Commit 992aa864 authored by Shalom Toledo's avatar Shalom Toledo Committed by David S. Miller

mlxsw: spectrum_ptp: Add implementation for physical hardware clock operations

Implement physical hardware clock operations.
Signed-off-by: default avatarShalom Toledo <shalomt@mellanox.com>
Acked-by: default avatarJiri Pirko <jiri@mellanox.com>
Reviewed-by: default avatarPetr Machata <petrm@mellanox.com>
Signed-off-by: default avatarIdo Schimmel <idosch@mellanox.com>
Signed-off-by: default avatarDavid S. Miller <davem@davemloft.net>
parent 4368dada
...@@ -83,6 +83,7 @@ config MLXSW_SPECTRUM ...@@ -83,6 +83,7 @@ config MLXSW_SPECTRUM
select PARMAN select PARMAN
select OBJAGG select OBJAGG
select MLXFW select MLXFW
imply PTP_1588_CLOCK
default m default m
---help--- ---help---
This driver supports Mellanox Technologies Spectrum Ethernet This driver supports Mellanox Technologies Spectrum Ethernet
......
...@@ -31,5 +31,6 @@ mlxsw_spectrum-objs := spectrum.o spectrum_buffers.o \ ...@@ -31,5 +31,6 @@ mlxsw_spectrum-objs := spectrum.o spectrum_buffers.o \
spectrum_nve.o spectrum_nve_vxlan.o \ spectrum_nve.o spectrum_nve_vxlan.o \
spectrum_dpipe.o spectrum_dpipe.o
mlxsw_spectrum-$(CONFIG_MLXSW_SPECTRUM_DCB) += spectrum_dcb.o mlxsw_spectrum-$(CONFIG_MLXSW_SPECTRUM_DCB) += spectrum_dcb.o
mlxsw_spectrum-$(CONFIG_PTP_1588_CLOCK) += spectrum_ptp.o
obj-$(CONFIG_MLXSW_MINIMAL) += mlxsw_minimal.o obj-$(CONFIG_MLXSW_MINIMAL) += mlxsw_minimal.o
mlxsw_minimal-objs := minimal.o mlxsw_minimal-objs := minimal.o
// SPDX-License-Identifier: BSD-3-Clause OR GPL-2.0
/* Copyright (c) 2019 Mellanox Technologies. All rights reserved */
#include <linux/ptp_clock_kernel.h>
#include <linux/clocksource.h>
#include <linux/timecounter.h>
#include <linux/spinlock.h>
#include <linux/device.h>
#include "spectrum_ptp.h"
#include "core.h"
#define MLXSW_SP1_PTP_CLOCK_CYCLES_SHIFT 29
#define MLXSW_SP1_PTP_CLOCK_FREQ_KHZ 156257 /* 6.4nSec */
#define MLXSW_SP1_PTP_CLOCK_MASK 64
struct mlxsw_sp_ptp_clock {
struct mlxsw_core *core;
spinlock_t lock; /* protect this structure */
struct cyclecounter cycles;
struct timecounter tc;
u32 nominal_c_mult;
struct ptp_clock *ptp;
struct ptp_clock_info ptp_info;
unsigned long overflow_period;
struct delayed_work overflow_work;
};
static u64 __mlxsw_sp1_ptp_read_frc(struct mlxsw_sp_ptp_clock *clock,
struct ptp_system_timestamp *sts)
{
struct mlxsw_core *mlxsw_core = clock->core;
u32 frc_h1, frc_h2, frc_l;
frc_h1 = mlxsw_core_read_frc_h(mlxsw_core);
ptp_read_system_prets(sts);
frc_l = mlxsw_core_read_frc_l(mlxsw_core);
ptp_read_system_postts(sts);
frc_h2 = mlxsw_core_read_frc_h(mlxsw_core);
if (frc_h1 != frc_h2) {
/* wrap around */
ptp_read_system_prets(sts);
frc_l = mlxsw_core_read_frc_l(mlxsw_core);
ptp_read_system_postts(sts);
}
return (u64) frc_l | (u64) frc_h2 << 32;
}
static u64 mlxsw_sp1_ptp_read_frc(const struct cyclecounter *cc)
{
struct mlxsw_sp_ptp_clock *clock =
container_of(cc, struct mlxsw_sp_ptp_clock, cycles);
return __mlxsw_sp1_ptp_read_frc(clock, NULL) & cc->mask;
}
static int
mlxsw_sp1_ptp_phc_adjfreq(struct mlxsw_sp_ptp_clock *clock, int freq_adj)
{
struct mlxsw_core *mlxsw_core = clock->core;
char mtutc_pl[MLXSW_REG_MTUTC_LEN];
mlxsw_reg_mtutc_pack(mtutc_pl, MLXSW_REG_MTUTC_OPERATION_ADJUST_FREQ,
freq_adj, 0);
return mlxsw_reg_write(mlxsw_core, MLXSW_REG(mtutc), mtutc_pl);
}
static u64 mlxsw_sp1_ptp_ns2cycles(const struct timecounter *tc, u64 nsec)
{
u64 cycles = (u64) nsec;
cycles <<= tc->cc->shift;
cycles = div_u64(cycles, tc->cc->mult);
return cycles;
}
static int
mlxsw_sp1_ptp_phc_settime(struct mlxsw_sp_ptp_clock *clock, u64 nsec)
{
struct mlxsw_core *mlxsw_core = clock->core;
char mtutc_pl[MLXSW_REG_MTUTC_LEN];
char mtpps_pl[MLXSW_REG_MTPPS_LEN];
u64 next_sec_in_nsec, cycles;
u32 next_sec;
int err;
next_sec = nsec / NSEC_PER_SEC + 1;
next_sec_in_nsec = next_sec * NSEC_PER_SEC;
spin_lock(&clock->lock);
cycles = mlxsw_sp1_ptp_ns2cycles(&clock->tc, next_sec_in_nsec);
spin_unlock(&clock->lock);
mlxsw_reg_mtpps_vpin_pack(mtpps_pl, cycles);
err = mlxsw_reg_write(mlxsw_core, MLXSW_REG(mtpps), mtpps_pl);
if (err)
return err;
mlxsw_reg_mtutc_pack(mtutc_pl,
MLXSW_REG_MTUTC_OPERATION_SET_TIME_AT_NEXT_SEC,
0, next_sec);
return mlxsw_reg_write(mlxsw_core, MLXSW_REG(mtutc), mtutc_pl);
}
static int mlxsw_sp1_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm)
{
struct mlxsw_sp_ptp_clock *clock =
container_of(ptp, struct mlxsw_sp_ptp_clock, ptp_info);
int neg_adj = 0;
u32 diff;
u64 adj;
s32 ppb;
ppb = scaled_ppm_to_ppb(scaled_ppm);
if (ppb < 0) {
neg_adj = 1;
ppb = -ppb;
}
adj = clock->nominal_c_mult;
adj *= ppb;
diff = div_u64(adj, NSEC_PER_SEC);
spin_lock(&clock->lock);
timecounter_read(&clock->tc);
clock->cycles.mult = neg_adj ? clock->nominal_c_mult - diff :
clock->nominal_c_mult + diff;
spin_unlock(&clock->lock);
return mlxsw_sp1_ptp_phc_adjfreq(clock, neg_adj ? -ppb : ppb);
}
static int mlxsw_sp1_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
{
struct mlxsw_sp_ptp_clock *clock =
container_of(ptp, struct mlxsw_sp_ptp_clock, ptp_info);
u64 nsec;
spin_lock(&clock->lock);
timecounter_adjtime(&clock->tc, delta);
nsec = timecounter_read(&clock->tc);
spin_unlock(&clock->lock);
return mlxsw_sp1_ptp_phc_settime(clock, nsec);
}
static int mlxsw_sp1_ptp_gettimex(struct ptp_clock_info *ptp,
struct timespec64 *ts,
struct ptp_system_timestamp *sts)
{
struct mlxsw_sp_ptp_clock *clock =
container_of(ptp, struct mlxsw_sp_ptp_clock, ptp_info);
u64 cycles, nsec;
spin_lock(&clock->lock);
cycles = __mlxsw_sp1_ptp_read_frc(clock, sts);
nsec = timecounter_cyc2time(&clock->tc, cycles);
spin_unlock(&clock->lock);
*ts = ns_to_timespec64(nsec);
return 0;
}
static int mlxsw_sp1_ptp_settime(struct ptp_clock_info *ptp,
const struct timespec64 *ts)
{
struct mlxsw_sp_ptp_clock *clock =
container_of(ptp, struct mlxsw_sp_ptp_clock, ptp_info);
u64 nsec = timespec64_to_ns(ts);
spin_lock(&clock->lock);
timecounter_init(&clock->tc, &clock->cycles, nsec);
nsec = timecounter_read(&clock->tc);
spin_unlock(&clock->lock);
return mlxsw_sp1_ptp_phc_settime(clock, nsec);
}
static const struct ptp_clock_info mlxsw_sp1_ptp_clock_info = {
.owner = THIS_MODULE,
.name = "mlxsw_sp_clock",
.max_adj = 100000000,
.adjfine = mlxsw_sp1_ptp_adjfine,
.adjtime = mlxsw_sp1_ptp_adjtime,
.gettimex64 = mlxsw_sp1_ptp_gettimex,
.settime64 = mlxsw_sp1_ptp_settime,
};
static void mlxsw_sp1_ptp_clock_overflow(struct work_struct *work)
{
struct delayed_work *dwork = to_delayed_work(work);
struct mlxsw_sp_ptp_clock *clock;
clock = container_of(dwork, struct mlxsw_sp_ptp_clock, overflow_work);
spin_lock(&clock->lock);
timecounter_read(&clock->tc);
spin_unlock(&clock->lock);
mlxsw_core_schedule_dw(&clock->overflow_work, clock->overflow_period);
}
struct mlxsw_sp_ptp_clock *
mlxsw_sp1_ptp_clock_init(struct mlxsw_sp *mlxsw_sp, struct device *dev)
{
u64 overflow_cycles, nsec, frac = 0;
struct mlxsw_sp_ptp_clock *clock;
int err;
clock = kzalloc(sizeof(*clock), GFP_KERNEL);
if (!clock)
return ERR_PTR(-ENOMEM);
spin_lock_init(&clock->lock);
clock->cycles.read = mlxsw_sp1_ptp_read_frc;
clock->cycles.shift = MLXSW_SP1_PTP_CLOCK_CYCLES_SHIFT;
clock->cycles.mult = clocksource_khz2mult(MLXSW_SP1_PTP_CLOCK_FREQ_KHZ,
clock->cycles.shift);
clock->nominal_c_mult = clock->cycles.mult;
clock->cycles.mask = CLOCKSOURCE_MASK(MLXSW_SP1_PTP_CLOCK_MASK);
clock->core = mlxsw_sp->core;
timecounter_init(&clock->tc, &clock->cycles,
ktime_to_ns(ktime_get_real()));
/* Calculate period in seconds to call the overflow watchdog - to make
* sure counter is checked at least twice every wrap around.
* The period is calculated as the minimum between max HW cycles count
* (The clock source mask) and max amount of cycles that can be
* multiplied by clock multiplier where the result doesn't exceed
* 64bits.
*/
overflow_cycles = div64_u64(~0ULL >> 1, clock->cycles.mult);
overflow_cycles = min(overflow_cycles, div_u64(clock->cycles.mask, 3));
nsec = cyclecounter_cyc2ns(&clock->cycles, overflow_cycles, 0, &frac);
clock->overflow_period = nsecs_to_jiffies(nsec);
INIT_DELAYED_WORK(&clock->overflow_work, mlxsw_sp1_ptp_clock_overflow);
mlxsw_core_schedule_dw(&clock->overflow_work, 0);
clock->ptp_info = mlxsw_sp1_ptp_clock_info;
clock->ptp = ptp_clock_register(&clock->ptp_info, dev);
if (IS_ERR(clock->ptp)) {
err = PTR_ERR(clock->ptp);
dev_err(dev, "ptp_clock_register failed %d\n", err);
goto err_ptp_clock_register;
}
return clock;
err_ptp_clock_register:
cancel_delayed_work_sync(&clock->overflow_work);
kfree(clock);
return ERR_PTR(err);
}
void mlxsw_sp1_ptp_clock_fini(struct mlxsw_sp_ptp_clock *clock)
{
ptp_clock_unregister(clock->ptp);
cancel_delayed_work_sync(&clock->overflow_work);
kfree(clock);
}
/* SPDX-License-Identifier: BSD-3-Clause OR GPL-2.0 */
/* Copyright (c) 2019 Mellanox Technologies. All rights reserved */
#ifndef _MLXSW_SPECTRUM_PTP_H
#define _MLXSW_SPECTRUM_PTP_H
#include <linux/device.h>
#include "spectrum.h"
struct mlxsw_sp_ptp_clock;
#if IS_REACHABLE(CONFIG_PTP_1588_CLOCK)
struct mlxsw_sp_ptp_clock *
mlxsw_sp1_ptp_clock_init(struct mlxsw_sp *mlxsw_sp, struct device *dev);
void mlxsw_sp1_ptp_clock_fini(struct mlxsw_sp_ptp_clock *clock);
#else
static inline struct mlxsw_sp_ptp_clock *
mlxsw_sp1_ptp_clock_init(struct mlxsw_sp *mlxsw_sp, struct device *dev)
{
return NULL;
}
static inline void mlxsw_sp1_ptp_clock_fini(struct mlxsw_sp_ptp_clock *clock)
{
}
#endif
static inline struct mlxsw_sp_ptp_clock *
mlxsw_sp2_ptp_clock_init(struct mlxsw_sp *mlxsw_sp, struct device *dev)
{
return NULL;
}
static inline void mlxsw_sp2_ptp_clock_fini(struct mlxsw_sp_ptp_clock *clock)
{
}
#endif
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment