Commit 9850a96f authored by Jon Grimm's avatar Jon Grimm

Merge touki.austin.ibm.com:/home/jgrimm/bk/linux-2.5.66

into touki.austin.ibm.com:/home/jgrimm/bk/lksctp-2.5.work
parents 42382f86 a33b4399
......@@ -138,12 +138,10 @@ typedef enum {
*/
typedef union {
sctp_cid_t chunk;
sctp_event_timeout_t timeout;
sctp_event_other_t other;
sctp_event_primitive_t primitive;
} sctp_subtype_t;
#define SCTP_SUBTYPE_CONSTRUCTOR(_name, _type, _elt) \
......@@ -421,9 +419,9 @@ typedef enum {
/* Reasons to retransmit. */
typedef enum {
SCTP_RETRANSMIT_T3_RTX,
SCTP_RETRANSMIT_FAST_RTX,
SCTP_RETRANSMIT_PMTU_DISCOVERY,
SCTP_RTXR_T3_RTX,
SCTP_RTXR_FAST_RTX,
SCTP_RTXR_PMTUD,
} sctp_retransmit_reason_t;
/* Reasons to lower cwnd. */
......
......@@ -130,7 +130,7 @@ extern struct sctp_pf *sctp_get_pf_specific(sa_family_t family);
extern int sctp_register_pf(struct sctp_pf *, sa_family_t);
/*
* sctp_socket.c
* sctp/socket.c
*/
extern int sctp_backlog_rcv(struct sock *sk, struct sk_buff *skb);
extern int sctp_inet_listen(struct socket *sock, int backlog);
......@@ -139,7 +139,7 @@ extern unsigned int sctp_poll(struct file *file, struct socket *sock,
poll_table *wait);
/*
* sctp_primitive.c
* sctp/primitive.c
*/
extern int sctp_primitive_ASSOCIATE(sctp_association_t *, void *arg);
extern int sctp_primitive_SHUTDOWN(sctp_association_t *, void *arg);
......@@ -148,14 +148,14 @@ extern int sctp_primitive_SEND(sctp_association_t *, void *arg);
extern int sctp_primitive_REQUESTHEARTBEAT(sctp_association_t *, void *arg);
/*
* sctp_crc32c.c
* sctp/crc32c.c
*/
extern __u32 sctp_start_cksum(__u8 *ptr, __u16 count);
extern __u32 sctp_update_cksum(__u8 *ptr, __u16 count, __u32 cksum);
extern __u32 sctp_end_cksum(__u32 cksum);
/*
* sctp_input.c
* sctp/input.c
*/
extern int sctp_rcv(struct sk_buff *skb);
extern void sctp_v4_err(struct sk_buff *skb, u32 info);
......@@ -170,9 +170,16 @@ extern void __sctp_unhash_endpoint(sctp_endpoint_t *);
extern sctp_association_t *__sctp_lookup_association(const union sctp_addr *,
const union sctp_addr *,
struct sctp_transport **);
extern struct sock *sctp_err_lookup(int family, struct sk_buff *,
struct sctphdr *, struct sctp_endpoint **,
struct sctp_association **,
struct sctp_transport **);
extern void sctp_err_finish(struct sock *, struct sctp_endpoint *,
struct sctp_association *);
extern void sctp_icmp_frag_needed(struct sock *, struct sctp_association *,
struct sctp_transport *t, __u32 pmtu);
/*
* sctp_hashdriver.c
* sctp/hashdriver.c
*/
extern void sctp_hash_digest(const char *secret, const int secret_len,
const char *text, const int text_len,
......@@ -184,9 +191,7 @@ extern void sctp_hash_digest(const char *secret, const int secret_len,
#ifdef TEST_FRAME
#include <test_frame.h>
#else
/* spin lock wrappers. */
......@@ -312,7 +317,6 @@ static inline void sctp_sysctl_register(void) { return; }
static inline void sctp_sysctl_unregister(void) { return; }
#endif
/* Size of Supported Address Parameter for 'x' address types. */
#define SCTP_SAT_LEN(x) (sizeof(struct sctp_paramhdr) + (x) * sizeof(__u16))
......@@ -320,19 +324,15 @@ static inline void sctp_sysctl_unregister(void) { return; }
extern int sctp_v6_init(void);
extern void sctp_v6_exit(void);
static inline int sctp_ipv6_addr_type(const struct in6_addr *addr)
{
return ipv6_addr_type((struct in6_addr*) addr);
}
extern void sctp_v6_err(struct sk_buff *skb, struct inet6_skb_parm *opt,
int type, int code, int offset, __u32 info);
#else /* #ifdef defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */
#else /* #ifdef defined(CONFIG_IPV6) */
#define sctp_ipv6_addr_type(a) 0
static inline int sctp_v6_init(void) { return 0; }
static inline void sctp_v6_exit(void) { return; }
#endif /* #ifdef defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */
#endif /* #if defined(CONFIG_IPV6) */
/* Map an association to an assoc_id. */
static inline sctp_assoc_t sctp_assoc2id(const sctp_association_t *asoc)
......@@ -421,6 +421,15 @@ static inline __s32 sctp_jitter(__u32 rto)
return ret;
}
/* Break down data chunks at this point. */
static inline int sctp_frag_point(int pmtu)
{
pmtu -= SCTP_IP_OVERHEAD + sizeof(struct sctp_data_chunk);
pmtu -= sizeof(struct sctp_sack_chunk);
return pmtu;
}
/* Walk through a list of TLV parameters. Don't trust the
* individual parameter lengths and instead depend on
* the chunk length to indicate when to stop. Make sure
......@@ -537,7 +546,7 @@ struct sctp_sock {
struct sock sk;
#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
struct ipv6_pinfo *pinet6;
#endif /* CONFIG_IPV6 || CONFIG_IPV6_MODULE */
#endif /* CONFIG_IPV6 */
struct inet_opt inet;
struct sctp_opt sctp;
};
......@@ -550,7 +559,7 @@ struct sctp6_sock {
struct sctp_opt sctp;
struct ipv6_pinfo inet6;
};
#endif /* CONFIG_IPV6 || CONFIG_IPV6_MODULE */
#endif /* CONFIG_IPV6 */
#define sctp_sk(__sk) (&((struct sctp_sock *)__sk)->sctp)
......
......@@ -590,13 +590,16 @@ struct sctp_packet {
/* This packet should advertise ECN capability to the network
* via the ECT bit.
*/
int ecn_capable;
char ecn_capable;
/* This packet contains a COOKIE-ECHO chunk. */
int has_cookie_echo;
char has_cookie_echo;
/* This packet containsa SACK chunk. */
char has_sack;
/* SCTP cannot fragment this packet. So let ip fragment it. */
int ipfragok;
char ipfragok;
int malloced;
};
......
......@@ -421,8 +421,7 @@ struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc,
SCTP_DEBUG_PRINTK("sctp_assoc_add_peer:association %p PMTU set to "
"%d\n", asoc, asoc->pmtu);
asoc->frag_point = asoc->pmtu;
asoc->frag_point -= SCTP_IP_OVERHEAD + sizeof(struct sctp_data_chunk);
asoc->frag_point = sctp_frag_point(asoc->pmtu);
/* The asoc->peer.port might not be meaningful yet, but
* initialize the packet structure anyway.
......@@ -658,31 +657,20 @@ int sctp_cmp_addr_exact(const union sctp_addr *ss1,
}
/* Return an ecne chunk to get prepended to a packet.
* Note: We are sly and return a shared, prealloced chunk.
* Note: We are sly and return a shared, prealloced chunk. FIXME:
* No we don't, but we could/should.
*/
sctp_chunk_t *sctp_get_ecne_prepend(sctp_association_t *asoc)
sctp_chunk_t *sctp_get_ecne_prepend(struct sctp_association *asoc)
{
sctp_chunk_t *chunk;
int need_ecne;
__u32 lowest_tsn;
/* Can be called from task or bh. Both need_ecne and
* last_ecne_tsn are written during bh.
*/
need_ecne = asoc->need_ecne;
lowest_tsn = asoc->last_ecne_tsn;
if (need_ecne) {
chunk = sctp_make_ecne(asoc, lowest_tsn);
struct sctp_chunk *chunk;
/* ECNE is not mandatory to the flow. Being unable to
* alloc mem is not deadly. We are just unable to help
* out the network. If we run out of memory, just return
* NULL.
/* Send ECNE if needed.
* Not being able to allocate a chunk here is not deadly.
*/
} else {
if (asoc->need_ecne)
chunk = sctp_make_ecne(asoc, asoc->last_ecne_tsn);
else
chunk = NULL;
}
return chunk;
}
......@@ -986,8 +974,7 @@ void sctp_assoc_sync_pmtu(sctp_association_t *asoc)
if (pmtu) {
asoc->pmtu = pmtu;
asoc->frag_point = pmtu - (SCTP_IP_OVERHEAD +
sizeof(sctp_data_chunk_t));
asoc->frag_point = sctp_frag_point(pmtu);
}
SCTP_DEBUG_PRINTK("%s: asoc:%p, pmtu:%d, frag_point:%d\n",
......
......@@ -207,21 +207,19 @@ int sctp_rcv(struct sk_buff *skb)
*/
sctp_bh_lock_sock(sk);
if (sock_owned_by_user(sk)) {
if (sock_owned_by_user(sk))
sk_add_backlog(sk, (struct sk_buff *) chunk);
} else {
else
sctp_backlog_rcv(sk, (struct sk_buff *) chunk);
}
/* Release the sock and any reference counts we took in the
* lookup calls.
*/
sctp_bh_unlock_sock(sk);
if (asoc) {
if (asoc)
sctp_association_put(asoc);
} else {
else
sctp_endpoint_put(ep);
}
sock_put(sk);
return ret;
......@@ -268,10 +266,8 @@ int sctp_backlog_rcv(struct sock *sk, struct sk_buff *skb)
}
/* Handle icmp frag needed error. */
static inline void sctp_icmp_frag_needed(struct sock *sk,
sctp_association_t *asoc,
struct sctp_transport *transport,
__u32 pmtu)
void sctp_icmp_frag_needed(struct sock *sk, struct sctp_association *asoc,
struct sctp_transport *t, __u32 pmtu)
{
if (unlikely(pmtu < SCTP_DEFAULT_MINSEGMENT)) {
printk(KERN_WARNING "%s: Reported pmtu %d too low, "
......@@ -280,54 +276,38 @@ static inline void sctp_icmp_frag_needed(struct sock *sk,
pmtu = SCTP_DEFAULT_MINSEGMENT;
}
if (!sock_owned_by_user(sk) && transport && (transport->pmtu != pmtu)) {
transport->pmtu = pmtu;
if (!sock_owned_by_user(sk) && t && (t->pmtu != pmtu)) {
t->pmtu = pmtu;
sctp_assoc_sync_pmtu(asoc);
sctp_retransmit(&asoc->outqueue, transport,
SCTP_RETRANSMIT_PMTU_DISCOVERY );
sctp_retransmit(&asoc->outqueue, t, SCTP_RTXR_PMTUD);
}
}
/*
* This routine is called by the ICMP module when it gets some
* sort of error condition. If err < 0 then the socket should
* be closed and the error returned to the user. If err > 0
* it's just the icmp type << 8 | icmp code. After adjustment
* header points to the first 8 bytes of the sctp header. We need
* to find the appropriate port.
*
* The locking strategy used here is very "optimistic". When
* someone else accesses the socket the ICMP is just dropped
* and for some paths there is no check at all.
* A more general error queue to queue errors for later handling
* is probably better.
*
*/
void sctp_v4_err(struct sk_buff *skb, __u32 info)
/* Common lookup code for icmp/icmpv6 error handler. */
struct sock *sctp_err_lookup(int family, struct sk_buff *skb,
struct sctphdr *sctphdr,
struct sctp_endpoint **epp,
struct sctp_association **app,
struct sctp_transport **tpp)
{
struct iphdr *iph = (struct iphdr *)skb->data;
struct sctphdr *sh = (struct sctphdr *)(skb->data + (iph->ihl <<2));
int type = skb->h.icmph->type;
int code = skb->h.icmph->code;
union sctp_addr saddr, daddr;
struct inet_opt *inet;
union sctp_addr saddr;
union sctp_addr daddr;
struct sctp_af *af;
struct sock *sk = NULL;
sctp_endpoint_t *ep = NULL;
sctp_association_t *asoc = NULL;
struct sctp_transport *transport;
int err;
struct sctp_endpoint *ep = NULL;
struct sctp_association *asoc = NULL;
struct sctp_transport *transport = NULL;
if (skb->len < ((iph->ihl << 2) + 8)) {
ICMP_INC_STATS_BH(IcmpInErrors);
return;
*app = NULL; *epp = NULL; *tpp = NULL;
af = sctp_get_af_specific(family);
if (unlikely(!af)) {
return NULL;
}
saddr.v4.sin_family = AF_INET;
saddr.v4.sin_port = ntohs(sh->source);
memcpy(&saddr.v4.sin_addr.s_addr, &iph->saddr, sizeof(struct in_addr));
daddr.v4.sin_family = AF_INET;
daddr.v4.sin_port = ntohs(sh->dest);
memcpy(&daddr.v4.sin_addr.s_addr, &iph->daddr, sizeof(struct in_addr));
/* Initialize local addresses for lookups. */
af->from_skb(&saddr, skb, 1);
af->from_skb(&daddr, skb, 0);
/* Look for an association that matches the incoming ICMP error
* packet.
......@@ -340,13 +320,12 @@ void sctp_v4_err(struct sk_buff *skb, __u32 info)
*/
ep = __sctp_rcv_lookup_endpoint(&daddr);
if (!ep) {
ICMP_INC_STATS_BH(IcmpInErrors);
return;
return NULL;
}
}
if (asoc) {
if (ntohl(sh->vtag) != asoc->c.peer_vtag) {
if (ntohl(sctphdr->vtag) != asoc->c.peer_vtag) {
ICMP_INC_STATS_BH(IcmpInErrors);
goto out;
}
......@@ -355,12 +334,90 @@ void sctp_v4_err(struct sk_buff *skb, __u32 info)
sk = ep->base.sk;
sctp_bh_lock_sock(sk);
/* If too many ICMPs get dropped on busy
* servers this needs to be solved differently.
*/
if (sock_owned_by_user(sk))
NET_INC_STATS_BH(LockDroppedIcmps);
*epp = ep;
*app = asoc;
*tpp = transport;
return sk;
out:
sock_put(sk);
if (asoc)
sctp_association_put(asoc);
if (ep)
sctp_endpoint_put(ep);
return NULL;
}
/* Common cleanup code for icmp/icmpv6 error handler. */
void sctp_err_finish(struct sock *sk, struct sctp_endpoint *ep,
struct sctp_association *asoc)
{
sctp_bh_unlock_sock(sk);
sock_put(sk);
if (asoc)
sctp_association_put(asoc);
if (ep)
sctp_endpoint_put(ep);
}
/*
* This routine is called by the ICMP module when it gets some
* sort of error condition. If err < 0 then the socket should
* be closed and the error returned to the user. If err > 0
* it's just the icmp type << 8 | icmp code. After adjustment
* header points to the first 8 bytes of the sctp header. We need
* to find the appropriate port.
*
* The locking strategy used here is very "optimistic". When
* someone else accesses the socket the ICMP is just dropped
* and for some paths there is no check at all.
* A more general error queue to queue errors for later handling
* is probably better.
*
*/
void sctp_v4_err(struct sk_buff *skb, __u32 info)
{
struct iphdr *iph = (struct iphdr *)skb->data;
struct sctphdr *sh = (struct sctphdr *)(skb->data + (iph->ihl <<2));
int type = skb->h.icmph->type;
int code = skb->h.icmph->code;
struct sock *sk;
sctp_endpoint_t *ep;
sctp_association_t *asoc;
struct sctp_transport *transport;
struct inet_opt *inet;
char *saveip, *savesctp;
int err;
if (skb->len < ((iph->ihl << 2) + 8)) {
ICMP_INC_STATS_BH(IcmpInErrors);
return;
}
/* Fix up skb to look at the embedded net header. */
saveip = skb->nh.raw;
savesctp = skb->h.raw;
skb->nh.iph = iph;
skb->h.raw = (char *)sh;
sk = sctp_err_lookup(AF_INET, skb, sh, &ep, &asoc, &transport);
/* Put back, the original pointers. */
skb->nh.raw = saveip;
skb->h.raw = savesctp;
if (!sk) {
ICMP_INC_STATS_BH(IcmpInErrors);
return;
}
/* Warning: The sock lock is held. Remember to call
* sctp_err_finish!
*/
switch (type) {
case ICMP_PARAMETERPROB:
err = EPROTO;
......@@ -399,13 +456,7 @@ void sctp_v4_err(struct sk_buff *skb, __u32 info)
}
out_unlock:
sctp_bh_unlock_sock(sk);
out:
sock_put(sk);
if (asoc)
sctp_association_put(asoc);
if (ep)
sctp_endpoint_put(ep);
sctp_err_finish(sk, ep, asoc);
}
/*
......@@ -782,8 +833,3 @@ sctp_association_t *__sctp_rcv_lookup(struct sk_buff *skb,
return asoc;
}
/* SCTP kernel reference Implementation
* Copyright (c) 2001 Nokia, Inc.
* Copyright (c) 2001 La Monte H.P. Yarroll
* Copyright (c) 2002 International Business Machines, Corp.
* Copyright (c) 2002-2003 International Business Machines, Corp.
*
* This file is part of the SCTP kernel reference Implementation
*
......@@ -88,17 +88,62 @@ extern struct notifier_block sctp_inetaddr_notifier;
ntohs((addr)->s6_addr16[6]), \
ntohs((addr)->s6_addr16[7])
/* FIXME: Comments. */
static inline void sctp_v6_err(struct sk_buff *skb,
struct inet6_skb_parm *opt,
/* ICMP error handler. */
void sctp_v6_err(struct sk_buff *skb, struct inet6_skb_parm *opt,
int type, int code, int offset, __u32 info)
{
/* BUG. WRITE ME. */
struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
struct sctphdr *sh = (struct sctphdr *)(skb->data + offset);
struct sock *sk;
sctp_endpoint_t *ep;
sctp_association_t *asoc;
struct sctp_transport *transport;
struct ipv6_pinfo *np;
char *saveip, *savesctp;
int err;
/* Fix up skb to look at the embedded net header. */
saveip = skb->nh.raw;
savesctp = skb->h.raw;
skb->nh.ipv6h = iph;
skb->h.raw = (char *)sh;
sk = sctp_err_lookup(AF_INET6, skb, sh, &ep, &asoc, &transport);
/* Put back, the original pointers. */
skb->nh.raw = saveip;
skb->h.raw = savesctp;
if (!sk) {
ICMP6_INC_STATS_BH(Icmp6InErrors);
return;
}
/* Warning: The sock lock is held. Remember to call
* sctp_err_finish!
*/
switch (type) {
case ICMPV6_PKT_TOOBIG:
sctp_icmp_frag_needed(sk, asoc, transport, ntohl(info));
goto out_unlock;
default:
break;
}
np = inet6_sk(sk);
icmpv6_err_convert(type, code, &err);
if (!sock_owned_by_user(sk) && np->recverr) {
sk->err = err;
sk->error_report(sk);
} else { /* Only an error on timeout */
sk->err_soft = err;
}
out_unlock:
sctp_err_finish(sk, ep, asoc);
}
/* Based on tcp_v6_xmit() in tcp_ipv6.c. */
static inline int sctp_v6_xmit(struct sk_buff *skb,
struct sctp_transport *transport, int ipfragok)
static int sctp_v6_xmit(struct sk_buff *skb, struct sctp_transport *transport,
int ipfragok)
{
struct sock *sk = skb->sk;
struct ipv6_pinfo *np = inet6_sk(sk);
......
......@@ -79,6 +79,7 @@ struct sctp_packet *sctp_packet_config(struct sctp_packet *packet,
packet->ecn_capable = ecn_capable;
packet->get_prepend_chunk = prepend_handler;
packet->has_cookie_echo = 0;
packet->has_sack = 0;
packet->ipfragok = 0;
/* We might need to call the prepend_handler right away. */
......@@ -100,6 +101,7 @@ struct sctp_packet *sctp_packet_init(struct sctp_packet *packet,
packet->ecn_capable = 0;
packet->get_prepend_chunk = NULL;
packet->has_cookie_echo = 0;
packet->has_sack = 0;
packet->ipfragok = 0;
packet->malloced = 0;
sctp_packet_reset(packet);
......@@ -155,6 +157,37 @@ sctp_xmit_t sctp_packet_transmit_chunk(struct sctp_packet *packet,
return retval;
}
/* Try to bundle a SACK with the packet. */
static sctp_xmit_t sctp_packet_bundle_sack(struct sctp_packet *pkt,
struct sctp_chunk *chunk)
{
sctp_xmit_t retval = SCTP_XMIT_OK;
/* If sending DATA and haven't aleady bundled a SACK, try to
* bundle one in to the packet.
*/
if (sctp_chunk_is_data(chunk) && !pkt->has_sack &&
!pkt->has_cookie_echo) {
struct sctp_association *asoc;
asoc = pkt->transport->asoc;
if (asoc->a_rwnd > asoc->rwnd) {
struct sctp_chunk *sack;
asoc->a_rwnd = asoc->rwnd;
sack = sctp_make_sack(asoc);
if (sack) {
struct timer_list *timer;
retval = sctp_packet_append_chunk(pkt, sack);
asoc->peer.sack_needed = 0;
timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK];
if (timer_pending(timer) && del_timer(timer))
sctp_association_put(asoc);
}
}
}
return retval;
}
/* Append a chunk to the offered packet reporting back any inability to do
* so.
*/
......@@ -167,6 +200,10 @@ sctp_xmit_t sctp_packet_append_chunk(struct sctp_packet *packet,
size_t pmtu;
int too_big;
retval = sctp_packet_bundle_sack(packet, chunk);
if (retval != SCTP_XMIT_OK)
goto finish;
pmtu = ((packet->transport->asoc) ?
(packet->transport->asoc->pmtu) :
(packet->transport->pmtu));
......@@ -216,9 +253,10 @@ sctp_xmit_t sctp_packet_append_chunk(struct sctp_packet *packet,
retval = sctp_packet_append_data(packet, chunk);
if (SCTP_XMIT_OK != retval)
goto finish;
} else if (SCTP_CID_COOKIE_ECHO == chunk->chunk_hdr->type) {
} else if (SCTP_CID_COOKIE_ECHO == chunk->chunk_hdr->type)
packet->has_cookie_echo = 1;
}
else if (SCTP_CID_SACK == chunk->chunk_hdr->type)
packet->has_sack = 1;
/* It is OK to send this chunk. */
__skb_queue_tail(&packet->chunks, (struct sk_buff *)chunk);
......
......@@ -357,7 +357,7 @@ void sctp_retransmit(struct sctp_outq *q, struct sctp_transport *transport,
__u8 fast_retransmit = 0;
switch(reason) {
case SCTP_RETRANSMIT_T3_RTX:
case SCTP_RTXR_T3_RTX:
sctp_transport_lower_cwnd(transport, SCTP_LOWER_CWND_T3_RTX);
/* Update the retran path if the T3-rtx timer has expired for
* the current retran path.
......@@ -365,10 +365,11 @@ void sctp_retransmit(struct sctp_outq *q, struct sctp_transport *transport,
if (transport == transport->asoc->peer.retran_path)
sctp_assoc_update_retran_path(transport->asoc);
break;
case SCTP_RETRANSMIT_FAST_RTX:
case SCTP_RTXR_FAST_RTX:
sctp_transport_lower_cwnd(transport, SCTP_LOWER_CWND_FAST_RTX);
fast_retransmit = 1;
break;
case SCTP_RTXR_PMTUD:
default:
break;
}
......@@ -876,7 +877,7 @@ int sctp_outq_flush(struct sctp_outq *q, int rtx_timeout)
start_timer = 0;
queue = &q->out;
while (NULL != (chunk = sctp_outq_dequeue_data(q))) {
while ((chunk = sctp_outq_dequeue_data(q))) {
/* RFC 2960 6.5 Every DATA chunk MUST carry a valid
* stream identifier.
*/
......@@ -891,9 +892,7 @@ int sctp_outq_flush(struct sctp_outq *q, int rtx_timeout)
if (ev)
sctp_ulpq_tail_event(&asoc->ulpq, ev);
/* Free the chunk. This chunk is not on any
* list yet, just free it.
*/
/* Free the chunk. */
sctp_free_chunk(chunk);
continue;
}
......@@ -1572,7 +1571,7 @@ static void sctp_check_transmitted(struct sctp_outq *q,
if (transport) {
if (do_fast_retransmit)
sctp_retransmit(q, transport, SCTP_RETRANSMIT_FAST_RTX);
sctp_retransmit(q, transport, SCTP_RTXR_FAST_RTX);
SCTP_DEBUG_PRINTK("%s: transport: %p, cwnd: %d, "
"ssthresh: %d, flight_size: %d, pba: %d\n",
......
......@@ -55,1202 +55,1128 @@
#include <net/sctp/sctp.h>
#include <net/sctp/sm.h>
/* Do forward declarations of static functions. */
static void sctp_do_ecn_ce_work(sctp_association_t *,__u32 lowest_tsn);
static sctp_chunk_t *sctp_do_ecn_ecne_work(sctp_association_t *asoc,
__u32 lowest_tsn,
sctp_chunk_t *);
static void sctp_do_ecn_cwr_work(sctp_association_t *,__u32 lowest_tsn);
static void sctp_do_8_2_transport_strike(sctp_association_t *,
struct sctp_transport *);
static void sctp_cmd_init_failed(sctp_cmd_seq_t *, sctp_association_t *);
static void sctp_cmd_assoc_failed(sctp_cmd_seq_t *, sctp_association_t *,
sctp_event_t, sctp_subtype_t,
sctp_chunk_t *chunk);
static int sctp_cmd_process_init(sctp_cmd_seq_t *, sctp_association_t *,
sctp_chunk_t *chunk,
sctp_init_chunk_t *peer_init,
int priority);
static void sctp_cmd_hb_timers_start(sctp_cmd_seq_t *, sctp_association_t *);
static void sctp_cmd_hb_timers_stop(sctp_cmd_seq_t *, sctp_association_t *);
static void sctp_cmd_hb_timer_update(sctp_cmd_seq_t *, sctp_association_t *,
struct sctp_transport *);
static void sctp_cmd_transport_reset(sctp_cmd_seq_t *, sctp_association_t *,
struct sctp_transport *);
static void sctp_cmd_transport_on(sctp_cmd_seq_t *, sctp_association_t *,
struct sctp_transport *, sctp_chunk_t *);
static int sctp_cmd_process_sack(sctp_cmd_seq_t *, sctp_association_t *,
sctp_sackhdr_t *);
static void sctp_cmd_setup_t2(sctp_cmd_seq_t *, sctp_association_t *,
sctp_chunk_t *);
static void sctp_cmd_new_state(sctp_cmd_seq_t *, sctp_association_t *,
sctp_state_t);
/* These three macros allow us to pull the debugging code out of the
* main flow of sctp_do_sm() to keep attention focused on the real
* functionality there.
*/
#define DEBUG_PRE \
SCTP_DEBUG_PRINTK("sctp_do_sm prefn: " \
"ep %p, %s, %s, asoc %p[%s], %s\n", \
ep, sctp_evttype_tbl[event_type], \
(*debug_fn)(subtype), asoc, \
sctp_state_tbl[state], state_fn->name)
/********************************************************************
* Helper functions
********************************************************************/
#define DEBUG_POST \
SCTP_DEBUG_PRINTK("sctp_do_sm postfn: " \
"asoc %p, status: %s\n", \
asoc, sctp_status_tbl[status])
/* A helper function for delayed processing of INET ECN CE bit. */
static void sctp_do_ecn_ce_work(sctp_association_t *asoc, __u32 lowest_tsn)
{
/* Save the TSN away for comparison when we receive CWR */
#define DEBUG_POST_SFX \
SCTP_DEBUG_PRINTK("sctp_do_sm post sfx: error %d, asoc %p[%s]\n", \
error, asoc, \
sctp_state_tbl[(asoc && sctp_id2assoc(ep->base.sk, \
sctp_assoc2id(asoc)))?asoc->state:SCTP_STATE_CLOSED])
asoc->last_ecne_tsn = lowest_tsn;
asoc->need_ecne = 1;
}
/*
* This is the master state machine processing function.
/* Helper function for delayed processing of SCTP ECNE chunk. */
/* RFC 2960 Appendix A
*
* If you want to understand all of lksctp, this is a
* good place to start.
* RFC 2481 details a specific bit for a sender to send in
* the header of its next outbound TCP segment to indicate to
* its peer that it has reduced its congestion window. This
* is termed the CWR bit. For SCTP the same indication is made
* by including the CWR chunk. This chunk contains one data
* element, i.e. the TSN number that was sent in the ECNE chunk.
* This element represents the lowest TSN number in the datagram
* that was originally marked with the CE bit.
*/
int sctp_do_sm(sctp_event_t event_type, sctp_subtype_t subtype,
sctp_state_t state,
sctp_endpoint_t *ep,
sctp_association_t *asoc,
void *event_arg,
int priority)
static sctp_chunk_t *sctp_do_ecn_ecne_work(sctp_association_t *asoc,
__u32 lowest_tsn,
sctp_chunk_t *chunk)
{
sctp_cmd_seq_t commands;
sctp_sm_table_entry_t *state_fn;
sctp_disposition_t status;
int error = 0;
typedef const char *(printfn_t)(sctp_subtype_t);
sctp_chunk_t *repl;
static printfn_t *table[] = {
NULL, sctp_cname, sctp_tname, sctp_oname, sctp_pname,
};
printfn_t *debug_fn __attribute__ ((unused)) = table[event_type];
/* Our previously transmitted packet ran into some congestion
* so we should take action by reducing cwnd and ssthresh
* and then ACK our peer that we we've done so by
* sending a CWR.
*/
/* Look up the state function, run it, and then process the
* side effects. These three steps are the heart of lksctp.
/* First, try to determine if we want to actually lower
* our cwnd variables. Only lower them if the ECNE looks more
* recent than the last response.
*/
state_fn = sctp_sm_lookup_event(event_type, state, subtype);
if (TSN_lt(asoc->last_cwr_tsn, lowest_tsn)) {
struct sctp_transport *transport;
sctp_init_cmd_seq(&commands);
/* Find which transport's congestion variables
* need to be adjusted.
*/
transport = sctp_assoc_lookup_tsn(asoc, lowest_tsn);
DEBUG_PRE;
status = (*state_fn->fn)(ep, asoc, subtype, event_arg, &commands);
DEBUG_POST;
/* Update the congestion variables. */
if (transport)
sctp_transport_lower_cwnd(transport,
SCTP_LOWER_CWND_ECNE);
asoc->last_cwr_tsn = lowest_tsn;
}
error = sctp_side_effects(event_type, subtype, state,
ep, asoc, event_arg,
status, &commands,
priority);
DEBUG_POST_SFX;
/* Always try to quiet the other end. In case of lost CWR,
* resend last_cwr_tsn.
*/
repl = sctp_make_cwr(asoc, asoc->last_cwr_tsn, chunk);
return error;
/* If we run out of memory, it will look like a lost CWR. We'll
* get back in sync eventually.
*/
return repl;
}
#undef DEBUG_PRE
#undef DEBUG_POST
/*****************************************************************
* This the master state function side effect processing function.
*****************************************************************/
int sctp_side_effects(sctp_event_t event_type, sctp_subtype_t subtype,
sctp_state_t state,
sctp_endpoint_t *ep,
sctp_association_t *asoc,
void *event_arg,
sctp_disposition_t status,
sctp_cmd_seq_t *commands,
int priority)
/* Helper function to do delayed processing of ECN CWR chunk. */
static void sctp_do_ecn_cwr_work(sctp_association_t *asoc,
__u32 lowest_tsn)
{
int error;
/* FIXME - Most of the dispositions left today would be categorized
* as "exceptional" dispositions. For those dispositions, it
* may not be proper to run through any of the commands at all.
* For example, the command interpreter might be run only with
* disposition SCTP_DISPOSITION_CONSUME.
/* Turn off ECNE getting auto-prepended to every outgoing
* packet
*/
if (0 != (error = sctp_cmd_interpreter(event_type, subtype, state,
ep, asoc,
event_arg, status,
commands, priority)))
goto bail;
asoc->need_ecne = 0;
}
switch (status) {
case SCTP_DISPOSITION_DISCARD:
SCTP_DEBUG_PRINTK("Ignored sctp protocol event - state %d, "
"event_type %d, event_id %d\n",
state, event_type, subtype.chunk);
break;
/* Generate SACK if necessary. We call this at the end of a packet. */
int sctp_gen_sack(struct sctp_association *asoc, int force,
sctp_cmd_seq_t *commands)
{
__u32 ctsn, max_tsn_seen;
struct sctp_chunk *sack;
int error = 0;
case SCTP_DISPOSITION_NOMEM:
/* We ran out of memory, so we need to discard this
* packet.
*/
/* BUG--we should now recover some memory, probably by
* reneging...
*/
error = -ENOMEM;
break;
if (force)
asoc->peer.sack_needed = 1;
case SCTP_DISPOSITION_DELETE_TCB:
/* This should now be a command. */
break;
ctsn = sctp_tsnmap_get_ctsn(&asoc->peer.tsn_map);
max_tsn_seen = sctp_tsnmap_get_max_tsn_seen(&asoc->peer.tsn_map);
case SCTP_DISPOSITION_CONSUME:
case SCTP_DISPOSITION_ABORT:
/*
* We should no longer have much work to do here as the
* real work has been done as explicit commands above.
/* From 12.2 Parameters necessary per association (i.e. the TCB):
*
* Ack State : This flag indicates if the next received packet
* : is to be responded to with a SACK. ...
* : When DATA chunks are out of order, SACK's
* : are not delayed (see Section 6).
*
* [This is actually not mentioned in Section 6, but we
* implement it here anyway. --piggy]
*/
break;
case SCTP_DISPOSITION_VIOLATION:
printk(KERN_ERR "sctp protocol violation state %d "
"chunkid %d\n", state, subtype.chunk);
break;
if (max_tsn_seen != ctsn)
asoc->peer.sack_needed = 1;
case SCTP_DISPOSITION_NOT_IMPL:
printk(KERN_WARNING "sctp unimplemented feature in state %d, "
"event_type %d, event_id %d\n",
state, event_type, subtype.chunk);
break;
/* From 6.2 Acknowledgement on Reception of DATA Chunks:
*
* Section 4.2 of [RFC2581] SHOULD be followed. Specifically,
* an acknowledgement SHOULD be generated for at least every
* second packet (not every second DATA chunk) received, and
* SHOULD be generated within 200 ms of the arrival of any
* unacknowledged DATA chunk. ...
*/
if (!asoc->peer.sack_needed) {
/* We will need a SACK for the next packet. */
asoc->peer.sack_needed = 1;
goto out;
} else {
if (asoc->a_rwnd > asoc->rwnd)
asoc->a_rwnd = asoc->rwnd;
sack = sctp_make_sack(asoc);
if (!sack)
goto nomem;
case SCTP_DISPOSITION_BUG:
printk(KERN_ERR "sctp bug in state %d, "
"event_type %d, event_id %d\n",
state, event_type, subtype.chunk);
BUG();
break;
asoc->peer.sack_needed = 0;
default:
printk(KERN_ERR "sctp impossible disposition %d "
"in state %d, event_type %d, event_id %d\n",
status, state, event_type, subtype.chunk);
BUG();
break;
};
error = sctp_outq_tail(&asoc->outqueue, sack);
bail:
/* Stop the SACK timer. */
sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_STOP,
SCTP_TO(SCTP_EVENT_TIMEOUT_SACK));
}
out:
return error;
nomem:
error = -ENOMEM;
return error;
}
/********************************************************************
* 2nd Level Abstractions
********************************************************************/
/* This is the side-effect interpreter. */
int sctp_cmd_interpreter(sctp_event_t event_type, sctp_subtype_t subtype,
sctp_state_t state, sctp_endpoint_t *ep,
sctp_association_t *asoc, void *event_arg,
sctp_disposition_t status, sctp_cmd_seq_t *commands,
int priority)
/* When the T3-RTX timer expires, it calls this function to create the
* relevant state machine event.
*/
void sctp_generate_t3_rtx_event(unsigned long peer)
{
int error = 0;
int force;
sctp_cmd_t *cmd;
sctp_chunk_t *new_obj;
sctp_chunk_t *chunk = NULL;
struct sctp_packet *packet;
struct list_head *pos;
struct timer_list *timer;
unsigned long timeout;
struct sctp_transport *t;
sctp_sackhdr_t sackh;
if(SCTP_EVENT_T_TIMEOUT != event_type)
chunk = (sctp_chunk_t *) event_arg;
int error;
struct sctp_transport *transport = (struct sctp_transport *) peer;
sctp_association_t *asoc = transport->asoc;
/* Note: This whole file is a huge candidate for rework.
* For example, each command could either have its own handler, so
* the loop would look like:
* while (cmds)
* cmd->handle(x, y, z)
* --jgrimm
*/
while (NULL != (cmd = sctp_next_cmd(commands))) {
switch (cmd->verb) {
case SCTP_CMD_NOP:
/* Do nothing. */
break;
/* Check whether a task is in the sock. */
case SCTP_CMD_NEW_ASOC:
/* Register a new association. */
asoc = cmd->obj.ptr;
/* Register with the endpoint. */
sctp_endpoint_add_asoc(ep, asoc);
sctp_hash_established(asoc);
break;
sctp_bh_lock_sock(asoc->base.sk);
if (sock_owned_by_user(asoc->base.sk)) {
SCTP_DEBUG_PRINTK("%s:Sock is busy.\n", __FUNCTION__);
case SCTP_CMD_UPDATE_ASSOC:
sctp_assoc_update(asoc, cmd->obj.ptr);
break;
/* Try again later. */
if (!mod_timer(&transport->T3_rtx_timer, jiffies + (HZ/20)))
sctp_transport_hold(transport);
goto out_unlock;
}
case SCTP_CMD_PURGE_OUTQUEUE:
sctp_outq_teardown(&asoc->outqueue);
break;
/* Is this transport really dead and just waiting around for
* the timer to let go of the reference?
*/
if (transport->dead)
goto out_unlock;
case SCTP_CMD_DELETE_TCB:
/* Delete the current association. */
sctp_unhash_established(asoc);
sctp_association_free(asoc);
asoc = NULL;
break;
/* Run through the state machine. */
error = sctp_do_sm(SCTP_EVENT_T_TIMEOUT,
SCTP_ST_TIMEOUT(SCTP_EVENT_TIMEOUT_T3_RTX),
asoc->state,
asoc->ep, asoc,
transport, GFP_ATOMIC);
case SCTP_CMD_NEW_STATE:
/* Enter a new state. */
sctp_cmd_new_state(commands, asoc, cmd->obj.state);
break;
if (error)
asoc->base.sk->err = -error;
case SCTP_CMD_REPORT_TSN:
/* Record the arrival of a TSN. */
sctp_tsnmap_mark(&asoc->peer.tsn_map, cmd->obj.u32);
break;
out_unlock:
sctp_bh_unlock_sock(asoc->base.sk);
sctp_transport_put(transport);
}
case SCTP_CMD_GEN_SACK:
/* Generate a Selective ACK.
* The argument tells us whether to just count
* the packet and MAYBE generate a SACK, or
* force a SACK out.
/* This is a sa interface for producing timeout events. It works
* for timeouts which use the association as their parameter.
*/
force = cmd->obj.i32;
error = sctp_gen_sack(asoc, force, commands);
break;
case SCTP_CMD_PROCESS_SACK:
/* Process an inbound SACK. */
error = sctp_cmd_process_sack(commands, asoc,
cmd->obj.ptr);
break;
static void sctp_generate_timeout_event(sctp_association_t *asoc,
sctp_event_timeout_t timeout_type)
{
int error = 0;
case SCTP_CMD_GEN_INIT_ACK:
/* Generate an INIT ACK chunk. */
new_obj = sctp_make_init_ack(asoc, chunk, GFP_ATOMIC,
0);
if (!new_obj)
goto nomem;
sctp_bh_lock_sock(asoc->base.sk);
if (sock_owned_by_user(asoc->base.sk)) {
SCTP_DEBUG_PRINTK("%s:Sock is busy: timer %d\n",
__FUNCTION__,
timeout_type);
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY,
SCTP_CHUNK(new_obj));
break;
/* Try again later. */
if (!mod_timer(&asoc->timers[timeout_type], jiffies + (HZ/20)))
sctp_association_hold(asoc);
goto out_unlock;
}
case SCTP_CMD_PEER_INIT:
/* Process a unified INIT from the peer.
* Note: Only used during INIT-ACK processing. If
* there is an error just return to the outter
* layer which will bail.
/* Is this association really dead and just waiting around for
* the timer to let go of the reference?
*/
error = sctp_cmd_process_init(commands, asoc, chunk,
cmd->obj.ptr, priority);
break;
if (asoc->base.dead)
goto out_unlock;
case SCTP_CMD_GEN_COOKIE_ECHO:
/* Generate a COOKIE ECHO chunk. */
new_obj = sctp_make_cookie_echo(asoc, chunk);
if (!new_obj) {
if (cmd->obj.ptr)
sctp_free_chunk(cmd->obj.ptr);
goto nomem;
}
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY,
SCTP_CHUNK(new_obj));
/* Run through the state machine. */
error = sctp_do_sm(SCTP_EVENT_T_TIMEOUT,
SCTP_ST_TIMEOUT(timeout_type),
asoc->state, asoc->ep, asoc,
(void *)timeout_type,
GFP_ATOMIC);
/* If there is an ERROR chunk to be sent along with
* the COOKIE_ECHO, send it, too.
*/
if (cmd->obj.ptr)
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY,
SCTP_CHUNK(cmd->obj.ptr));
break;
if (error)
asoc->base.sk->err = -error;
case SCTP_CMD_GEN_SHUTDOWN:
/* Generate SHUTDOWN when in SHUTDOWN_SENT state.
* Reset error counts.
*/
asoc->overall_error_count = 0;
out_unlock:
sctp_bh_unlock_sock(asoc->base.sk);
sctp_association_put(asoc);
}
/* Generate a SHUTDOWN chunk. */
new_obj = sctp_make_shutdown(asoc);
if (!new_obj)
goto nomem;
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY,
SCTP_CHUNK(new_obj));
break;
void sctp_generate_t1_cookie_event(unsigned long data)
{
sctp_association_t *asoc = (sctp_association_t *) data;
sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_T1_COOKIE);
}
case SCTP_CMD_CHUNK_ULP:
/* Send a chunk to the sockets layer. */
SCTP_DEBUG_PRINTK("sm_sideff: %s %p, %s %p.\n",
"chunk_up:", cmd->obj.ptr,
"ulpq:", &asoc->ulpq);
sctp_ulpq_tail_data(&asoc->ulpq, cmd->obj.ptr,
GFP_ATOMIC);
break;
void sctp_generate_t1_init_event(unsigned long data)
{
sctp_association_t *asoc = (sctp_association_t *) data;
sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_T1_INIT);
}
case SCTP_CMD_EVENT_ULP:
/* Send a notification to the sockets layer. */
SCTP_DEBUG_PRINTK("sm_sideff: %s %p, %s %p.\n",
"event_up:",cmd->obj.ptr,
"ulpq:",&asoc->ulpq);
sctp_ulpq_tail_event(&asoc->ulpq, cmd->obj.ptr);
break;
void sctp_generate_t2_shutdown_event(unsigned long data)
{
sctp_association_t *asoc = (sctp_association_t *) data;
sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_T2_SHUTDOWN);
}
case SCTP_CMD_REPLY:
/* Send a chunk to our peer. */
error = sctp_outq_tail(&asoc->outqueue,
cmd->obj.ptr);
break;
void sctp_generate_t5_shutdown_guard_event(unsigned long data)
{
sctp_association_t *asoc = (sctp_association_t *)data;
sctp_generate_timeout_event(asoc,
SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD);
case SCTP_CMD_SEND_PKT:
/* Send a full packet to our peer. */
packet = cmd->obj.ptr;
sctp_packet_transmit(packet);
sctp_ootb_pkt_free(packet);
break;
} /* sctp_generate_t5_shutdown_guard_event() */
case SCTP_CMD_RETRAN:
/* Mark a transport for retransmission. */
sctp_retransmit(&asoc->outqueue, cmd->obj.transport,
SCTP_RETRANSMIT_T3_RTX);
break;
void sctp_generate_autoclose_event(unsigned long data)
{
sctp_association_t *asoc = (sctp_association_t *) data;
sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_AUTOCLOSE);
}
case SCTP_CMD_TRANSMIT:
/* Kick start transmission. */
error = sctp_outq_flush(&asoc->outqueue, 0);
break;
/* Generate a heart beat event. If the sock is busy, reschedule. Make
* sure that the transport is still valid.
*/
void sctp_generate_heartbeat_event(unsigned long data)
{
int error = 0;
struct sctp_transport *transport = (struct sctp_transport *) data;
sctp_association_t *asoc = transport->asoc;
case SCTP_CMD_ECN_CE:
/* Do delayed CE processing. */
sctp_do_ecn_ce_work(asoc, cmd->obj.u32);
break;
sctp_bh_lock_sock(asoc->base.sk);
if (sock_owned_by_user(asoc->base.sk)) {
SCTP_DEBUG_PRINTK("%s:Sock is busy.\n", __FUNCTION__);
case SCTP_CMD_ECN_ECNE:
/* Do delayed ECNE processing. */
new_obj = sctp_do_ecn_ecne_work(asoc, cmd->obj.u32,
chunk);
if (new_obj)
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY,
SCTP_CHUNK(new_obj));
break;
/* Try again later. */
if (!mod_timer(&transport->hb_timer, jiffies + (HZ/20)))
sctp_transport_hold(transport);
goto out_unlock;
}
case SCTP_CMD_ECN_CWR:
/* Do delayed CWR processing. */
sctp_do_ecn_cwr_work(asoc, cmd->obj.u32);
break;
/* Is this structure just waiting around for us to actually
* get destroyed?
*/
if (transport->dead)
goto out_unlock;
case SCTP_CMD_SETUP_T2:
sctp_cmd_setup_t2(commands, asoc, cmd->obj.ptr);
break;
error = sctp_do_sm(SCTP_EVENT_T_TIMEOUT,
SCTP_ST_TIMEOUT(SCTP_EVENT_TIMEOUT_HEARTBEAT),
asoc->state,
asoc->ep, asoc,
transport, GFP_ATOMIC);
case SCTP_CMD_TIMER_START:
timer = &asoc->timers[cmd->obj.to];
timeout = asoc->timeouts[cmd->obj.to];
if (!timeout)
BUG();
if (error)
asoc->base.sk->err = -error;
timer->expires = jiffies + timeout;
sctp_association_hold(asoc);
add_timer(timer);
break;
out_unlock:
sctp_bh_unlock_sock(asoc->base.sk);
sctp_transport_put(transport);
}
case SCTP_CMD_TIMER_RESTART:
timer = &asoc->timers[cmd->obj.to];
timeout = asoc->timeouts[cmd->obj.to];
if (!mod_timer(timer, jiffies + timeout))
sctp_association_hold(asoc);
break;
/* Inject a SACK Timeout event into the state machine. */
void sctp_generate_sack_event(unsigned long data)
{
sctp_association_t *asoc = (sctp_association_t *) data;
sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_SACK);
}
case SCTP_CMD_TIMER_STOP:
timer = &asoc->timers[cmd->obj.to];
if (timer_pending(timer) && del_timer(timer))
sctp_association_put(asoc);
break;
sctp_timer_event_t *sctp_timer_events[SCTP_NUM_TIMEOUT_TYPES] = {
NULL,
sctp_generate_t1_cookie_event,
sctp_generate_t1_init_event,
sctp_generate_t2_shutdown_event,
NULL,
sctp_generate_t5_shutdown_guard_event,
sctp_generate_heartbeat_event,
sctp_generate_sack_event,
sctp_generate_autoclose_event,
};
case SCTP_CMD_INIT_RESTART:
/* Do the needed accounting and updates
* associated with restarting an initialization
* timer.
/* RFC 2960 8.2 Path Failure Detection
*
* When its peer endpoint is multi-homed, an endpoint should keep a
* error counter for each of the destination transport addresses of the
* peer endpoint.
*
* Each time the T3-rtx timer expires on any address, or when a
* HEARTBEAT sent to an idle address is not acknowledged within a RTO,
* the error counter of that destination address will be incremented.
* When the value in the error counter exceeds the protocol parameter
* 'Path.Max.Retrans' of that destination address, the endpoint should
* mark the destination transport address as inactive, and a
* notification SHOULD be sent to the upper layer.
*
*/
asoc->counters[SCTP_COUNTER_INIT_ERROR]++;
asoc->timeouts[cmd->obj.to] *= 2;
if (asoc->timeouts[cmd->obj.to] >
asoc->max_init_timeo) {
asoc->timeouts[cmd->obj.to] =
asoc->max_init_timeo;
static void sctp_do_8_2_transport_strike(sctp_association_t *asoc,
struct sctp_transport *transport)
{
/* The check for association's overall error counter exceeding the
* threshold is done in the state function.
*/
asoc->overall_error_count++;
if (transport->active &&
(transport->error_count++ >= transport->error_threshold)) {
SCTP_DEBUG_PRINTK("transport_strike: transport "
"IP:%d.%d.%d.%d failed.\n",
NIPQUAD(transport->ipaddr.v4.sin_addr));
sctp_assoc_control_transport(asoc, transport,
SCTP_TRANSPORT_DOWN,
SCTP_FAILED_THRESHOLD);
}
/* If we've sent any data bundled with
* COOKIE-ECHO we need to resend.
/* E2) For the destination address for which the timer
* expires, set RTO <- RTO * 2 ("back off the timer"). The
* maximum value discussed in rule C7 above (RTO.max) may be
* used to provide an upper bound to this doubling operation.
*/
list_for_each(pos, &asoc->peer.transport_addr_list) {
t = list_entry(pos, struct sctp_transport,
transports);
sctp_retransmit_mark(&asoc->outqueue, t, 0);
}
transport->rto = min((transport->rto * 2), transport->asoc->rto_max);
}
sctp_add_cmd_sf(commands,
SCTP_CMD_TIMER_RESTART,
SCTP_TO(cmd->obj.to));
break;
/* Worker routine to handle INIT command failure. */
static void sctp_cmd_init_failed(sctp_cmd_seq_t *commands,
sctp_association_t *asoc)
{
struct sctp_ulpevent *event;
case SCTP_CMD_INIT_FAILED:
sctp_cmd_init_failed(commands, asoc);
break;
event = sctp_ulpevent_make_assoc_change(asoc,0, SCTP_CANT_STR_ASSOC,
0, 0, 0, GFP_ATOMIC);
case SCTP_CMD_ASSOC_FAILED:
sctp_cmd_assoc_failed(commands, asoc, event_type,
subtype, chunk);
break;
if (event)
sctp_add_cmd_sf(commands, SCTP_CMD_EVENT_ULP,
SCTP_ULPEVENT(event));
case SCTP_CMD_COUNTER_INC:
asoc->counters[cmd->obj.counter]++;
break;
/* FIXME: We need to handle data possibly either
* sent via COOKIE-ECHO bundling or just waiting in
* the transmit queue, if the user has enabled
* SEND_FAILED notifications.
*/
sctp_add_cmd_sf(commands, SCTP_CMD_DELETE_TCB, SCTP_NULL());
}
case SCTP_CMD_COUNTER_RESET:
asoc->counters[cmd->obj.counter] = 0;
break;
/* Worker routine to handle SCTP_CMD_ASSOC_FAILED. */
static void sctp_cmd_assoc_failed(sctp_cmd_seq_t *commands,
sctp_association_t *asoc,
sctp_event_t event_type,
sctp_subtype_t subtype,
sctp_chunk_t *chunk)
{
struct sctp_ulpevent *event;
__u16 error = 0;
case SCTP_CMD_REPORT_DUP:
sctp_tsnmap_mark_dup(&asoc->peer.tsn_map,
cmd->obj.u32);
switch(event_type) {
case SCTP_EVENT_T_PRIMITIVE:
if (SCTP_PRIMITIVE_ABORT == subtype.primitive)
error = SCTP_ERROR_USER_ABORT;
break;
case SCTP_CMD_REPORT_BAD_TAG:
SCTP_DEBUG_PRINTK("vtag mismatch!\n");
case SCTP_EVENT_T_CHUNK:
if (chunk && (SCTP_CID_ABORT == chunk->chunk_hdr->type) &&
(ntohs(chunk->chunk_hdr->length) >=
(sizeof(struct sctp_chunkhdr) +
sizeof(struct sctp_errhdr)))) {
error = ((sctp_errhdr_t *)chunk->skb->data)->cause;
}
break;
case SCTP_CMD_STRIKE:
/* Mark one strike against a transport. */
sctp_do_8_2_transport_strike(asoc, cmd->obj.transport);
default:
break;
}
case SCTP_CMD_TRANSPORT_RESET:
t = cmd->obj.transport;
sctp_cmd_transport_reset(commands, asoc, t);
break;
/* Cancel any partial delivery in progress. */
sctp_ulpq_abort_pd(&asoc->ulpq, GFP_ATOMIC);
case SCTP_CMD_TRANSPORT_ON:
t = cmd->obj.transport;
sctp_cmd_transport_on(commands, asoc, t, chunk);
break;
event = sctp_ulpevent_make_assoc_change(asoc, 0, SCTP_COMM_LOST,
error, 0, 0, GFP_ATOMIC);
if (event)
sctp_add_cmd_sf(commands, SCTP_CMD_EVENT_ULP,
SCTP_ULPEVENT(event));
case SCTP_CMD_HB_TIMERS_START:
sctp_cmd_hb_timers_start(commands, asoc);
break;
sctp_add_cmd_sf(commands, SCTP_CMD_NEW_STATE,
SCTP_STATE(SCTP_STATE_CLOSED));
case SCTP_CMD_HB_TIMER_UPDATE:
t = cmd->obj.transport;
sctp_cmd_hb_timer_update(commands, asoc, t);
break;
/* FIXME: We need to handle data that could not be sent or was not
* acked, if the user has enabled SEND_FAILED notifications.
*/
sctp_add_cmd_sf(commands, SCTP_CMD_DELETE_TCB, SCTP_NULL());
}
case SCTP_CMD_HB_TIMERS_STOP:
sctp_cmd_hb_timers_stop(commands, asoc);
break;
/* Process an init chunk (may be real INIT/INIT-ACK or an embedded INIT
* inside the cookie. In reality, this is only used for INIT-ACK processing
* since all other cases use "temporary" associations and can do all
* their work in statefuns directly.
*/
static int sctp_cmd_process_init(sctp_cmd_seq_t *commands,
sctp_association_t *asoc,
sctp_chunk_t *chunk,
sctp_init_chunk_t *peer_init,
int priority)
{
int error;
case SCTP_CMD_REPORT_ERROR:
error = cmd->obj.error;
break;
/* We only process the init as a sideeffect in a single
* case. This is when we process the INIT-ACK. If we
* fail during INIT processing (due to malloc problems),
* just return the error and stop processing the stack.
*/
case SCTP_CMD_PROCESS_CTSN:
/* Dummy up a SACK for processing. */
sackh.cum_tsn_ack = cmd->obj.u32;
sackh.a_rwnd = 0;
sackh.num_gap_ack_blocks = 0;
sackh.num_dup_tsns = 0;
sctp_add_cmd_sf(commands, SCTP_CMD_PROCESS_SACK,
SCTP_SACKH(&sackh));
break;
if (!sctp_process_init(asoc, chunk->chunk_hdr->type,
sctp_source(chunk), peer_init,
priority))
error = -ENOMEM;
else
error = 0;
case SCTP_CMD_DISCARD_PACKET:
/* We need to discard the whole packet. */
chunk->pdiscard = 1;
break;
return error;
}
case SCTP_CMD_RTO_PENDING:
t = cmd->obj.transport;
t->rto_pending = 1;
break;
/* Helper function to break out starting up of heartbeat timers. */
static void sctp_cmd_hb_timers_start(sctp_cmd_seq_t *cmds,
sctp_association_t *asoc)
{
struct sctp_transport *t;
struct list_head *pos;
case SCTP_CMD_PART_DELIVER:
sctp_ulpq_partial_delivery(&asoc->ulpq, cmd->obj.ptr,
GFP_ATOMIC);
break;
/* Start a heartbeat timer for each transport on the association.
* hold a reference on the transport to make sure none of
* the needed data structures go away.
*/
list_for_each(pos, &asoc->peer.transport_addr_list) {
t = list_entry(pos, struct sctp_transport, transports);
case SCTP_CMD_RENEGE:
sctp_ulpq_renege(&asoc->ulpq, cmd->obj.ptr,
GFP_ATOMIC);
break;
if (!mod_timer(&t->hb_timer, sctp_transport_timeout(t)))
sctp_transport_hold(t);
}
}
default:
printk(KERN_WARNING "Impossible command: %u, %p\n",
cmd->verb, cmd->obj.ptr);
break;
};
if (error)
return error;
static void sctp_cmd_hb_timers_stop(sctp_cmd_seq_t *cmds,
sctp_association_t *asoc)
{
struct sctp_transport *t;
struct list_head *pos;
/* Stop all heartbeat timers. */
list_for_each(pos, &asoc->peer.transport_addr_list) {
t = list_entry(pos, struct sctp_transport, transports);
if (del_timer(&t->hb_timer))
sctp_transport_put(t);
}
return error;
nomem:
error = -ENOMEM;
return error;
}
/* A helper function for delayed processing of INET ECN CE bit. */
static void sctp_do_ecn_ce_work(sctp_association_t *asoc, __u32 lowest_tsn)
/* Helper function to update the heartbeat timer. */
static void sctp_cmd_hb_timer_update(sctp_cmd_seq_t *cmds,
sctp_association_t *asoc,
struct sctp_transport *t)
{
/* Save the TSN away for comparison when we receive CWR */
asoc->last_ecne_tsn = lowest_tsn;
asoc->need_ecne = 1;
/* Update the heartbeat timer. */
if (!mod_timer(&t->hb_timer, sctp_transport_timeout(t)))
sctp_transport_hold(t);
}
/* Helper function for delayed processing of SCTP ECNE chunk. */
/* RFC 2960 Appendix A
*
* RFC 2481 details a specific bit for a sender to send in
* the header of its next outbound TCP segment to indicate to
* its peer that it has reduced its congestion window. This
* is termed the CWR bit. For SCTP the same indication is made
* by including the CWR chunk. This chunk contains one data
* element, i.e. the TSN number that was sent in the ECNE chunk.
* This element represents the lowest TSN number in the datagram
* that was originally marked with the CE bit.
*/
static sctp_chunk_t *sctp_do_ecn_ecne_work(sctp_association_t *asoc,
__u32 lowest_tsn,
/* Helper function to handle the reception of an HEARTBEAT ACK. */
static void sctp_cmd_transport_on(sctp_cmd_seq_t *cmds,
sctp_association_t *asoc,
struct sctp_transport *t,
sctp_chunk_t *chunk)
{
sctp_chunk_t *repl;
sctp_sender_hb_info_t *hbinfo;
/* Our previously transmitted packet ran into some congestion
* so we should take action by reducing cwnd and ssthresh
* and then ACK our peer that we we've done so by
* sending a CWR.
/* 8.3 Upon the receipt of the HEARTBEAT ACK, the sender of the
* HEARTBEAT should clear the error counter of the destination
* transport address to which the HEARTBEAT was sent.
* The association's overall error count is also cleared.
*/
t->error_count = 0;
t->asoc->overall_error_count = 0;
/* First, try to determine if we want to actually lower
* our cwnd variables. Only lower them if the ECNE looks more
* recent than the last response.
/* Mark the destination transport address as active if it is not so
* marked.
*/
if (TSN_lt(asoc->last_cwr_tsn, lowest_tsn)) {
struct sctp_transport *transport;
if (!t->active)
sctp_assoc_control_transport(asoc, t, SCTP_TRANSPORT_UP,
SCTP_HEARTBEAT_SUCCESS);
/* Find which transport's congestion variables
* need to be adjusted.
/* The receiver of the HEARTBEAT ACK should also perform an
* RTT measurement for that destination transport address
* using the time value carried in the HEARTBEAT ACK chunk.
*/
transport = sctp_assoc_lookup_tsn(asoc, lowest_tsn);
/* Update the congestion variables. */
if (transport)
sctp_transport_lower_cwnd(transport,
SCTP_LOWER_CWND_ECNE);
asoc->last_cwr_tsn = lowest_tsn;
}
hbinfo = (sctp_sender_hb_info_t *) chunk->skb->data;
sctp_transport_update_rto(t, (jiffies - hbinfo->sent_at));
}
/* Always try to quiet the other end. In case of lost CWR,
* resend last_cwr_tsn.
/* Helper function to do a transport reset at the expiry of the hearbeat
* timer.
*/
repl = sctp_make_cwr(asoc, asoc->last_cwr_tsn, chunk);
static void sctp_cmd_transport_reset(sctp_cmd_seq_t *cmds,
sctp_association_t *asoc,
struct sctp_transport *t)
{
sctp_transport_lower_cwnd(t, SCTP_LOWER_CWND_INACTIVE);
/* If we run out of memory, it will look like a lost CWR. We'll
* get back in sync eventually.
*/
return repl;
/* Mark one strike against a transport. */
sctp_do_8_2_transport_strike(asoc, t);
}
/* Helper function to do delayed processing of ECN CWR chunk. */
static void sctp_do_ecn_cwr_work(sctp_association_t *asoc,
__u32 lowest_tsn)
/* Helper function to process the process SACK command. */
static int sctp_cmd_process_sack(sctp_cmd_seq_t *cmds,
sctp_association_t *asoc,
sctp_sackhdr_t *sackh)
{
/* Turn off ECNE getting auto-prepended to every outgoing
* packet
int err;
if (sctp_outq_sack(&asoc->outqueue, sackh)) {
/* There are no more TSNs awaiting SACK. */
err = sctp_do_sm(SCTP_EVENT_T_OTHER,
SCTP_ST_OTHER(SCTP_EVENT_NO_PENDING_TSN),
asoc->state, asoc->ep, asoc, NULL,
GFP_ATOMIC);
} else {
/* Windows may have opened, so we need
* to check if we have DATA to transmit
*/
asoc->need_ecne = 0;
err = sctp_outq_flush(&asoc->outqueue, 0);
}
return err;
}
/* This macro is to compress the text a bit... */
#define AP(v) asoc->peer.v
/* Helper function to set the timeout value for T2-SHUTDOWN timer and to set
* the transport for a shutdown chunk.
*/
static void sctp_cmd_setup_t2(sctp_cmd_seq_t *cmds, sctp_association_t *asoc,
sctp_chunk_t *chunk)
{
struct sctp_transport *t;
/* Generate SACK if necessary. We call this at the end of a packet. */
int sctp_gen_sack(sctp_association_t *asoc, int force, sctp_cmd_seq_t *commands)
t = sctp_assoc_choose_shutdown_transport(asoc);
asoc->shutdown_last_sent_to = t;
asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = t->rto;
chunk->transport = t;
}
/* Helper function to change the state of an association. */
static void sctp_cmd_new_state(sctp_cmd_seq_t *cmds, sctp_association_t *asoc,
sctp_state_t state)
{
__u32 ctsn, max_tsn_seen;
sctp_chunk_t *sack;
int error = 0;
if (force)
asoc->peer.sack_needed = 1;
struct sock *sk = asoc->base.sk;
struct sctp_opt *sp = sctp_sk(sk);
ctsn = sctp_tsnmap_get_ctsn(&asoc->peer.tsn_map);
max_tsn_seen = sctp_tsnmap_get_max_tsn_seen(&asoc->peer.tsn_map);
asoc->state = state;
asoc->state_timestamp = jiffies;
/* From 12.2 Parameters necessary per association (i.e. the TCB):
*
* Ack State : This flag indicates if the next received packet
* : is to be responded to with a SACK. ...
* : When DATA chunks are out of order, SACK's
* : are not delayed (see Section 6).
*
* [This is actually not mentioned in Section 6, but we
* implement it here anyway. --piggy]
if ((SCTP_STATE_ESTABLISHED == asoc->state) ||
(SCTP_STATE_CLOSED == asoc->state)) {
/* Wake up any processes waiting in the asoc's wait queue in
* sctp_wait_for_connect() or sctp_wait_for_sndbuf().
*/
if (max_tsn_seen != ctsn)
asoc->peer.sack_needed = 1;
if (waitqueue_active(&asoc->wait))
wake_up_interruptible(&asoc->wait);
/* From 6.2 Acknowledgement on Reception of DATA Chunks:
*
* Section 4.2 of [RFC2581] SHOULD be followed. Specifically,
* an acknowledgement SHOULD be generated for at least every
* second packet (not every second DATA chunk) received, and
* SHOULD be generated within 200 ms of the arrival of any
* unacknowledged DATA chunk. ...
/* Wake up any processes waiting in the sk's sleep queue of
* a TCP-style or UDP-style peeled-off socket in
* sctp_wait_for_accept() or sctp_wait_for_packet().
* For a UDP-style socket, the waiters are woken up by the
* notifications.
*/
if (!asoc->peer.sack_needed) {
/* We will need a SACK for the next packet. */
asoc->peer.sack_needed = 1;
goto out;
} else {
if (asoc->a_rwnd > asoc->rwnd)
asoc->a_rwnd = asoc->rwnd;
sack = sctp_make_sack(asoc);
if (!sack)
goto nomem;
asoc->peer.sack_needed = 0;
if (SCTP_SOCKET_UDP != sp->type)
sk->state_change(sk);
}
error = sctp_outq_tail(&asoc->outqueue, sack);
/* Change the sk->state of a TCP-style socket that has sucessfully
* completed a connect() call.
*/
if ((SCTP_STATE_ESTABLISHED == asoc->state) &&
(SCTP_SOCKET_TCP == sp->type) && (SCTP_SS_CLOSED == sk->state))
sk->state = SCTP_SS_ESTABLISHED;
}
/* Stop the SACK timer. */
sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_STOP,
SCTP_TO(SCTP_EVENT_TIMEOUT_SACK));
}
/* These three macros allow us to pull the debugging code out of the
* main flow of sctp_do_sm() to keep attention focused on the real
* functionality there.
*/
#define DEBUG_PRE \
SCTP_DEBUG_PRINTK("sctp_do_sm prefn: " \
"ep %p, %s, %s, asoc %p[%s], %s\n", \
ep, sctp_evttype_tbl[event_type], \
(*debug_fn)(subtype), asoc, \
sctp_state_tbl[state], state_fn->name)
out:
return error;
#define DEBUG_POST \
SCTP_DEBUG_PRINTK("sctp_do_sm postfn: " \
"asoc %p, status: %s\n", \
asoc, sctp_status_tbl[status])
nomem:
error = -ENOMEM;
return error;
}
#define DEBUG_POST_SFX \
SCTP_DEBUG_PRINTK("sctp_do_sm post sfx: error %d, asoc %p[%s]\n", \
error, asoc, \
sctp_state_tbl[(asoc && sctp_id2assoc(ep->base.sk, \
sctp_assoc2id(asoc)))?asoc->state:SCTP_STATE_CLOSED])
/* Handle a duplicate TSN. */
void sctp_do_TSNdup(sctp_association_t *asoc, sctp_chunk_t *chunk, long gap)
/*
* This is the master state machine processing function.
*
* If you want to understand all of lksctp, this is a
* good place to start.
*/
int sctp_do_sm(sctp_event_t event_type, sctp_subtype_t subtype,
sctp_state_t state,
sctp_endpoint_t *ep,
sctp_association_t *asoc,
void *event_arg,
int priority)
{
#if 0
sctp_chunk_t *sack;
sctp_cmd_seq_t commands;
sctp_sm_table_entry_t *state_fn;
sctp_disposition_t status;
int error = 0;
typedef const char *(printfn_t)(sctp_subtype_t);
/* Caution: gap < 2 * SCTP_TSN_MAP_SIZE
* so gap can be negative.
*
* --xguo
static printfn_t *table[] = {
NULL, sctp_cname, sctp_tname, sctp_oname, sctp_pname,
};
printfn_t *debug_fn __attribute__ ((unused)) = table[event_type];
/* Look up the state function, run it, and then process the
* side effects. These three steps are the heart of lksctp.
*/
state_fn = sctp_sm_lookup_event(event_type, state, subtype);
sctp_init_cmd_seq(&commands);
DEBUG_PRE;
status = (*state_fn->fn)(ep, asoc, subtype, event_arg, &commands);
DEBUG_POST;
/* Count this TSN. */
if (gap < SCTP_TSN_MAP_SIZE) {
asoc->peer.tsn_map[gap]++;
} else {
asoc->peer.tsn_map_overflow[gap - SCTP_TSN_MAP_SIZE]++;
}
error = sctp_side_effects(event_type, subtype, state,
ep, asoc, event_arg,
status, &commands,
priority);
DEBUG_POST_SFX;
/* From 6.2 Acknowledgement on Reception of DATA Chunks
*
* When a packet arrives with duplicate DATA chunk(s)
* and with no new DATA chunk(s), the endpoint MUST
* immediately send a SACK with no delay. If a packet
* arrives with duplicate DATA chunk(s) bundled with
* new DATA chunks, the endpoint MAY immediately send a
* SACK. Normally receipt of duplicate DATA chunks
* will occur when the original SACK chunk was lost and
* the peer's RTO has expired. The duplicate TSN
* number(s) SHOULD be reported in the SACK as
* duplicate.
*/
asoc->counters[SctpCounterAckState] = 2;
#endif /* 0 */
} /* sctp_do_TSNdup() */
return error;
}
#undef AP
#undef DEBUG_PRE
#undef DEBUG_POST
/* When the T3-RTX timer expires, it calls this function to create the
* relevant state machine event.
*/
void sctp_generate_t3_rtx_event(unsigned long peer)
/*****************************************************************
* This the master state function side effect processing function.
*****************************************************************/
int sctp_side_effects(sctp_event_t event_type, sctp_subtype_t subtype,
sctp_state_t state,
sctp_endpoint_t *ep,
sctp_association_t *asoc,
void *event_arg,
sctp_disposition_t status,
sctp_cmd_seq_t *commands,
int priority)
{
int error;
struct sctp_transport *transport = (struct sctp_transport *) peer;
sctp_association_t *asoc = transport->asoc;
/* Check whether a task is in the sock. */
sctp_bh_lock_sock(asoc->base.sk);
if (sock_owned_by_user(asoc->base.sk)) {
SCTP_DEBUG_PRINTK("%s:Sock is busy.\n", __FUNCTION__);
/* Try again later. */
if (!mod_timer(&transport->T3_rtx_timer, jiffies + (HZ/20)))
sctp_transport_hold(transport);
goto out_unlock;
}
/* Is this transport really dead and just waiting around for
* the timer to let go of the reference?
/* FIXME - Most of the dispositions left today would be categorized
* as "exceptional" dispositions. For those dispositions, it
* may not be proper to run through any of the commands at all.
* For example, the command interpreter might be run only with
* disposition SCTP_DISPOSITION_CONSUME.
*/
if (transport->dead)
goto out_unlock;
/* Run through the state machine. */
error = sctp_do_sm(SCTP_EVENT_T_TIMEOUT,
SCTP_ST_TIMEOUT(SCTP_EVENT_TIMEOUT_T3_RTX),
asoc->state,
asoc->ep, asoc,
transport, GFP_ATOMIC);
if (error)
asoc->base.sk->err = -error;
if (0 != (error = sctp_cmd_interpreter(event_type, subtype, state,
ep, asoc,
event_arg, status,
commands, priority)))
goto bail;
out_unlock:
sctp_bh_unlock_sock(asoc->base.sk);
sctp_transport_put(transport);
}
switch (status) {
case SCTP_DISPOSITION_DISCARD:
SCTP_DEBUG_PRINTK("Ignored sctp protocol event - state %d, "
"event_type %d, event_id %d\n",
state, event_type, subtype.chunk);
break;
/* This is a sa interface for producing timeout events. It works
* for timeouts which use the association as their parameter.
case SCTP_DISPOSITION_NOMEM:
/* We ran out of memory, so we need to discard this
* packet.
*/
static void sctp_generate_timeout_event(sctp_association_t *asoc,
sctp_event_timeout_t timeout_type)
{
int error = 0;
sctp_bh_lock_sock(asoc->base.sk);
if (sock_owned_by_user(asoc->base.sk)) {
SCTP_DEBUG_PRINTK("%s:Sock is busy: timer %d\n",
__FUNCTION__,
timeout_type);
/* BUG--we should now recover some memory, probably by
* reneging...
*/
error = -ENOMEM;
break;
/* Try again later. */
if (!mod_timer(&asoc->timers[timeout_type], jiffies + (HZ/20)))
sctp_association_hold(asoc);
goto out_unlock;
}
case SCTP_DISPOSITION_DELETE_TCB:
/* This should now be a command. */
break;
/* Is this association really dead and just waiting around for
* the timer to let go of the reference?
case SCTP_DISPOSITION_CONSUME:
case SCTP_DISPOSITION_ABORT:
/*
* We should no longer have much work to do here as the
* real work has been done as explicit commands above.
*/
if (asoc->base.dead)
goto out_unlock;
break;
/* Run through the state machine. */
error = sctp_do_sm(SCTP_EVENT_T_TIMEOUT,
SCTP_ST_TIMEOUT(timeout_type),
asoc->state, asoc->ep, asoc,
(void *)timeout_type,
GFP_ATOMIC);
case SCTP_DISPOSITION_VIOLATION:
printk(KERN_ERR "sctp protocol violation state %d "
"chunkid %d\n", state, subtype.chunk);
break;
if (error)
asoc->base.sk->err = -error;
case SCTP_DISPOSITION_NOT_IMPL:
printk(KERN_WARNING "sctp unimplemented feature in state %d, "
"event_type %d, event_id %d\n",
state, event_type, subtype.chunk);
break;
out_unlock:
sctp_bh_unlock_sock(asoc->base.sk);
sctp_association_put(asoc);
}
case SCTP_DISPOSITION_BUG:
printk(KERN_ERR "sctp bug in state %d, "
"event_type %d, event_id %d\n",
state, event_type, subtype.chunk);
BUG();
break;
void sctp_generate_t1_cookie_event(unsigned long data)
{
sctp_association_t *asoc = (sctp_association_t *) data;
sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_T1_COOKIE);
}
default:
printk(KERN_ERR "sctp impossible disposition %d "
"in state %d, event_type %d, event_id %d\n",
status, state, event_type, subtype.chunk);
BUG();
break;
};
void sctp_generate_t1_init_event(unsigned long data)
{
sctp_association_t *asoc = (sctp_association_t *) data;
sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_T1_INIT);
bail:
return error;
}
void sctp_generate_t2_shutdown_event(unsigned long data)
{
sctp_association_t *asoc = (sctp_association_t *) data;
sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_T2_SHUTDOWN);
}
/********************************************************************
* 2nd Level Abstractions
********************************************************************/
void sctp_generate_t5_shutdown_guard_event(unsigned long data)
/* This is the side-effect interpreter. */
int sctp_cmd_interpreter(sctp_event_t event_type, sctp_subtype_t subtype,
sctp_state_t state, sctp_endpoint_t *ep,
sctp_association_t *asoc, void *event_arg,
sctp_disposition_t status, sctp_cmd_seq_t *commands,
int priority)
{
sctp_association_t *asoc = (sctp_association_t *)data;
sctp_generate_timeout_event(asoc,
SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD);
} /* sctp_generate_t5_shutdown_guard_event() */
int error = 0;
int force;
sctp_cmd_t *cmd;
sctp_chunk_t *new_obj;
sctp_chunk_t *chunk = NULL;
struct sctp_packet *packet;
struct list_head *pos;
struct timer_list *timer;
unsigned long timeout;
struct sctp_transport *t;
sctp_sackhdr_t sackh;
void sctp_generate_autoclose_event(unsigned long data)
{
sctp_association_t *asoc = (sctp_association_t *) data;
sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_AUTOCLOSE);
}
if(SCTP_EVENT_T_TIMEOUT != event_type)
chunk = (sctp_chunk_t *) event_arg;
/* Generate a heart beat event. If the sock is busy, reschedule. Make
* sure that the transport is still valid.
/* Note: This whole file is a huge candidate for rework.
* For example, each command could either have its own handler, so
* the loop would look like:
* while (cmds)
* cmd->handle(x, y, z)
* --jgrimm
*/
void sctp_generate_heartbeat_event(unsigned long data)
{
int error = 0;
struct sctp_transport *transport = (struct sctp_transport *) data;
sctp_association_t *asoc = transport->asoc;
while (NULL != (cmd = sctp_next_cmd(commands))) {
switch (cmd->verb) {
case SCTP_CMD_NOP:
/* Do nothing. */
break;
sctp_bh_lock_sock(asoc->base.sk);
if (sock_owned_by_user(asoc->base.sk)) {
SCTP_DEBUG_PRINTK("%s:Sock is busy.\n", __FUNCTION__);
case SCTP_CMD_NEW_ASOC:
/* Register a new association. */
asoc = cmd->obj.ptr;
/* Register with the endpoint. */
sctp_endpoint_add_asoc(ep, asoc);
sctp_hash_established(asoc);
break;
/* Try again later. */
if (!mod_timer(&transport->hb_timer, jiffies + (HZ/20)))
sctp_transport_hold(transport);
goto out_unlock;
}
case SCTP_CMD_UPDATE_ASSOC:
sctp_assoc_update(asoc, cmd->obj.ptr);
break;
/* Is this structure just waiting around for us to actually
* get destroyed?
*/
if (transport->dead)
goto out_unlock;
case SCTP_CMD_PURGE_OUTQUEUE:
sctp_outq_teardown(&asoc->outqueue);
break;
error = sctp_do_sm(SCTP_EVENT_T_TIMEOUT,
SCTP_ST_TIMEOUT(SCTP_EVENT_TIMEOUT_HEARTBEAT),
asoc->state,
asoc->ep, asoc,
transport, GFP_ATOMIC);
case SCTP_CMD_DELETE_TCB:
/* Delete the current association. */
sctp_unhash_established(asoc);
sctp_association_free(asoc);
asoc = NULL;
break;
case SCTP_CMD_NEW_STATE:
/* Enter a new state. */
sctp_cmd_new_state(commands, asoc, cmd->obj.state);
break;
if (error)
asoc->base.sk->err = -error;
case SCTP_CMD_REPORT_TSN:
/* Record the arrival of a TSN. */
sctp_tsnmap_mark(&asoc->peer.tsn_map, cmd->obj.u32);
break;
out_unlock:
sctp_bh_unlock_sock(asoc->base.sk);
sctp_transport_put(transport);
}
case SCTP_CMD_GEN_SACK:
/* Generate a Selective ACK.
* The argument tells us whether to just count
* the packet and MAYBE generate a SACK, or
* force a SACK out.
*/
force = cmd->obj.i32;
error = sctp_gen_sack(asoc, force, commands);
break;
/* Inject a SACK Timeout event into the state machine. */
void sctp_generate_sack_event(unsigned long data)
{
sctp_association_t *asoc = (sctp_association_t *) data;
sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_SACK);
}
case SCTP_CMD_PROCESS_SACK:
/* Process an inbound SACK. */
error = sctp_cmd_process_sack(commands, asoc,
cmd->obj.ptr);
break;
sctp_timer_event_t *sctp_timer_events[SCTP_NUM_TIMEOUT_TYPES] = {
NULL,
sctp_generate_t1_cookie_event,
sctp_generate_t1_init_event,
sctp_generate_t2_shutdown_event,
NULL,
sctp_generate_t5_shutdown_guard_event,
sctp_generate_heartbeat_event,
sctp_generate_sack_event,
sctp_generate_autoclose_event,
};
case SCTP_CMD_GEN_INIT_ACK:
/* Generate an INIT ACK chunk. */
new_obj = sctp_make_init_ack(asoc, chunk, GFP_ATOMIC,
0);
if (!new_obj)
goto nomem;
/********************************************************************
* 3rd Level Abstractions
********************************************************************/
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY,
SCTP_CHUNK(new_obj));
break;
/* RFC 2960 8.2 Path Failure Detection
*
* When its peer endpoint is multi-homed, an endpoint should keep a
* error counter for each of the destination transport addresses of the
* peer endpoint.
*
* Each time the T3-rtx timer expires on any address, or when a
* HEARTBEAT sent to an idle address is not acknowledged within a RTO,
* the error counter of that destination address will be incremented.
* When the value in the error counter exceeds the protocol parameter
* 'Path.Max.Retrans' of that destination address, the endpoint should
* mark the destination transport address as inactive, and a
* notification SHOULD be sent to the upper layer.
*
*/
static void sctp_do_8_2_transport_strike(sctp_association_t *asoc,
struct sctp_transport *transport)
{
/* The check for association's overall error counter exceeding the
* threshold is done in the state function.
case SCTP_CMD_PEER_INIT:
/* Process a unified INIT from the peer.
* Note: Only used during INIT-ACK processing. If
* there is an error just return to the outter
* layer which will bail.
*/
asoc->overall_error_count++;
error = sctp_cmd_process_init(commands, asoc, chunk,
cmd->obj.ptr, priority);
break;
if (transport->active &&
(transport->error_count++ >= transport->error_threshold)) {
SCTP_DEBUG_PRINTK("transport_strike: transport "
"IP:%d.%d.%d.%d failed.\n",
NIPQUAD(transport->ipaddr.v4.sin_addr));
sctp_assoc_control_transport(asoc, transport,
SCTP_TRANSPORT_DOWN,
SCTP_FAILED_THRESHOLD);
case SCTP_CMD_GEN_COOKIE_ECHO:
/* Generate a COOKIE ECHO chunk. */
new_obj = sctp_make_cookie_echo(asoc, chunk);
if (!new_obj) {
if (cmd->obj.ptr)
sctp_free_chunk(cmd->obj.ptr);
goto nomem;
}
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY,
SCTP_CHUNK(new_obj));
/* E2) For the destination address for which the timer
* expires, set RTO <- RTO * 2 ("back off the timer"). The
* maximum value discussed in rule C7 above (RTO.max) may be
* used to provide an upper bound to this doubling operation.
/* If there is an ERROR chunk to be sent along with
* the COOKIE_ECHO, send it, too.
*/
transport->rto = min((transport->rto * 2), transport->asoc->rto_max);
}
/* Worker routine to handle INIT command failure. */
static void sctp_cmd_init_failed(sctp_cmd_seq_t *commands,
sctp_association_t *asoc)
{
struct sctp_ulpevent *event;
if (cmd->obj.ptr)
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY,
SCTP_CHUNK(cmd->obj.ptr));
break;
event = sctp_ulpevent_make_assoc_change(asoc,
0,
SCTP_CANT_STR_ASSOC,
0, 0, 0,
GFP_ATOMIC);
case SCTP_CMD_GEN_SHUTDOWN:
/* Generate SHUTDOWN when in SHUTDOWN_SENT state.
* Reset error counts.
*/
asoc->overall_error_count = 0;
if (event)
sctp_add_cmd_sf(commands, SCTP_CMD_EVENT_ULP,
SCTP_ULPEVENT(event));
/* Generate a SHUTDOWN chunk. */
new_obj = sctp_make_shutdown(asoc);
if (!new_obj)
goto nomem;
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY,
SCTP_CHUNK(new_obj));
break;
/* FIXME: We need to handle data possibly either
* sent via COOKIE-ECHO bundling or just waiting in
* the transmit queue, if the user has enabled
* SEND_FAILED notifications.
*/
sctp_add_cmd_sf(commands, SCTP_CMD_DELETE_TCB, SCTP_NULL());
}
case SCTP_CMD_CHUNK_ULP:
/* Send a chunk to the sockets layer. */
SCTP_DEBUG_PRINTK("sm_sideff: %s %p, %s %p.\n",
"chunk_up:", cmd->obj.ptr,
"ulpq:", &asoc->ulpq);
sctp_ulpq_tail_data(&asoc->ulpq, cmd->obj.ptr,
GFP_ATOMIC);
break;
/* Worker routine to handle SCTP_CMD_ASSOC_FAILED. */
static void sctp_cmd_assoc_failed(sctp_cmd_seq_t *commands,
sctp_association_t *asoc,
sctp_event_t event_type,
sctp_subtype_t subtype,
sctp_chunk_t *chunk)
{
struct sctp_ulpevent *event;
__u16 error = 0;
case SCTP_CMD_EVENT_ULP:
/* Send a notification to the sockets layer. */
SCTP_DEBUG_PRINTK("sm_sideff: %s %p, %s %p.\n",
"event_up:",cmd->obj.ptr,
"ulpq:",&asoc->ulpq);
sctp_ulpq_tail_event(&asoc->ulpq, cmd->obj.ptr);
break;
switch(event_type) {
case SCTP_EVENT_T_PRIMITIVE:
if (SCTP_PRIMITIVE_ABORT == subtype.primitive)
error = SCTP_ERROR_USER_ABORT;
case SCTP_CMD_REPLY:
/* Send a chunk to our peer. */
error = sctp_outq_tail(&asoc->outqueue,
cmd->obj.ptr);
break;
case SCTP_EVENT_T_CHUNK:
if (chunk && (SCTP_CID_ABORT == chunk->chunk_hdr->type) &&
(ntohs(chunk->chunk_hdr->length) >=
(sizeof(struct sctp_chunkhdr) +
sizeof(struct sctp_errhdr)))) {
error = ((sctp_errhdr_t *)chunk->skb->data)->cause;
}
case SCTP_CMD_SEND_PKT:
/* Send a full packet to our peer. */
packet = cmd->obj.ptr;
sctp_packet_transmit(packet);
sctp_ootb_pkt_free(packet);
break;
default:
case SCTP_CMD_RETRAN:
/* Mark a transport for retransmission. */
sctp_retransmit(&asoc->outqueue, cmd->obj.transport,
SCTP_RTXR_T3_RTX);
break;
}
/* Cancel any partial delivery in progress. */
sctp_ulpq_abort_pd(&asoc->ulpq, GFP_ATOMIC);
case SCTP_CMD_TRANSMIT:
/* Kick start transmission. */
error = sctp_outq_flush(&asoc->outqueue, 0);
break;
event = sctp_ulpevent_make_assoc_change(asoc, 0, SCTP_COMM_LOST,
error, 0, 0, GFP_ATOMIC);
if (event)
sctp_add_cmd_sf(commands, SCTP_CMD_EVENT_ULP,
SCTP_ULPEVENT(event));
case SCTP_CMD_ECN_CE:
/* Do delayed CE processing. */
sctp_do_ecn_ce_work(asoc, cmd->obj.u32);
break;
sctp_add_cmd_sf(commands, SCTP_CMD_NEW_STATE,
SCTP_STATE(SCTP_STATE_CLOSED));
case SCTP_CMD_ECN_ECNE:
/* Do delayed ECNE processing. */
new_obj = sctp_do_ecn_ecne_work(asoc, cmd->obj.u32,
chunk);
if (new_obj)
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY,
SCTP_CHUNK(new_obj));
break;
/* FIXME: We need to handle data that could not be sent or was not
* acked, if the user has enabled SEND_FAILED notifications.
*/
sctp_add_cmd_sf(commands, SCTP_CMD_DELETE_TCB, SCTP_NULL());
}
case SCTP_CMD_ECN_CWR:
/* Do delayed CWR processing. */
sctp_do_ecn_cwr_work(asoc, cmd->obj.u32);
break;
/* Process an init chunk (may be real INIT/INIT-ACK or an embedded INIT
* inside the cookie. In reality, this is only used for INIT-ACK processing
* since all other cases use "temporary" associations and can do all
* their work in statefuns directly.
*/
static int sctp_cmd_process_init(sctp_cmd_seq_t *commands,
sctp_association_t *asoc,
sctp_chunk_t *chunk,
sctp_init_chunk_t *peer_init,
int priority)
{
int error;
case SCTP_CMD_SETUP_T2:
sctp_cmd_setup_t2(commands, asoc, cmd->obj.ptr);
break;
/* We only process the init as a sideeffect in a single
* case. This is when we process the INIT-ACK. If we
* fail during INIT processing (due to malloc problems),
* just return the error and stop processing the stack.
*/
case SCTP_CMD_TIMER_START:
timer = &asoc->timers[cmd->obj.to];
timeout = asoc->timeouts[cmd->obj.to];
if (!timeout)
BUG();
if (!sctp_process_init(asoc, chunk->chunk_hdr->type,
sctp_source(chunk), peer_init,
priority))
error = -ENOMEM;
else
error = 0;
timer->expires = jiffies + timeout;
sctp_association_hold(asoc);
add_timer(timer);
break;
return error;
}
case SCTP_CMD_TIMER_RESTART:
timer = &asoc->timers[cmd->obj.to];
timeout = asoc->timeouts[cmd->obj.to];
if (!mod_timer(timer, jiffies + timeout))
sctp_association_hold(asoc);
break;
/* Helper function to break out starting up of heartbeat timers. */
static void sctp_cmd_hb_timers_start(sctp_cmd_seq_t *cmds,
sctp_association_t *asoc)
{
struct sctp_transport *t;
struct list_head *pos;
case SCTP_CMD_TIMER_STOP:
timer = &asoc->timers[cmd->obj.to];
if (timer_pending(timer) && del_timer(timer))
sctp_association_put(asoc);
break;
/* Start a heartbeat timer for each transport on the association.
* hold a reference on the transport to make sure none of
* the needed data structures go away.
case SCTP_CMD_INIT_RESTART:
/* Do the needed accounting and updates
* associated with restarting an initialization
* timer.
*/
list_for_each(pos, &asoc->peer.transport_addr_list) {
t = list_entry(pos, struct sctp_transport, transports);
if (!mod_timer(&t->hb_timer, sctp_transport_timeout(t)))
sctp_transport_hold(t);
asoc->counters[SCTP_COUNTER_INIT_ERROR]++;
asoc->timeouts[cmd->obj.to] *= 2;
if (asoc->timeouts[cmd->obj.to] >
asoc->max_init_timeo) {
asoc->timeouts[cmd->obj.to] =
asoc->max_init_timeo;
}
}
static void sctp_cmd_hb_timers_stop(sctp_cmd_seq_t *cmds,
sctp_association_t *asoc)
{
struct sctp_transport *t;
struct list_head *pos;
/* Stop all heartbeat timers. */
/* If we've sent any data bundled with
* COOKIE-ECHO we need to resend.
*/
list_for_each(pos, &asoc->peer.transport_addr_list) {
t = list_entry(pos, struct sctp_transport, transports);
if (del_timer(&t->hb_timer))
sctp_transport_put(t);
t = list_entry(pos, struct sctp_transport,
transports);
sctp_retransmit_mark(&asoc->outqueue, t, 0);
}
}
/* Helper function to update the heartbeat timer. */
static void sctp_cmd_hb_timer_update(sctp_cmd_seq_t *cmds,
sctp_association_t *asoc,
struct sctp_transport *t)
{
/* Update the heartbeat timer. */
if (!mod_timer(&t->hb_timer, sctp_transport_timeout(t)))
sctp_transport_hold(t);
}
sctp_add_cmd_sf(commands,
SCTP_CMD_TIMER_RESTART,
SCTP_TO(cmd->obj.to));
break;
/* Helper function to handle the reception of an HEARTBEAT ACK. */
static void sctp_cmd_transport_on(sctp_cmd_seq_t *cmds,
sctp_association_t *asoc,
struct sctp_transport *t,
sctp_chunk_t *chunk)
{
sctp_sender_hb_info_t *hbinfo;
case SCTP_CMD_INIT_FAILED:
sctp_cmd_init_failed(commands, asoc);
break;
/* 8.3 Upon the receipt of the HEARTBEAT ACK, the sender of the
* HEARTBEAT should clear the error counter of the destination
* transport address to which the HEARTBEAT was sent.
* The association's overall error count is also cleared.
*/
t->error_count = 0;
t->asoc->overall_error_count = 0;
case SCTP_CMD_ASSOC_FAILED:
sctp_cmd_assoc_failed(commands, asoc, event_type,
subtype, chunk);
break;
/* Mark the destination transport address as active if it is not so
* marked.
*/
if (!t->active)
sctp_assoc_control_transport(asoc, t, SCTP_TRANSPORT_UP,
SCTP_HEARTBEAT_SUCCESS);
case SCTP_CMD_COUNTER_INC:
asoc->counters[cmd->obj.counter]++;
break;
/* The receiver of the HEARTBEAT ACK should also perform an
* RTT measurement for that destination transport address
* using the time value carried in the HEARTBEAT ACK chunk.
*/
hbinfo = (sctp_sender_hb_info_t *) chunk->skb->data;
sctp_transport_update_rto(t, (jiffies - hbinfo->sent_at));
}
case SCTP_CMD_COUNTER_RESET:
asoc->counters[cmd->obj.counter] = 0;
break;
/* Helper function to do a transport reset at the expiry of the hearbeat
* timer.
*/
static void sctp_cmd_transport_reset(sctp_cmd_seq_t *cmds,
sctp_association_t *asoc,
struct sctp_transport *t)
{
sctp_transport_lower_cwnd(t, SCTP_LOWER_CWND_INACTIVE);
case SCTP_CMD_REPORT_DUP:
sctp_tsnmap_mark_dup(&asoc->peer.tsn_map,
cmd->obj.u32);
break;
case SCTP_CMD_REPORT_BAD_TAG:
SCTP_DEBUG_PRINTK("vtag mismatch!\n");
break;
case SCTP_CMD_STRIKE:
/* Mark one strike against a transport. */
sctp_do_8_2_transport_strike(asoc, t);
}
sctp_do_8_2_transport_strike(asoc, cmd->obj.transport);
break;
/* Helper function to process the process SACK command. */
static int sctp_cmd_process_sack(sctp_cmd_seq_t *cmds,
sctp_association_t *asoc,
sctp_sackhdr_t *sackh)
{
int err;
case SCTP_CMD_TRANSPORT_RESET:
t = cmd->obj.transport;
sctp_cmd_transport_reset(commands, asoc, t);
break;
if (sctp_outq_sack(&asoc->outqueue, sackh)) {
/* There are no more TSNs awaiting SACK. */
err = sctp_do_sm(SCTP_EVENT_T_OTHER,
SCTP_ST_OTHER(SCTP_EVENT_NO_PENDING_TSN),
asoc->state, asoc->ep, asoc, NULL,
GFP_ATOMIC);
} else {
/* Windows may have opened, so we need
* to check if we have DATA to transmit
*/
err = sctp_outq_flush(&asoc->outqueue, 0);
}
case SCTP_CMD_TRANSPORT_ON:
t = cmd->obj.transport;
sctp_cmd_transport_on(commands, asoc, t, chunk);
break;
return err;
}
case SCTP_CMD_HB_TIMERS_START:
sctp_cmd_hb_timers_start(commands, asoc);
break;
/* Helper function to set the timeout value for T2-SHUTDOWN timer and to set
* the transport for a shutdown chunk.
*/
static void sctp_cmd_setup_t2(sctp_cmd_seq_t *cmds, sctp_association_t *asoc,
sctp_chunk_t *chunk)
{
struct sctp_transport *t;
case SCTP_CMD_HB_TIMER_UPDATE:
t = cmd->obj.transport;
sctp_cmd_hb_timer_update(commands, asoc, t);
break;
t = sctp_assoc_choose_shutdown_transport(asoc);
asoc->shutdown_last_sent_to = t;
asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = t->rto;
chunk->transport = t;
}
case SCTP_CMD_HB_TIMERS_STOP:
sctp_cmd_hb_timers_stop(commands, asoc);
break;
/* Helper function to change the state of an association. */
static void sctp_cmd_new_state(sctp_cmd_seq_t *cmds, sctp_association_t *asoc,
sctp_state_t state)
{
case SCTP_CMD_REPORT_ERROR:
error = cmd->obj.error;
break;
struct sock *sk = asoc->base.sk;
struct sctp_opt *sp = sctp_sk(sk);
case SCTP_CMD_PROCESS_CTSN:
/* Dummy up a SACK for processing. */
sackh.cum_tsn_ack = cmd->obj.u32;
sackh.a_rwnd = 0;
sackh.num_gap_ack_blocks = 0;
sackh.num_dup_tsns = 0;
sctp_add_cmd_sf(commands, SCTP_CMD_PROCESS_SACK,
SCTP_SACKH(&sackh));
break;
asoc->state = state;
asoc->state_timestamp = jiffies;
case SCTP_CMD_DISCARD_PACKET:
/* We need to discard the whole packet. */
chunk->pdiscard = 1;
break;
if ((SCTP_STATE_ESTABLISHED == asoc->state) ||
(SCTP_STATE_CLOSED == asoc->state)) {
/* Wake up any processes waiting in the asoc's wait queue in
* sctp_wait_for_connect() or sctp_wait_for_sndbuf().
*/
if (waitqueue_active(&asoc->wait))
wake_up_interruptible(&asoc->wait);
case SCTP_CMD_RTO_PENDING:
t = cmd->obj.transport;
t->rto_pending = 1;
break;
/* Wake up any processes waiting in the sk's sleep queue of
* a TCP-style or UDP-style peeled-off socket in
* sctp_wait_for_accept() or sctp_wait_for_packet().
* For a UDP-style socket, the waiters are woken up by the
* notifications.
*/
if (SCTP_SOCKET_UDP != sp->type)
sk->state_change(sk);
case SCTP_CMD_PART_DELIVER:
sctp_ulpq_partial_delivery(&asoc->ulpq, cmd->obj.ptr,
GFP_ATOMIC);
break;
case SCTP_CMD_RENEGE:
sctp_ulpq_renege(&asoc->ulpq, cmd->obj.ptr,
GFP_ATOMIC);
break;
default:
printk(KERN_WARNING "Impossible command: %u, %p\n",
cmd->verb, cmd->obj.ptr);
break;
};
if (error)
return error;
}
/* Change the sk->state of a TCP-style socket that has sucessfully
* completed a connect() call.
*/
if ((SCTP_STATE_ESTABLISHED == asoc->state) &&
(SCTP_SOCKET_TCP == sp->type) && (SCTP_SS_CLOSED == sk->state))
sk->state = SCTP_SS_ESTABLISHED;
return error;
nomem:
error = -ENOMEM;
return error;
}
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment