Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
L
linux
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
Analytics
Analytics
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Commits
Issue Boards
Open sidebar
nexedi
linux
Commits
98cd085e
Commit
98cd085e
authored
Jul 04, 2017
by
Vinod Koul
Browse files
Options
Browse Files
Download
Plain Diff
Merge branch 'topic/pl08x' into for-linus
parents
70ef9af7
fcc78541
Changes
9
Hide whitespace changes
Inline
Side-by-side
Showing
9 changed files
with
905 additions
and
276 deletions
+905
-276
Documentation/devicetree/bindings/dma/arm-pl08x.txt
Documentation/devicetree/bindings/dma/arm-pl08x.txt
+7
-2
arch/arm/mach-lpc32xx/phy3250.c
arch/arm/mach-lpc32xx/phy3250.c
+3
-0
arch/arm/mach-s3c64xx/pl080.c
arch/arm/mach-s3c64xx/pl080.c
+8
-20
arch/arm/mach-spear/spear3xx.c
arch/arm/mach-spear/spear3xx.c
+4
-10
arch/arm/mach-spear/spear6xx.c
arch/arm/mach-spear/spear6xx.c
+4
-10
drivers/dma/Kconfig
drivers/dma/Kconfig
+4
-2
drivers/dma/amba-pl08x.c
drivers/dma/amba-pl08x.c
+755
-215
include/linux/amba/pl080.h
include/linux/amba/pl080.h
+94
-13
include/linux/amba/pl08x.h
include/linux/amba/pl08x.h
+26
-4
No files found.
Documentation/devicetree/bindings/dma/arm-pl08x.txt
View file @
98cd085e
...
...
@@ -3,6 +3,11 @@
Required properties:
- compatible: "arm,pl080", "arm,primecell";
"arm,pl081", "arm,primecell";
"faraday,ftdmac020", "arm,primecell"
- arm,primecell-periphid: on the FTDMAC020 the primecell ID is not hard-coded
in the hardware and must be specified here as <0x0003b080>. This number
follows the PrimeCell standard numbering using the JEP106 vendor code 0x38
for Faraday Technology.
- reg: Address range of the PL08x registers
- interrupt: The PL08x interrupt number
- clocks: The clock running the IP core clock
...
...
@@ -20,8 +25,8 @@ Optional properties:
- dma-requests: contains the total number of DMA requests supported by the DMAC
- memcpy-burst-size: the size of the bursts for memcpy: 1, 4, 8, 16, 32
64, 128 or 256 bytes are legal values
- memcpy-bus-width: the bus width used for memcpy: 8, 16 or 32 are legal
values
- memcpy-bus-width: the bus width used for memcpy
in bits
: 8, 16 or 32 are legal
values
, the Faraday FTDMAC020 can also accept 64 bits
Clients
Required properties:
...
...
arch/arm/mach-lpc32xx/phy3250.c
View file @
98cd085e
...
...
@@ -137,6 +137,9 @@ static void pl08x_put_signal(const struct pl08x_channel_data *cd, int ch)
}
static
struct
pl08x_platform_data
pl08x_pd
=
{
/* Some reasonable memcpy defaults */
.
memcpy_burst_size
=
PL08X_BURST_SZ_256
,
.
memcpy_bus_width
=
PL08X_BUS_WIDTH_32_BITS
,
.
slave_channels
=
&
pl08x_slave_channels
[
0
],
.
num_slave_channels
=
ARRAY_SIZE
(
pl08x_slave_channels
),
.
get_xfer_signal
=
pl08x_get_signal
,
...
...
arch/arm/mach-s3c64xx/pl080.c
View file @
98cd085e
...
...
@@ -137,16 +137,10 @@ static const struct dma_slave_map s3c64xx_dma0_slave_map[] = {
};
struct
pl08x_platform_data
s3c64xx_dma0_plat_data
=
{
.
memcpy_channel
=
{
.
bus_id
=
"memcpy"
,
.
cctl_memcpy
=
(
PL080_BSIZE_4
<<
PL080_CONTROL_SB_SIZE_SHIFT
|
PL080_BSIZE_4
<<
PL080_CONTROL_DB_SIZE_SHIFT
|
PL080_WIDTH_32BIT
<<
PL080_CONTROL_SWIDTH_SHIFT
|
PL080_WIDTH_32BIT
<<
PL080_CONTROL_DWIDTH_SHIFT
|
PL080_CONTROL_PROT_BUFF
|
PL080_CONTROL_PROT_CACHE
|
PL080_CONTROL_PROT_SYS
),
},
.
memcpy_burst_size
=
PL08X_BURST_SZ_4
,
.
memcpy_bus_width
=
PL08X_BUS_WIDTH_32_BITS
,
.
memcpy_prot_buff
=
true
,
.
memcpy_prot_cache
=
true
,
.
lli_buses
=
PL08X_AHB1
,
.
mem_buses
=
PL08X_AHB1
,
.
get_xfer_signal
=
pl08x_get_xfer_signal
,
...
...
@@ -238,16 +232,10 @@ static const struct dma_slave_map s3c64xx_dma1_slave_map[] = {
};
struct
pl08x_platform_data
s3c64xx_dma1_plat_data
=
{
.
memcpy_channel
=
{
.
bus_id
=
"memcpy"
,
.
cctl_memcpy
=
(
PL080_BSIZE_4
<<
PL080_CONTROL_SB_SIZE_SHIFT
|
PL080_BSIZE_4
<<
PL080_CONTROL_DB_SIZE_SHIFT
|
PL080_WIDTH_32BIT
<<
PL080_CONTROL_SWIDTH_SHIFT
|
PL080_WIDTH_32BIT
<<
PL080_CONTROL_DWIDTH_SHIFT
|
PL080_CONTROL_PROT_BUFF
|
PL080_CONTROL_PROT_CACHE
|
PL080_CONTROL_PROT_SYS
),
},
.
memcpy_burst_size
=
PL08X_BURST_SZ_4
,
.
memcpy_bus_width
=
PL08X_BUS_WIDTH_32_BITS
,
.
memcpy_prot_buff
=
true
,
.
memcpy_prot_cache
=
true
,
.
lli_buses
=
PL08X_AHB1
,
.
mem_buses
=
PL08X_AHB1
,
.
get_xfer_signal
=
pl08x_get_xfer_signal
,
...
...
arch/arm/mach-spear/spear3xx.c
View file @
98cd085e
...
...
@@ -44,16 +44,10 @@ struct pl022_ssp_controller pl022_plat_data = {
/* dmac device registration */
struct
pl08x_platform_data
pl080_plat_data
=
{
.
memcpy_channel
=
{
.
bus_id
=
"memcpy"
,
.
cctl_memcpy
=
(
PL080_BSIZE_16
<<
PL080_CONTROL_SB_SIZE_SHIFT
|
\
PL080_BSIZE_16
<<
PL080_CONTROL_DB_SIZE_SHIFT
|
\
PL080_WIDTH_32BIT
<<
PL080_CONTROL_SWIDTH_SHIFT
|
\
PL080_WIDTH_32BIT
<<
PL080_CONTROL_DWIDTH_SHIFT
|
\
PL080_CONTROL_PROT_BUFF
|
PL080_CONTROL_PROT_CACHE
|
\
PL080_CONTROL_PROT_SYS
),
},
.
memcpy_burst_size
=
PL08X_BURST_SZ_16
,
.
memcpy_bus_width
=
PL08X_BUS_WIDTH_32_BITS
,
.
memcpy_prot_buff
=
true
,
.
memcpy_prot_cache
=
true
,
.
lli_buses
=
PL08X_AHB1
,
.
mem_buses
=
PL08X_AHB1
,
.
get_xfer_signal
=
pl080_get_signal
,
...
...
arch/arm/mach-spear/spear6xx.c
View file @
98cd085e
...
...
@@ -322,16 +322,10 @@ static struct pl08x_channel_data spear600_dma_info[] = {
};
static
struct
pl08x_platform_data
spear6xx_pl080_plat_data
=
{
.
memcpy_channel
=
{
.
bus_id
=
"memcpy"
,
.
cctl_memcpy
=
(
PL080_BSIZE_16
<<
PL080_CONTROL_SB_SIZE_SHIFT
|
\
PL080_BSIZE_16
<<
PL080_CONTROL_DB_SIZE_SHIFT
|
\
PL080_WIDTH_32BIT
<<
PL080_CONTROL_SWIDTH_SHIFT
|
\
PL080_WIDTH_32BIT
<<
PL080_CONTROL_DWIDTH_SHIFT
|
\
PL080_CONTROL_PROT_BUFF
|
PL080_CONTROL_PROT_CACHE
|
\
PL080_CONTROL_PROT_SYS
),
},
.
memcpy_burst_size
=
PL08X_BURST_SZ_16
,
.
memcpy_bus_width
=
PL08X_BUS_WIDTH_32_BITS
,
.
memcpy_prot_buff
=
true
,
.
memcpy_prot_cache
=
true
,
.
lli_buses
=
PL08X_AHB1
,
.
mem_buses
=
PL08X_AHB1
,
.
get_xfer_signal
=
pl080_get_signal
,
...
...
drivers/dma/Kconfig
View file @
98cd085e
...
...
@@ -62,8 +62,10 @@ config AMBA_PL08X
select DMA_ENGINE
select DMA_VIRTUAL_CHANNELS
help
Platform has a PL08x DMAC device
which can provide DMA engine support
Say yes if your platform has a PL08x DMAC device which can
provide DMA engine support. This includes the original ARM
PL080 and PL081, Samsungs PL080 derivative and Faraday
Technology's FTDMAC020 PL080 derivative.
config AMCC_PPC440SPE_ADMA
tristate "AMCC PPC440SPe ADMA support"
...
...
drivers/dma/amba-pl08x.c
View file @
98cd085e
/*
* Copyright (c) 2006 ARM Ltd.
* Copyright (c) 2010 ST-Ericsson SA
* Copyirght (c) 2017 Linaro Ltd.
*
* Author: Peter Pearse <peter.pearse@arm.com>
* Author: Linus Walleij <linus.walleij@
stericsson.com
>
* Author: Linus Walleij <linus.walleij@
linaro.org
>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
...
...
@@ -110,11 +111,12 @@ struct pl08x_driver_data;
* @channels: the number of channels available in this variant
* @signals: the number of request signals available from the hardware
* @dualmaster: whether this version supports dual AHB masters or not.
* @nomadik: whether the channels have Nomadik security extension bits
* that need to be checked for permission before use and some registers are
* missing
* @pl080s: whether this version is a PL080S, which has separate register and
* LLI word for transfer size.
* @nomadik: whether this variant is a ST Microelectronics Nomadik, where the
* channels have Nomadik security extension bits that need to be checked
* for permission before use and some registers are missing
* @pl080s: whether this variant is a Samsung PL080S, which has separate
* register and LLI word for transfer size.
* @ftdmac020: whether this variant is a Faraday Technology FTDMAC020
* @max_transfer_size: the maximum single element transfer size for this
* PL08x variant.
*/
...
...
@@ -125,6 +127,7 @@ struct vendor_data {
bool
dualmaster
;
bool
nomadik
;
bool
pl080s
;
bool
ftdmac020
;
u32
max_transfer_size
;
};
...
...
@@ -148,19 +151,34 @@ struct pl08x_bus_data {
* @id: physical index to this channel
* @base: memory base address for this physical channel
* @reg_config: configuration address for this physical channel
* @reg_control: control address for this physical channel
* @reg_src: transfer source address register
* @reg_dst: transfer destination address register
* @reg_lli: transfer LLI address register
* @reg_busy: if the variant has a special per-channel busy register,
* this contains a pointer to it
* @lock: a lock to use when altering an instance of this struct
* @serving: the virtual channel currently being served by this physical
* channel
* @locked: channel unavailable for the system, e.g. dedicated to secure
* world
* @ftdmac020: channel is on a FTDMAC020
* @pl080s: channel is on a PL08s
*/
struct
pl08x_phy_chan
{
unsigned
int
id
;
void
__iomem
*
base
;
void
__iomem
*
reg_config
;
void
__iomem
*
reg_control
;
void
__iomem
*
reg_src
;
void
__iomem
*
reg_dst
;
void
__iomem
*
reg_lli
;
void
__iomem
*
reg_busy
;
spinlock_t
lock
;
struct
pl08x_dma_chan
*
serving
;
bool
locked
;
bool
ftdmac020
;
bool
pl080s
;
};
/**
...
...
@@ -253,8 +271,9 @@ struct pl08x_dma_chan {
/**
* struct pl08x_driver_data - the local state holder for the PL08x
* @slave: slave engine for this instance
* @slave:
optional
slave engine for this instance
* @memcpy: memcpy engine for this instance
* @has_slave: the PL08x has a slave engine (routed signals)
* @base: virtual memory base (remapped) for the PL08x
* @adev: the corresponding AMBA (PrimeCell) bus entry
* @vd: vendor data for this PL08x variant
...
...
@@ -269,6 +288,7 @@ struct pl08x_dma_chan {
struct
pl08x_driver_data
{
struct
dma_device
slave
;
struct
dma_device
memcpy
;
bool
has_slave
;
void
__iomem
*
base
;
struct
amba_device
*
adev
;
const
struct
vendor_data
*
vd
;
...
...
@@ -360,10 +380,24 @@ static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch)
{
unsigned
int
val
;
/* If we have a special busy register, take a shortcut */
if
(
ch
->
reg_busy
)
{
val
=
readl
(
ch
->
reg_busy
);
return
!!
(
val
&
BIT
(
ch
->
id
));
}
val
=
readl
(
ch
->
reg_config
);
return
val
&
PL080_CONFIG_ACTIVE
;
}
/*
* pl08x_write_lli() - Write an LLI into the DMA controller.
*
* The PL08x derivatives support linked lists, but the first item of the
* list containing the source, destination, control word and next LLI is
* ignored. Instead the driver has to write those values directly into the
* SRC, DST, LLI and control registers. On FTDMAC020 also the SIZE
* register need to be set up for the first transfer.
*/
static
void
pl08x_write_lli
(
struct
pl08x_driver_data
*
pl08x
,
struct
pl08x_phy_chan
*
phychan
,
const
u32
*
lli
,
u32
ccfg
)
{
...
...
@@ -381,11 +415,112 @@ static void pl08x_write_lli(struct pl08x_driver_data *pl08x,
phychan
->
id
,
lli
[
PL080_LLI_SRC
],
lli
[
PL080_LLI_DST
],
lli
[
PL080_LLI_LLI
],
lli
[
PL080_LLI_CCTL
],
ccfg
);
writel_relaxed
(
lli
[
PL080_LLI_SRC
],
phychan
->
base
+
PL080_CH_SRC_ADDR
);
writel_relaxed
(
lli
[
PL080_LLI_DST
],
phychan
->
base
+
PL080_CH_DST_ADDR
);
writel_relaxed
(
lli
[
PL080_LLI_LLI
],
phychan
->
base
+
PL080_CH_LLI
);
writel_relaxed
(
lli
[
PL080_LLI_CCTL
],
phychan
->
base
+
PL080_CH_CONTROL
);
writel_relaxed
(
lli
[
PL080_LLI_SRC
],
phychan
->
reg_src
);
writel_relaxed
(
lli
[
PL080_LLI_DST
],
phychan
->
reg_dst
);
writel_relaxed
(
lli
[
PL080_LLI_LLI
],
phychan
->
reg_lli
);
/*
* The FTMAC020 has a different layout in the CCTL word of the LLI
* and the CCTL register which is split in CSR and SIZE registers.
* Convert the LLI item CCTL into the proper values to write into
* the CSR and SIZE registers.
*/
if
(
phychan
->
ftdmac020
)
{
u32
llictl
=
lli
[
PL080_LLI_CCTL
];
u32
val
=
0
;
/* Write the transfer size (12 bits) to the size register */
writel_relaxed
(
llictl
&
FTDMAC020_LLI_TRANSFER_SIZE_MASK
,
phychan
->
base
+
FTDMAC020_CH_SIZE
);
/*
* Then write the control bits 28..16 to the control register
* by shuffleing the bits around to where they are in the
* main register. The mapping is as follows:
* Bit 28: TC_MSK - mask on all except last LLI
* Bit 27..25: SRC_WIDTH
* Bit 24..22: DST_WIDTH
* Bit 21..20: SRCAD_CTRL
* Bit 19..17: DSTAD_CTRL
* Bit 17: SRC_SEL
* Bit 16: DST_SEL
*/
if
(
llictl
&
FTDMAC020_LLI_TC_MSK
)
val
|=
FTDMAC020_CH_CSR_TC_MSK
;
val
|=
((
llictl
&
FTDMAC020_LLI_SRC_WIDTH_MSK
)
>>
(
FTDMAC020_LLI_SRC_WIDTH_SHIFT
-
FTDMAC020_CH_CSR_SRC_WIDTH_SHIFT
));
val
|=
((
llictl
&
FTDMAC020_LLI_DST_WIDTH_MSK
)
>>
(
FTDMAC020_LLI_DST_WIDTH_SHIFT
-
FTDMAC020_CH_CSR_DST_WIDTH_SHIFT
));
val
|=
((
llictl
&
FTDMAC020_LLI_SRCAD_CTL_MSK
)
>>
(
FTDMAC020_LLI_SRCAD_CTL_SHIFT
-
FTDMAC020_CH_CSR_SRCAD_CTL_SHIFT
));
val
|=
((
llictl
&
FTDMAC020_LLI_DSTAD_CTL_MSK
)
>>
(
FTDMAC020_LLI_DSTAD_CTL_SHIFT
-
FTDMAC020_CH_CSR_DSTAD_CTL_SHIFT
));
if
(
llictl
&
FTDMAC020_LLI_SRC_SEL
)
val
|=
FTDMAC020_CH_CSR_SRC_SEL
;
if
(
llictl
&
FTDMAC020_LLI_DST_SEL
)
val
|=
FTDMAC020_CH_CSR_DST_SEL
;
/*
* Set up the bits that exist in the CSR but are not
* part the LLI, i.e. only gets written to the control
* register right here.
*
* FIXME: do not just handle memcpy, also handle slave DMA.
*/
switch
(
pl08x
->
pd
->
memcpy_burst_size
)
{
default:
case
PL08X_BURST_SZ_1
:
val
|=
PL080_BSIZE_1
<<
FTDMAC020_CH_CSR_SRC_SIZE_SHIFT
;
break
;
case
PL08X_BURST_SZ_4
:
val
|=
PL080_BSIZE_4
<<
FTDMAC020_CH_CSR_SRC_SIZE_SHIFT
;
break
;
case
PL08X_BURST_SZ_8
:
val
|=
PL080_BSIZE_8
<<
FTDMAC020_CH_CSR_SRC_SIZE_SHIFT
;
break
;
case
PL08X_BURST_SZ_16
:
val
|=
PL080_BSIZE_16
<<
FTDMAC020_CH_CSR_SRC_SIZE_SHIFT
;
break
;
case
PL08X_BURST_SZ_32
:
val
|=
PL080_BSIZE_32
<<
FTDMAC020_CH_CSR_SRC_SIZE_SHIFT
;
break
;
case
PL08X_BURST_SZ_64
:
val
|=
PL080_BSIZE_64
<<
FTDMAC020_CH_CSR_SRC_SIZE_SHIFT
;
break
;
case
PL08X_BURST_SZ_128
:
val
|=
PL080_BSIZE_128
<<
FTDMAC020_CH_CSR_SRC_SIZE_SHIFT
;
break
;
case
PL08X_BURST_SZ_256
:
val
|=
PL080_BSIZE_256
<<
FTDMAC020_CH_CSR_SRC_SIZE_SHIFT
;
break
;
}
/* Protection flags */
if
(
pl08x
->
pd
->
memcpy_prot_buff
)
val
|=
FTDMAC020_CH_CSR_PROT2
;
if
(
pl08x
->
pd
->
memcpy_prot_cache
)
val
|=
FTDMAC020_CH_CSR_PROT3
;
/* We are the kernel, so we are in privileged mode */
val
|=
FTDMAC020_CH_CSR_PROT1
;
writel_relaxed
(
val
,
phychan
->
reg_control
);
}
else
{
/* Bits are just identical */
writel_relaxed
(
lli
[
PL080_LLI_CCTL
],
phychan
->
reg_control
);
}
/* Second control word on the PL080s */
if
(
pl08x
->
vd
->
pl080s
)
writel_relaxed
(
lli
[
PL080S_LLI_CCTL2
],
phychan
->
base
+
PL080S_CH_CONTROL2
);
...
...
@@ -423,11 +558,25 @@ static void pl08x_start_next_txd(struct pl08x_dma_chan *plchan)
cpu_relax
();
/* Do not access config register until channel shows as inactive */
val
=
readl
(
phychan
->
reg_config
);
while
((
val
&
PL080_CONFIG_ACTIVE
)
||
(
val
&
PL080_CONFIG_ENABLE
))
if
(
phychan
->
ftdmac020
)
{
val
=
readl
(
phychan
->
reg_config
);
while
(
val
&
FTDMAC020_CH_CFG_BUSY
)
val
=
readl
(
phychan
->
reg_config
);
val
=
readl
(
phychan
->
reg_control
);
while
(
val
&
FTDMAC020_CH_CSR_EN
)
val
=
readl
(
phychan
->
reg_control
);
writel
(
val
|
FTDMAC020_CH_CSR_EN
,
phychan
->
reg_control
);
}
else
{
val
=
readl
(
phychan
->
reg_config
);
while
((
val
&
PL080_CONFIG_ACTIVE
)
||
(
val
&
PL080_CONFIG_ENABLE
))
val
=
readl
(
phychan
->
reg_config
);
writel
(
val
|
PL080_CONFIG_ENABLE
,
phychan
->
reg_config
);
writel
(
val
|
PL080_CONFIG_ENABLE
,
phychan
->
reg_config
);
}
}
/*
...
...
@@ -445,6 +594,14 @@ static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch)
u32
val
;
int
timeout
;
if
(
ch
->
ftdmac020
)
{
/* Use the enable bit on the FTDMAC020 */
val
=
readl
(
ch
->
reg_control
);
val
&=
~
FTDMAC020_CH_CSR_EN
;
writel
(
val
,
ch
->
reg_control
);
return
;
}
/* Set the HALT bit and wait for the FIFO to drain */
val
=
readl
(
ch
->
reg_config
);
val
|=
PL080_CONFIG_HALT
;
...
...
@@ -464,6 +621,14 @@ static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch)
{
u32
val
;
/* Use the enable bit on the FTDMAC020 */
if
(
ch
->
ftdmac020
)
{
val
=
readl
(
ch
->
reg_control
);
val
|=
FTDMAC020_CH_CSR_EN
;
writel
(
val
,
ch
->
reg_control
);
return
;
}
/* Clear the HALT bit */
val
=
readl
(
ch
->
reg_config
);
val
&=
~
PL080_CONFIG_HALT
;
...
...
@@ -479,25 +644,68 @@ static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch)
static
void
pl08x_terminate_phy_chan
(
struct
pl08x_driver_data
*
pl08x
,
struct
pl08x_phy_chan
*
ch
)
{
u32
val
=
readl
(
ch
->
reg_config
)
;
u32
val
;
/* The layout for the FTDMAC020 is different */
if
(
ch
->
ftdmac020
)
{
/* Disable all interrupts */
val
=
readl
(
ch
->
reg_config
);
val
|=
(
FTDMAC020_CH_CFG_INT_ABT_MASK
|
FTDMAC020_CH_CFG_INT_ERR_MASK
|
FTDMAC020_CH_CFG_INT_TC_MASK
);
writel
(
val
,
ch
->
reg_config
);
/* Abort and disable channel */
val
=
readl
(
ch
->
reg_control
);
val
&=
~
FTDMAC020_CH_CSR_EN
;
val
|=
FTDMAC020_CH_CSR_ABT
;
writel
(
val
,
ch
->
reg_control
);
/* Clear ABT and ERR interrupt flags */
writel
(
BIT
(
ch
->
id
)
|
BIT
(
ch
->
id
+
16
),
pl08x
->
base
+
PL080_ERR_CLEAR
);
writel
(
BIT
(
ch
->
id
),
pl08x
->
base
+
PL080_TC_CLEAR
);
return
;
}
val
=
readl
(
ch
->
reg_config
);
val
&=
~
(
PL080_CONFIG_ENABLE
|
PL080_CONFIG_ERR_IRQ_MASK
|
PL080_CONFIG_TC_IRQ_MASK
);
writel
(
val
,
ch
->
reg_config
);
writel
(
BIT
(
ch
->
id
),
pl08x
->
base
+
PL080_ERR_CLEAR
);
writel
(
BIT
(
ch
->
id
),
pl08x
->
base
+
PL080_TC_CLEAR
);
}
static
inline
u32
get_bytes_in_cctl
(
u32
cctl
)
static
u32
get_bytes_in_phy_channel
(
struct
pl08x_phy_chan
*
ch
)
{
/* The source width defines the number of bytes */
u32
bytes
=
cctl
&
PL080_CONTROL_TRANSFER_SIZE_MASK
;
u32
val
;
u32
bytes
;
if
(
ch
->
ftdmac020
)
{
bytes
=
readl
(
ch
->
base
+
FTDMAC020_CH_SIZE
);
cctl
&=
PL080_CONTROL_SWIDTH_MASK
;
val
=
readl
(
ch
->
reg_control
);
val
&=
FTDMAC020_CH_CSR_SRC_WIDTH_MSK
;
val
>>=
FTDMAC020_CH_CSR_SRC_WIDTH_SHIFT
;
}
else
if
(
ch
->
pl080s
)
{
val
=
readl
(
ch
->
base
+
PL080S_CH_CONTROL2
);
bytes
=
val
&
PL080S_CONTROL_TRANSFER_SIZE_MASK
;
switch
(
cctl
>>
PL080_CONTROL_SWIDTH_SHIFT
)
{
val
=
readl
(
ch
->
reg_control
);
val
&=
PL080_CONTROL_SWIDTH_MASK
;
val
>>=
PL080_CONTROL_SWIDTH_SHIFT
;
}
else
{
/* Plain PL08x */
val
=
readl
(
ch
->
reg_control
);
bytes
=
val
&
PL080_CONTROL_TRANSFER_SIZE_MASK
;
val
&=
PL080_CONTROL_SWIDTH_MASK
;
val
>>=
PL080_CONTROL_SWIDTH_SHIFT
;
}
switch
(
val
)
{
case
PL080_WIDTH_8BIT
:
break
;
case
PL080_WIDTH_16BIT
:
...
...
@@ -510,14 +718,35 @@ static inline u32 get_bytes_in_cctl(u32 cctl)
return
bytes
;
}
static
inline
u32
get_bytes_in_cctl_pl080s
(
u32
cctl
,
u32
cctl1
)
static
u32
get_bytes_in_lli
(
struct
pl08x_phy_chan
*
ch
,
const
u32
*
llis_va
)
{
/* The source width defines the number of bytes */
u32
bytes
=
cctl1
&
PL080S_CONTROL_TRANSFER_SIZE_MASK
;
u32
val
;
u32
bytes
;
if
(
ch
->
ftdmac020
)
{
val
=
llis_va
[
PL080_LLI_CCTL
];
bytes
=
val
&
FTDMAC020_LLI_TRANSFER_SIZE_MASK
;
val
=
llis_va
[
PL080_LLI_CCTL
];
val
&=
FTDMAC020_LLI_SRC_WIDTH_MSK
;
val
>>=
FTDMAC020_LLI_SRC_WIDTH_SHIFT
;
}
else
if
(
ch
->
pl080s
)
{
val
=
llis_va
[
PL080S_LLI_CCTL2
];
bytes
=
val
&
PL080S_CONTROL_TRANSFER_SIZE_MASK
;
val
=
llis_va
[
PL080_LLI_CCTL
];
val
&=
PL080_CONTROL_SWIDTH_MASK
;
val
>>=
PL080_CONTROL_SWIDTH_SHIFT
;
}
else
{
/* Plain PL08x */
val
=
llis_va
[
PL080_LLI_CCTL
];
bytes
=
val
&
PL080_CONTROL_TRANSFER_SIZE_MASK
;
cctl
&=
PL080_CONTROL_SWIDTH_MASK
;
val
&=
PL080_CONTROL_SWIDTH_MASK
;
val
>>=
PL080_CONTROL_SWIDTH_SHIFT
;
}
switch
(
cctl
>>
PL080_CONTROL_SWIDTH_SHIFT
)
{
switch
(
val
)
{
case
PL080_WIDTH_8BIT
:
break
;
case
PL080_WIDTH_16BIT
:
...
...
@@ -552,15 +781,10 @@ static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan)
* Follow the LLIs to get the number of remaining
* bytes in the currently active transaction.
*/
clli
=
readl
(
ch
->
base
+
PL080_CH_LLI
)
&
~
PL080_LLI_LM_AHB2
;
clli
=
readl
(
ch
->
reg_lli
)
&
~
PL080_LLI_LM_AHB2
;
/* First get the remaining bytes in the active transfer */
if
(
pl08x
->
vd
->
pl080s
)
bytes
=
get_bytes_in_cctl_pl080s
(
readl
(
ch
->
base
+
PL080_CH_CONTROL
),
readl
(
ch
->
base
+
PL080S_CH_CONTROL2
));
else
bytes
=
get_bytes_in_cctl
(
readl
(
ch
->
base
+
PL080_CH_CONTROL
));
bytes
=
get_bytes_in_phy_channel
(
ch
);
if
(
!
clli
)
return
bytes
;
...
...
@@ -581,12 +805,7 @@ static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan)
llis_va_limit
=
llis_va
+
llis_max_words
;
for
(;
llis_va
<
llis_va_limit
;
llis_va
+=
pl08x
->
lli_words
)
{
if
(
pl08x
->
vd
->
pl080s
)
bytes
+=
get_bytes_in_cctl_pl080s
(
llis_va
[
PL080_LLI_CCTL
],
llis_va
[
PL080S_LLI_CCTL2
]);
else
bytes
+=
get_bytes_in_cctl
(
llis_va
[
PL080_LLI_CCTL
]);
bytes
+=
get_bytes_in_lli
(
ch
,
llis_va
);
/*
* A LLI pointer going backward terminates the LLI list
...
...
@@ -705,7 +924,7 @@ static void pl08x_phy_free(struct pl08x_dma_chan *plchan)
break
;
}
if
(
!
next
)
{
if
(
!
next
&&
pl08x
->
has_slave
)
{
list_for_each_entry
(
p
,
&
pl08x
->
slave
.
channels
,
vc
.
chan
.
device_node
)
if
(
p
->
state
==
PL08X_CHAN_WAITING
)
{
next
=
p
;
...
...
@@ -746,9 +965,30 @@ static void pl08x_phy_free(struct pl08x_dma_chan *plchan)
* LLI handling
*/
static
inline
unsigned
int
pl08x_get_bytes_for_cctl
(
unsigned
int
coded
)
static
inline
unsigned
int
pl08x_get_bytes_for_lli
(
struct
pl08x_driver_data
*
pl08x
,
u32
cctl
,
bool
source
)
{
switch
(
coded
)
{
u32
val
;
if
(
pl08x
->
vd
->
ftdmac020
)
{
if
(
source
)
val
=
(
cctl
&
FTDMAC020_LLI_SRC_WIDTH_MSK
)
>>
FTDMAC020_LLI_SRC_WIDTH_SHIFT
;
else
val
=
(
cctl
&
FTDMAC020_LLI_DST_WIDTH_MSK
)
>>
FTDMAC020_LLI_DST_WIDTH_SHIFT
;
}
else
{
if
(
source
)
val
=
(
cctl
&
PL080_CONTROL_SWIDTH_MASK
)
>>
PL080_CONTROL_SWIDTH_SHIFT
;
else
val
=
(
cctl
&
PL080_CONTROL_DWIDTH_MASK
)
>>
PL080_CONTROL_DWIDTH_SHIFT
;
}
switch
(
val
)
{
case
PL080_WIDTH_8BIT
:
return
1
;
case
PL080_WIDTH_16BIT
:
...
...
@@ -762,49 +1002,106 @@ static inline unsigned int pl08x_get_bytes_for_cctl(unsigned int coded)
return
0
;
}
static
inline
u32
pl08x_cctl_bits
(
u32
cctl
,
u8
srcwidth
,
u8
dstwidth
,
size_t
tsize
)
static
inline
u32
pl08x_lli_control_bits
(
struct
pl08x_driver_data
*
pl08x
,
u32
cctl
,
u8
srcwidth
,
u8
dstwidth
,
size_t
tsize
)
{
u32
retbits
=
cctl
;
/* Remove all src, dst and transfer size bits */
retbits
&=
~
PL080_CONTROL_DWIDTH_MASK
;
retbits
&=
~
PL080_CONTROL_SWIDTH_MASK
;
retbits
&=
~
PL080_CONTROL_TRANSFER_SIZE_MASK
;
/*
* Remove all src, dst and transfer size bits, then set the
* width and size according to the parameters. The bit offsets
* are different in the FTDMAC020 so we need to accound for this.
*/
if
(
pl08x
->
vd
->
ftdmac020
)
{
retbits
&=
~
FTDMAC020_LLI_DST_WIDTH_MSK
;
retbits
&=
~
FTDMAC020_LLI_SRC_WIDTH_MSK
;
retbits
&=
~
FTDMAC020_LLI_TRANSFER_SIZE_MASK
;
switch
(
srcwidth
)
{
case
1
:
retbits
|=
PL080_WIDTH_8BIT
<<
FTDMAC020_LLI_SRC_WIDTH_SHIFT
;
break
;
case
2
:
retbits
|=
PL080_WIDTH_16BIT
<<
FTDMAC020_LLI_SRC_WIDTH_SHIFT
;
break
;
case
4
:
retbits
|=
PL080_WIDTH_32BIT
<<
FTDMAC020_LLI_SRC_WIDTH_SHIFT
;
break
;
default:
BUG
();
break
;
}
/* Then set the bits according to the parameters */
switch
(
srcwidth
)
{
case
1
:
retbits
|=
PL080_WIDTH_8BIT
<<
PL080_CONTROL_SWIDTH_SHIFT
;
break
;
case
2
:
retbits
|=
PL080_WIDTH_16BIT
<<
PL080_CONTROL_SWIDTH_SHIFT
;
break
;
case
4
:
retbits
|=
PL080_WIDTH_32BIT
<<
PL080_CONTROL_SWIDTH_SHIFT
;
break
;
default:
BUG
();
break
;
}
switch
(
dstwidth
)
{
case
1
:
retbits
|=
PL080_WIDTH_8BIT
<<
FTDMAC020_LLI_DST_WIDTH_SHIFT
;
break
;
case
2
:
retbits
|=
PL080_WIDTH_16BIT
<<
FTDMAC020_LLI_DST_WIDTH_SHIFT
;
break
;
case
4
:
retbits
|=
PL080_WIDTH_32BIT
<<
FTDMAC020_LLI_DST_WIDTH_SHIFT
;
break
;
default:
BUG
();
break
;
}
switch
(
dstwidth
)
{
case
1
:
retbits
|=
PL080_WIDTH_8BIT
<<
PL080_CONTROL_DWIDTH_SHIFT
;
break
;
case
2
:
retbits
|=
PL080_WIDTH_16BIT
<<
PL080_CONTROL_DWIDTH_SHIFT
;
break
;
case
4
:
retbits
|=
PL080_WIDTH_32BIT
<<
PL080_CONTROL_DWIDTH_SHIFT
;
break
;
default:
BUG
();
break
;
tsize
&=
FTDMAC020_LLI_TRANSFER_SIZE_MASK
;
retbits
|=
tsize
<<
FTDMAC020_LLI_TRANSFER_SIZE_SHIFT
;
}
else
{
retbits
&=
~
PL080_CONTROL_DWIDTH_MASK
;
retbits
&=
~
PL080_CONTROL_SWIDTH_MASK
;
retbits
&=
~
PL080_CONTROL_TRANSFER_SIZE_MASK
;
switch
(
srcwidth
)
{
case
1
:
retbits
|=
PL080_WIDTH_8BIT
<<
PL080_CONTROL_SWIDTH_SHIFT
;
break
;
case
2
:
retbits
|=
PL080_WIDTH_16BIT
<<
PL080_CONTROL_SWIDTH_SHIFT
;
break
;
case
4
:
retbits
|=
PL080_WIDTH_32BIT
<<
PL080_CONTROL_SWIDTH_SHIFT
;
break
;
default:
BUG
();
break
;
}
switch
(
dstwidth
)
{
case
1
:
retbits
|=
PL080_WIDTH_8BIT
<<
PL080_CONTROL_DWIDTH_SHIFT
;
break
;
case
2
:
retbits
|=
PL080_WIDTH_16BIT
<<
PL080_CONTROL_DWIDTH_SHIFT
;
break
;
case
4
:
retbits
|=
PL080_WIDTH_32BIT
<<
PL080_CONTROL_DWIDTH_SHIFT
;
break
;
default:
BUG
();
break
;
}
tsize
&=
PL080_CONTROL_TRANSFER_SIZE_MASK
;
retbits
|=
tsize
<<
PL080_CONTROL_TRANSFER_SIZE_SHIFT
;
}
tsize
&=
PL080_CONTROL_TRANSFER_SIZE_MASK
;
retbits
|=
tsize
<<
PL080_CONTROL_TRANSFER_SIZE_SHIFT
;
return
retbits
;
}
...
...
@@ -825,13 +1122,35 @@ struct pl08x_lli_build_data {
* - prefers the destination bus if both available
* - prefers bus with fixed address (i.e. peripheral)
*/
static
void
pl08x_choose_master_bus
(
struct
pl08x_lli_build_data
*
bd
,
struct
pl08x_bus_data
**
mbus
,
struct
pl08x_bus_data
**
sbus
,
u32
cctl
)
static
void
pl08x_choose_master_bus
(
struct
pl08x_driver_data
*
pl08x
,
struct
pl08x_lli_build_data
*
bd
,
struct
pl08x_bus_data
**
mbus
,
struct
pl08x_bus_data
**
sbus
,
u32
cctl
)
{
if
(
!
(
cctl
&
PL080_CONTROL_DST_INCR
))
{
bool
dst_incr
;
bool
src_incr
;
/*
* The FTDMAC020 only supports memory-to-memory transfer, so
* source and destination always increase.
*/
if
(
pl08x
->
vd
->
ftdmac020
)
{
dst_incr
=
true
;
src_incr
=
true
;
}
else
{
dst_incr
=
!!
(
cctl
&
PL080_CONTROL_DST_INCR
);
src_incr
=
!!
(
cctl
&
PL080_CONTROL_SRC_INCR
);
}
/*
* If either bus is not advancing, i.e. it is a peripheral, that
* one becomes master
*/
if
(
!
dst_incr
)
{
*
mbus
=
&
bd
->
dstbus
;
*
sbus
=
&
bd
->
srcbus
;
}
else
if
(
!
(
cctl
&
PL080_CONTROL_SRC_INCR
)
)
{
}
else
if
(
!
src_incr
)
{
*
mbus
=
&
bd
->
srcbus
;
*
sbus
=
&
bd
->
dstbus
;
}
else
{
...
...
@@ -869,10 +1188,16 @@ static void pl08x_fill_lli_for_desc(struct pl08x_driver_data *pl08x,
if
(
pl08x
->
vd
->
pl080s
)
llis_va
[
PL080S_LLI_CCTL2
]
=
cctl2
;
if
(
cctl
&
PL080_CONTROL_SRC_INCR
)
if
(
pl08x
->
vd
->
ftdmac020
)
{
/* FIXME: only memcpy so far so both increase */
bd
->
srcbus
.
addr
+=
len
;
if
(
cctl
&
PL080_CONTROL_DST_INCR
)
bd
->
dstbus
.
addr
+=
len
;
}
else
{
if
(
cctl
&
PL080_CONTROL_SRC_INCR
)
bd
->
srcbus
.
addr
+=
len
;
if
(
cctl
&
PL080_CONTROL_DST_INCR
)
bd
->
dstbus
.
addr
+=
len
;
}
BUG_ON
(
bd
->
remainder
<
len
);
...
...
@@ -883,12 +1208,12 @@ static inline void prep_byte_width_lli(struct pl08x_driver_data *pl08x,
struct
pl08x_lli_build_data
*
bd
,
u32
*
cctl
,
u32
len
,
int
num_llis
,
size_t
*
total_bytes
)
{
*
cctl
=
pl08x_
cctl_bits
(
*
cctl
,
1
,
1
,
len
);
*
cctl
=
pl08x_
lli_control_bits
(
pl08x
,
*
cctl
,
1
,
1
,
len
);
pl08x_fill_lli_for_desc
(
pl08x
,
bd
,
num_llis
,
len
,
*
cctl
,
len
);
(
*
total_bytes
)
+=
len
;
}
#if
def VERBOSE_DEBUG
#if
1
static
void
pl08x_dump_lli
(
struct
pl08x_driver_data
*
pl08x
,
const
u32
*
llis_va
,
int
num_llis
)
{
...
...
@@ -953,14 +1278,10 @@ static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
cctl
=
txd
->
cctl
;
/* Find maximum width of the source bus */
bd
.
srcbus
.
maxwidth
=
pl08x_get_bytes_for_cctl
((
cctl
&
PL080_CONTROL_SWIDTH_MASK
)
>>
PL080_CONTROL_SWIDTH_SHIFT
);
bd
.
srcbus
.
maxwidth
=
pl08x_get_bytes_for_lli
(
pl08x
,
cctl
,
true
);
/* Find maximum width of the destination bus */
bd
.
dstbus
.
maxwidth
=
pl08x_get_bytes_for_cctl
((
cctl
&
PL080_CONTROL_DWIDTH_MASK
)
>>
PL080_CONTROL_DWIDTH_SHIFT
);
bd
.
dstbus
.
maxwidth
=
pl08x_get_bytes_for_lli
(
pl08x
,
cctl
,
false
);
list_for_each_entry
(
dsg
,
&
txd
->
dsg_list
,
node
)
{
total_bytes
=
0
;
...
...
@@ -972,7 +1293,7 @@ static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
bd
.
srcbus
.
buswidth
=
bd
.
srcbus
.
maxwidth
;
bd
.
dstbus
.
buswidth
=
bd
.
dstbus
.
maxwidth
;
pl08x_choose_master_bus
(
&
bd
,
&
mbus
,
&
sbus
,
cctl
);
pl08x_choose_master_bus
(
pl08x
,
&
bd
,
&
mbus
,
&
sbus
,
cctl
);
dev_vdbg
(
&
pl08x
->
adev
->
dev
,
"src=0x%08llx%s/%u dst=0x%08llx%s/%u len=%zu
\n
"
,
...
...
@@ -1009,8 +1330,14 @@ static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
* supported. Thus, we can't have scattered addresses.
*/
if
(
!
bd
.
remainder
)
{
u32
fc
=
(
txd
->
ccfg
&
PL080_CONFIG_FLOW_CONTROL_MASK
)
>>
PL080_CONFIG_FLOW_CONTROL_SHIFT
;
u32
fc
;
/* FTDMAC020 only does memory-to-memory */
if
(
pl08x
->
vd
->
ftdmac020
)
fc
=
PL080_FLOW_MEM2MEM
;
else
fc
=
(
txd
->
ccfg
&
PL080_CONFIG_FLOW_CONTROL_MASK
)
>>
PL080_CONFIG_FLOW_CONTROL_SHIFT
;
if
(
!
((
fc
>=
PL080_FLOW_SRC2DST_DST
)
&&
(
fc
<=
PL080_FLOW_SRC2DST_SRC
)))
{
dev_err
(
&
pl08x
->
adev
->
dev
,
"%s sg len can't be zero"
,
...
...
@@ -1027,8 +1354,9 @@ static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
return
0
;
}
cctl
=
pl08x_cctl_bits
(
cctl
,
bd
.
srcbus
.
buswidth
,
bd
.
dstbus
.
buswidth
,
0
);
cctl
=
pl08x_lli_control_bits
(
pl08x
,
cctl
,
bd
.
srcbus
.
buswidth
,
bd
.
dstbus
.
buswidth
,
0
);
pl08x_fill_lli_for_desc
(
pl08x
,
&
bd
,
num_llis
++
,
0
,
cctl
,
0
);
break
;
...
...
@@ -1107,8 +1435,9 @@ static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
"size 0x%08zx (remainder 0x%08zx)
\n
"
,
__func__
,
lli_len
,
bd
.
remainder
);
cctl
=
pl08x_cctl_bits
(
cctl
,
bd
.
srcbus
.
buswidth
,
bd
.
dstbus
.
buswidth
,
tsize
);
cctl
=
pl08x_lli_control_bits
(
pl08x
,
cctl
,
bd
.
srcbus
.
buswidth
,
bd
.
dstbus
.
buswidth
,
tsize
);
pl08x_fill_lli_for_desc
(
pl08x
,
&
bd
,
num_llis
++
,
lli_len
,
cctl
,
tsize
);
total_bytes
+=
lli_len
;
...
...
@@ -1151,7 +1480,10 @@ static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
/* The final LLI terminates the LLI. */
last_lli
[
PL080_LLI_LLI
]
=
0
;
/* The final LLI element shall also fire an interrupt. */
last_lli
[
PL080_LLI_CCTL
]
|=
PL080_CONTROL_TC_IRQ_EN
;
if
(
pl08x
->
vd
->
ftdmac020
)
last_lli
[
PL080_LLI_CCTL
]
&=
~
FTDMAC020_LLI_TC_MSK
;
else
last_lli
[
PL080_LLI_CCTL
]
|=
PL080_CONTROL_TC_IRQ_EN
;
}
pl08x_dump_lli
(
pl08x
,
llis_va
,
num_llis
);
...
...
@@ -1317,14 +1649,25 @@ static const struct burst_table burst_sizes[] = {
* will be routed to each port. We try to have source and destination
* on separate ports, but always respect the allowable settings.
*/
static
u32
pl08x_select_bus
(
u8
src
,
u8
dst
)
static
u32
pl08x_select_bus
(
bool
ftdmac020
,
u8
src
,
u8
dst
)
{
u32
cctl
=
0
;
u32
dst_ahb2
;
u32
src_ahb2
;
/* The FTDMAC020 use different bits to indicate src/dst bus */
if
(
ftdmac020
)
{
dst_ahb2
=
FTDMAC020_LLI_DST_SEL
;
src_ahb2
=
FTDMAC020_LLI_SRC_SEL
;
}
else
{
dst_ahb2
=
PL080_CONTROL_DST_AHB2
;
src_ahb2
=
PL080_CONTROL_SRC_AHB2
;
}
if
(
!
(
dst
&
PL08X_AHB1
)
||
((
dst
&
PL08X_AHB2
)
&&
(
src
&
PL08X_AHB1
)))
cctl
|=
PL080_CONTROL_DST_AHB
2
;
cctl
|=
dst_ahb
2
;
if
(
!
(
src
&
PL08X_AHB1
)
||
((
src
&
PL08X_AHB2
)
&&
!
(
dst
&
PL08X_AHB2
)))
cctl
|=
PL080_CONTROL_SRC_AHB
2
;
cctl
|=
src_ahb
2
;
return
cctl
;
}
...
...
@@ -1412,14 +1755,134 @@ static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan)
{
struct
pl08x_txd
*
txd
=
kzalloc
(
sizeof
(
*
txd
),
GFP_NOWAIT
);
if
(
txd
)
{
if
(
txd
)
INIT_LIST_HEAD
(
&
txd
->
dsg_list
);
return
txd
;
}
/* Always enable error and terminal interrupts */
txd
->
ccfg
=
PL080_CONFIG_ERR_IRQ_MASK
|
PL080_CONFIG_TC_IRQ_MASK
;
static
u32
pl08x_memcpy_cctl
(
struct
pl08x_driver_data
*
pl08x
)
{
u32
cctl
=
0
;
/* Conjure cctl */
switch
(
pl08x
->
pd
->
memcpy_burst_size
)
{
default:
dev_err
(
&
pl08x
->
adev
->
dev
,
"illegal burst size for memcpy, set to 1
\n
"
);
/* Fall through */
case
PL08X_BURST_SZ_1
:
cctl
|=
PL080_BSIZE_1
<<
PL080_CONTROL_SB_SIZE_SHIFT
|
PL080_BSIZE_1
<<
PL080_CONTROL_DB_SIZE_SHIFT
;
break
;
case
PL08X_BURST_SZ_4
:
cctl
|=
PL080_BSIZE_4
<<
PL080_CONTROL_SB_SIZE_SHIFT
|
PL080_BSIZE_4
<<
PL080_CONTROL_DB_SIZE_SHIFT
;
break
;
case
PL08X_BURST_SZ_8
:
cctl
|=
PL080_BSIZE_8
<<
PL080_CONTROL_SB_SIZE_SHIFT
|
PL080_BSIZE_8
<<
PL080_CONTROL_DB_SIZE_SHIFT
;
break
;
case
PL08X_BURST_SZ_16
:
cctl
|=
PL080_BSIZE_16
<<
PL080_CONTROL_SB_SIZE_SHIFT
|
PL080_BSIZE_16
<<
PL080_CONTROL_DB_SIZE_SHIFT
;
break
;
case
PL08X_BURST_SZ_32
:
cctl
|=
PL080_BSIZE_32
<<
PL080_CONTROL_SB_SIZE_SHIFT
|
PL080_BSIZE_32
<<
PL080_CONTROL_DB_SIZE_SHIFT
;
break
;
case
PL08X_BURST_SZ_64
:
cctl
|=
PL080_BSIZE_64
<<
PL080_CONTROL_SB_SIZE_SHIFT
|
PL080_BSIZE_64
<<
PL080_CONTROL_DB_SIZE_SHIFT
;
break
;
case
PL08X_BURST_SZ_128
:
cctl
|=
PL080_BSIZE_128
<<
PL080_CONTROL_SB_SIZE_SHIFT
|
PL080_BSIZE_128
<<
PL080_CONTROL_DB_SIZE_SHIFT
;
break
;
case
PL08X_BURST_SZ_256
:
cctl
|=
PL080_BSIZE_256
<<
PL080_CONTROL_SB_SIZE_SHIFT
|
PL080_BSIZE_256
<<
PL080_CONTROL_DB_SIZE_SHIFT
;
break
;
}
return
txd
;
switch
(
pl08x
->
pd
->
memcpy_bus_width
)
{
default:
dev_err
(
&
pl08x
->
adev
->
dev
,
"illegal bus width for memcpy, set to 8 bits
\n
"
);
/* Fall through */
case
PL08X_BUS_WIDTH_8_BITS
:
cctl
|=
PL080_WIDTH_8BIT
<<
PL080_CONTROL_SWIDTH_SHIFT
|
PL080_WIDTH_8BIT
<<
PL080_CONTROL_DWIDTH_SHIFT
;
break
;
case
PL08X_BUS_WIDTH_16_BITS
:
cctl
|=
PL080_WIDTH_16BIT
<<
PL080_CONTROL_SWIDTH_SHIFT
|
PL080_WIDTH_16BIT
<<
PL080_CONTROL_DWIDTH_SHIFT
;
break
;
case
PL08X_BUS_WIDTH_32_BITS
:
cctl
|=
PL080_WIDTH_32BIT
<<
PL080_CONTROL_SWIDTH_SHIFT
|
PL080_WIDTH_32BIT
<<
PL080_CONTROL_DWIDTH_SHIFT
;
break
;
}
/* Protection flags */
if
(
pl08x
->
pd
->
memcpy_prot_buff
)
cctl
|=
PL080_CONTROL_PROT_BUFF
;
if
(
pl08x
->
pd
->
memcpy_prot_cache
)
cctl
|=
PL080_CONTROL_PROT_CACHE
;
/* We are the kernel, so we are in privileged mode */
cctl
|=
PL080_CONTROL_PROT_SYS
;
/* Both to be incremented or the code will break */
cctl
|=
PL080_CONTROL_SRC_INCR
|
PL080_CONTROL_DST_INCR
;
if
(
pl08x
->
vd
->
dualmaster
)
cctl
|=
pl08x_select_bus
(
false
,
pl08x
->
mem_buses
,
pl08x
->
mem_buses
);
return
cctl
;
}
static
u32
pl08x_ftdmac020_memcpy_cctl
(
struct
pl08x_driver_data
*
pl08x
)
{
u32
cctl
=
0
;
/* Conjure cctl */
switch
(
pl08x
->
pd
->
memcpy_bus_width
)
{
default:
dev_err
(
&
pl08x
->
adev
->
dev
,
"illegal bus width for memcpy, set to 8 bits
\n
"
);
/* Fall through */
case
PL08X_BUS_WIDTH_8_BITS
:
cctl
|=
PL080_WIDTH_8BIT
<<
FTDMAC020_LLI_SRC_WIDTH_SHIFT
|
PL080_WIDTH_8BIT
<<
FTDMAC020_LLI_DST_WIDTH_SHIFT
;
break
;
case
PL08X_BUS_WIDTH_16_BITS
:
cctl
|=
PL080_WIDTH_16BIT
<<
FTDMAC020_LLI_SRC_WIDTH_SHIFT
|
PL080_WIDTH_16BIT
<<
FTDMAC020_LLI_DST_WIDTH_SHIFT
;
break
;
case
PL08X_BUS_WIDTH_32_BITS
:
cctl
|=
PL080_WIDTH_32BIT
<<
FTDMAC020_LLI_SRC_WIDTH_SHIFT
|
PL080_WIDTH_32BIT
<<
FTDMAC020_LLI_DST_WIDTH_SHIFT
;
break
;
}
/*
* By default mask the TC IRQ on all LLIs, it will be unmasked on
* the last LLI item by other code.
*/
cctl
|=
FTDMAC020_LLI_TC_MSK
;
/*
* Both to be incremented so leave bits FTDMAC020_LLI_SRCAD_CTL
* and FTDMAC020_LLI_DSTAD_CTL as zero
*/
if
(
pl08x
->
vd
->
dualmaster
)
cctl
|=
pl08x_select_bus
(
true
,
pl08x
->
mem_buses
,
pl08x
->
mem_buses
);
return
cctl
;
}
/*
...
...
@@ -1452,18 +1915,16 @@ static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy(
dsg
->
src_addr
=
src
;
dsg
->
dst_addr
=
dest
;
dsg
->
len
=
len
;
/* Set platform data for m2m */
txd
->
ccfg
|=
PL080_FLOW_MEM2MEM
<<
PL080_CONFIG_FLOW_CONTROL_SHIFT
;
txd
->
cctl
=
pl08x
->
pd
->
memcpy_channel
.
cctl_memcpy
&
~
(
PL080_CONTROL_DST_AHB2
|
PL080_CONTROL_SRC_AHB2
);
/* Both to be incremented or the code will break */
txd
->
cctl
|=
PL080_CONTROL_SRC_INCR
|
PL080_CONTROL_DST_INCR
;
if
(
pl08x
->
vd
->
dualmaster
)
txd
->
cctl
|=
pl08x_select_bus
(
pl08x
->
mem_buses
,
pl08x
->
mem_buses
);
if
(
pl08x
->
vd
->
ftdmac020
)
{
/* Writing CCFG zero ENABLES all interrupts */
txd
->
ccfg
=
0
;
txd
->
cctl
=
pl08x_ftdmac020_memcpy_cctl
(
pl08x
);
}
else
{
txd
->
ccfg
=
PL080_CONFIG_ERR_IRQ_MASK
|
PL080_CONFIG_TC_IRQ_MASK
|
PL080_FLOW_MEM2MEM
<<
PL080_CONFIG_FLOW_CONTROL_SHIFT
;
txd
->
cctl
=
pl08x_memcpy_cctl
(
pl08x
);
}
ret
=
pl08x_fill_llis_for_desc
(
plchan
->
host
,
txd
);
if
(
!
ret
)
{
...
...
@@ -1527,7 +1988,7 @@ static struct pl08x_txd *pl08x_init_txd(
return
NULL
;
}
txd
->
cctl
=
cctl
|
pl08x_select_bus
(
src_buses
,
dst_buses
);
txd
->
cctl
=
cctl
|
pl08x_select_bus
(
false
,
src_buses
,
dst_buses
);
if
(
plchan
->
cfg
.
device_fc
)
tmp
=
(
direction
==
DMA_MEM_TO_DEV
)
?
PL080_FLOW_MEM2PER_PER
:
...
...
@@ -1536,7 +1997,9 @@ static struct pl08x_txd *pl08x_init_txd(
tmp
=
(
direction
==
DMA_MEM_TO_DEV
)
?
PL080_FLOW_MEM2PER
:
PL080_FLOW_PER2MEM
;
txd
->
ccfg
|=
tmp
<<
PL080_CONFIG_FLOW_CONTROL_SHIFT
;
txd
->
ccfg
=
PL080_CONFIG_ERR_IRQ_MASK
|
PL080_CONFIG_TC_IRQ_MASK
|
tmp
<<
PL080_CONFIG_FLOW_CONTROL_SHIFT
;
ret
=
pl08x_request_mux
(
plchan
);
if
(
ret
<
0
)
{
...
...
@@ -1813,6 +2276,11 @@ static void pl08x_ensure_on(struct pl08x_driver_data *pl08x)
/* The Nomadik variant does not have the config register */
if
(
pl08x
->
vd
->
nomadik
)
return
;
/* The FTDMAC020 variant does this in another register */
if
(
pl08x
->
vd
->
ftdmac020
)
{
writel
(
PL080_CONFIG_ENABLE
,
pl08x
->
base
+
FTDMAC020_CSR
);
return
;
}
writel
(
PL080_CONFIG_ENABLE
,
pl08x
->
base
+
PL080_CONFIG
);
}
...
...
@@ -1925,9 +2393,16 @@ static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x,
chan
->
signal
=
i
;
pl08x_dma_slave_init
(
chan
);
}
else
{
chan
->
cd
=
&
pl08x
->
pd
->
memcpy_channel
;
chan
->
cd
=
kzalloc
(
sizeof
(
*
chan
->
cd
),
GFP_KERNEL
);
if
(
!
chan
->
cd
)
{
kfree
(
chan
);
return
-
ENOMEM
;
}
chan
->
cd
->
bus_id
=
"memcpy"
;
chan
->
cd
->
periph_buses
=
pl08x
->
pd
->
mem_buses
;
chan
->
name
=
kasprintf
(
GFP_KERNEL
,
"memcpy%d"
,
i
);
if
(
!
chan
->
name
)
{
kfree
(
chan
->
cd
);
kfree
(
chan
);
return
-
ENOMEM
;
}
...
...
@@ -2009,12 +2484,15 @@ static int pl08x_debugfs_show(struct seq_file *s, void *data)
pl08x_state_str
(
chan
->
state
));
}
seq_printf
(
s
,
"
\n
PL08x virtual slave channels:
\n
"
);
seq_printf
(
s
,
"CHANNEL:
\t
STATE:
\n
"
);
seq_printf
(
s
,
"--------
\t
------
\n
"
);
list_for_each_entry
(
chan
,
&
pl08x
->
slave
.
channels
,
vc
.
chan
.
device_node
)
{
seq_printf
(
s
,
"%s
\t\t
%s
\n
"
,
chan
->
name
,
pl08x_state_str
(
chan
->
state
));
if
(
pl08x
->
has_slave
)
{
seq_printf
(
s
,
"
\n
PL08x virtual slave channels:
\n
"
);
seq_printf
(
s
,
"CHANNEL:
\t
STATE:
\n
"
);
seq_printf
(
s
,
"--------
\t
------
\n
"
);
list_for_each_entry
(
chan
,
&
pl08x
->
slave
.
channels
,
vc
.
chan
.
device_node
)
{
seq_printf
(
s
,
"%s
\t\t
%s
\n
"
,
chan
->
name
,
pl08x_state_str
(
chan
->
state
));
}
}
return
0
;
...
...
@@ -2052,6 +2530,10 @@ static struct dma_chan *pl08x_find_chan_id(struct pl08x_driver_data *pl08x,
{
struct
pl08x_dma_chan
*
chan
;
/* Trying to get a slave channel from something with no slave support */
if
(
!
pl08x
->
has_slave
)
return
NULL
;
list_for_each_entry
(
chan
,
&
pl08x
->
slave
.
channels
,
vc
.
chan
.
device_node
)
{
if
(
chan
->
signal
==
id
)
return
&
chan
->
vc
.
chan
;
...
...
@@ -2099,7 +2581,6 @@ static int pl08x_of_probe(struct amba_device *adev,
{
struct
pl08x_platform_data
*
pd
;
struct
pl08x_channel_data
*
chanp
=
NULL
;
u32
cctl_memcpy
=
0
;
u32
val
;
int
ret
;
int
i
;
...
...
@@ -2139,36 +2620,28 @@ static int pl08x_of_probe(struct amba_device *adev,
dev_err
(
&
adev
->
dev
,
"illegal burst size for memcpy, set to 1
\n
"
);
/* Fall through */
case
1
:
cctl_memcpy
|=
PL080_BSIZE_1
<<
PL080_CONTROL_SB_SIZE_SHIFT
|
PL080_BSIZE_1
<<
PL080_CONTROL_DB_SIZE_SHIFT
;
pd
->
memcpy_burst_size
=
PL08X_BURST_SZ_1
;
break
;
case
4
:
cctl_memcpy
|=
PL080_BSIZE_4
<<
PL080_CONTROL_SB_SIZE_SHIFT
|
PL080_BSIZE_4
<<
PL080_CONTROL_DB_SIZE_SHIFT
;
pd
->
memcpy_burst_size
=
PL08X_BURST_SZ_4
;
break
;
case
8
:
cctl_memcpy
|=
PL080_BSIZE_8
<<
PL080_CONTROL_SB_SIZE_SHIFT
|
PL080_BSIZE_8
<<
PL080_CONTROL_DB_SIZE_SHIFT
;
pd
->
memcpy_burst_size
=
PL08X_BURST_SZ_8
;
break
;
case
16
:
cctl_memcpy
|=
PL080_BSIZE_16
<<
PL080_CONTROL_SB_SIZE_SHIFT
|
PL080_BSIZE_16
<<
PL080_CONTROL_DB_SIZE_SHIFT
;
pd
->
memcpy_burst_size
=
PL08X_BURST_SZ_16
;
break
;
case
32
:
cctl_memcpy
|=
PL080_BSIZE_32
<<
PL080_CONTROL_SB_SIZE_SHIFT
|
PL080_BSIZE_32
<<
PL080_CONTROL_DB_SIZE_SHIFT
;
pd
->
memcpy_burst_size
=
PL08X_BURST_SZ_32
;
break
;
case
64
:
cctl_memcpy
|=
PL080_BSIZE_64
<<
PL080_CONTROL_SB_SIZE_SHIFT
|
PL080_BSIZE_64
<<
PL080_CONTROL_DB_SIZE_SHIFT
;
pd
->
memcpy_burst_size
=
PL08X_BURST_SZ_64
;
break
;
case
128
:
cctl_memcpy
|=
PL080_BSIZE_128
<<
PL080_CONTROL_SB_SIZE_SHIFT
|
PL080_BSIZE_128
<<
PL080_CONTROL_DB_SIZE_SHIFT
;
pd
->
memcpy_burst_size
=
PL08X_BURST_SZ_128
;
break
;
case
256
:
cctl_memcpy
|=
PL080_BSIZE_256
<<
PL080_CONTROL_SB_SIZE_SHIFT
|
PL080_BSIZE_256
<<
PL080_CONTROL_DB_SIZE_SHIFT
;
pd
->
memcpy_burst_size
=
PL08X_BURST_SZ_256
;
break
;
}
...
...
@@ -2182,48 +2655,40 @@ static int pl08x_of_probe(struct amba_device *adev,
dev_err
(
&
adev
->
dev
,
"illegal bus width for memcpy, set to 8 bits
\n
"
);
/* Fall through */
case
8
:
cctl_memcpy
|=
PL080_WIDTH_8BIT
<<
PL080_CONTROL_SWIDTH_SHIFT
|
PL080_WIDTH_8BIT
<<
PL080_CONTROL_DWIDTH_SHIFT
;
pd
->
memcpy_bus_width
=
PL08X_BUS_WIDTH_8_BITS
;
break
;
case
16
:
cctl_memcpy
|=
PL080_WIDTH_16BIT
<<
PL080_CONTROL_SWIDTH_SHIFT
|
PL080_WIDTH_16BIT
<<
PL080_CONTROL_DWIDTH_SHIFT
;
pd
->
memcpy_bus_width
=
PL08X_BUS_WIDTH_16_BITS
;
break
;
case
32
:
cctl_memcpy
|=
PL080_WIDTH_32BIT
<<
PL080_CONTROL_SWIDTH_SHIFT
|
PL080_WIDTH_32BIT
<<
PL080_CONTROL_DWIDTH_SHIFT
;
pd
->
memcpy_bus_width
=
PL08X_BUS_WIDTH_32_BITS
;
break
;
}
/* This is currently the only thing making sense */
cctl_memcpy
|=
PL080_CONTROL_PROT_SYS
;
/* Set up memcpy channel */
pd
->
memcpy_channel
.
bus_id
=
"memcpy"
;
pd
->
memcpy_channel
.
cctl_memcpy
=
cctl_memcpy
;
/* Use the buses that can access memory, obviously */
pd
->
memcpy_channel
.
periph_buses
=
pd
->
mem_buses
;
/*
* Allocate channel data for all possible slave channels (one
* for each possible signal), channels will then be allocated
* for a device and have it's AHB interfaces set up at
* translation time.
*/
chanp
=
devm_kcalloc
(
&
adev
->
dev
,
pl08x
->
vd
->
signals
,
sizeof
(
struct
pl08x_channel_data
),
GFP_KERNEL
);
if
(
!
chanp
)
return
-
ENOMEM
;
if
(
pl08x
->
vd
->
signals
)
{
chanp
=
devm_kcalloc
(
&
adev
->
dev
,
pl08x
->
vd
->
signals
,
sizeof
(
struct
pl08x_channel_data
),
GFP_KERNEL
);
if
(
!
chanp
)
return
-
ENOMEM
;
pd
->
slave_channels
=
chanp
;
for
(
i
=
0
;
i
<
pl08x
->
vd
->
signals
;
i
++
)
{
/* chanp->periph_buses will be assigned at translation */
chanp
->
bus_id
=
kasprintf
(
GFP_KERNEL
,
"slave%d"
,
i
);
chanp
++
;
pd
->
slave_channels
=
chanp
;
for
(
i
=
0
;
i
<
pl08x
->
vd
->
signals
;
i
++
)
{
/*
* chanp->periph_buses will be assigned at translation
*/
chanp
->
bus_id
=
kasprintf
(
GFP_KERNEL
,
"slave%d"
,
i
);
chanp
++
;
}
pd
->
num_slave_channels
=
pl08x
->
vd
->
signals
;
}
pd
->
num_slave_channels
=
pl08x
->
vd
->
signals
;
pl08x
->
pd
=
pd
;
...
...
@@ -2242,7 +2707,7 @@ static inline int pl08x_of_probe(struct amba_device *adev,
static
int
pl08x_probe
(
struct
amba_device
*
adev
,
const
struct
amba_id
*
id
)
{
struct
pl08x_driver_data
*
pl08x
;
const
struct
vendor_data
*
vd
=
id
->
data
;
struct
vendor_data
*
vd
=
id
->
data
;
struct
device_node
*
np
=
adev
->
dev
.
of_node
;
u32
tsfr_size
;
int
ret
=
0
;
...
...
@@ -2268,6 +2733,34 @@ static int pl08x_probe(struct amba_device *adev, const struct amba_id *id)
pl08x
->
adev
=
adev
;
pl08x
->
vd
=
vd
;
pl08x
->
base
=
ioremap
(
adev
->
res
.
start
,
resource_size
(
&
adev
->
res
));
if
(
!
pl08x
->
base
)
{
ret
=
-
ENOMEM
;
goto
out_no_ioremap
;
}
if
(
vd
->
ftdmac020
)
{
u32
val
;
val
=
readl
(
pl08x
->
base
+
FTDMAC020_REVISION
);
dev_info
(
&
pl08x
->
adev
->
dev
,
"FTDMAC020 %d.%d rel %d
\n
"
,
(
val
>>
16
)
&
0xff
,
(
val
>>
8
)
&
0xff
,
val
&
0xff
);
val
=
readl
(
pl08x
->
base
+
FTDMAC020_FEATURE
);
dev_info
(
&
pl08x
->
adev
->
dev
,
"FTDMAC020 %d channels, "
"%s built-in bridge, %s, %s linked lists
\n
"
,
(
val
>>
12
)
&
0x0f
,
(
val
&
BIT
(
10
))
?
"no"
:
"has"
,
(
val
&
BIT
(
9
))
?
"AHB0 and AHB1"
:
"AHB0"
,
(
val
&
BIT
(
8
))
?
"supports"
:
"does not support"
);
/* Vendor data from feature register */
if
(
!
(
val
&
BIT
(
8
)))
dev_warn
(
&
pl08x
->
adev
->
dev
,
"linked lists not supported, required
\n
"
);
vd
->
channels
=
(
val
>>
12
)
&
0x0f
;
vd
->
dualmaster
=
!!
(
val
&
BIT
(
9
));
}
/* Initialize memcpy engine */
dma_cap_set
(
DMA_MEMCPY
,
pl08x
->
memcpy
.
cap_mask
);
pl08x
->
memcpy
.
dev
=
&
adev
->
dev
;
...
...
@@ -2284,25 +2777,38 @@ static int pl08x_probe(struct amba_device *adev, const struct amba_id *id)
pl08x
->
memcpy
.
dst_addr_widths
=
PL80X_DMA_BUSWIDTHS
;
pl08x
->
memcpy
.
directions
=
BIT
(
DMA_MEM_TO_MEM
);
pl08x
->
memcpy
.
residue_granularity
=
DMA_RESIDUE_GRANULARITY_SEGMENT
;
if
(
vd
->
ftdmac020
)
pl08x
->
memcpy
.
copy_align
=
DMAENGINE_ALIGN_4_BYTES
;
/* Initialize slave engine */
dma_cap_set
(
DMA_SLAVE
,
pl08x
->
slave
.
cap_mask
);
dma_cap_set
(
DMA_CYCLIC
,
pl08x
->
slave
.
cap_mask
);
pl08x
->
slave
.
dev
=
&
adev
->
dev
;
pl08x
->
slave
.
device_free_chan_resources
=
pl08x_free_chan_resources
;
pl08x
->
slave
.
device_prep_dma_interrupt
=
pl08x_prep_dma_interrupt
;
pl08x
->
slave
.
device_tx_status
=
pl08x_dma_tx_status
;
pl08x
->
slave
.
device_issue_pending
=
pl08x_issue_pending
;
pl08x
->
slave
.
device_prep_slave_sg
=
pl08x_prep_slave_sg
;
pl08x
->
slave
.
device_prep_dma_cyclic
=
pl08x_prep_dma_cyclic
;
pl08x
->
slave
.
device_config
=
pl08x_config
;
pl08x
->
slave
.
device_pause
=
pl08x_pause
;
pl08x
->
slave
.
device_resume
=
pl08x_resume
;
pl08x
->
slave
.
device_terminate_all
=
pl08x_terminate_all
;
pl08x
->
slave
.
src_addr_widths
=
PL80X_DMA_BUSWIDTHS
;
pl08x
->
slave
.
dst_addr_widths
=
PL80X_DMA_BUSWIDTHS
;
pl08x
->
slave
.
directions
=
BIT
(
DMA_DEV_TO_MEM
)
|
BIT
(
DMA_MEM_TO_DEV
);
pl08x
->
slave
.
residue_granularity
=
DMA_RESIDUE_GRANULARITY_SEGMENT
;
/*
* Initialize slave engine, if the block has no signals, that means
* we have no slave support.
*/
if
(
vd
->
signals
)
{
pl08x
->
has_slave
=
true
;
dma_cap_set
(
DMA_SLAVE
,
pl08x
->
slave
.
cap_mask
);
dma_cap_set
(
DMA_CYCLIC
,
pl08x
->
slave
.
cap_mask
);
pl08x
->
slave
.
dev
=
&
adev
->
dev
;
pl08x
->
slave
.
device_free_chan_resources
=
pl08x_free_chan_resources
;
pl08x
->
slave
.
device_prep_dma_interrupt
=
pl08x_prep_dma_interrupt
;
pl08x
->
slave
.
device_tx_status
=
pl08x_dma_tx_status
;
pl08x
->
slave
.
device_issue_pending
=
pl08x_issue_pending
;
pl08x
->
slave
.
device_prep_slave_sg
=
pl08x_prep_slave_sg
;
pl08x
->
slave
.
device_prep_dma_cyclic
=
pl08x_prep_dma_cyclic
;
pl08x
->
slave
.
device_config
=
pl08x_config
;
pl08x
->
slave
.
device_pause
=
pl08x_pause
;
pl08x
->
slave
.
device_resume
=
pl08x_resume
;
pl08x
->
slave
.
device_terminate_all
=
pl08x_terminate_all
;
pl08x
->
slave
.
src_addr_widths
=
PL80X_DMA_BUSWIDTHS
;
pl08x
->
slave
.
dst_addr_widths
=
PL80X_DMA_BUSWIDTHS
;
pl08x
->
slave
.
directions
=
BIT
(
DMA_DEV_TO_MEM
)
|
BIT
(
DMA_MEM_TO_DEV
);
pl08x
->
slave
.
residue_granularity
=
DMA_RESIDUE_GRANULARITY_SEGMENT
;
}
/* Get the platform data */
pl08x
->
pd
=
dev_get_platdata
(
&
adev
->
dev
);
...
...
@@ -2344,19 +2850,18 @@ static int pl08x_probe(struct amba_device *adev, const struct amba_id *id)
goto
out_no_lli_pool
;
}
pl08x
->
base
=
ioremap
(
adev
->
res
.
start
,
resource_size
(
&
adev
->
res
));
if
(
!
pl08x
->
base
)
{
ret
=
-
ENOMEM
;
goto
out_no_ioremap
;
}
/* Turn on the PL08x */
pl08x_ensure_on
(
pl08x
);
/* Attach the interrupt handler */
writel
(
0x000000FF
,
pl08x
->
base
+
PL080_ERR_CLEAR
);
/* Clear any pending interrupts */
if
(
vd
->
ftdmac020
)
/* This variant has error IRQs in bits 16-19 */
writel
(
0x0000FFFF
,
pl08x
->
base
+
PL080_ERR_CLEAR
);
else
writel
(
0x000000FF
,
pl08x
->
base
+
PL080_ERR_CLEAR
);
writel
(
0x000000FF
,
pl08x
->
base
+
PL080_TC_CLEAR
);
/* Attach the interrupt handler */
ret
=
request_irq
(
adev
->
irq
[
0
],
pl08x_irq
,
0
,
DRIVER_NAME
,
pl08x
);
if
(
ret
)
{
dev_err
(
&
adev
->
dev
,
"%s failed to request interrupt %d
\n
"
,
...
...
@@ -2377,7 +2882,25 @@ static int pl08x_probe(struct amba_device *adev, const struct amba_id *id)
ch
->
id
=
i
;
ch
->
base
=
pl08x
->
base
+
PL080_Cx_BASE
(
i
);
ch
->
reg_config
=
ch
->
base
+
vd
->
config_offset
;
if
(
vd
->
ftdmac020
)
{
/* FTDMA020 has a special channel busy register */
ch
->
reg_busy
=
ch
->
base
+
FTDMAC020_CH_BUSY
;
ch
->
reg_config
=
ch
->
base
+
FTDMAC020_CH_CFG
;
ch
->
reg_control
=
ch
->
base
+
FTDMAC020_CH_CSR
;
ch
->
reg_src
=
ch
->
base
+
FTDMAC020_CH_SRC_ADDR
;
ch
->
reg_dst
=
ch
->
base
+
FTDMAC020_CH_DST_ADDR
;
ch
->
reg_lli
=
ch
->
base
+
FTDMAC020_CH_LLP
;
ch
->
ftdmac020
=
true
;
}
else
{
ch
->
reg_config
=
ch
->
base
+
vd
->
config_offset
;
ch
->
reg_control
=
ch
->
base
+
PL080_CH_CONTROL
;
ch
->
reg_src
=
ch
->
base
+
PL080_CH_SRC_ADDR
;
ch
->
reg_dst
=
ch
->
base
+
PL080_CH_DST_ADDR
;
ch
->
reg_lli
=
ch
->
base
+
PL080_CH_LLI
;
}
if
(
vd
->
pl080s
)
ch
->
pl080s
=
true
;
spin_lock_init
(
&
ch
->
lock
);
/*
...
...
@@ -2410,13 +2933,15 @@ static int pl08x_probe(struct amba_device *adev, const struct amba_id *id)
}
/* Register slave channels */
ret
=
pl08x_dma_init_virtual_channels
(
pl08x
,
&
pl08x
->
slave
,
pl08x
->
pd
->
num_slave_channels
,
true
);
if
(
ret
<
0
)
{
dev_warn
(
&
pl08x
->
adev
->
dev
,
"%s failed to enumerate slave channels - %d
\n
"
,
__func__
,
ret
);
goto
out_no_slave
;
if
(
pl08x
->
has_slave
)
{
ret
=
pl08x_dma_init_virtual_channels
(
pl08x
,
&
pl08x
->
slave
,
pl08x
->
pd
->
num_slave_channels
,
true
);
if
(
ret
<
0
)
{
dev_warn
(
&
pl08x
->
adev
->
dev
,
"%s failed to enumerate slave channels - %d
\n
"
,
__func__
,
ret
);
goto
out_no_slave
;
}
}
ret
=
dma_async_device_register
(
&
pl08x
->
memcpy
);
...
...
@@ -2427,12 +2952,14 @@ static int pl08x_probe(struct amba_device *adev, const struct amba_id *id)
goto
out_no_memcpy_reg
;
}
ret
=
dma_async_device_register
(
&
pl08x
->
slave
);
if
(
ret
)
{
dev_warn
(
&
pl08x
->
adev
->
dev
,
if
(
pl08x
->
has_slave
)
{
ret
=
dma_async_device_register
(
&
pl08x
->
slave
);
if
(
ret
)
{
dev_warn
(
&
pl08x
->
adev
->
dev
,
"%s failed to register slave as an async device - %d
\n
"
,
__func__
,
ret
);
goto
out_no_slave_reg
;
goto
out_no_slave_reg
;
}
}
amba_set_drvdata
(
adev
,
pl08x
);
...
...
@@ -2446,7 +2973,8 @@ static int pl08x_probe(struct amba_device *adev, const struct amba_id *id)
out_no_slave_reg:
dma_async_device_unregister
(
&
pl08x
->
memcpy
);
out_no_memcpy_reg:
pl08x_free_virtual_channels
(
&
pl08x
->
slave
);
if
(
pl08x
->
has_slave
)
pl08x_free_virtual_channels
(
&
pl08x
->
slave
);
out_no_slave:
pl08x_free_virtual_channels
(
&
pl08x
->
memcpy
);
out_no_memcpy:
...
...
@@ -2454,11 +2982,11 @@ static int pl08x_probe(struct amba_device *adev, const struct amba_id *id)
out_no_phychans:
free_irq
(
adev
->
irq
[
0
],
pl08x
);
out_no_irq:
iounmap
(
pl08x
->
base
);
out_no_ioremap:
dma_pool_destroy
(
pl08x
->
pool
);
out_no_lli_pool:
out_no_platdata:
iounmap
(
pl08x
->
base
);
out_no_ioremap:
kfree
(
pl08x
);
out_no_pl08x:
amba_release_regions
(
adev
);
...
...
@@ -2499,6 +3027,12 @@ static struct vendor_data vendor_pl081 = {
.
max_transfer_size
=
PL080_CONTROL_TRANSFER_SIZE_MASK
,
};
static
struct
vendor_data
vendor_ftdmac020
=
{
.
config_offset
=
PL080_CH_CONFIG
,
.
ftdmac020
=
true
,
.
max_transfer_size
=
PL080_CONTROL_TRANSFER_SIZE_MASK
,
};
static
struct
amba_id
pl08x_ids
[]
=
{
/* Samsung PL080S variant */
{
...
...
@@ -2524,6 +3058,12 @@ static struct amba_id pl08x_ids[] = {
.
mask
=
0x00ffffff
,
.
data
=
&
vendor_nomadik
,
},
/* Faraday Technology FTDMAC020 */
{
.
id
=
0x0003b080
,
.
mask
=
0x000fffff
,
.
data
=
&
vendor_ftdmac020
,
},
{
0
,
0
},
};
...
...
include/linux/amba/pl080.h
View file @
98cd085e
...
...
@@ -44,7 +44,14 @@
#define PL080_SYNC (0x34)
/* Per channel configuration registers */
/* The Faraday Technology FTDMAC020 variant registers */
#define FTDMAC020_CH_BUSY (0x20)
/* Identical to PL080_CONFIG */
#define FTDMAC020_CSR (0x24)
/* Identical to PL080_SYNC */
#define FTDMAC020_SYNC (0x2C)
#define FTDMAC020_REVISION (0x30)
#define FTDMAC020_FEATURE (0x34)
/* Per channel configuration registers */
#define PL080_Cx_BASE(x) ((0x100 + (x * 0x20)))
...
...
@@ -55,13 +62,20 @@
#define PL080_CH_CONFIG (0x10)
#define PL080S_CH_CONTROL2 (0x10)
#define PL080S_CH_CONFIG (0x14)
#define PL080_LLI_ADDR_MASK (0x3fffffff << 2)
/* The Faraday FTDMAC020 derivative shuffles the registers around */
#define FTDMAC020_CH_CSR (0x00)
#define FTDMAC020_CH_CFG (0x04)
#define FTDMAC020_CH_SRC_ADDR (0x08)
#define FTDMAC020_CH_DST_ADDR (0x0C)
#define FTDMAC020_CH_LLP (0x10)
#define FTDMAC020_CH_SIZE (0x14)
#define PL080_LLI_ADDR_MASK GENMASK(31, 2)
#define PL080_LLI_ADDR_SHIFT (2)
#define PL080_LLI_LM_AHB2 BIT(0)
#define PL080_CONTROL_TC_IRQ_EN BIT(31)
#define PL080_CONTROL_PROT_MASK
(0x7 <<
28)
#define PL080_CONTROL_PROT_MASK
GENMASK(30,
28)
#define PL080_CONTROL_PROT_SHIFT (28)
#define PL080_CONTROL_PROT_CACHE BIT(30)
#define PL080_CONTROL_PROT_BUFF BIT(29)
...
...
@@ -70,16 +84,16 @@
#define PL080_CONTROL_SRC_INCR BIT(26)
#define PL080_CONTROL_DST_AHB2 BIT(25)
#define PL080_CONTROL_SRC_AHB2 BIT(24)
#define PL080_CONTROL_DWIDTH_MASK
(0x7 <<
21)
#define PL080_CONTROL_DWIDTH_MASK
GENMASK(23,
21)
#define PL080_CONTROL_DWIDTH_SHIFT (21)
#define PL080_CONTROL_SWIDTH_MASK
(0x7 <<
18)
#define PL080_CONTROL_SWIDTH_MASK
GENMASK(20,
18)
#define PL080_CONTROL_SWIDTH_SHIFT (18)
#define PL080_CONTROL_DB_SIZE_MASK
(0x7 <<
15)
#define PL080_CONTROL_DB_SIZE_MASK
GENMASK(17,
15)
#define PL080_CONTROL_DB_SIZE_SHIFT (15)
#define PL080_CONTROL_SB_SIZE_MASK
(0x7 <<
12)
#define PL080_CONTROL_SB_SIZE_MASK
GENMASK(14,
12)
#define PL080_CONTROL_SB_SIZE_SHIFT (12)
#define PL080_CONTROL_TRANSFER_SIZE_MASK
(0xfff <<
0)
#define PL080S_CONTROL_TRANSFER_SIZE_MASK
(0x1ffffff <<
0)
#define PL080_CONTROL_TRANSFER_SIZE_MASK
GENMASK(11,
0)
#define PL080S_CONTROL_TRANSFER_SIZE_MASK
GENMASK(24,
0)
#define PL080_CONTROL_TRANSFER_SIZE_SHIFT (0)
#define PL080_BSIZE_1 (0x0)
...
...
@@ -102,11 +116,11 @@
#define PL080_CONFIG_LOCK BIT(16)
#define PL080_CONFIG_TC_IRQ_MASK BIT(15)
#define PL080_CONFIG_ERR_IRQ_MASK BIT(14)
#define PL080_CONFIG_FLOW_CONTROL_MASK
(0x7 <<
11)
#define PL080_CONFIG_FLOW_CONTROL_MASK
GENMASK(13,
11)
#define PL080_CONFIG_FLOW_CONTROL_SHIFT (11)
#define PL080_CONFIG_DST_SEL_MASK
(0xf <<
6)
#define PL080_CONFIG_DST_SEL_MASK
GENMASK(9,
6)
#define PL080_CONFIG_DST_SEL_SHIFT (6)
#define PL080_CONFIG_SRC_SEL_MASK
(0xf <<
1)
#define PL080_CONFIG_SRC_SEL_MASK
GENMASK(4,
1)
#define PL080_CONFIG_SRC_SEL_SHIFT (1)
#define PL080_CONFIG_ENABLE BIT(0)
...
...
@@ -119,6 +133,73 @@
#define PL080_FLOW_PER2MEM_PER (0x6)
#define PL080_FLOW_SRC2DST_SRC (0x7)
#define FTDMAC020_CH_CSR_TC_MSK BIT(31)
/* Later versions have a threshold in bits 24..26, */
#define FTDMAC020_CH_CSR_FIFOTH_MSK GENMASK(26, 24)
#define FTDMAC020_CH_CSR_FIFOTH_SHIFT (24)
#define FTDMAC020_CH_CSR_CHPR1_MSK GENMASK(23, 22)
#define FTDMAC020_CH_CSR_PROT3 BIT(21)
#define FTDMAC020_CH_CSR_PROT2 BIT(20)
#define FTDMAC020_CH_CSR_PROT1 BIT(19)
#define FTDMAC020_CH_CSR_SRC_SIZE_MSK GENMASK(18, 16)
#define FTDMAC020_CH_CSR_SRC_SIZE_SHIFT (16)
#define FTDMAC020_CH_CSR_ABT BIT(15)
#define FTDMAC020_CH_CSR_SRC_WIDTH_MSK GENMASK(13, 11)
#define FTDMAC020_CH_CSR_SRC_WIDTH_SHIFT (11)
#define FTDMAC020_CH_CSR_DST_WIDTH_MSK GENMASK(10, 8)
#define FTDMAC020_CH_CSR_DST_WIDTH_SHIFT (8)
#define FTDMAC020_CH_CSR_MODE BIT(7)
/* 00 = increase, 01 = decrease, 10 = fix */
#define FTDMAC020_CH_CSR_SRCAD_CTL_MSK GENMASK(6, 5)
#define FTDMAC020_CH_CSR_SRCAD_CTL_SHIFT (5)
#define FTDMAC020_CH_CSR_DSTAD_CTL_MSK GENMASK(4, 3)
#define FTDMAC020_CH_CSR_DSTAD_CTL_SHIFT (3)
#define FTDMAC020_CH_CSR_SRC_SEL BIT(2)
#define FTDMAC020_CH_CSR_DST_SEL BIT(1)
#define FTDMAC020_CH_CSR_EN BIT(0)
/* FIFO threshold setting */
#define FTDMAC020_CH_CSR_FIFOTH_1 (0x0)
#define FTDMAC020_CH_CSR_FIFOTH_2 (0x1)
#define FTDMAC020_CH_CSR_FIFOTH_4 (0x2)
#define FTDMAC020_CH_CSR_FIFOTH_8 (0x3)
#define FTDMAC020_CH_CSR_FIFOTH_16 (0x4)
/* The FTDMAC020 supports 64bit wide transfers */
#define FTDMAC020_WIDTH_64BIT (0x3)
/* Address can be increased, decreased or fixed */
#define FTDMAC020_CH_CSR_SRCAD_CTL_INC (0x0)
#define FTDMAC020_CH_CSR_SRCAD_CTL_DEC (0x1)
#define FTDMAC020_CH_CSR_SRCAD_CTL_FIXED (0x2)
#define FTDMAC020_CH_CFG_LLP_CNT_MASK GENMASK(19, 16)
#define FTDMAC020_CH_CFG_LLP_CNT_SHIFT (16)
#define FTDMAC020_CH_CFG_BUSY BIT(8)
#define FTDMAC020_CH_CFG_INT_ABT_MASK BIT(2)
#define FTDMAC020_CH_CFG_INT_ERR_MASK BIT(1)
#define FTDMAC020_CH_CFG_INT_TC_MASK BIT(0)
/* Inside the LLIs, the applicable CSR fields are mapped differently */
#define FTDMAC020_LLI_TC_MSK BIT(28)
#define FTDMAC020_LLI_SRC_WIDTH_MSK GENMASK(27, 25)
#define FTDMAC020_LLI_SRC_WIDTH_SHIFT (25)
#define FTDMAC020_LLI_DST_WIDTH_MSK GENMASK(24, 22)
#define FTDMAC020_LLI_DST_WIDTH_SHIFT (22)
#define FTDMAC020_LLI_SRCAD_CTL_MSK GENMASK(21, 20)
#define FTDMAC020_LLI_SRCAD_CTL_SHIFT (20)
#define FTDMAC020_LLI_DSTAD_CTL_MSK GENMASK(19, 18)
#define FTDMAC020_LLI_DSTAD_CTL_SHIFT (18)
#define FTDMAC020_LLI_SRC_SEL BIT(17)
#define FTDMAC020_LLI_DST_SEL BIT(16)
#define FTDMAC020_LLI_TRANSFER_SIZE_MASK GENMASK(11, 0)
#define FTDMAC020_LLI_TRANSFER_SIZE_SHIFT (0)
#define FTDMAC020_CFG_LLP_CNT_MASK GENMASK(19, 16)
#define FTDMAC020_CFG_LLP_CNT_SHIFT (16)
#define FTDMAC020_CFG_BUSY BIT(8)
#define FTDMAC020_CFG_INT_ABT_MSK BIT(2)
#define FTDMAC020_CFG_INT_ERR_MSK BIT(1)
#define FTDMAC020_CFG_INT_TC_MSK BIT(0)
/* DMA linked list chain structure */
struct
pl080_lli
{
...
...
include/linux/amba/pl08x.h
View file @
98cd085e
...
...
@@ -47,8 +47,6 @@ enum {
* devices with static assignments
* @muxval: a number usually used to poke into some mux regiser to
* mux in the signal to this channel
* @cctl_memcpy: options for the channel control register for memcpy
* *** not used for slave channels ***
* @addr: source/target address in physical memory for this DMA channel,
* can be the address of a FIFO register for burst requests for example.
* This can be left undefined if the PrimeCell API is used for configuring
...
...
@@ -63,12 +61,28 @@ struct pl08x_channel_data {
int
min_signal
;
int
max_signal
;
u32
muxval
;
u32
cctl_memcpy
;
dma_addr_t
addr
;
bool
single
;
u8
periph_buses
;
};
enum
pl08x_burst_size
{
PL08X_BURST_SZ_1
,
PL08X_BURST_SZ_4
,
PL08X_BURST_SZ_8
,
PL08X_BURST_SZ_16
,
PL08X_BURST_SZ_32
,
PL08X_BURST_SZ_64
,
PL08X_BURST_SZ_128
,
PL08X_BURST_SZ_256
,
};
enum
pl08x_bus_width
{
PL08X_BUS_WIDTH_8_BITS
,
PL08X_BUS_WIDTH_16_BITS
,
PL08X_BUS_WIDTH_32_BITS
,
};
/**
* struct pl08x_platform_data - the platform configuration for the PL08x
* PrimeCells.
...
...
@@ -76,6 +90,11 @@ struct pl08x_channel_data {
* platform, all inclusive, including multiplexed channels. The available
* physical channels will be multiplexed around these signals as they are
* requested, just enumerate all possible channels.
* @num_slave_channels: number of elements in the slave channel array
* @memcpy_burst_size: the appropriate burst size for memcpy operations
* @memcpy_bus_width: memory bus width
* @memcpy_prot_buff: whether memcpy DMA is bufferable
* @memcpy_prot_cache: whether memcpy DMA is cacheable
* @get_xfer_signal: request a physical signal to be used for a DMA transfer
* immediately: if there is some multiplexing or similar blocking the use
* of the channel the transfer can be denied by returning less than zero,
...
...
@@ -90,7 +109,10 @@ struct pl08x_channel_data {
struct
pl08x_platform_data
{
struct
pl08x_channel_data
*
slave_channels
;
unsigned
int
num_slave_channels
;
struct
pl08x_channel_data
memcpy_channel
;
enum
pl08x_burst_size
memcpy_burst_size
;
enum
pl08x_bus_width
memcpy_bus_width
;
bool
memcpy_prot_buff
;
bool
memcpy_prot_cache
;
int
(
*
get_xfer_signal
)(
const
struct
pl08x_channel_data
*
);
void
(
*
put_xfer_signal
)(
const
struct
pl08x_channel_data
*
,
int
);
u8
lli_buses
;
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment