of the reference?
break; */
if (transport->dead)
goto out_unlock;
case SCTP_CMD_PURGE_OUTQUEUE: /* Run through the state machine. */
sctp_outq_teardown(&asoc->outqueue); error = sctp_do_sm(SCTP_EVENT_T_TIMEOUT,
break; SCTP_ST_TIMEOUT(SCTP_EVENT_TIMEOUT_T3_RTX),
asoc->state,
asoc->ep, asoc,
transport, GFP_ATOMIC);
case SCTP_CMD_DELETE_TCB: if (error)
/* Delete the current association. */ asoc->base.sk->err = -error;
sctp_unhash_established(asoc);
sctp_association_free(asoc);
asoc = NULL;
break;
case SCTP_CMD_NEW_STATE: out_unlock:
/* Enter a new state. */ sctp_bh_unlock_sock(asoc->base.sk);
sctp_cmd_new_state(commands, asoc, cmd->obj.state); sctp_transport_put(transport);
break; }
case SCTP_CMD_REPORT_TSN: /* This is a sa interface for producing timeout events. It works
/* Record the arrival of a TSN. */ * for timeouts which use the association as their parameter.
sctp_tsnmap_mark(&asoc->peer.tsn_map, cmd->obj.u32); */
break; static void sctp_generate_timeout_event(sctp_association_t *asoc,
sctp_event_timeout_t timeout_type)
{
int error = 0;
case SCTP_CMD_GEN_SACK: sctp_bh_lock_sock(asoc->base.sk);
/* Generate a Selective ACK. if (sock_owned_by_user(asoc->base.sk)) {
* The argument tells us whether to just count SCTP_DEBUG_PRINTK("%s:Sock is busy: timer %d\n",
* the packet and MAYBE generate a SACK, or __FUNCTION__,
* force a SACK out. timeout_type);
*/
force = cmd->obj.i32;
error = sctp_gen_sack(asoc, force, commands);
break;
case SCTP_CMD_PROCESS_SACK: /* Try again later. */
/* Process an inbound SACK. */ if (!mod_timer(&asoc->timers[timeout_type], jiffies + (HZ/20)))
error = sctp_cmd_process_sack(commands, asoc, sctp_association_hold(asoc);
cmd->obj.ptr); goto out_unlock;
break; }
case SCTP_CMD_GEN_INIT_ACK: /* Is this association really dead and just waiting around for
/* Generate an INIT ACK chunk. */ * the timer to let go of the reference?
new_obj = sctp_make_init_ack(asoc, chunk, GFP_ATOMIC, */
0); if (asoc->base.dead)
if (!new_obj) goto out_unlock;
goto nomem;
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, /* Run through the state machine. */
SCTP_CHUNK(new_obj)); error = sctp_do_sm(SCTP_EVENT_T_TIMEOUT,
break; SCTP_ST_TIMEOUT(timeout_type),
asoc->state, asoc->ep, asoc,
(void *)timeout_type,
GFP_ATOMIC);
case SCTP_CMD_PEER_INIT: if (error)
/* Process a unified INIT from the peer. asoc->base.sk->err = -error;
* Note: Only used during INIT-ACK processing. If
* there is an error just return to the outter
* layer which will bail.
*/
error = sctp_cmd_process_init(commands, asoc, chunk,
cmd->obj.ptr, priority);
break;
case SCTP_CMD_GEN_COOKIE_ECHO: out_unlock:
/* Generate a COOKIE ECHO chunk. */ sctp_bh_unlock_sock(asoc->base.sk);
new_obj = sctp_make_cookie_echo(asoc, chunk); sctp_association_put(asoc);
if (!new_obj) { }
if (cmd->obj.ptr)
sctp_free_chunk(cmd->obj.ptr);
goto nomem;
}
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY,
SCTP_CHUNK(new_obj));
/* If there is an ERROR chunk to be sent along with void sctp_generate_t1_cookie_event(unsigned long data)
* the COOKIE_ECHO, send it, too. {
*/ sctp_association_t *asoc = (sctp_association_t *) data;
if (cmd->obj.ptr) sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_T1_COOKIE);
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, }
SCTP_CHUNK(cmd->obj.ptr));
break;
case SCTP_CMD_GEN_SHUTDOWN: void sctp_generate_t1_init_event(unsigned long data)
/* Generate SHUTDOWN when in SHUTDOWN_SENT state. {
* Reset error counts. sctp_association_t *asoc = (sctp_association_t *) data;
*/ sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_T1_INIT);
asoc->overall_error_count = 0; }
/* Generate a SHUTDOWN chunk. */ void sctp_generate_t2_shutdown_event(unsigned long data)
new_obj = sctp_make_shutdown(asoc); {
if (!new_obj) sctp_association_t *asoc = (sctp_association_t *) data;
goto nomem; sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_T2_SHUTDOWN);
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, }
SCTP_CHUNK(new_obj));
break;
case SCTP_CMD_CHUNK_ULP: void sctp_generate_t5_shutdown_guard_event(unsigned long data)
/* Send a chunk to the sockets layer. */ {
SCTP_DEBUG_PRINTK("sm_sideff: %s %p, %s %p.\n", sctp_association_t *asoc = (sctp_association_t *)data;
"chunk_up:", cmd->obj.ptr, sctp_generate_timeout_event(asoc,
"ulpq:", &asoc->ulpq); SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD);
sctp_ulpq_tail_data(&asoc->ulpq, cmd->obj.ptr,
GFP_ATOMIC);
break;
case SCTP_CMD_EVENT_ULP: } /* sctp_generate_t5_shutdown_guard_event() */
/* Send a notification to the sockets layer. */
SCTP_DEBUG_PRINTK("sm_sideff: %s %p, %s %p.\n",
"event_up:",cmd->obj.ptr,
"ulpq:",&asoc->ulpq);
sctp_ulpq_tail_event(&asoc->ulpq, cmd->obj.ptr);
break;
case SCTP_CMD_REPLY: void sctp_generate_autoclose_event(unsigned long data)
/* Send a chunk to our peer. */ {
error = sctp_outq_tail(&asoc->outqueue, sctp_association_t *asoc = (sctp_association_t *) data;
cmd->obj.ptr); sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_AUTOCLOSE);
break; }
case SCTP_CMD_SEND_PKT: /* Generate a heart beat event. If the sock is busy, reschedule. Make
/* Send a full packet to our peer. */ * sure that the transport is still valid.
packet = cmd->obj.ptr; */
sctp_packet_transmit(packet); void sctp_generate_heartbeat_event(unsigned long data)
sctp_ootb_pkt_free(packet); {
break; int error = 0;
struct sctp_transport *transport = (struct sctp_transport *) data;
sctp_association_t *asoc = transport->asoc;
case SCTP_CMD_RETRAN: sctp_bh_lock_sock(asoc->base.sk);
/* Mark a transport for retransmission. */ if (sock_owned_by_user(asoc->base.sk)) {
sctp_retransmit(&asoc->outqueue, cmd->obj.transport, SCTP_DEBUG_PRINTK("%s:Sock is busy.\n", __FUNCTION__);
SCTP_RETRANSMIT_T3_RTX);
break;
case SCTP_CMD_TRANSMIT: /* Try again later. */
/* Kick start transmission. */ if (!mod_timer(&transport->hb_timer, jiffies + (HZ/20)))
error = sctp_outq_flush(&asoc->outqueue, 0); sctp_transport_hold(transport);
break; goto out_unlock;
}
case SCTP_CMD_ECN_CE: /* Is this structure just waiting around for us to actually
/* Do delayed CE processing. */ * get destroyed?
sctp_do_ecn_ce_work(asoc, cmd->obj.u32); */
break; if (transport->dead)
goto out_unlock;
case SCTP_CMD_ECN_ECNE: error = sctp_do_sm(SCTP_EVENT_T_TIMEOUT,
/* Do delayed ECNE processing. */ SCTP_ST_TIMEOUT(SCTP_EVENT_TIMEOUT_HEARTBEAT),
new_obj = sctp_do_ecn_ecne_work(asoc, cmd->obj.u32, asoc->state,
chunk); asoc->ep, asoc,
if (new_obj) transport, GFP_ATOMIC);
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY,
SCTP_CHUNK(new_obj));
break;
case SCTP_CMD_ECN_CWR: if (error)
/* Do delayed CWR processing. */ asoc->base.sk->err = -error;
sctp_do_ecn_cwr_work(asoc, cmd->obj.u32);
break;
case SCTP_CMD_SETUP_T2: out_unlock:
sctp_cmd_setup_t2(commands, asoc, cmd->obj.ptr); sctp_bh_unlock_sock(asoc->base.sk);
break; sctp_transport_put(transport);
}
case SCTP_CMD_TIMER_START: /* Inject a SACK Timeout event into the state machine. */
timer = &asoc->timers[cmd->obj.to]; void sctp_generate_sack_event(unsigned long data)
timeout = asoc->timeouts[cmd->obj.to]; {
if (!timeout) sctp_association_t *asoc = (sctp_association_t *) data;
BUG(); sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_SACK);
}
timer->expires = jiffies + timeout; sctp_timer_event_t *sctp_timer_events[SCTP_NUM_TIMEOUT_TYPES] = {
sctp_association_hold(asoc); NULL,
add_timer(timer); sctp_generate_t1_cookie_event,
break; sctp_generate_t1_init_event,
sctp_generate_t2_shutdown_event,
NULL,
sctp_generate_t5_shutdown_guard_event,
sctp_generate_heartbeat_event,
sctp_generate_sack_event,
sctp_generate_autoclose_event,
};
case SCTP_CMD_TIMER_RESTART:
timer = &asoc->timers[cmd->obj.to];
timeout = asoc->timeouts[cmd->obj.to];
if (!mod_timer(timer, jiffies + timeout))
sctp_association_hold(asoc);
break;
case SCTP_CMD_TIMER_STOP: /* RFC 2960 8.2 Path Failure Detection
timer = &asoc->timers[cmd->obj.to]; *
if (timer_pending(timer) && del_timer(timer)) * When its peer endpoint is multi-homed, an endpoint should keep a
sctp_association_put(asoc); * error counter for each of the destination transport addresses of the
break; * peer endpoint.
*
* Each time the T3-rtx timer expires on any address, or when a
* HEARTBEAT sent to an idle address is not acknowledged within a RTO,
* the error counter of that destination address will be incremented.
* When the value in the error counter exceeds the protocol parameter
* 'Path.Max.Retrans' of that destination address, the endpoint should
* mark the destination transport address as inactive, and a
* notification SHOULD be sent to the upper layer.
*
*/
static void sctp_do_8_2_transport_strike(sctp_association_t *asoc,
struct sctp_transport *transport)
{
/* The check for association's overall error counter exceeding the
* threshold is done in the state function.
*/
asoc->overall_error_count++;
case SCTP_CMD_INIT_RESTART: if (transport->active &&
/* Do the needed accounting and updates (transport->error_count++ >= transport->error_threshold)) {
* associated with restarting an initialization SCTP_DEBUG_PRINTK("transport_strike: transport "
* timer. "IP:%d.%d.%d.%d failed.\n",
*/ NIPQUAD(transport->ipaddr.v4.sin_addr));
asoc->counters[SCTP_COUNTER_INIT_ERROR]++; sctp_assoc_control_transport(asoc, transport,
asoc->timeouts[cmd->obj.to] *= 2; SCTP_TRANSPORT_DOWN,
if (asoc->timeouts[cmd->obj.to] > SCTP_FAILED_THRESHOLD);
asoc->max_init_timeo) { }
asoc->timeouts[cmd->obj.to] =
asoc->max_init_timeo;
}
/* If we've sent any data bundled with /* E2) For the destination address for which the timer
* COOKIE-ECHO we need to resend. * expires, set RTO <- RTO * 2 ("back off the timer"). The
*/ * maximum value discussed in rule C7 above (RTO.max) may be
list_for_each(pos, &asoc->peer.transport_addr_list) { * used to provide an upper bound to this doubling operation.
t = list_entry(pos, struct sctp_transport, */
transports); transport->rto = min((transport->rto * 2), transport->asoc->rto_max);
sctp_retransmit_mark(&asoc->outqueue, t, 0); }
}
sctp_add_cmd_sf(commands, /* Worker routine to handle INIT command failure. */
SCTP_CMD_TIMER_RESTART, static void sctp_cmd_init_failed(sctp_cmd_seq_t *commands,
SCTP_TO(cmd->obj.to)); sctp_association_t *asoc)
break; {
struct sctp_ulpevent *event;
case SCTP_CMD_INIT_FAILED: event = sctp_ulpevent_make_assoc_change(asoc,0, SCTP_CANT_STR_ASSOC,
sctp_cmd_init_failed(commands, asoc); 0, 0, 0, GFP_ATOMIC);
break;
case SCTP_CMD_ASSOC_FAILED: if (event)
sctp_cmd_assoc_failed(commands, asoc, event_type, sctp_add_cmd_sf(commands, SCTP_CMD_EVENT_ULP,
subtype, chunk); SCTP_ULPEVENT(event));
break;
case SCTP_CMD_COUNTER_INC: /* FIXME: We need to handle data possibly either
asoc->counters[cmd->obj.counter]++; * sent via COOKIE-ECHO bundling or just waiting in
break; * the transmit queue, if the user has enabled
* SEND_FAILED notifications.
*/
sctp_add_cmd_sf(commands, SCTP_CMD_DELETE_TCB, SCTP_NULL());
}
case SCTP_CMD_COUNTER_RESET: /* Worker routine to handle SCTP_CMD_ASSOC_FAILED. */
asoc->counters[cmd->obj.counter] = 0; static void sctp_cmd_assoc_failed(sctp_cmd_seq_t *commands,
break; sctp_association_t *asoc,
sctp_event_t event_type,
sctp_subtype_t subtype,
sctp_chunk_t *chunk)
{
struct sctp_ulpevent *event;
__u16 error = 0;
case SCTP_CMD_REPORT_DUP: switch(event_type) {
sctp_tsnmap_mark_dup(&asoc->peer.tsn_map, case SCTP_EVENT_T_PRIMITIVE:
cmd->obj.u32); if (SCTP_PRIMITIVE_ABORT == subtype.primitive)
break; error = SCTP_ERROR_USER_ABORT;
break;
case SCTP_EVENT_T_CHUNK:
if (chunk && (SCTP_CID_ABORT == chunk->chunk_hdr->type) &&
(ntohs(chunk->chunk_hdr->length) >=
(sizeof(struct sctp_chunkhdr) +
sizeof(struct sctp_errhdr)))) {
error = ((sctp_errhdr_t *)chunk->skb->data)->cause;
}
break;
default:
break;
}
case SCTP_CMD_REPORT_BAD_TAG: /* Cancel any partial delivery in progress. */
SCTP_DEBUG_PRINTK("vtag mismatch!\n"); sctp_ulpq_abort_pd(&asoc->ulpq, GFP_ATOMIC);
break;
case SCTP_CMD_STRIKE: event = sctp_ulpevent_make_assoc_change(asoc, 0, SCTP_COMM_LOST,
/* Mark one strike against a transport. */ error, 0, 0, GFP_ATOMIC);
sctp_do_8_2_transport_strike(asoc, cmd->obj.transport); if (event)
break; sctp_add_cmd_sf(commands, SCTP_CMD_EVENT_ULP,
SCTP_ULPEVENT(event));
case SCTP_CMD_TRANSPORT_RESET: sctp_add_cmd_sf(commands, SCTP_CMD_NEW_STATE,
t = cmd->obj.transport; SCTP_STATE(SCTP_STATE_CLOSED));
sctp_cmd_transport_reset(commands, asoc, t);
break;
case SCTP_CMD_TRANSPORT_ON: /* FIXME: We need to handle data that could not be sent or was not
t = cmd->obj.transport; * acked, if the user has enabled SEND_FAILED notifications.
sctp_cmd_transport_on(commands, asoc, t, chunk); */
break; sctp_add_cmd_sf(commands, SCTP_CMD_DELETE_TCB, SCTP_NULL());
}
case SCTP_CMD_HB_TIMERS_START: /* Process an init chunk (may be real INIT/INIT-ACK or an embedded INIT
sctp_cmd_hb_timers_start(commands, asoc); * inside the cookie. In reality, this is only used for INIT-ACK processing
break; * since all other cases use "temporary" associations and can do all
* their work in statefuns directly.
*/
static int sctp_cmd_process_init(sctp_cmd_seq_t *commands,
sctp_association_t *asoc,
sctp_chunk_t *chunk,
sctp_init_chunk_t *peer_init,
int priority)
{
int error;
case SCTP_CMD_HB_TIMER_UPDATE: /* We only process the init as a sideeffect in a single
t = cmd->obj.transport; * case. This is when we process the INIT-ACK. If we
sctp_cmd_hb_timer_update(commands, asoc, t); * fail during INIT processing (due to malloc problems),
break; * just return the error and stop processing the stack.
*/
case SCTP_CMD_HB_TIMERS_STOP: if (!sctp_process_init(asoc, chunk->chunk_hdr->type,
sctp_cmd_hb_timers_stop(commands, asoc); sctp_source(chunk), peer_init,
break; priority))
error = -ENOMEM;
else
error = 0;
case SCTP_CMD_REPORT_ERROR: return error;
error = cmd->obj.error; }
break;
case SCTP_CMD_PROCESS_CTSN: /* Helper function to break out starting up of heartbeat timers. */
/* Dummy up a SACK for processing. */ static void sctp_cmd_hb_timers_start(sctp_cmd_seq_t *cmds,
sackh.cum_tsn_ack = cmd->obj.u32; sctp_association_t *asoc)
sackh.a_rwnd = 0; {
sackh.num_gap_ack_blocks = 0; struct sctp_transport *t;
sackh.num_dup_tsns = 0; struct list_head *pos;
sctp_add_cmd_sf(commands, SCTP_CMD_PROCESS_SACK,
SCTP_SACKH(&sackh));
break;
case SCTP_CMD_DISCARD_PACKET: /* Start a heartbeat timer for each transport on the association.
/* We need to discard the whole packet. */ * hold a reference on the transport to make sure none of
chunk->pdiscard = 1; * the needed data structures go away.
break; */
list_for_each(pos, &asoc->peer.transport_addr_list) {
t = list_entry(pos, struct sctp_transport, transports);
case SCTP_CMD_RTO_PENDING: if (!mod_timer(&t->hb_timer, sctp_transport_timeout(t)))
t = cmd->obj.transport; sctp_transport_hold(t);
t->rto_pending = 1; }
break; }
case SCTP_CMD_PART_DELIVER: static void sctp_cmd_hb_timers_stop(sctp_cmd_seq_t *cmds,
sctp_ulpq_partial_delivery(&asoc->ulpq, cmd->obj.ptr, sctp_association_t *asoc)
GFP_ATOMIC); {
break; struct sctp_transport *t;
struct list_head *pos;
case SCTP_CMD_RENEGE: /* Stop all heartbeat timers. */
sctp_ulpq_renege(&asoc->ulpq, cmd->obj.ptr,
GFP_ATOMIC);
break;
default: list_for_each(pos, &asoc->peer.transport_addr_list) {
printk(KERN_WARNING "Impossible command: %u, %p\n", t = list_entry(pos, struct sctp_transport, transports);
cmd->verb, cmd->obj.ptr); if (del_timer(&t->hb_timer))
break; sctp_transport_put(t);
};
if (error)
return error;
} }
return error;
nomem:
error = -ENOMEM;
return error;
} }
/* A helper function for delayed processing of INET ECN CE bit. */ /* Helper function to update the heartbeat timer. */
static void sctp_do_ecn_ce_work(sctp_association_t *asoc, __u32 lowest_tsn) static void sctp_cmd_hb_timer_update(sctp_cmd_seq_t *cmds,
sctp_association_t *asoc,
struct sctp_transport *t)
{ {
/* Save the TSN away for comparison when we receive CWR */ /* Update the heartbeat timer. */
if (!mod_timer(&t->hb_timer, sctp_transport_timeout(t)))
asoc->last_ecne_tsn = lowest_tsn; sctp_transport_hold(t);
asoc->need_ecne = 1;
} }
/* Helper function for delayed processing of SCTP ECNE chunk. */ /* Helper function to handle the reception of an HEARTBEAT ACK. */
/* RFC 2960 Appendix A static void sctp_cmd_transport_on(sctp_cmd_seq_t *cmds,
* sctp_association_t *asoc,
* RFC 2481 details a specific bit for a sender to send in struct sctp_transport *t,
* the header of its next outbound TCP segment to indicate to sctp_chunk_t *chunk)
* its peer that it has reduced its congestion window. This
* is termed the CWR bit. For SCTP the same indication is made
* by including the CWR chunk. This chunk contains one data
* element, i.e. the TSN number that was sent in the ECNE chunk.
* This element represents the lowest TSN number in the datagram
* that was originally marked with the CE bit.
*/
static sctp_chunk_t *sctp_do_ecn_ecne_work(sctp_association_t *asoc,
__u32 lowest_tsn,
sctp_chunk_t *chunk)
{ {
sctp_chunk_t *repl; sctp_sender_hb_info_t *hbinfo;
/* Our previously transmitted packet ran into some congestion
* so we should take action by reducing cwnd and ssthresh
* and then ACK our peer that we we've done so by
* sending a CWR.
*/
/* First, try to determine if we want to actually lower /* 8.3 Upon the receipt of the HEARTBEAT ACK, the sender of the
* our cwnd variables. Only lower them if the ECNE looks more * HEARTBEAT should clear the error counter of the destination
* recent than the last response. * transport address to which the HEARTBEAT was sent.
* The association's overall error count is also cleared.
*/ */
if (TSN_lt(asoc->last_cwr_tsn, lowest_tsn)) { t->error_count = 0;
struct sctp_transport *transport; t->asoc->overall_error_count = 0;
/* Find which transport's congestion variables
* need to be adjusted.
*/
transport = sctp_assoc_lookup_tsn(asoc, lowest_tsn);
/* Update the congestion variables. */
if (transport)
sctp_transport_lower_cwnd(transport,
SCTP_LOWER_CWND_ECNE);
asoc->last_cwr_tsn = lowest_tsn;
}
/* Always try to quiet the other end. In case of lost CWR, /* Mark the destination transport address as active if it is not so
* resend last_cwr_tsn. * marked.
*/ */
repl = sctp_make_cwr(asoc, asoc->last_cwr_tsn, chunk); if (!t->active)
sctp_assoc_control_transport(asoc, t, SCTP_TRANSPORT_UP,
SCTP_HEARTBEAT_SUCCESS);
/* If we run out of memory, it will look like a lost CWR. We'll /* The receiver of the HEARTBEAT ACK should also perform an
* get back in sync eventually. * RTT measurement for that destination transport address
* using the time value carried in the HEARTBEAT ACK chunk.
*/ */
return repl; hbinfo = (sctp_sender_hb_info_t *) chunk->skb->data;
sctp_transport_update_rto(t, (jiffies - hbinfo->sent_at));
} }
/* Helper function to do delayed processing of ECN CWR chunk. */ /* Helper function to do a transport reset at the expiry of the hearbeat
static void sctp_do_ecn_cwr_work(sctp_association_t *asoc, * timer.
__u32 lowest_tsn) */
static void sctp_cmd_transport_reset(sctp_cmd_seq_t *cmds,
sctp_association_t *asoc,
struct sctp_transport *t)
{ {
/* Turn off ECNE getting auto-prepended to every outgoing sctp_transport_lower_cwnd(t, SCTP_LOWER_CWND_INACTIVE);
* packet
*/
asoc->need_ecne = 0;
}
/* This macro is to compress the text a bit... */ /* Mark one strike against a transport. */
#define AP(v) asoc->peer.v sctp_do_8_2_transport_strike(asoc, t);
}
/* Generate SACK if necessary. We call this at the end of a packet. */ /* Helper function to process the process SACK command. */
int sctp_gen_sack(sctp_association_t *asoc, int force, sctp_cmd_seq_t *commands) static int sctp_cmd_process_sack(sctp_cmd_seq_t *cmds,
sctp_association_t *asoc,
sctp_sackhdr_t *sackh)
{ {
__u32 ctsn, max_tsn_seen; int err;
sctp_chunk_t *sack;
int error = 0;
if (force)
asoc->peer.sack_needed = 1;
ctsn = sctp_tsnmap_get_ctsn(&asoc->peer.tsn_map);
max_tsn_seen = sctp_tsnmap_get_max_tsn_seen(&asoc->peer.tsn_map);
/* From 12.2 Parameters necessary per association (i.e. the TCB):
*
* Ack State : This flag indicates if the next received packet
* : is to be responded to with a SACK. ...
* : When DATA chunks are out of order, SACK's
* : are not delayed (see Section 6).
*
* [This is actually not mentioned in Section 6, but we
* implement it here anyway. --piggy]
*/
if (max_tsn_seen != ctsn)
asoc->peer.sack_needed = 1;
/* From 6.2 Acknowledgement on Reception of DATA Chunks: if (sctp_outq_sack(&asoc->outqueue, sackh)) {
* /* There are no more TSNs awaiting SACK. */
* Section 4.2 of [RFC2581] SHOULD be followed. Specifically, err = sctp_do_sm(SCTP_EVENT_T_OTHER,
* an acknowledgement SHOULD be generated for at least every SCTP_ST_OTHER(SCTP_EVENT_NO_PENDING_TSN),
* second packet (not every second DATA chunk) received, and asoc->state, asoc->ep, asoc, NULL,
* SHOULD be generated within 200 ms of the arrival of any GFP_ATOMIC);
* unacknowledged DATA chunk. ...
*/
if (!asoc->peer.sack_needed) {
/* We will need a SACK for the next packet. */
asoc->peer.sack_needed = 1;
goto out;
} else { } else {
if (asoc->a_rwnd > asoc->rwnd) /* Windows may have opened, so we need
asoc->a_rwnd = asoc->rwnd; * to check if we have DATA to transmit
sack = sctp_make_sack(asoc); */
if (!sack) err = sctp_outq_flush(&asoc->outqueue, 0);
goto nomem;
asoc->peer.sack_needed = 0;
error = sctp_outq_tail(&asoc->outqueue, sack);
/* Stop the SACK timer. */
sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_STOP,
SCTP_TO(SCTP_EVENT_TIMEOUT_SACK));
} }
out: return err;
return error;
nomem:
error = -ENOMEM;
return error;
} }
/* Handle a duplicate TSN. */ /* Helper function to set the timeout value for T2-SHUTDOWN timer and to set
void sctp_do_TSNdup(sctp_association_t *asoc, sctp_chunk_t *chunk, long gap) * the transport for a shutdown chunk.
*/
static void sctp_cmd_setup_t2(sctp_cmd_seq_t *cmds, sctp_association_t *asoc,
sctp_chunk_t *chunk)
{ {
#if 0 struct sctp_transport *t;
sctp_chunk_t *sack;
/* Caution: gap < 2 * SCTP_TSN_MAP_SIZE t = sctp_assoc_choose_shutdown_transport(asoc);
* so gap can be negative. asoc->shutdown_last_sent_to = t;
* asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = t->rto;
* --xguo chunk->transport = t;
*/ }
/* Count this TSN. */ /* Helper function to change the state of an association. */
if (gap < SCTP_TSN_MAP_SIZE) { static void sctp_cmd_new_state(sctp_cmd_seq_t *cmds, sctp_association_t *asoc,
asoc->peer.tsn_map[gap]++; sctp_state_t state)
} else { {
asoc->peer.tsn_map_overflow[gap - SCTP_TSN_MAP_SIZE]++;
}
/* From 6.2 Acknowledgement on Reception of DATA Chunks struct sock *sk = asoc->base.sk;
* struct sctp_opt *sp = sctp_sk(sk);
* When a packet arrives with duplicate DATA chunk(s)
* and with no new DATA chunk(s), the endpoint MUST
* immediately send a SACK with no delay. If a packet
* arrives with duplicate DATA chunk(s) bundled with
* new DATA chunks, the endpoint MAY immediately send a
* SACK. Normally receipt of duplicate DATA chunks
* will occur when the original SACK chunk was lost and
* the peer's RTO has expired. The duplicate TSN
* number(s) SHOULD be reported in the SACK as
* duplicate.
*/
asoc->counters[SctpCounterAckState] = 2;
#endif /* 0 */
} /* sctp_do_TSNdup() */
#undef AP asoc->state = state;
asoc->state_timestamp = jiffies;
/* When the T3-RTX timer expires, it calls this function to create the if ((SCTP_STATE_ESTABLISHED == asoc->state) ||
* relevant state machine event. (SCTP_STATE_CLOSED == asoc->state)) {
*/ /* Wake up any processes waiting in the asoc's wait queue in
void sctp_generate_t3_rtx_event(unsigned long peer) * sctp_wait_for_connect() or sctp_wait_for_sndbuf().
{ */
int error; if (waitqueue_active(&asoc->wait))
struct sctp_transport *transport = (struct sctp_transport *) peer; wake_up_interruptible(&asoc->wait);
sctp_association_t *asoc = transport->asoc;
/* Check whether a task is in the sock. */
sctp_bh_lock_sock(asoc->base.sk);
if (sock_owned_by_user(asoc->base.sk)) {
SCTP_DEBUG_PRINTK("%s:Sock is busy.\n", __FUNCTION__);
/* Try again later. */ /* Wake up any processes waiting in the sk's sleep queue of
if (!mod_timer(&transport->T3_rtx_timer, jiffies + (HZ/20))) * a TCP-style or UDP-style peeled-off socket in
sctp_transport_hold(transport); * sctp_wait_for_accept() or sctp_wait_for_packet().
goto out_unlock; * For a UDP-style socket, the waiters are woken up by the
* notifications.
*/
if (SCTP_SOCKET_UDP != sp->type)
sk->state_change(sk);
} }
/* Is this transport really dead and just waiting around for /* Change the sk->state of a TCP-style socket that has sucessfully
* the timer to let go of the reference? * completed a connect() call.
*/ */
if (transport->dead) if ((SCTP_STATE_ESTABLISHED == asoc->state) &&
goto out_unlock; (SCTP_SOCKET_TCP == sp->type) && (SCTP_SS_CLOSED == sk->state))
sk->state = SCTP_SS_ESTABLISHED;
}
/* Run through the state machine. */ /* These three macros allow us to pull the debugging code out of the
error = sctp_do_sm(SCTP_EVENT_T_TIMEOUT, * main flow of sctp_do_sm() to keep attention focused on the real
SCTP_ST_TIMEOUT(SCTP_EVENT_TIMEOUT_T3_RTX), * functionality there.
asoc->state, */
asoc->ep, asoc, #define DEBUG_PRE \
transport, GFP_ATOMIC); SCTP_DEBUG_PRINTK("sctp_do_sm prefn: " \
"ep %p, %s, %s, asoc %p[%s], %s\n", \
ep, sctp_evttype_tbl[event_type], \
(*debug_fn)(subtype), asoc, \
sctp_state_tbl[state], state_fn->name)
if (error) #define DEBUG_POST \
asoc->base.sk->err = -error; SCTP_DEBUG_PRINTK("sctp_do_sm postfn: " \
"asoc %p, status: %s\n", \
asoc, sctp_status_tbl[status])
out_unlock: #define DEBUG_POST_SFX \
sctp_bh_unlock_sock(asoc->base.sk); SCTP_DEBUG_PRINTK("sctp_do_sm post sfx: error %d, asoc %p[%s]\n", \
sctp_transport_put(transport); error, asoc, \
} sctp_state_tbl[(asoc && sctp_id2assoc(ep->base.sk, \
sctp_assoc2id(asoc)))?asoc->state:SCTP_STATE_CLOSED])
/* This is a sa interface for producing timeout events. It works /*
* for timeouts which use the association as their parameter. * This is the master state machine processing function.
*
* If you want to understand all of lksctp, this is a
* good place to start.
*/ */
static void sctp_generate_timeout_event(sctp_association_t *asoc, int sctp_do_sm(sctp_event_t event_type, sctp_subtype_t subtype,
sctp_event_timeout_t timeout_type) sctp_state_t state,
sctp_endpoint_t *ep,
sctp_association_t *asoc,
void *event_arg,
int priority)
{ {
sctp_cmd_seq_t commands;
sctp_sm_table_entry_t *state_fn;
sctp_disposition_t status;
int error = 0; int error = 0;
typedef const char *(printfn_t)(sctp_subtype_t);
sctp_bh_lock_sock(asoc->base.sk); static printfn_t *table[] = {
if (sock_owned_by_user(asoc->base.sk)) { NULL, sctp_cname, sctp_tname, sctp_oname, sctp_pname,
SCTP_DEBUG_PRINTK("%s:Sock is busy: timer %d\n", };
__FUNCTION__, printfn_t *debug_fn __attribute__ ((unused)) = table[event_type];
timeout_type);
/* Try again later. */
if (!mod_timer(&asoc->timers[timeout_type], jiffies + (HZ/20)))
sctp_association_hold(asoc);
goto out_unlock;
}
/* Is this association really dead and just waiting around for /* Look up the state function, run it, and then process the
* the timer to let go of the reference? * side effects. These three steps are the heart of lksctp.
*/ */
if (asoc->base.dead) state_fn = sctp_sm_lookup_event(event_type, state, subtype);
goto out_unlock;
/* Run through the state machine. */ sctp_init_cmd_seq(&commands);
error = sctp_do_sm(SCTP_EVENT_T_TIMEOUT,
SCTP_ST_TIMEOUT(timeout_type),
asoc->state, asoc->ep, asoc,
(void *)timeout_type,
GFP_ATOMIC);
if (error) DEBUG_PRE;
asoc->base.sk->err = -error; status = (*state_fn->fn)(ep, asoc, subtype, event_arg, &commands);
DEBUG_POST;
out_unlock: error = sctp_side_effects(event_type, subtype, state,
sctp_bh_unlock_sock(asoc->base.sk); ep, asoc, event_arg,
sctp_association_put(asoc); status, &commands,
} priority);
DEBUG_POST_SFX;
void sctp_generate_t1_cookie_event(unsigned long data) return error;
{
sctp_association_t *asoc = (sctp_association_t *) data;
sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_T1_COOKIE);
} }
void sctp_generate_t1_init_event(unsigned long data) #undef DEBUG_PRE
{ #undef DEBUG_POST
sctp_association_t *asoc = (sctp_association_t *) data;
sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_T1_INIT);
}
void sctp_generate_t2_shutdown_event(unsigned long data) /*****************************************************************
* This the master state function side effect processing function.
*****************************************************************/
int sctp_side_effects(sctp_event_t event_type, sctp_subtype_t subtype,
sctp_state_t state,
sctp_endpoint_t *ep,
sctp_association_t *asoc,
void *event_arg,
sctp_disposition_t status,
sctp_cmd_seq_t *commands,
int priority)
{ {
sctp_association_t *asoc = (sctp_association_t *) data; int error;
sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_T2_SHUTDOWN);
}
void sctp_generate_t5_shutdown_guard_event(unsigned long data) /* FIXME - Most of the dispositions left today would be categorized
{ * as "exceptional" dispositions. For those dispositions, it
sctp_association_t *asoc = (sctp_association_t *)data; * may not be proper to run through any of the commands at all.
sctp_generate_timeout_event(asoc, * For example, the command interpreter might be run only with
SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD); * disposition SCTP_DISPOSITION_CONSUME.
*/
if (0 != (error = sctp_cmd_interpreter(event_type, subtype, state,
ep, asoc,
event_arg, status,
commands, priority)))
goto bail;
} /* sctp_generate_t5_shutdown_guard_event() */ switch (status) {
case SCTP_DISPOSITION_DISCARD:
SCTP_DEBUG_PRINTK("Ignored sctp protocol event - state %d, "
"event_type %d, event_id %d\n",
state, event_type, subtype.chunk);
break;
void sctp_generate_autoclose_event(unsigned long data) case SCTP_DISPOSITION_NOMEM:
{ /* We ran out of memory, so we need to discard this
sctp_association_t *asoc = (sctp_association_t *) data; * packet.
sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_AUTOCLOSE); */
} /* BUG--we should now recover some memory, probably by
* reneging...
*/
error = -ENOMEM;
break;
/* Generate a heart beat event. If the sock is busy, reschedule. Make case SCTP_DISPOSITION_DELETE_TCB:
* sure that the transport is still valid. /* This should now be a command. */
*/ break;
void sctp_generate_heartbeat_event(unsigned long data)
{
int error = 0;
struct sctp_transport *transport = (struct sctp_transport *) data;
sctp_association_t *asoc = transport->asoc;
sctp_bh_lock_sock(asoc->base.sk); case SCTP_DISPOSITION_CONSUME:
if (sock_owned_by_user(asoc->base.sk)) { case SCTP_DISPOSITION_ABORT:
SCTP_DEBUG_PRINTK("%s:Sock is busy.\n", __FUNCTION__); /*
* We should no longer have much work to do here as the
* real work has been done as explicit commands above.
*/
break;
/* Try again later. */ case SCTP_DISPOSITION_VIOLATION:
if (!mod_timer(&transport->hb_timer, jiffies + (HZ/20))) printk(KERN_ERR "sctp protocol violation state %d "
sctp_transport_hold(transport); "chunkid %d\n", state, subtype.chunk);
goto out_unlock; break;
}
/* Is this structure just waiting around for us to actually case SCTP_DISPOSITION_NOT_IMPL:
* get destroyed? printk(KERN_WARNING "sctp unimplemented feature in state %d, "
*/ "event_type %d, event_id %d\n",
if (transport->dead) state, event_type, subtype.chunk);
goto out_unlock; break;
error = sctp_do_sm(SCTP_EVENT_T_TIMEOUT, case SCTP_DISPOSITION_BUG:
SCTP_ST_TIMEOUT(SCTP_EVENT_TIMEOUT_HEARTBEAT), printk(KERN_ERR "sctp bug in state %d, "
asoc->state, "event_type %d, event_id %d\n",
asoc->ep, asoc, state, event_type, subtype.chunk);
transport, GFP_ATOMIC); BUG();
break;
if (error) default:
asoc->base.sk->err = -error; printk(KERN_ERR "sctp impossible disposition %d "
"in state %d, event_type %d, event_id %d\n",
status, state, event_type, subtype.chunk);
BUG();
break;
};
out_unlock: bail:
sctp_bh_unlock_sock(asoc->base.sk); return error;
sctp_transport_put(transport);
}
/* Inject a SACK Timeout event into the state machine. */
void sctp_generate_sack_event(unsigned long data)
{
sctp_association_t *asoc = (sctp_association_t *) data;
sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_SACK);
} }
sctp_timer_event_t *sctp_timer_events[SCTP_NUM_TIMEOUT_TYPES] = {
NULL,
sctp_generate_t1_cookie_event,
sctp_generate_t1_init_event,
sctp_generate_t2_shutdown_event,
NULL,
sctp_generate_t5_shutdown_guard_event,
sctp_generate_heartbeat_event,
sctp_generate_sack_event,
sctp_generate_autoclose_event,
};
/******************************************************************** /********************************************************************
* 3rd Level Abstractions * 2nd Level Abstractions
********************************************************************/ ********************************************************************/
/* RFC 2960 8.2 Path Failure Detection /* This is the side-effect interpreter. */
* int sctp_cmd_interpreter(sctp_event_t event_type, sctp_subtype_t subtype,
* When its peer endpoint is multi-homed, an endpoint should keep a sctp_state_t state, sctp_endpoint_t *ep,
* error counter for each of the destination transport addresses of the sctp_association_t *asoc, void *event_arg,
* peer endpoint. sctp_disposition_t status, sctp_cmd_seq_t *commands,
* int priority)
* Each time the T3-rtx timer expires on any address, or when a
* HEARTBEAT sent to an idle address is not acknowledged within a RTO,
* the error counter of that destination address will be incremented.
* When the value in the error counter exceeds the protocol parameter
* 'Path.Max.Retrans' of that destination address, the endpoint should
* mark the destination transport address as inactive, and a
* notification SHOULD be sent to the upper layer.
*
*/
static void sctp_do_8_2_transport_strike(sctp_association_t *asoc,
struct sctp_transport *transport)
{ {
/* The check for association's overall error counter exceeding the int error = 0;
* threshold is done in the state function. int force;
*/ sctp_cmd_t *cmd;
asoc->overall_error_count++; sctp_chunk_t *new_obj;
sctp_chunk_t *chunk = NULL;
struct sctp_packet *packet;
struct list_head *pos;
struct timer_list *timer;
unsigned long timeout;
struct sctp_transport *t;
sctp_sackhdr_t sackh;
if (transport->active && if(SCTP_EVENT_T_TIMEOUT != event_type)
(transport->error_count++ >= transport->error_threshold)) { chunk = (sctp_chunk_t *) event_arg;
SCTP_DEBUG_PRINTK("transport_strike: transport "
"IP:%d.%d.%d.%d failed.\n",
NIPQUAD(transport->ipaddr.v4.sin_addr));
sctp_assoc_control_transport(asoc, transport,
SCTP_TRANSPORT_DOWN,
SCTP_FAILED_THRESHOLD);
}
/* E2) For the destination address for which the timer /* Note: This whole file is a huge candidate for rework.
* expires, set RTO <- RTO * 2 ("back off the timer"). The * For example, each command could either have its own handler, so
* maximum value discussed in rule C7 above (RTO.max) may be * the loop would look like:
* used to provide an upper bound to this doubling operation. * while (cmds)
* cmd->handle(x, y, z)
* --jgrimm
*/ */
transport->rto = min((transport->rto * 2), transport->asoc->rto_max); while (NULL != (cmd = sctp_next_cmd(commands))) {
} switch (cmd->verb) {
case SCTP_CMD_NOP:
/* Do nothing. */
break;
/* Worker routine to handle INIT command failure. */ case SCTP_CMD_NEW_ASOC:
static void sctp_cmd_init_failed(sctp_cmd_seq_t *commands, /* Register a new association. */
sctp_association_t *asoc) asoc = cmd->obj.ptr;
{ /* Register with the endpoint. */
struct sctp_ulpevent *event; sctp_endpoint_add_asoc(ep, asoc);
sctp_hash_established(asoc);
break;
event = sctp_ulpevent_make_assoc_change(asoc, case SCTP_CMD_UPDATE_ASSOC:
0, sctp_assoc_update(asoc, cmd->obj.ptr);
SCTP_CANT_STR_ASSOC, break;
0, 0, 0,
GFP_ATOMIC);
if (event) case SCTP_CMD_PURGE_OUTQUEUE:
sctp_add_cmd_sf(commands, SCTP_CMD_EVENT_ULP, sctp_outq_teardown(&asoc->outqueue);
SCTP_ULPEVENT(event)); break;
/* FIXME: We need to handle data possibly either case SCTP_CMD_DELETE_TCB:
* sent via COOKIE-ECHO bundling or just waiting in /* Delete the current association. */
* the transmit queue, if the user has enabled sctp_unhash_established(asoc);
* SEND_FAILED notifications. sctp_association_free(asoc);
*/ asoc = NULL;
sctp_add_cmd_sf(commands, SCTP_CMD_DELETE_TCB, SCTP_NULL()); break;
}
/* Worker routine to handle SCTP_CMD_ASSOC_FAILED. */ case SCTP_CMD_NEW_STATE:
static void sctp_cmd_assoc_failed(sctp_cmd_seq_t *commands, /* Enter a new state. */
sctp_association_t *asoc, sctp_cmd_new_state(commands, asoc, cmd->obj.state);
sctp_event_t event_type, break;
sctp_subtype_t subtype,
sctp_chunk_t *chunk)
{
struct sctp_ulpevent *event;
__u16 error = 0;
switch(event_type) { case SCTP_CMD_REPORT_TSN:
case SCTP_EVENT_T_PRIMITIVE: /* Record the arrival of a TSN. */
if (SCTP_PRIMITIVE_ABORT == subtype.primitive) sctp_tsnmap_mark(&asoc->peer.tsn_map, cmd->obj.u32);
error = SCTP_ERROR_USER_ABORT; break;
break;
case SCTP_EVENT_T_CHUNK:
if (chunk && (SCTP_CID_ABORT == chunk->chunk_hdr->type) &&
(ntohs(chunk->chunk_hdr->length) >=
(sizeof(struct sctp_chunkhdr) +
sizeof(struct sctp_errhdr)))) {
error = ((sctp_errhdr_t *)chunk->skb->data)->cause;
}
break;
default:
break;
}
/* Cancel any partial delivery in progress. */ case SCTP_CMD_GEN_SACK:
sctp_ulpq_abort_pd(&asoc->ulpq, GFP_ATOMIC); /* Generate a Selective ACK.
* The argument tells us whether to just count
* the packet and MAYBE generate a SACK, or
* force a SACK out.
*/
force = cmd->obj.i32;
error = sctp_gen_sack(asoc, force, commands);
break;
event = sctp_ulpevent_make_assoc_change(asoc, 0, SCTP_COMM_LOST, case SCTP_CMD_PROCESS_SACK:
error, 0, 0, GFP_ATOMIC); /* Process an inbound SACK. */
if (event) error = sctp_cmd_process_sack(commands, asoc,
sctp_add_cmd_sf(commands, SCTP_CMD_EVENT_ULP, cmd->obj.ptr);
SCTP_ULPEVENT(event)); break;
sctp_add_cmd_sf(commands, SCTP_CMD_NEW_STATE, case SCTP_CMD_GEN_INIT_ACK:
SCTP_STATE(SCTP_STATE_CLOSED)); /* Generate an INIT ACK chunk. */
new_obj = sctp_make_init_ack(asoc, chunk, GFP_ATOMIC,
0);
if (!new_obj)
goto nomem;
/* FIXME: We need to handle data that could not be sent or was not sctp_add_cmd_sf(commands, SCTP_CMD_REPLY,
* acked, if the user has enabled SEND_FAILED notifications. SCTP_CHUNK(new_obj));
*/ break;
sctp_add_cmd_sf(commands, SCTP_CMD_DELETE_TCB, SCTP_NULL());
}
/* Process an init chunk (may be real INIT/INIT-ACK or an embedded INIT case SCTP_CMD_PEER_INIT:
* inside the cookie. In reality, this is only used for INIT-ACK processing /* Process a unified INIT from the peer.
* since all other cases use "temporary" associations and can do all * Note: Only used during INIT-ACK processing. If
* their work in statefuns directly. * there is an error just return to the outter
*/ * layer which will bail.
static int sctp_cmd_process_init(sctp_cmd_seq_t *commands, */
sctp_association_t *asoc, error = sctp_cmd_process_init(commands, asoc, chunk,
sctp_chunk_t *chunk, cmd->obj.ptr, priority);
sctp_init_chunk_t *peer_init, break;
int priority)
{
int error;
/* We only process the init as a sideeffect in a single case SCTP_CMD_GEN_COOKIE_ECHO:
* case. This is when we process the INIT-ACK. If we /* Generate a COOKIE ECHO chunk. */
* fail during INIT processing (due to malloc problems), new_obj = sctp_make_cookie_echo(asoc, chunk);
* just return the error and stop processing the stack. if (!new_obj) {
*/ if (cmd->obj.ptr)
sctp_free_chunk(cmd->obj.ptr);
goto nomem;
}
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY,
SCTP_CHUNK(new_obj));
if (!sctp_process_init(asoc, chunk->chunk_hdr->type, /* If there is an ERROR chunk to be sent along with
sctp_source(chunk), peer_init, * the COOKIE_ECHO, send it, too.
priority)) */
error = -ENOMEM; if (cmd->obj.ptr)
else sctp_add_cmd_sf(commands, SCTP_CMD_REPLY,
error = 0; SCTP_CHUNK(cmd->obj.ptr));
break;
case SCTP_CMD_GEN_SHUTDOWN:
/* Generate SHUTDOWN when in SHUTDOWN_SENT state.
* Reset error counts.
*/
asoc->overall_error_count = 0;
/* Generate a SHUTDOWN chunk. */
new_obj = sctp_make_shutdown(asoc);
if (!new_obj)
goto nomem;
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY,
SCTP_CHUNK(new_obj));
break;
case SCTP_CMD_CHUNK_ULP:
/* Send a chunk to the sockets layer. */
SCTP_DEBUG_PRINTK("sm_sideff: %s %p, %s %p.\n",
"chunk_up:", cmd->obj.ptr,
"ulpq:", &asoc->ulpq);
sctp_ulpq_tail_data(&asoc->ulpq, cmd->obj.ptr,
GFP_ATOMIC);
break;
case SCTP_CMD_EVENT_ULP:
/* Send a notification to the sockets layer. */
SCTP_DEBUG_PRINTK("sm_sideff: %s %p, %s %p.\n",
"event_up:",cmd->obj.ptr,
"ulpq:",&asoc->ulpq);
sctp_ulpq_tail_event(&asoc->ulpq, cmd->obj.ptr);
break;
case SCTP_CMD_REPLY:
/* Send a chunk to our peer. */
error = sctp_outq_tail(&asoc->outqueue,
cmd->obj.ptr);
break;
case SCTP_CMD_SEND_PKT:
/* Send a full packet to our peer. */
packet = cmd->obj.ptr;
sctp_packet_transmit(packet);
sctp_ootb_pkt_free(packet);
break;
case SCTP_CMD_RETRAN:
/* Mark a transport for retransmission. */
sctp_retransmit(&asoc->outqueue, cmd->obj.transport,
SCTP_RTXR_T3_RTX);
break;
case SCTP_CMD_TRANSMIT:
/* Kick start transmission. */
error = sctp_outq_flush(&asoc->outqueue, 0);
break;
case SCTP_CMD_ECN_CE:
/* Do delayed CE processing. */
sctp_do_ecn_ce_work(asoc, cmd->obj.u32);
break;
case SCTP_CMD_ECN_ECNE:
/* Do delayed ECNE processing. */
new_obj = sctp_do_ecn_ecne_work(asoc, cmd->obj.u32,
chunk);
if (new_obj)
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY,
SCTP_CHUNK(new_obj));
break;
case SCTP_CMD_ECN_CWR:
/* Do delayed CWR processing. */
sctp_do_ecn_cwr_work(asoc, cmd->obj.u32);
break;
case SCTP_CMD_SETUP_T2:
sctp_cmd_setup_t2(commands, asoc, cmd->obj.ptr);
break;
case SCTP_CMD_TIMER_START:
timer = &asoc->timers[cmd->obj.to];
timeout = asoc->timeouts[cmd->obj.to];
if (!timeout)
BUG();
timer->expires = jiffies + timeout;
sctp_association_hold(asoc);
add_timer(timer);
break;
return error; case SCTP_CMD_TIMER_RESTART:
} timer = &asoc->timers[cmd->obj.to];
timeout = asoc->timeouts[cmd->obj.to];
if (!mod_timer(timer, jiffies + timeout))
sctp_association_hold(asoc);
break;
/* Helper function to break out starting up of heartbeat timers. */ case SCTP_CMD_TIMER_STOP:
static void sctp_cmd_hb_timers_start(sctp_cmd_seq_t *cmds, timer = &asoc->timers[cmd->obj.to];
sctp_association_t *asoc) if (timer_pending(timer) && del_timer(timer))
{ sctp_association_put(asoc);
struct sctp_transport *t; break;
struct list_head *pos;
/* Start a heartbeat timer for each transport on the association. case SCTP_CMD_INIT_RESTART:
* hold a reference on the transport to make sure none of /* Do the needed accounting and updates
* the needed data structures go away. * associated with restarting an initialization
*/ * timer.
list_for_each(pos, &asoc->peer.transport_addr_list) { */
t = list_entry(pos, struct sctp_transport, transports); asoc->counters[SCTP_COUNTER_INIT_ERROR]++;
asoc->timeouts[cmd->obj.to] *= 2;
if (asoc->timeouts[cmd->obj.to] >
asoc->max_init_timeo) {
asoc->timeouts[cmd->obj.to] =
asoc->max_init_timeo;
}
if (!mod_timer(&t->hb_timer, sctp_transport_timeout(t))) /* If we've sent any data bundled with
sctp_transport_hold(t); * COOKIE-ECHO we need to resend.
} */
} list_for_each(pos, &asoc->peer.transport_addr_list) {
t = list_entry(pos, struct sctp_transport,
transports);
sctp_retransmit_mark(&asoc->outqueue, t, 0);
}
static void sctp_cmd_hb_timers_stop(sctp_cmd_seq_t *cmds, sctp_add_cmd_sf(commands,
sctp_association_t *asoc) SCTP_CMD_TIMER_RESTART,
{ SCTP_TO(cmd->obj.to));
struct sctp_transport *t; break;
struct list_head *pos;
/* Stop all heartbeat timers. */ case SCTP_CMD_INIT_FAILED:
sctp_cmd_init_failed(commands, asoc);
break;
list_for_each(pos, &asoc->peer.transport_addr_list) { case SCTP_CMD_ASSOC_FAILED:
t = list_entry(pos, struct sctp_transport, transports); sctp_cmd_assoc_failed(commands, asoc, event_type,
if (del_timer(&t->hb_timer)) subtype, chunk);
sctp_transport_put(t); break;
}
}
/* Helper function to update the heartbeat timer. */ case SCTP_CMD_COUNTER_INC:
static void sctp_cmd_hb_timer_update(sctp_cmd_seq_t *cmds, asoc->counters[cmd->obj.counter]++;
sctp_association_t *asoc, break;
struct sctp_transport *t)
{
/* Update the heartbeat timer. */
if (!mod_timer(&t->hb_timer, sctp_transport_timeout(t)))
sctp_transport_hold(t);
}
/* Helper function to handle the reception of an HEARTBEAT ACK. */ case SCTP_CMD_COUNTER_RESET:
static void sctp_cmd_transport_on(sctp_cmd_seq_t *cmds, asoc->counters[cmd->obj.counter] = 0;
sctp_association_t *asoc, break;
struct sctp_transport *t,
sctp_chunk_t *chunk)
{
sctp_sender_hb_info_t *hbinfo;
/* 8.3 Upon the receipt of the HEARTBEAT ACK, the sender of the case SCTP_CMD_REPORT_DUP:
* HEARTBEAT should clear the error counter of the destination sctp_tsnmap_mark_dup(&asoc->peer.tsn_map,
* transport address to which the HEARTBEAT was sent. cmd->obj.u32);
* The association's overall error count is also cleared. break;
*/
t->error_count = 0;
t->asoc->overall_error_count = 0;
/* Mark the destination transport address as active if it is not so case SCTP_CMD_REPORT_BAD_TAG:
* marked. SCTP_DEBUG_PRINTK("vtag mismatch!\n");
*/ break;
if (!t->active)
sctp_assoc_control_transport(asoc, t, SCTP_TRANSPORT_UP,
SCTP_HEARTBEAT_SUCCESS);
/* The receiver of the HEARTBEAT ACK should also perform an case SCTP_CMD_STRIKE:
* RTT measurement for that destination transport address /* Mark one strike against a transport. */
* using the time value carried in the HEARTBEAT ACK chunk. sctp_do_8_2_transport_strike(asoc, cmd->obj.transport);
*/ break;
hbinfo = (sctp_sender_hb_info_t *) chunk->skb->data;
sctp_transport_update_rto(t, (jiffies - hbinfo->sent_at));
}
/* Helper function to do a transport reset at the expiry of the hearbeat case SCTP_CMD_TRANSPORT_RESET:
* timer. t = cmd->obj.transport;
*/ sctp_cmd_transport_reset(commands, asoc, t);
static void sctp_cmd_transport_reset(sctp_cmd_seq_t *cmds, break;
sctp_association_t *asoc,
struct sctp_transport *t)
{
sctp_transport_lower_cwnd(t, SCTP_LOWER_CWND_INACTIVE);
/* Mark one strike against a transport. */ case SCTP_CMD_TRANSPORT_ON:
sctp_do_8_2_transport_strike(asoc, t); t = cmd->obj.transport;
} sctp_cmd_transport_on(commands, asoc, t, chunk);
break;
/* Helper function to process the process SACK command. */ case SCTP_CMD_HB_TIMERS_START:
static int sctp_cmd_process_sack(sctp_cmd_seq_t *cmds, sctp_cmd_hb_timers_start(commands, asoc);
sctp_association_t *asoc, break;
sctp_sackhdr_t *sackh)
{
int err;
if (sctp_outq_sack(&asoc->outqueue, sackh)) { case SCTP_CMD_HB_TIMER_UPDATE:
/* There are no more TSNs awaiting SACK. */ t = cmd->obj.transport;
err = sctp_do_sm(SCTP_EVENT_T_OTHER, sctp_cmd_hb_timer_update(commands, asoc, t);
SCTP_ST_OTHER(SCTP_EVENT_NO_PENDING_TSN), break;
asoc->state, asoc->ep, asoc, NULL,
GFP_ATOMIC);
} else {
/* Windows may have opened, so we need
* to check if we have DATA to transmit
*/
err = sctp_outq_flush(&asoc->outqueue, 0);
}
return err; case SCTP_CMD_HB_TIMERS_STOP:
} sctp_cmd_hb_timers_stop(commands, asoc);
break;
/* Helper function to set the timeout value for T2-SHUTDOWN timer and to set case SCTP_CMD_REPORT_ERROR:
* the transport for a shutdown chunk. error = cmd->obj.error;
*/ break;
static void sctp_cmd_setup_t2(sctp_cmd_seq_t *cmds, sctp_association_t *asoc,
sctp_chunk_t *chunk)
{
struct sctp_transport *t;
t = sctp_assoc_choose_shutdown_transport(asoc); case SCTP_CMD_PROCESS_CTSN:
asoc->shutdown_last_sent_to = t; /* Dummy up a SACK for processing. */
asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = t->rto; sackh.cum_tsn_ack = cmd->obj.u32;
chunk->transport = t; sackh.a_rwnd = 0;
} sackh.num_gap_ack_blocks = 0;
sackh.num_dup_tsns = 0;
sctp_add_cmd_sf(commands, SCTP_CMD_PROCESS_SACK,
SCTP_SACKH(&sackh));
break;
/* Helper function to change the state of an association. */ case SCTP_CMD_DISCARD_PACKET:
static void sctp_cmd_new_state(sctp_cmd_seq_t *cmds, sctp_association_t *asoc, /* We need to discard the whole packet. */
sctp_state_t state) chunk->pdiscard = 1;
{ break;
struct sock *sk = asoc->base.sk; case SCTP_CMD_RTO_PENDING:
struct sctp_opt *sp = sctp_sk(sk); t = cmd->obj.transport;
t->rto_pending = 1;
break;
asoc->state = state; case SCTP_CMD_PART_DELIVER:
asoc->state_timestamp = jiffies; sctp_ulpq_partial_delivery(&asoc->ulpq, cmd->obj.ptr,
GFP_ATOMIC);
break;
if ((SCTP_STATE_ESTABLISHED == asoc->state) || case SCTP_CMD_RENEGE:
(SCTP_STATE_CLOSED == asoc->state)) { sctp_ulpq_renege(&asoc->ulpq, cmd->obj.ptr,
/* Wake up any processes waiting in the asoc's wait queue in GFP_ATOMIC);
* sctp_wait_for_connect() or sctp_wait_for_sndbuf(). break;
*/
if (waitqueue_active(&asoc->wait))
wake_up_interruptible(&asoc->wait);
/* Wake up any processes waiting in the sk's sleep queue of default:
* a TCP-style or UDP-style peeled-off socket in printk(KERN_WARNING "Impossible command: %u, %p\n",
* sctp_wait_for_accept() or sctp_wait_for_packet(). cmd->verb, cmd->obj.ptr);
* For a UDP-style socket, the waiters are woken up by the break;
* notifications. };
*/ if (error)
if (SCTP_SOCKET_UDP != sp->type) return error;
sk->state_change(sk);
} }
/* Change the sk->state of a TCP-style socket that has sucessfully return error;
* completed a connect() call.
*/ nomem:
if ((SCTP_STATE_ESTABLISHED == asoc->state) && error = -ENOMEM;
(SCTP_SOCKET_TCP == sp->type) && (SCTP_SS_CLOSED == sk->state)) return error;
sk->state = SCTP_SS_ESTABLISHED;
} }
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment