Commit 9b01029d authored by Vinod Koul's avatar Vinod Koul

Merge branch 'topic/fsl' into for-linus

parents 11b73fcf 0e819e35
...@@ -321,6 +321,17 @@ config LPC18XX_DMAMUX ...@@ -321,6 +321,17 @@ config LPC18XX_DMAMUX
Enable support for DMA on NXP LPC18xx/43xx platforms Enable support for DMA on NXP LPC18xx/43xx platforms
with PL080 and multiplexed DMA request lines. with PL080 and multiplexed DMA request lines.
config MCF_EDMA
tristate "Freescale eDMA engine support, ColdFire mcf5441x SoCs"
depends on M5441x || COMPILE_TEST
select DMA_ENGINE
select DMA_VIRTUAL_CHANNELS
help
Support the Freescale ColdFire eDMA engine, 64-channel
implementation that performs complex data transfers with
minimal intervention from a host processor.
This module can be found on Freescale ColdFire mcf5441x SoCs.
config MMP_PDMA config MMP_PDMA
bool "MMP PDMA support" bool "MMP PDMA support"
depends on ARCH_MMP || ARCH_PXA || COMPILE_TEST depends on ARCH_MMP || ARCH_PXA || COMPILE_TEST
......
...@@ -31,7 +31,8 @@ obj-$(CONFIG_DW_AXI_DMAC) += dw-axi-dmac/ ...@@ -31,7 +31,8 @@ obj-$(CONFIG_DW_AXI_DMAC) += dw-axi-dmac/
obj-$(CONFIG_DW_DMAC_CORE) += dw/ obj-$(CONFIG_DW_DMAC_CORE) += dw/
obj-$(CONFIG_EP93XX_DMA) += ep93xx_dma.o obj-$(CONFIG_EP93XX_DMA) += ep93xx_dma.o
obj-$(CONFIG_FSL_DMA) += fsldma.o obj-$(CONFIG_FSL_DMA) += fsldma.o
obj-$(CONFIG_FSL_EDMA) += fsl-edma.o obj-$(CONFIG_FSL_EDMA) += fsl-edma.o fsl-edma-common.o
obj-$(CONFIG_MCF_EDMA) += mcf-edma.o fsl-edma-common.o
obj-$(CONFIG_FSL_RAID) += fsl_raid.o obj-$(CONFIG_FSL_RAID) += fsl_raid.o
obj-$(CONFIG_HSU_DMA) += hsu/ obj-$(CONFIG_HSU_DMA) += hsu/
obj-$(CONFIG_IMG_MDC_DMA) += img-mdc-dma.o obj-$(CONFIG_IMG_MDC_DMA) += img-mdc-dma.o
......
// SPDX-License-Identifier: GPL-2.0+
//
// Copyright (c) 2013-2014 Freescale Semiconductor, Inc
// Copyright (c) 2017 Sysam, Angelo Dureghello <angelo@sysam.it>
#include <linux/dmapool.h>
#include <linux/module.h>
#include <linux/slab.h>
#include "fsl-edma-common.h"
#define EDMA_CR 0x00
#define EDMA_ES 0x04
#define EDMA_ERQ 0x0C
#define EDMA_EEI 0x14
#define EDMA_SERQ 0x1B
#define EDMA_CERQ 0x1A
#define EDMA_SEEI 0x19
#define EDMA_CEEI 0x18
#define EDMA_CINT 0x1F
#define EDMA_CERR 0x1E
#define EDMA_SSRT 0x1D
#define EDMA_CDNE 0x1C
#define EDMA_INTR 0x24
#define EDMA_ERR 0x2C
#define EDMA64_ERQH 0x08
#define EDMA64_EEIH 0x10
#define EDMA64_SERQ 0x18
#define EDMA64_CERQ 0x19
#define EDMA64_SEEI 0x1a
#define EDMA64_CEEI 0x1b
#define EDMA64_CINT 0x1c
#define EDMA64_CERR 0x1d
#define EDMA64_SSRT 0x1e
#define EDMA64_CDNE 0x1f
#define EDMA64_INTH 0x20
#define EDMA64_INTL 0x24
#define EDMA64_ERRH 0x28
#define EDMA64_ERRL 0x2c
#define EDMA_TCD 0x1000
static void fsl_edma_enable_request(struct fsl_edma_chan *fsl_chan)
{
struct edma_regs *regs = &fsl_chan->edma->regs;
u32 ch = fsl_chan->vchan.chan.chan_id;
if (fsl_chan->edma->version == v1) {
edma_writeb(fsl_chan->edma, EDMA_SEEI_SEEI(ch), regs->seei);
edma_writeb(fsl_chan->edma, ch, regs->serq);
} else {
/* ColdFire is big endian, and accesses natively
* big endian I/O peripherals
*/
iowrite8(EDMA_SEEI_SEEI(ch), regs->seei);
iowrite8(ch, regs->serq);
}
}
void fsl_edma_disable_request(struct fsl_edma_chan *fsl_chan)
{
struct edma_regs *regs = &fsl_chan->edma->regs;
u32 ch = fsl_chan->vchan.chan.chan_id;
if (fsl_chan->edma->version == v1) {
edma_writeb(fsl_chan->edma, ch, regs->cerq);
edma_writeb(fsl_chan->edma, EDMA_CEEI_CEEI(ch), regs->ceei);
} else {
/* ColdFire is big endian, and accesses natively
* big endian I/O peripherals
*/
iowrite8(ch, regs->cerq);
iowrite8(EDMA_CEEI_CEEI(ch), regs->ceei);
}
}
EXPORT_SYMBOL_GPL(fsl_edma_disable_request);
void fsl_edma_chan_mux(struct fsl_edma_chan *fsl_chan,
unsigned int slot, bool enable)
{
u32 ch = fsl_chan->vchan.chan.chan_id;
void __iomem *muxaddr;
unsigned int chans_per_mux, ch_off;
chans_per_mux = fsl_chan->edma->n_chans / DMAMUX_NR;
ch_off = fsl_chan->vchan.chan.chan_id % chans_per_mux;
muxaddr = fsl_chan->edma->muxbase[ch / chans_per_mux];
slot = EDMAMUX_CHCFG_SOURCE(slot);
if (enable)
iowrite8(EDMAMUX_CHCFG_ENBL | slot, muxaddr + ch_off);
else
iowrite8(EDMAMUX_CHCFG_DIS, muxaddr + ch_off);
}
EXPORT_SYMBOL_GPL(fsl_edma_chan_mux);
static unsigned int fsl_edma_get_tcd_attr(enum dma_slave_buswidth addr_width)
{
switch (addr_width) {
case 1:
return EDMA_TCD_ATTR_SSIZE_8BIT | EDMA_TCD_ATTR_DSIZE_8BIT;
case 2:
return EDMA_TCD_ATTR_SSIZE_16BIT | EDMA_TCD_ATTR_DSIZE_16BIT;
case 4:
return EDMA_TCD_ATTR_SSIZE_32BIT | EDMA_TCD_ATTR_DSIZE_32BIT;
case 8:
return EDMA_TCD_ATTR_SSIZE_64BIT | EDMA_TCD_ATTR_DSIZE_64BIT;
default:
return EDMA_TCD_ATTR_SSIZE_32BIT | EDMA_TCD_ATTR_DSIZE_32BIT;
}
}
void fsl_edma_free_desc(struct virt_dma_desc *vdesc)
{
struct fsl_edma_desc *fsl_desc;
int i;
fsl_desc = to_fsl_edma_desc(vdesc);
for (i = 0; i < fsl_desc->n_tcds; i++)
dma_pool_free(fsl_desc->echan->tcd_pool, fsl_desc->tcd[i].vtcd,
fsl_desc->tcd[i].ptcd);
kfree(fsl_desc);
}
EXPORT_SYMBOL_GPL(fsl_edma_free_desc);
int fsl_edma_terminate_all(struct dma_chan *chan)
{
struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
unsigned long flags;
LIST_HEAD(head);
spin_lock_irqsave(&fsl_chan->vchan.lock, flags);
fsl_edma_disable_request(fsl_chan);
fsl_chan->edesc = NULL;
fsl_chan->idle = true;
vchan_get_all_descriptors(&fsl_chan->vchan, &head);
spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags);
vchan_dma_desc_free_list(&fsl_chan->vchan, &head);
return 0;
}
EXPORT_SYMBOL_GPL(fsl_edma_terminate_all);
int fsl_edma_pause(struct dma_chan *chan)
{
struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
unsigned long flags;
spin_lock_irqsave(&fsl_chan->vchan.lock, flags);
if (fsl_chan->edesc) {
fsl_edma_disable_request(fsl_chan);
fsl_chan->status = DMA_PAUSED;
fsl_chan->idle = true;
}
spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags);
return 0;
}
EXPORT_SYMBOL_GPL(fsl_edma_pause);
int fsl_edma_resume(struct dma_chan *chan)
{
struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
unsigned long flags;
spin_lock_irqsave(&fsl_chan->vchan.lock, flags);
if (fsl_chan->edesc) {
fsl_edma_enable_request(fsl_chan);
fsl_chan->status = DMA_IN_PROGRESS;
fsl_chan->idle = false;
}
spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags);
return 0;
}
EXPORT_SYMBOL_GPL(fsl_edma_resume);
int fsl_edma_slave_config(struct dma_chan *chan,
struct dma_slave_config *cfg)
{
struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
memcpy(&fsl_chan->cfg, cfg, sizeof(*cfg));
return 0;
}
EXPORT_SYMBOL_GPL(fsl_edma_slave_config);
static size_t fsl_edma_desc_residue(struct fsl_edma_chan *fsl_chan,
struct virt_dma_desc *vdesc, bool in_progress)
{
struct fsl_edma_desc *edesc = fsl_chan->edesc;
struct edma_regs *regs = &fsl_chan->edma->regs;
u32 ch = fsl_chan->vchan.chan.chan_id;
enum dma_transfer_direction dir = edesc->dirn;
dma_addr_t cur_addr, dma_addr;
size_t len, size;
int i;
/* calculate the total size in this desc */
for (len = i = 0; i < fsl_chan->edesc->n_tcds; i++)
len += le32_to_cpu(edesc->tcd[i].vtcd->nbytes)
* le16_to_cpu(edesc->tcd[i].vtcd->biter);
if (!in_progress)
return len;
if (dir == DMA_MEM_TO_DEV)
cur_addr = edma_readl(fsl_chan->edma, &regs->tcd[ch].saddr);
else
cur_addr = edma_readl(fsl_chan->edma, &regs->tcd[ch].daddr);
/* figure out the finished and calculate the residue */
for (i = 0; i < fsl_chan->edesc->n_tcds; i++) {
size = le32_to_cpu(edesc->tcd[i].vtcd->nbytes)
* le16_to_cpu(edesc->tcd[i].vtcd->biter);
if (dir == DMA_MEM_TO_DEV)
dma_addr = le32_to_cpu(edesc->tcd[i].vtcd->saddr);
else
dma_addr = le32_to_cpu(edesc->tcd[i].vtcd->daddr);
len -= size;
if (cur_addr >= dma_addr && cur_addr < dma_addr + size) {
len += dma_addr + size - cur_addr;
break;
}
}
return len;
}
enum dma_status fsl_edma_tx_status(struct dma_chan *chan,
dma_cookie_t cookie, struct dma_tx_state *txstate)
{
struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
struct virt_dma_desc *vdesc;
enum dma_status status;
unsigned long flags;
status = dma_cookie_status(chan, cookie, txstate);
if (status == DMA_COMPLETE)
return status;
if (!txstate)
return fsl_chan->status;
spin_lock_irqsave(&fsl_chan->vchan.lock, flags);
vdesc = vchan_find_desc(&fsl_chan->vchan, cookie);
if (fsl_chan->edesc && cookie == fsl_chan->edesc->vdesc.tx.cookie)
txstate->residue =
fsl_edma_desc_residue(fsl_chan, vdesc, true);
else if (vdesc)
txstate->residue =
fsl_edma_desc_residue(fsl_chan, vdesc, false);
else
txstate->residue = 0;
spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags);
return fsl_chan->status;
}
EXPORT_SYMBOL_GPL(fsl_edma_tx_status);
static void fsl_edma_set_tcd_regs(struct fsl_edma_chan *fsl_chan,
struct fsl_edma_hw_tcd *tcd)
{
struct fsl_edma_engine *edma = fsl_chan->edma;
struct edma_regs *regs = &fsl_chan->edma->regs;
u32 ch = fsl_chan->vchan.chan.chan_id;
/*
* TCD parameters are stored in struct fsl_edma_hw_tcd in little
* endian format. However, we need to load the TCD registers in
* big- or little-endian obeying the eDMA engine model endian.
*/
edma_writew(edma, 0, &regs->tcd[ch].csr);
edma_writel(edma, le32_to_cpu(tcd->saddr), &regs->tcd[ch].saddr);
edma_writel(edma, le32_to_cpu(tcd->daddr), &regs->tcd[ch].daddr);
edma_writew(edma, le16_to_cpu(tcd->attr), &regs->tcd[ch].attr);
edma_writew(edma, le16_to_cpu(tcd->soff), &regs->tcd[ch].soff);
edma_writel(edma, le32_to_cpu(tcd->nbytes), &regs->tcd[ch].nbytes);
edma_writel(edma, le32_to_cpu(tcd->slast), &regs->tcd[ch].slast);
edma_writew(edma, le16_to_cpu(tcd->citer), &regs->tcd[ch].citer);
edma_writew(edma, le16_to_cpu(tcd->biter), &regs->tcd[ch].biter);
edma_writew(edma, le16_to_cpu(tcd->doff), &regs->tcd[ch].doff);
edma_writel(edma, le32_to_cpu(tcd->dlast_sga),
&regs->tcd[ch].dlast_sga);
edma_writew(edma, le16_to_cpu(tcd->csr), &regs->tcd[ch].csr);
}
static inline
void fsl_edma_fill_tcd(struct fsl_edma_hw_tcd *tcd, u32 src, u32 dst,
u16 attr, u16 soff, u32 nbytes, u32 slast, u16 citer,
u16 biter, u16 doff, u32 dlast_sga, bool major_int,
bool disable_req, bool enable_sg)
{
u16 csr = 0;
/*
* eDMA hardware SGs require the TCDs to be stored in little
* endian format irrespective of the register endian model.
* So we put the value in little endian in memory, waiting
* for fsl_edma_set_tcd_regs doing the swap.
*/
tcd->saddr = cpu_to_le32(src);
tcd->daddr = cpu_to_le32(dst);
tcd->attr = cpu_to_le16(attr);
tcd->soff = cpu_to_le16(soff);
tcd->nbytes = cpu_to_le32(nbytes);
tcd->slast = cpu_to_le32(slast);
tcd->citer = cpu_to_le16(EDMA_TCD_CITER_CITER(citer));
tcd->doff = cpu_to_le16(doff);
tcd->dlast_sga = cpu_to_le32(dlast_sga);
tcd->biter = cpu_to_le16(EDMA_TCD_BITER_BITER(biter));
if (major_int)
csr |= EDMA_TCD_CSR_INT_MAJOR;
if (disable_req)
csr |= EDMA_TCD_CSR_D_REQ;
if (enable_sg)
csr |= EDMA_TCD_CSR_E_SG;
tcd->csr = cpu_to_le16(csr);
}
static struct fsl_edma_desc *fsl_edma_alloc_desc(struct fsl_edma_chan *fsl_chan,
int sg_len)
{
struct fsl_edma_desc *fsl_desc;
int i;
fsl_desc = kzalloc(sizeof(*fsl_desc) +
sizeof(struct fsl_edma_sw_tcd) *
sg_len, GFP_NOWAIT);
if (!fsl_desc)
return NULL;
fsl_desc->echan = fsl_chan;
fsl_desc->n_tcds = sg_len;
for (i = 0; i < sg_len; i++) {
fsl_desc->tcd[i].vtcd = dma_pool_alloc(fsl_chan->tcd_pool,
GFP_NOWAIT, &fsl_desc->tcd[i].ptcd);
if (!fsl_desc->tcd[i].vtcd)
goto err;
}
return fsl_desc;
err:
while (--i >= 0)
dma_pool_free(fsl_chan->tcd_pool, fsl_desc->tcd[i].vtcd,
fsl_desc->tcd[i].ptcd);
kfree(fsl_desc);
return NULL;
}
struct dma_async_tx_descriptor *fsl_edma_prep_dma_cyclic(
struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
size_t period_len, enum dma_transfer_direction direction,
unsigned long flags)
{
struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
struct fsl_edma_desc *fsl_desc;
dma_addr_t dma_buf_next;
int sg_len, i;
u32 src_addr, dst_addr, last_sg, nbytes;
u16 soff, doff, iter;
if (!is_slave_direction(direction))
return NULL;
sg_len = buf_len / period_len;
fsl_desc = fsl_edma_alloc_desc(fsl_chan, sg_len);
if (!fsl_desc)
return NULL;
fsl_desc->iscyclic = true;
fsl_desc->dirn = direction;
dma_buf_next = dma_addr;
if (direction == DMA_MEM_TO_DEV) {
fsl_chan->attr =
fsl_edma_get_tcd_attr(fsl_chan->cfg.dst_addr_width);
nbytes = fsl_chan->cfg.dst_addr_width *
fsl_chan->cfg.dst_maxburst;
} else {
fsl_chan->attr =
fsl_edma_get_tcd_attr(fsl_chan->cfg.src_addr_width);
nbytes = fsl_chan->cfg.src_addr_width *
fsl_chan->cfg.src_maxburst;
}
iter = period_len / nbytes;
for (i = 0; i < sg_len; i++) {
if (dma_buf_next >= dma_addr + buf_len)
dma_buf_next = dma_addr;
/* get next sg's physical address */
last_sg = fsl_desc->tcd[(i + 1) % sg_len].ptcd;
if (direction == DMA_MEM_TO_DEV) {
src_addr = dma_buf_next;
dst_addr = fsl_chan->cfg.dst_addr;
soff = fsl_chan->cfg.dst_addr_width;
doff = 0;
} else {
src_addr = fsl_chan->cfg.src_addr;
dst_addr = dma_buf_next;
soff = 0;
doff = fsl_chan->cfg.src_addr_width;
}
fsl_edma_fill_tcd(fsl_desc->tcd[i].vtcd, src_addr, dst_addr,
fsl_chan->attr, soff, nbytes, 0, iter,
iter, doff, last_sg, true, false, true);
dma_buf_next += period_len;
}
return vchan_tx_prep(&fsl_chan->vchan, &fsl_desc->vdesc, flags);
}
EXPORT_SYMBOL_GPL(fsl_edma_prep_dma_cyclic);
struct dma_async_tx_descriptor *fsl_edma_prep_slave_sg(
struct dma_chan *chan, struct scatterlist *sgl,
unsigned int sg_len, enum dma_transfer_direction direction,
unsigned long flags, void *context)
{
struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
struct fsl_edma_desc *fsl_desc;
struct scatterlist *sg;
u32 src_addr, dst_addr, last_sg, nbytes;
u16 soff, doff, iter;
int i;
if (!is_slave_direction(direction))
return NULL;
fsl_desc = fsl_edma_alloc_desc(fsl_chan, sg_len);
if (!fsl_desc)
return NULL;
fsl_desc->iscyclic = false;
fsl_desc->dirn = direction;
if (direction == DMA_MEM_TO_DEV) {
fsl_chan->attr =
fsl_edma_get_tcd_attr(fsl_chan->cfg.dst_addr_width);
nbytes = fsl_chan->cfg.dst_addr_width *
fsl_chan->cfg.dst_maxburst;
} else {
fsl_chan->attr =
fsl_edma_get_tcd_attr(fsl_chan->cfg.src_addr_width);
nbytes = fsl_chan->cfg.src_addr_width *
fsl_chan->cfg.src_maxburst;
}
for_each_sg(sgl, sg, sg_len, i) {
/* get next sg's physical address */
last_sg = fsl_desc->tcd[(i + 1) % sg_len].ptcd;
if (direction == DMA_MEM_TO_DEV) {
src_addr = sg_dma_address(sg);
dst_addr = fsl_chan->cfg.dst_addr;
soff = fsl_chan->cfg.dst_addr_width;
doff = 0;
} else {
src_addr = fsl_chan->cfg.src_addr;
dst_addr = sg_dma_address(sg);
soff = 0;
doff = fsl_chan->cfg.src_addr_width;
}
iter = sg_dma_len(sg) / nbytes;
if (i < sg_len - 1) {
last_sg = fsl_desc->tcd[(i + 1)].ptcd;
fsl_edma_fill_tcd(fsl_desc->tcd[i].vtcd, src_addr,
dst_addr, fsl_chan->attr, soff,
nbytes, 0, iter, iter, doff, last_sg,
false, false, true);
} else {
last_sg = 0;
fsl_edma_fill_tcd(fsl_desc->tcd[i].vtcd, src_addr,
dst_addr, fsl_chan->attr, soff,
nbytes, 0, iter, iter, doff, last_sg,
true, true, false);
}
}
return vchan_tx_prep(&fsl_chan->vchan, &fsl_desc->vdesc, flags);
}
EXPORT_SYMBOL_GPL(fsl_edma_prep_slave_sg);
void fsl_edma_xfer_desc(struct fsl_edma_chan *fsl_chan)
{
struct virt_dma_desc *vdesc;
vdesc = vchan_next_desc(&fsl_chan->vchan);
if (!vdesc)
return;
fsl_chan->edesc = to_fsl_edma_desc(vdesc);
fsl_edma_set_tcd_regs(fsl_chan, fsl_chan->edesc->tcd[0].vtcd);
fsl_edma_enable_request(fsl_chan);
fsl_chan->status = DMA_IN_PROGRESS;
fsl_chan->idle = false;
}
EXPORT_SYMBOL_GPL(fsl_edma_xfer_desc);
void fsl_edma_issue_pending(struct dma_chan *chan)
{
struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
unsigned long flags;
spin_lock_irqsave(&fsl_chan->vchan.lock, flags);
if (unlikely(fsl_chan->pm_state != RUNNING)) {
spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags);
/* cannot submit due to suspend */
return;
}
if (vchan_issue_pending(&fsl_chan->vchan) && !fsl_chan->edesc)
fsl_edma_xfer_desc(fsl_chan);
spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags);
}
EXPORT_SYMBOL_GPL(fsl_edma_issue_pending);
int fsl_edma_alloc_chan_resources(struct dma_chan *chan)
{
struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
fsl_chan->tcd_pool = dma_pool_create("tcd_pool", chan->device->dev,
sizeof(struct fsl_edma_hw_tcd),
32, 0);
return 0;
}
EXPORT_SYMBOL_GPL(fsl_edma_alloc_chan_resources);
void fsl_edma_free_chan_resources(struct dma_chan *chan)
{
struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
unsigned long flags;
LIST_HEAD(head);
spin_lock_irqsave(&fsl_chan->vchan.lock, flags);
fsl_edma_disable_request(fsl_chan);
fsl_edma_chan_mux(fsl_chan, 0, false);
fsl_chan->edesc = NULL;
vchan_get_all_descriptors(&fsl_chan->vchan, &head);
spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags);
vchan_dma_desc_free_list(&fsl_chan->vchan, &head);
dma_pool_destroy(fsl_chan->tcd_pool);
fsl_chan->tcd_pool = NULL;
}
EXPORT_SYMBOL_GPL(fsl_edma_free_chan_resources);
void fsl_edma_cleanup_vchan(struct dma_device *dmadev)
{
struct fsl_edma_chan *chan, *_chan;
list_for_each_entry_safe(chan, _chan,
&dmadev->channels, vchan.chan.device_node) {
list_del(&chan->vchan.chan.device_node);
tasklet_kill(&chan->vchan.task);
}
}
EXPORT_SYMBOL_GPL(fsl_edma_cleanup_vchan);
/*
* On the 32 channels Vybrid/mpc577x edma version (here called "v1"),
* register offsets are different compared to ColdFire mcf5441x 64 channels
* edma (here called "v2").
*
* This function sets up register offsets as per proper declared version
* so must be called in xxx_edma_probe() just after setting the
* edma "version" and "membase" appropriately.
*/
void fsl_edma_setup_regs(struct fsl_edma_engine *edma)
{
edma->regs.cr = edma->membase + EDMA_CR;
edma->regs.es = edma->membase + EDMA_ES;
edma->regs.erql = edma->membase + EDMA_ERQ;
edma->regs.eeil = edma->membase + EDMA_EEI;
edma->regs.serq = edma->membase + ((edma->version == v1) ?
EDMA_SERQ : EDMA64_SERQ);
edma->regs.cerq = edma->membase + ((edma->version == v1) ?
EDMA_CERQ : EDMA64_CERQ);
edma->regs.seei = edma->membase + ((edma->version == v1) ?
EDMA_SEEI : EDMA64_SEEI);
edma->regs.ceei = edma->membase + ((edma->version == v1) ?
EDMA_CEEI : EDMA64_CEEI);
edma->regs.cint = edma->membase + ((edma->version == v1) ?
EDMA_CINT : EDMA64_CINT);
edma->regs.cerr = edma->membase + ((edma->version == v1) ?
EDMA_CERR : EDMA64_CERR);
edma->regs.ssrt = edma->membase + ((edma->version == v1) ?
EDMA_SSRT : EDMA64_SSRT);
edma->regs.cdne = edma->membase + ((edma->version == v1) ?
EDMA_CDNE : EDMA64_CDNE);
edma->regs.intl = edma->membase + ((edma->version == v1) ?
EDMA_INTR : EDMA64_INTL);
edma->regs.errl = edma->membase + ((edma->version == v1) ?
EDMA_ERR : EDMA64_ERRL);
if (edma->version == v2) {
edma->regs.erqh = edma->membase + EDMA64_ERQH;
edma->regs.eeih = edma->membase + EDMA64_EEIH;
edma->regs.errh = edma->membase + EDMA64_ERRH;
edma->regs.inth = edma->membase + EDMA64_INTH;
}
edma->regs.tcd = edma->membase + EDMA_TCD;
}
EXPORT_SYMBOL_GPL(fsl_edma_setup_regs);
MODULE_LICENSE("GPL v2");
/* SPDX-License-Identifier: GPL-2.0+ */
/*
* Copyright 2013-2014 Freescale Semiconductor, Inc.
* Copyright 2018 Angelo Dureghello <angelo@sysam.it>
*/
#ifndef _FSL_EDMA_COMMON_H_
#define _FSL_EDMA_COMMON_H_
#include "virt-dma.h"
#define EDMA_CR_EDBG BIT(1)
#define EDMA_CR_ERCA BIT(2)
#define EDMA_CR_ERGA BIT(3)
#define EDMA_CR_HOE BIT(4)
#define EDMA_CR_HALT BIT(5)
#define EDMA_CR_CLM BIT(6)
#define EDMA_CR_EMLM BIT(7)
#define EDMA_CR_ECX BIT(16)
#define EDMA_CR_CX BIT(17)
#define EDMA_SEEI_SEEI(x) ((x) & GENMASK(4, 0))
#define EDMA_CEEI_CEEI(x) ((x) & GENMASK(4, 0))
#define EDMA_CINT_CINT(x) ((x) & GENMASK(4, 0))
#define EDMA_CERR_CERR(x) ((x) & GENMASK(4, 0))
#define EDMA_TCD_ATTR_DSIZE(x) (((x) & GENMASK(2, 0)))
#define EDMA_TCD_ATTR_DMOD(x) (((x) & GENMASK(4, 0)) << 3)
#define EDMA_TCD_ATTR_SSIZE(x) (((x) & GENMASK(2, 0)) << 8)
#define EDMA_TCD_ATTR_SMOD(x) (((x) & GENMASK(4, 0)) << 11)
#define EDMA_TCD_ATTR_DSIZE_8BIT 0
#define EDMA_TCD_ATTR_DSIZE_16BIT BIT(0)
#define EDMA_TCD_ATTR_DSIZE_32BIT BIT(1)
#define EDMA_TCD_ATTR_DSIZE_64BIT (BIT(0) | BIT(1))
#define EDMA_TCD_ATTR_DSIZE_32BYTE (BIT(3) | BIT(0))
#define EDMA_TCD_ATTR_SSIZE_8BIT 0
#define EDMA_TCD_ATTR_SSIZE_16BIT (EDMA_TCD_ATTR_DSIZE_16BIT << 8)
#define EDMA_TCD_ATTR_SSIZE_32BIT (EDMA_TCD_ATTR_DSIZE_32BIT << 8)
#define EDMA_TCD_ATTR_SSIZE_64BIT (EDMA_TCD_ATTR_DSIZE_64BIT << 8)
#define EDMA_TCD_ATTR_SSIZE_32BYTE (EDMA_TCD_ATTR_DSIZE_32BYTE << 8)
#define EDMA_TCD_CITER_CITER(x) ((x) & GENMASK(14, 0))
#define EDMA_TCD_BITER_BITER(x) ((x) & GENMASK(14, 0))
#define EDMA_TCD_CSR_START BIT(0)
#define EDMA_TCD_CSR_INT_MAJOR BIT(1)
#define EDMA_TCD_CSR_INT_HALF BIT(2)
#define EDMA_TCD_CSR_D_REQ BIT(3)
#define EDMA_TCD_CSR_E_SG BIT(4)
#define EDMA_TCD_CSR_E_LINK BIT(5)
#define EDMA_TCD_CSR_ACTIVE BIT(6)
#define EDMA_TCD_CSR_DONE BIT(7)
#define EDMAMUX_CHCFG_DIS 0x0
#define EDMAMUX_CHCFG_ENBL 0x80
#define EDMAMUX_CHCFG_SOURCE(n) ((n) & 0x3F)
#define DMAMUX_NR 2
#define FSL_EDMA_BUSWIDTHS (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \
BIT(DMA_SLAVE_BUSWIDTH_8_BYTES))
enum fsl_edma_pm_state {
RUNNING = 0,
SUSPENDED,
};
struct fsl_edma_hw_tcd {
__le32 saddr;
__le16 soff;
__le16 attr;
__le32 nbytes;
__le32 slast;
__le32 daddr;
__le16 doff;
__le16 citer;
__le32 dlast_sga;
__le16 csr;
__le16 biter;
};
/*
* These are iomem pointers, for both v32 and v64.
*/
struct edma_regs {
void __iomem *cr;
void __iomem *es;
void __iomem *erqh;
void __iomem *erql; /* aka erq on v32 */
void __iomem *eeih;
void __iomem *eeil; /* aka eei on v32 */
void __iomem *seei;
void __iomem *ceei;
void __iomem *serq;
void __iomem *cerq;
void __iomem *cint;
void __iomem *cerr;
void __iomem *ssrt;
void __iomem *cdne;
void __iomem *inth;
void __iomem *intl;
void __iomem *errh;
void __iomem *errl;
struct fsl_edma_hw_tcd __iomem *tcd;
};
struct fsl_edma_sw_tcd {
dma_addr_t ptcd;
struct fsl_edma_hw_tcd *vtcd;
};
struct fsl_edma_chan {
struct virt_dma_chan vchan;
enum dma_status status;
enum fsl_edma_pm_state pm_state;
bool idle;
u32 slave_id;
struct fsl_edma_engine *edma;
struct fsl_edma_desc *edesc;
struct dma_slave_config cfg;
u32 attr;
struct dma_pool *tcd_pool;
};
struct fsl_edma_desc {
struct virt_dma_desc vdesc;
struct fsl_edma_chan *echan;
bool iscyclic;
enum dma_transfer_direction dirn;
unsigned int n_tcds;
struct fsl_edma_sw_tcd tcd[];
};
enum edma_version {
v1, /* 32ch, Vybdir, mpc57x, etc */
v2, /* 64ch Coldfire */
};
struct fsl_edma_engine {
struct dma_device dma_dev;
void __iomem *membase;
void __iomem *muxbase[DMAMUX_NR];
struct clk *muxclk[DMAMUX_NR];
struct mutex fsl_edma_mutex;
u32 n_chans;
int txirq;
int errirq;
bool big_endian;
enum edma_version version;
struct edma_regs regs;
struct fsl_edma_chan chans[];
};
/*
* R/W functions for big- or little-endian registers:
* The eDMA controller's endian is independent of the CPU core's endian.
* For the big-endian IP module, the offset for 8-bit or 16-bit registers
* should also be swapped opposite to that in little-endian IP.
*/
static inline u32 edma_readl(struct fsl_edma_engine *edma, void __iomem *addr)
{
if (edma->big_endian)
return ioread32be(addr);
else
return ioread32(addr);
}
static inline void edma_writeb(struct fsl_edma_engine *edma,
u8 val, void __iomem *addr)
{
/* swap the reg offset for these in big-endian mode */
if (edma->big_endian)
iowrite8(val, (void __iomem *)((unsigned long)addr ^ 0x3));
else
iowrite8(val, addr);
}
static inline void edma_writew(struct fsl_edma_engine *edma,
u16 val, void __iomem *addr)
{
/* swap the reg offset for these in big-endian mode */
if (edma->big_endian)
iowrite16be(val, (void __iomem *)((unsigned long)addr ^ 0x2));
else
iowrite16(val, addr);
}
static inline void edma_writel(struct fsl_edma_engine *edma,
u32 val, void __iomem *addr)
{
if (edma->big_endian)
iowrite32be(val, addr);
else
iowrite32(val, addr);
}
static inline struct fsl_edma_chan *to_fsl_edma_chan(struct dma_chan *chan)
{
return container_of(chan, struct fsl_edma_chan, vchan.chan);
}
static inline struct fsl_edma_desc *to_fsl_edma_desc(struct virt_dma_desc *vd)
{
return container_of(vd, struct fsl_edma_desc, vdesc);
}
void fsl_edma_disable_request(struct fsl_edma_chan *fsl_chan);
void fsl_edma_chan_mux(struct fsl_edma_chan *fsl_chan,
unsigned int slot, bool enable);
void fsl_edma_free_desc(struct virt_dma_desc *vdesc);
int fsl_edma_terminate_all(struct dma_chan *chan);
int fsl_edma_pause(struct dma_chan *chan);
int fsl_edma_resume(struct dma_chan *chan);
int fsl_edma_slave_config(struct dma_chan *chan,
struct dma_slave_config *cfg);
enum dma_status fsl_edma_tx_status(struct dma_chan *chan,
dma_cookie_t cookie, struct dma_tx_state *txstate);
struct dma_async_tx_descriptor *fsl_edma_prep_dma_cyclic(
struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
size_t period_len, enum dma_transfer_direction direction,
unsigned long flags);
struct dma_async_tx_descriptor *fsl_edma_prep_slave_sg(
struct dma_chan *chan, struct scatterlist *sgl,
unsigned int sg_len, enum dma_transfer_direction direction,
unsigned long flags, void *context);
void fsl_edma_xfer_desc(struct fsl_edma_chan *fsl_chan);
void fsl_edma_issue_pending(struct dma_chan *chan);
int fsl_edma_alloc_chan_resources(struct dma_chan *chan);
void fsl_edma_free_chan_resources(struct dma_chan *chan);
void fsl_edma_cleanup_vchan(struct dma_device *dmadev);
void fsl_edma_setup_regs(struct fsl_edma_engine *edma);
#endif /* _FSL_EDMA_COMMON_H_ */
...@@ -13,671 +13,31 @@ ...@@ -13,671 +13,31 @@
* option) any later version. * option) any later version.
*/ */
#include <linux/init.h>
#include <linux/module.h> #include <linux/module.h>
#include <linux/interrupt.h> #include <linux/interrupt.h>
#include <linux/clk.h> #include <linux/clk.h>
#include <linux/dma-mapping.h>
#include <linux/dmapool.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/of.h> #include <linux/of.h>
#include <linux/of_device.h> #include <linux/of_device.h>
#include <linux/of_address.h> #include <linux/of_address.h>
#include <linux/of_irq.h> #include <linux/of_irq.h>
#include <linux/of_dma.h> #include <linux/of_dma.h>
#include "virt-dma.h" #include "fsl-edma-common.h"
#define EDMA_CR 0x00
#define EDMA_ES 0x04
#define EDMA_ERQ 0x0C
#define EDMA_EEI 0x14
#define EDMA_SERQ 0x1B
#define EDMA_CERQ 0x1A
#define EDMA_SEEI 0x19
#define EDMA_CEEI 0x18
#define EDMA_CINT 0x1F
#define EDMA_CERR 0x1E
#define EDMA_SSRT 0x1D
#define EDMA_CDNE 0x1C
#define EDMA_INTR 0x24
#define EDMA_ERR 0x2C
#define EDMA_TCD_SADDR(x) (0x1000 + 32 * (x))
#define EDMA_TCD_SOFF(x) (0x1004 + 32 * (x))
#define EDMA_TCD_ATTR(x) (0x1006 + 32 * (x))
#define EDMA_TCD_NBYTES(x) (0x1008 + 32 * (x))
#define EDMA_TCD_SLAST(x) (0x100C + 32 * (x))
#define EDMA_TCD_DADDR(x) (0x1010 + 32 * (x))
#define EDMA_TCD_DOFF(x) (0x1014 + 32 * (x))
#define EDMA_TCD_CITER_ELINK(x) (0x1016 + 32 * (x))
#define EDMA_TCD_CITER(x) (0x1016 + 32 * (x))
#define EDMA_TCD_DLAST_SGA(x) (0x1018 + 32 * (x))
#define EDMA_TCD_CSR(x) (0x101C + 32 * (x))
#define EDMA_TCD_BITER_ELINK(x) (0x101E + 32 * (x))
#define EDMA_TCD_BITER(x) (0x101E + 32 * (x))
#define EDMA_CR_EDBG BIT(1)
#define EDMA_CR_ERCA BIT(2)
#define EDMA_CR_ERGA BIT(3)
#define EDMA_CR_HOE BIT(4)
#define EDMA_CR_HALT BIT(5)
#define EDMA_CR_CLM BIT(6)
#define EDMA_CR_EMLM BIT(7)
#define EDMA_CR_ECX BIT(16)
#define EDMA_CR_CX BIT(17)
#define EDMA_SEEI_SEEI(x) ((x) & 0x1F)
#define EDMA_CEEI_CEEI(x) ((x) & 0x1F)
#define EDMA_CINT_CINT(x) ((x) & 0x1F)
#define EDMA_CERR_CERR(x) ((x) & 0x1F)
#define EDMA_TCD_ATTR_DSIZE(x) (((x) & 0x0007))
#define EDMA_TCD_ATTR_DMOD(x) (((x) & 0x001F) << 3)
#define EDMA_TCD_ATTR_SSIZE(x) (((x) & 0x0007) << 8)
#define EDMA_TCD_ATTR_SMOD(x) (((x) & 0x001F) << 11)
#define EDMA_TCD_ATTR_SSIZE_8BIT (0x0000)
#define EDMA_TCD_ATTR_SSIZE_16BIT (0x0100)
#define EDMA_TCD_ATTR_SSIZE_32BIT (0x0200)
#define EDMA_TCD_ATTR_SSIZE_64BIT (0x0300)
#define EDMA_TCD_ATTR_SSIZE_32BYTE (0x0500)
#define EDMA_TCD_ATTR_DSIZE_8BIT (0x0000)
#define EDMA_TCD_ATTR_DSIZE_16BIT (0x0001)
#define EDMA_TCD_ATTR_DSIZE_32BIT (0x0002)
#define EDMA_TCD_ATTR_DSIZE_64BIT (0x0003)
#define EDMA_TCD_ATTR_DSIZE_32BYTE (0x0005)
#define EDMA_TCD_SOFF_SOFF(x) (x)
#define EDMA_TCD_NBYTES_NBYTES(x) (x)
#define EDMA_TCD_SLAST_SLAST(x) (x)
#define EDMA_TCD_DADDR_DADDR(x) (x)
#define EDMA_TCD_CITER_CITER(x) ((x) & 0x7FFF)
#define EDMA_TCD_DOFF_DOFF(x) (x)
#define EDMA_TCD_DLAST_SGA_DLAST_SGA(x) (x)
#define EDMA_TCD_BITER_BITER(x) ((x) & 0x7FFF)
#define EDMA_TCD_CSR_START BIT(0)
#define EDMA_TCD_CSR_INT_MAJOR BIT(1)
#define EDMA_TCD_CSR_INT_HALF BIT(2)
#define EDMA_TCD_CSR_D_REQ BIT(3)
#define EDMA_TCD_CSR_E_SG BIT(4)
#define EDMA_TCD_CSR_E_LINK BIT(5)
#define EDMA_TCD_CSR_ACTIVE BIT(6)
#define EDMA_TCD_CSR_DONE BIT(7)
#define EDMAMUX_CHCFG_DIS 0x0
#define EDMAMUX_CHCFG_ENBL 0x80
#define EDMAMUX_CHCFG_SOURCE(n) ((n) & 0x3F)
#define DMAMUX_NR 2
#define FSL_EDMA_BUSWIDTHS BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \
BIT(DMA_SLAVE_BUSWIDTH_8_BYTES)
enum fsl_edma_pm_state {
RUNNING = 0,
SUSPENDED,
};
struct fsl_edma_hw_tcd {
__le32 saddr;
__le16 soff;
__le16 attr;
__le32 nbytes;
__le32 slast;
__le32 daddr;
__le16 doff;
__le16 citer;
__le32 dlast_sga;
__le16 csr;
__le16 biter;
};
struct fsl_edma_sw_tcd {
dma_addr_t ptcd;
struct fsl_edma_hw_tcd *vtcd;
};
struct fsl_edma_slave_config {
enum dma_transfer_direction dir;
enum dma_slave_buswidth addr_width;
u32 dev_addr;
u32 burst;
u32 attr;
};
struct fsl_edma_chan {
struct virt_dma_chan vchan;
enum dma_status status;
enum fsl_edma_pm_state pm_state;
bool idle;
u32 slave_id;
struct fsl_edma_engine *edma;
struct fsl_edma_desc *edesc;
struct fsl_edma_slave_config fsc;
struct dma_pool *tcd_pool;
};
struct fsl_edma_desc {
struct virt_dma_desc vdesc;
struct fsl_edma_chan *echan;
bool iscyclic;
unsigned int n_tcds;
struct fsl_edma_sw_tcd tcd[];
};
struct fsl_edma_engine {
struct dma_device dma_dev;
void __iomem *membase;
void __iomem *muxbase[DMAMUX_NR];
struct clk *muxclk[DMAMUX_NR];
struct mutex fsl_edma_mutex;
u32 n_chans;
int txirq;
int errirq;
bool big_endian;
struct fsl_edma_chan chans[];
};
/*
* R/W functions for big- or little-endian registers:
* The eDMA controller's endian is independent of the CPU core's endian.
* For the big-endian IP module, the offset for 8-bit or 16-bit registers
* should also be swapped opposite to that in little-endian IP.
*/
static u32 edma_readl(struct fsl_edma_engine *edma, void __iomem *addr)
{
if (edma->big_endian)
return ioread32be(addr);
else
return ioread32(addr);
}
static void edma_writeb(struct fsl_edma_engine *edma, u8 val, void __iomem *addr)
{
/* swap the reg offset for these in big-endian mode */
if (edma->big_endian)
iowrite8(val, (void __iomem *)((unsigned long)addr ^ 0x3));
else
iowrite8(val, addr);
}
static void edma_writew(struct fsl_edma_engine *edma, u16 val, void __iomem *addr)
{
/* swap the reg offset for these in big-endian mode */
if (edma->big_endian)
iowrite16be(val, (void __iomem *)((unsigned long)addr ^ 0x2));
else
iowrite16(val, addr);
}
static void edma_writel(struct fsl_edma_engine *edma, u32 val, void __iomem *addr)
{
if (edma->big_endian)
iowrite32be(val, addr);
else
iowrite32(val, addr);
}
static struct fsl_edma_chan *to_fsl_edma_chan(struct dma_chan *chan)
{
return container_of(chan, struct fsl_edma_chan, vchan.chan);
}
static struct fsl_edma_desc *to_fsl_edma_desc(struct virt_dma_desc *vd)
{
return container_of(vd, struct fsl_edma_desc, vdesc);
}
static void fsl_edma_enable_request(struct fsl_edma_chan *fsl_chan)
{
void __iomem *addr = fsl_chan->edma->membase;
u32 ch = fsl_chan->vchan.chan.chan_id;
edma_writeb(fsl_chan->edma, EDMA_SEEI_SEEI(ch), addr + EDMA_SEEI);
edma_writeb(fsl_chan->edma, ch, addr + EDMA_SERQ);
}
static void fsl_edma_disable_request(struct fsl_edma_chan *fsl_chan)
{
void __iomem *addr = fsl_chan->edma->membase;
u32 ch = fsl_chan->vchan.chan.chan_id;
edma_writeb(fsl_chan->edma, ch, addr + EDMA_CERQ);
edma_writeb(fsl_chan->edma, EDMA_CEEI_CEEI(ch), addr + EDMA_CEEI);
}
static void fsl_edma_chan_mux(struct fsl_edma_chan *fsl_chan,
unsigned int slot, bool enable)
{
u32 ch = fsl_chan->vchan.chan.chan_id;
void __iomem *muxaddr;
unsigned chans_per_mux, ch_off;
chans_per_mux = fsl_chan->edma->n_chans / DMAMUX_NR;
ch_off = fsl_chan->vchan.chan.chan_id % chans_per_mux;
muxaddr = fsl_chan->edma->muxbase[ch / chans_per_mux];
slot = EDMAMUX_CHCFG_SOURCE(slot);
if (enable)
iowrite8(EDMAMUX_CHCFG_ENBL | slot, muxaddr + ch_off);
else
iowrite8(EDMAMUX_CHCFG_DIS, muxaddr + ch_off);
}
static unsigned int fsl_edma_get_tcd_attr(enum dma_slave_buswidth addr_width)
{
switch (addr_width) {
case 1:
return EDMA_TCD_ATTR_SSIZE_8BIT | EDMA_TCD_ATTR_DSIZE_8BIT;
case 2:
return EDMA_TCD_ATTR_SSIZE_16BIT | EDMA_TCD_ATTR_DSIZE_16BIT;
case 4:
return EDMA_TCD_ATTR_SSIZE_32BIT | EDMA_TCD_ATTR_DSIZE_32BIT;
case 8:
return EDMA_TCD_ATTR_SSIZE_64BIT | EDMA_TCD_ATTR_DSIZE_64BIT;
default:
return EDMA_TCD_ATTR_SSIZE_32BIT | EDMA_TCD_ATTR_DSIZE_32BIT;
}
}
static void fsl_edma_free_desc(struct virt_dma_desc *vdesc)
{
struct fsl_edma_desc *fsl_desc;
int i;
fsl_desc = to_fsl_edma_desc(vdesc);
for (i = 0; i < fsl_desc->n_tcds; i++)
dma_pool_free(fsl_desc->echan->tcd_pool, fsl_desc->tcd[i].vtcd,
fsl_desc->tcd[i].ptcd);
kfree(fsl_desc);
}
static int fsl_edma_terminate_all(struct dma_chan *chan)
{
struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
unsigned long flags;
LIST_HEAD(head);
spin_lock_irqsave(&fsl_chan->vchan.lock, flags);
fsl_edma_disable_request(fsl_chan);
fsl_chan->edesc = NULL;
fsl_chan->idle = true;
vchan_get_all_descriptors(&fsl_chan->vchan, &head);
spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags);
vchan_dma_desc_free_list(&fsl_chan->vchan, &head);
return 0;
}
static int fsl_edma_pause(struct dma_chan *chan)
{
struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
unsigned long flags;
spin_lock_irqsave(&fsl_chan->vchan.lock, flags);
if (fsl_chan->edesc) {
fsl_edma_disable_request(fsl_chan);
fsl_chan->status = DMA_PAUSED;
fsl_chan->idle = true;
}
spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags);
return 0;
}
static int fsl_edma_resume(struct dma_chan *chan)
{
struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
unsigned long flags;
spin_lock_irqsave(&fsl_chan->vchan.lock, flags);
if (fsl_chan->edesc) {
fsl_edma_enable_request(fsl_chan);
fsl_chan->status = DMA_IN_PROGRESS;
fsl_chan->idle = false;
}
spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags);
return 0;
}
static int fsl_edma_slave_config(struct dma_chan *chan,
struct dma_slave_config *cfg)
{
struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
fsl_chan->fsc.dir = cfg->direction;
if (cfg->direction == DMA_DEV_TO_MEM) {
fsl_chan->fsc.dev_addr = cfg->src_addr;
fsl_chan->fsc.addr_width = cfg->src_addr_width;
fsl_chan->fsc.burst = cfg->src_maxburst;
fsl_chan->fsc.attr = fsl_edma_get_tcd_attr(cfg->src_addr_width);
} else if (cfg->direction == DMA_MEM_TO_DEV) {
fsl_chan->fsc.dev_addr = cfg->dst_addr;
fsl_chan->fsc.addr_width = cfg->dst_addr_width;
fsl_chan->fsc.burst = cfg->dst_maxburst;
fsl_chan->fsc.attr = fsl_edma_get_tcd_attr(cfg->dst_addr_width);
} else {
return -EINVAL;
}
return 0;
}
static size_t fsl_edma_desc_residue(struct fsl_edma_chan *fsl_chan,
struct virt_dma_desc *vdesc, bool in_progress)
{
struct fsl_edma_desc *edesc = fsl_chan->edesc;
void __iomem *addr = fsl_chan->edma->membase;
u32 ch = fsl_chan->vchan.chan.chan_id;
enum dma_transfer_direction dir = fsl_chan->fsc.dir;
dma_addr_t cur_addr, dma_addr;
size_t len, size;
int i;
/* calculate the total size in this desc */
for (len = i = 0; i < fsl_chan->edesc->n_tcds; i++)
len += le32_to_cpu(edesc->tcd[i].vtcd->nbytes)
* le16_to_cpu(edesc->tcd[i].vtcd->biter);
if (!in_progress)
return len;
if (dir == DMA_MEM_TO_DEV)
cur_addr = edma_readl(fsl_chan->edma, addr + EDMA_TCD_SADDR(ch));
else
cur_addr = edma_readl(fsl_chan->edma, addr + EDMA_TCD_DADDR(ch));
/* figure out the finished and calculate the residue */
for (i = 0; i < fsl_chan->edesc->n_tcds; i++) {
size = le32_to_cpu(edesc->tcd[i].vtcd->nbytes)
* le16_to_cpu(edesc->tcd[i].vtcd->biter);
if (dir == DMA_MEM_TO_DEV)
dma_addr = le32_to_cpu(edesc->tcd[i].vtcd->saddr);
else
dma_addr = le32_to_cpu(edesc->tcd[i].vtcd->daddr);
len -= size;
if (cur_addr >= dma_addr && cur_addr < dma_addr + size) {
len += dma_addr + size - cur_addr;
break;
}
}
return len;
}
static enum dma_status fsl_edma_tx_status(struct dma_chan *chan,
dma_cookie_t cookie, struct dma_tx_state *txstate)
{
struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
struct virt_dma_desc *vdesc;
enum dma_status status;
unsigned long flags;
status = dma_cookie_status(chan, cookie, txstate);
if (status == DMA_COMPLETE)
return status;
if (!txstate)
return fsl_chan->status;
spin_lock_irqsave(&fsl_chan->vchan.lock, flags);
vdesc = vchan_find_desc(&fsl_chan->vchan, cookie);
if (fsl_chan->edesc && cookie == fsl_chan->edesc->vdesc.tx.cookie)
txstate->residue = fsl_edma_desc_residue(fsl_chan, vdesc, true);
else if (vdesc)
txstate->residue = fsl_edma_desc_residue(fsl_chan, vdesc, false);
else
txstate->residue = 0;
spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags);
return fsl_chan->status;
}
static void fsl_edma_set_tcd_regs(struct fsl_edma_chan *fsl_chan,
struct fsl_edma_hw_tcd *tcd)
{
struct fsl_edma_engine *edma = fsl_chan->edma;
void __iomem *addr = fsl_chan->edma->membase;
u32 ch = fsl_chan->vchan.chan.chan_id;
/*
* TCD parameters are stored in struct fsl_edma_hw_tcd in little
* endian format. However, we need to load the TCD registers in
* big- or little-endian obeying the eDMA engine model endian.
*/
edma_writew(edma, 0, addr + EDMA_TCD_CSR(ch));
edma_writel(edma, le32_to_cpu(tcd->saddr), addr + EDMA_TCD_SADDR(ch));
edma_writel(edma, le32_to_cpu(tcd->daddr), addr + EDMA_TCD_DADDR(ch));
edma_writew(edma, le16_to_cpu(tcd->attr), addr + EDMA_TCD_ATTR(ch));
edma_writew(edma, le16_to_cpu(tcd->soff), addr + EDMA_TCD_SOFF(ch));
edma_writel(edma, le32_to_cpu(tcd->nbytes), addr + EDMA_TCD_NBYTES(ch));
edma_writel(edma, le32_to_cpu(tcd->slast), addr + EDMA_TCD_SLAST(ch));
edma_writew(edma, le16_to_cpu(tcd->citer), addr + EDMA_TCD_CITER(ch));
edma_writew(edma, le16_to_cpu(tcd->biter), addr + EDMA_TCD_BITER(ch));
edma_writew(edma, le16_to_cpu(tcd->doff), addr + EDMA_TCD_DOFF(ch));
edma_writel(edma, le32_to_cpu(tcd->dlast_sga), addr + EDMA_TCD_DLAST_SGA(ch));
edma_writew(edma, le16_to_cpu(tcd->csr), addr + EDMA_TCD_CSR(ch));
}
static inline
void fsl_edma_fill_tcd(struct fsl_edma_hw_tcd *tcd, u32 src, u32 dst,
u16 attr, u16 soff, u32 nbytes, u32 slast, u16 citer,
u16 biter, u16 doff, u32 dlast_sga, bool major_int,
bool disable_req, bool enable_sg)
{
u16 csr = 0;
/*
* eDMA hardware SGs require the TCDs to be stored in little
* endian format irrespective of the register endian model.
* So we put the value in little endian in memory, waiting
* for fsl_edma_set_tcd_regs doing the swap.
*/
tcd->saddr = cpu_to_le32(src);
tcd->daddr = cpu_to_le32(dst);
tcd->attr = cpu_to_le16(attr);
tcd->soff = cpu_to_le16(EDMA_TCD_SOFF_SOFF(soff));
tcd->nbytes = cpu_to_le32(EDMA_TCD_NBYTES_NBYTES(nbytes));
tcd->slast = cpu_to_le32(EDMA_TCD_SLAST_SLAST(slast));
tcd->citer = cpu_to_le16(EDMA_TCD_CITER_CITER(citer));
tcd->doff = cpu_to_le16(EDMA_TCD_DOFF_DOFF(doff));
tcd->dlast_sga = cpu_to_le32(EDMA_TCD_DLAST_SGA_DLAST_SGA(dlast_sga));
tcd->biter = cpu_to_le16(EDMA_TCD_BITER_BITER(biter));
if (major_int)
csr |= EDMA_TCD_CSR_INT_MAJOR;
if (disable_req)
csr |= EDMA_TCD_CSR_D_REQ;
if (enable_sg)
csr |= EDMA_TCD_CSR_E_SG;
tcd->csr = cpu_to_le16(csr);
}
static struct fsl_edma_desc *fsl_edma_alloc_desc(struct fsl_edma_chan *fsl_chan,
int sg_len)
{
struct fsl_edma_desc *fsl_desc;
int i;
fsl_desc = kzalloc(sizeof(*fsl_desc) + sizeof(struct fsl_edma_sw_tcd) * sg_len,
GFP_NOWAIT);
if (!fsl_desc)
return NULL;
fsl_desc->echan = fsl_chan;
fsl_desc->n_tcds = sg_len;
for (i = 0; i < sg_len; i++) {
fsl_desc->tcd[i].vtcd = dma_pool_alloc(fsl_chan->tcd_pool,
GFP_NOWAIT, &fsl_desc->tcd[i].ptcd);
if (!fsl_desc->tcd[i].vtcd)
goto err;
}
return fsl_desc;
err:
while (--i >= 0)
dma_pool_free(fsl_chan->tcd_pool, fsl_desc->tcd[i].vtcd,
fsl_desc->tcd[i].ptcd);
kfree(fsl_desc);
return NULL;
}
static struct dma_async_tx_descriptor *fsl_edma_prep_dma_cyclic(
struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
size_t period_len, enum dma_transfer_direction direction,
unsigned long flags)
{
struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
struct fsl_edma_desc *fsl_desc;
dma_addr_t dma_buf_next;
int sg_len, i;
u32 src_addr, dst_addr, last_sg, nbytes;
u16 soff, doff, iter;
if (!is_slave_direction(fsl_chan->fsc.dir))
return NULL;
sg_len = buf_len / period_len;
fsl_desc = fsl_edma_alloc_desc(fsl_chan, sg_len);
if (!fsl_desc)
return NULL;
fsl_desc->iscyclic = true;
dma_buf_next = dma_addr;
nbytes = fsl_chan->fsc.addr_width * fsl_chan->fsc.burst;
iter = period_len / nbytes;
for (i = 0; i < sg_len; i++) {
if (dma_buf_next >= dma_addr + buf_len)
dma_buf_next = dma_addr;
/* get next sg's physical address */
last_sg = fsl_desc->tcd[(i + 1) % sg_len].ptcd;
if (fsl_chan->fsc.dir == DMA_MEM_TO_DEV) {
src_addr = dma_buf_next;
dst_addr = fsl_chan->fsc.dev_addr;
soff = fsl_chan->fsc.addr_width;
doff = 0;
} else {
src_addr = fsl_chan->fsc.dev_addr;
dst_addr = dma_buf_next;
soff = 0;
doff = fsl_chan->fsc.addr_width;
}
fsl_edma_fill_tcd(fsl_desc->tcd[i].vtcd, src_addr, dst_addr,
fsl_chan->fsc.attr, soff, nbytes, 0, iter,
iter, doff, last_sg, true, false, true);
dma_buf_next += period_len;
}
return vchan_tx_prep(&fsl_chan->vchan, &fsl_desc->vdesc, flags);
}
static struct dma_async_tx_descriptor *fsl_edma_prep_slave_sg(
struct dma_chan *chan, struct scatterlist *sgl,
unsigned int sg_len, enum dma_transfer_direction direction,
unsigned long flags, void *context)
{
struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
struct fsl_edma_desc *fsl_desc;
struct scatterlist *sg;
u32 src_addr, dst_addr, last_sg, nbytes;
u16 soff, doff, iter;
int i;
if (!is_slave_direction(fsl_chan->fsc.dir))
return NULL;
fsl_desc = fsl_edma_alloc_desc(fsl_chan, sg_len);
if (!fsl_desc)
return NULL;
fsl_desc->iscyclic = false;
nbytes = fsl_chan->fsc.addr_width * fsl_chan->fsc.burst;
for_each_sg(sgl, sg, sg_len, i) {
/* get next sg's physical address */
last_sg = fsl_desc->tcd[(i + 1) % sg_len].ptcd;
if (fsl_chan->fsc.dir == DMA_MEM_TO_DEV) {
src_addr = sg_dma_address(sg);
dst_addr = fsl_chan->fsc.dev_addr;
soff = fsl_chan->fsc.addr_width;
doff = 0;
} else {
src_addr = fsl_chan->fsc.dev_addr;
dst_addr = sg_dma_address(sg);
soff = 0;
doff = fsl_chan->fsc.addr_width;
}
iter = sg_dma_len(sg) / nbytes;
if (i < sg_len - 1) {
last_sg = fsl_desc->tcd[(i + 1)].ptcd;
fsl_edma_fill_tcd(fsl_desc->tcd[i].vtcd, src_addr,
dst_addr, fsl_chan->fsc.attr, soff,
nbytes, 0, iter, iter, doff, last_sg,
false, false, true);
} else {
last_sg = 0;
fsl_edma_fill_tcd(fsl_desc->tcd[i].vtcd, src_addr,
dst_addr, fsl_chan->fsc.attr, soff,
nbytes, 0, iter, iter, doff, last_sg,
true, true, false);
}
}
return vchan_tx_prep(&fsl_chan->vchan, &fsl_desc->vdesc, flags);
}
static void fsl_edma_xfer_desc(struct fsl_edma_chan *fsl_chan)
{
struct virt_dma_desc *vdesc;
vdesc = vchan_next_desc(&fsl_chan->vchan);
if (!vdesc)
return;
fsl_chan->edesc = to_fsl_edma_desc(vdesc);
fsl_edma_set_tcd_regs(fsl_chan, fsl_chan->edesc->tcd[0].vtcd);
fsl_edma_enable_request(fsl_chan);
fsl_chan->status = DMA_IN_PROGRESS;
fsl_chan->idle = false;
}
static irqreturn_t fsl_edma_tx_handler(int irq, void *dev_id) static irqreturn_t fsl_edma_tx_handler(int irq, void *dev_id)
{ {
struct fsl_edma_engine *fsl_edma = dev_id; struct fsl_edma_engine *fsl_edma = dev_id;
unsigned int intr, ch; unsigned int intr, ch;
void __iomem *base_addr; struct edma_regs *regs = &fsl_edma->regs;
struct fsl_edma_chan *fsl_chan; struct fsl_edma_chan *fsl_chan;
base_addr = fsl_edma->membase; intr = edma_readl(fsl_edma, regs->intl);
intr = edma_readl(fsl_edma, base_addr + EDMA_INTR);
if (!intr) if (!intr)
return IRQ_NONE; return IRQ_NONE;
for (ch = 0; ch < fsl_edma->n_chans; ch++) { for (ch = 0; ch < fsl_edma->n_chans; ch++) {
if (intr & (0x1 << ch)) { if (intr & (0x1 << ch)) {
edma_writeb(fsl_edma, EDMA_CINT_CINT(ch), edma_writeb(fsl_edma, EDMA_CINT_CINT(ch), regs->cint);
base_addr + EDMA_CINT);
fsl_chan = &fsl_edma->chans[ch]; fsl_chan = &fsl_edma->chans[ch];
...@@ -705,16 +65,16 @@ static irqreturn_t fsl_edma_err_handler(int irq, void *dev_id) ...@@ -705,16 +65,16 @@ static irqreturn_t fsl_edma_err_handler(int irq, void *dev_id)
{ {
struct fsl_edma_engine *fsl_edma = dev_id; struct fsl_edma_engine *fsl_edma = dev_id;
unsigned int err, ch; unsigned int err, ch;
struct edma_regs *regs = &fsl_edma->regs;
err = edma_readl(fsl_edma, fsl_edma->membase + EDMA_ERR); err = edma_readl(fsl_edma, regs->errl);
if (!err) if (!err)
return IRQ_NONE; return IRQ_NONE;
for (ch = 0; ch < fsl_edma->n_chans; ch++) { for (ch = 0; ch < fsl_edma->n_chans; ch++) {
if (err & (0x1 << ch)) { if (err & (0x1 << ch)) {
fsl_edma_disable_request(&fsl_edma->chans[ch]); fsl_edma_disable_request(&fsl_edma->chans[ch]);
edma_writeb(fsl_edma, EDMA_CERR_CERR(ch), edma_writeb(fsl_edma, EDMA_CERR_CERR(ch), regs->cerr);
fsl_edma->membase + EDMA_CERR);
fsl_edma->chans[ch].status = DMA_ERROR; fsl_edma->chans[ch].status = DMA_ERROR;
fsl_edma->chans[ch].idle = true; fsl_edma->chans[ch].idle = true;
} }
...@@ -730,25 +90,6 @@ static irqreturn_t fsl_edma_irq_handler(int irq, void *dev_id) ...@@ -730,25 +90,6 @@ static irqreturn_t fsl_edma_irq_handler(int irq, void *dev_id)
return fsl_edma_err_handler(irq, dev_id); return fsl_edma_err_handler(irq, dev_id);
} }
static void fsl_edma_issue_pending(struct dma_chan *chan)
{
struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
unsigned long flags;
spin_lock_irqsave(&fsl_chan->vchan.lock, flags);
if (unlikely(fsl_chan->pm_state != RUNNING)) {
spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags);
/* cannot submit due to suspend */
return;
}
if (vchan_issue_pending(&fsl_chan->vchan) && !fsl_chan->edesc)
fsl_edma_xfer_desc(fsl_chan);
spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags);
}
static struct dma_chan *fsl_edma_xlate(struct of_phandle_args *dma_spec, static struct dma_chan *fsl_edma_xlate(struct of_phandle_args *dma_spec,
struct of_dma *ofdma) struct of_dma *ofdma)
{ {
...@@ -781,34 +122,6 @@ static struct dma_chan *fsl_edma_xlate(struct of_phandle_args *dma_spec, ...@@ -781,34 +122,6 @@ static struct dma_chan *fsl_edma_xlate(struct of_phandle_args *dma_spec,
return NULL; return NULL;
} }
static int fsl_edma_alloc_chan_resources(struct dma_chan *chan)
{
struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
fsl_chan->tcd_pool = dma_pool_create("tcd_pool", chan->device->dev,
sizeof(struct fsl_edma_hw_tcd),
32, 0);
return 0;
}
static void fsl_edma_free_chan_resources(struct dma_chan *chan)
{
struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
unsigned long flags;
LIST_HEAD(head);
spin_lock_irqsave(&fsl_chan->vchan.lock, flags);
fsl_edma_disable_request(fsl_chan);
fsl_edma_chan_mux(fsl_chan, 0, false);
fsl_chan->edesc = NULL;
vchan_get_all_descriptors(&fsl_chan->vchan, &head);
spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags);
vchan_dma_desc_free_list(&fsl_chan->vchan, &head);
dma_pool_destroy(fsl_chan->tcd_pool);
fsl_chan->tcd_pool = NULL;
}
static int static int
fsl_edma_irq_init(struct platform_device *pdev, struct fsl_edma_engine *fsl_edma) fsl_edma_irq_init(struct platform_device *pdev, struct fsl_edma_engine *fsl_edma)
{ {
...@@ -876,6 +189,7 @@ static int fsl_edma_probe(struct platform_device *pdev) ...@@ -876,6 +189,7 @@ static int fsl_edma_probe(struct platform_device *pdev)
struct device_node *np = pdev->dev.of_node; struct device_node *np = pdev->dev.of_node;
struct fsl_edma_engine *fsl_edma; struct fsl_edma_engine *fsl_edma;
struct fsl_edma_chan *fsl_chan; struct fsl_edma_chan *fsl_chan;
struct edma_regs *regs;
struct resource *res; struct resource *res;
int len, chans; int len, chans;
int ret, i; int ret, i;
...@@ -891,6 +205,7 @@ static int fsl_edma_probe(struct platform_device *pdev) ...@@ -891,6 +205,7 @@ static int fsl_edma_probe(struct platform_device *pdev)
if (!fsl_edma) if (!fsl_edma)
return -ENOMEM; return -ENOMEM;
fsl_edma->version = v1;
fsl_edma->n_chans = chans; fsl_edma->n_chans = chans;
mutex_init(&fsl_edma->fsl_edma_mutex); mutex_init(&fsl_edma->fsl_edma_mutex);
...@@ -899,6 +214,9 @@ static int fsl_edma_probe(struct platform_device *pdev) ...@@ -899,6 +214,9 @@ static int fsl_edma_probe(struct platform_device *pdev)
if (IS_ERR(fsl_edma->membase)) if (IS_ERR(fsl_edma->membase))
return PTR_ERR(fsl_edma->membase); return PTR_ERR(fsl_edma->membase);
fsl_edma_setup_regs(fsl_edma);
regs = &fsl_edma->regs;
for (i = 0; i < DMAMUX_NR; i++) { for (i = 0; i < DMAMUX_NR; i++) {
char clkname[32]; char clkname[32];
...@@ -939,11 +257,11 @@ static int fsl_edma_probe(struct platform_device *pdev) ...@@ -939,11 +257,11 @@ static int fsl_edma_probe(struct platform_device *pdev)
fsl_chan->vchan.desc_free = fsl_edma_free_desc; fsl_chan->vchan.desc_free = fsl_edma_free_desc;
vchan_init(&fsl_chan->vchan, &fsl_edma->dma_dev); vchan_init(&fsl_chan->vchan, &fsl_edma->dma_dev);
edma_writew(fsl_edma, 0x0, fsl_edma->membase + EDMA_TCD_CSR(i)); edma_writew(fsl_edma, 0x0, &regs->tcd[i].csr);
fsl_edma_chan_mux(fsl_chan, 0, false); fsl_edma_chan_mux(fsl_chan, 0, false);
} }
edma_writel(fsl_edma, ~0, fsl_edma->membase + EDMA_INTR); edma_writel(fsl_edma, ~0, regs->intl);
ret = fsl_edma_irq_init(pdev, fsl_edma); ret = fsl_edma_irq_init(pdev, fsl_edma);
if (ret) if (ret)
return ret; return ret;
...@@ -990,22 +308,11 @@ static int fsl_edma_probe(struct platform_device *pdev) ...@@ -990,22 +308,11 @@ static int fsl_edma_probe(struct platform_device *pdev)
} }
/* enable round robin arbitration */ /* enable round robin arbitration */
edma_writel(fsl_edma, EDMA_CR_ERGA | EDMA_CR_ERCA, fsl_edma->membase + EDMA_CR); edma_writel(fsl_edma, EDMA_CR_ERGA | EDMA_CR_ERCA, regs->cr);
return 0; return 0;
} }
static void fsl_edma_cleanup_vchan(struct dma_device *dmadev)
{
struct fsl_edma_chan *chan, *_chan;
list_for_each_entry_safe(chan, _chan,
&dmadev->channels, vchan.chan.device_node) {
list_del(&chan->vchan.chan.device_node);
tasklet_kill(&chan->vchan.task);
}
}
static int fsl_edma_remove(struct platform_device *pdev) static int fsl_edma_remove(struct platform_device *pdev)
{ {
struct device_node *np = pdev->dev.of_node; struct device_node *np = pdev->dev.of_node;
...@@ -1048,18 +355,18 @@ static int fsl_edma_resume_early(struct device *dev) ...@@ -1048,18 +355,18 @@ static int fsl_edma_resume_early(struct device *dev)
{ {
struct fsl_edma_engine *fsl_edma = dev_get_drvdata(dev); struct fsl_edma_engine *fsl_edma = dev_get_drvdata(dev);
struct fsl_edma_chan *fsl_chan; struct fsl_edma_chan *fsl_chan;
struct edma_regs *regs = &fsl_edma->regs;
int i; int i;
for (i = 0; i < fsl_edma->n_chans; i++) { for (i = 0; i < fsl_edma->n_chans; i++) {
fsl_chan = &fsl_edma->chans[i]; fsl_chan = &fsl_edma->chans[i];
fsl_chan->pm_state = RUNNING; fsl_chan->pm_state = RUNNING;
edma_writew(fsl_edma, 0x0, fsl_edma->membase + EDMA_TCD_CSR(i)); edma_writew(fsl_edma, 0x0, &regs->tcd[i].csr);
if (fsl_chan->slave_id != 0) if (fsl_chan->slave_id != 0)
fsl_edma_chan_mux(fsl_chan, fsl_chan->slave_id, true); fsl_edma_chan_mux(fsl_chan, fsl_chan->slave_id, true);
} }
edma_writel(fsl_edma, EDMA_CR_ERGA | EDMA_CR_ERCA, edma_writel(fsl_edma, EDMA_CR_ERGA | EDMA_CR_ERCA, regs->cr);
fsl_edma->membase + EDMA_CR);
return 0; return 0;
} }
......
...@@ -987,7 +987,7 @@ static void dma_do_tasklet(unsigned long data) ...@@ -987,7 +987,7 @@ static void dma_do_tasklet(unsigned long data)
chan_dbg(chan, "tasklet entry\n"); chan_dbg(chan, "tasklet entry\n");
spin_lock_bh(&chan->desc_lock); spin_lock(&chan->desc_lock);
/* the hardware is now idle and ready for more */ /* the hardware is now idle and ready for more */
chan->idle = true; chan->idle = true;
...@@ -995,7 +995,7 @@ static void dma_do_tasklet(unsigned long data) ...@@ -995,7 +995,7 @@ static void dma_do_tasklet(unsigned long data)
/* Run all cleanup for descriptors which have been completed */ /* Run all cleanup for descriptors which have been completed */
fsldma_cleanup_descriptors(chan); fsldma_cleanup_descriptors(chan);
spin_unlock_bh(&chan->desc_lock); spin_unlock(&chan->desc_lock);
chan_dbg(chan, "tasklet exit\n"); chan_dbg(chan, "tasklet exit\n");
} }
......
// SPDX-License-Identifier: GPL-2.0+
//
// Copyright (c) 2013-2014 Freescale Semiconductor, Inc
// Copyright (c) 2017 Sysam, Angelo Dureghello <angelo@sysam.it>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/dmaengine.h>
#include <linux/platform_device.h>
#include <linux/platform_data/dma-mcf-edma.h>
#include "fsl-edma-common.h"
#define EDMA_CHANNELS 64
#define EDMA_MASK_CH(x) ((x) & GENMASK(5, 0))
static irqreturn_t mcf_edma_tx_handler(int irq, void *dev_id)
{
struct fsl_edma_engine *mcf_edma = dev_id;
struct edma_regs *regs = &mcf_edma->regs;
unsigned int ch;
struct fsl_edma_chan *mcf_chan;
u64 intmap;
intmap = ioread32(regs->inth);
intmap <<= 32;
intmap |= ioread32(regs->intl);
if (!intmap)
return IRQ_NONE;
for (ch = 0; ch < mcf_edma->n_chans; ch++) {
if (intmap & BIT(ch)) {
iowrite8(EDMA_MASK_CH(ch), regs->cint);
mcf_chan = &mcf_edma->chans[ch];
spin_lock(&mcf_chan->vchan.lock);
if (!mcf_chan->edesc->iscyclic) {
list_del(&mcf_chan->edesc->vdesc.node);
vchan_cookie_complete(&mcf_chan->edesc->vdesc);
mcf_chan->edesc = NULL;
mcf_chan->status = DMA_COMPLETE;
mcf_chan->idle = true;
} else {
vchan_cyclic_callback(&mcf_chan->edesc->vdesc);
}
if (!mcf_chan->edesc)
fsl_edma_xfer_desc(mcf_chan);
spin_unlock(&mcf_chan->vchan.lock);
}
}
return IRQ_HANDLED;
}
static irqreturn_t mcf_edma_err_handler(int irq, void *dev_id)
{
struct fsl_edma_engine *mcf_edma = dev_id;
struct edma_regs *regs = &mcf_edma->regs;
unsigned int err, ch;
err = ioread32(regs->errl);
if (!err)
return IRQ_NONE;
for (ch = 0; ch < (EDMA_CHANNELS / 2); ch++) {
if (err & BIT(ch)) {
fsl_edma_disable_request(&mcf_edma->chans[ch]);
iowrite8(EDMA_CERR_CERR(ch), regs->cerr);
mcf_edma->chans[ch].status = DMA_ERROR;
mcf_edma->chans[ch].idle = true;
}
}
err = ioread32(regs->errh);
if (!err)
return IRQ_NONE;
for (ch = (EDMA_CHANNELS / 2); ch < EDMA_CHANNELS; ch++) {
if (err & (BIT(ch - (EDMA_CHANNELS / 2)))) {
fsl_edma_disable_request(&mcf_edma->chans[ch]);
iowrite8(EDMA_CERR_CERR(ch), regs->cerr);
mcf_edma->chans[ch].status = DMA_ERROR;
mcf_edma->chans[ch].idle = true;
}
}
return IRQ_HANDLED;
}
static int mcf_edma_irq_init(struct platform_device *pdev,
struct fsl_edma_engine *mcf_edma)
{
int ret = 0, i;
struct resource *res;
res = platform_get_resource_byname(pdev,
IORESOURCE_IRQ, "edma-tx-00-15");
if (!res)
return -1;
for (ret = 0, i = res->start; i <= res->end; ++i)
ret |= request_irq(i, mcf_edma_tx_handler, 0, "eDMA", mcf_edma);
if (ret)
return ret;
res = platform_get_resource_byname(pdev,
IORESOURCE_IRQ, "edma-tx-16-55");
if (!res)
return -1;
for (ret = 0, i = res->start; i <= res->end; ++i)
ret |= request_irq(i, mcf_edma_tx_handler, 0, "eDMA", mcf_edma);
if (ret)
return ret;
ret = platform_get_irq_byname(pdev, "edma-tx-56-63");
if (ret != -ENXIO) {
ret = request_irq(ret, mcf_edma_tx_handler,
0, "eDMA", mcf_edma);
if (ret)
return ret;
}
ret = platform_get_irq_byname(pdev, "edma-err");
if (ret != -ENXIO) {
ret = request_irq(ret, mcf_edma_err_handler,
0, "eDMA", mcf_edma);
if (ret)
return ret;
}
return 0;
}
static void mcf_edma_irq_free(struct platform_device *pdev,
struct fsl_edma_engine *mcf_edma)
{
int irq;
struct resource *res;
res = platform_get_resource_byname(pdev,
IORESOURCE_IRQ, "edma-tx-00-15");
if (res) {
for (irq = res->start; irq <= res->end; irq++)
free_irq(irq, mcf_edma);
}
res = platform_get_resource_byname(pdev,
IORESOURCE_IRQ, "edma-tx-16-55");
if (res) {
for (irq = res->start; irq <= res->end; irq++)
free_irq(irq, mcf_edma);
}
irq = platform_get_irq_byname(pdev, "edma-tx-56-63");
if (irq != -ENXIO)
free_irq(irq, mcf_edma);
irq = platform_get_irq_byname(pdev, "edma-err");
if (irq != -ENXIO)
free_irq(irq, mcf_edma);
}
static int mcf_edma_probe(struct platform_device *pdev)
{
struct mcf_edma_platform_data *pdata;
struct fsl_edma_engine *mcf_edma;
struct fsl_edma_chan *mcf_chan;
struct edma_regs *regs;
struct resource *res;
int ret, i, len, chans;
pdata = dev_get_platdata(&pdev->dev);
if (!pdata) {
dev_err(&pdev->dev, "no platform data supplied\n");
return -EINVAL;
}
chans = pdata->dma_channels;
len = sizeof(*mcf_edma) + sizeof(*mcf_chan) * chans;
mcf_edma = devm_kzalloc(&pdev->dev, len, GFP_KERNEL);
if (!mcf_edma)
return -ENOMEM;
mcf_edma->n_chans = chans;
/* Set up version for ColdFire edma */
mcf_edma->version = v2;
mcf_edma->big_endian = 1;
if (!mcf_edma->n_chans) {
dev_info(&pdev->dev, "setting default channel number to 64");
mcf_edma->n_chans = 64;
}
mutex_init(&mcf_edma->fsl_edma_mutex);
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
mcf_edma->membase = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(mcf_edma->membase))
return PTR_ERR(mcf_edma->membase);
fsl_edma_setup_regs(mcf_edma);
regs = &mcf_edma->regs;
INIT_LIST_HEAD(&mcf_edma->dma_dev.channels);
for (i = 0; i < mcf_edma->n_chans; i++) {
struct fsl_edma_chan *mcf_chan = &mcf_edma->chans[i];
mcf_chan->edma = mcf_edma;
mcf_chan->slave_id = i;
mcf_chan->idle = true;
mcf_chan->vchan.desc_free = fsl_edma_free_desc;
vchan_init(&mcf_chan->vchan, &mcf_edma->dma_dev);
iowrite32(0x0, &regs->tcd[i].csr);
}
iowrite32(~0, regs->inth);
iowrite32(~0, regs->intl);
ret = mcf_edma_irq_init(pdev, mcf_edma);
if (ret)
return ret;
dma_cap_set(DMA_PRIVATE, mcf_edma->dma_dev.cap_mask);
dma_cap_set(DMA_SLAVE, mcf_edma->dma_dev.cap_mask);
dma_cap_set(DMA_CYCLIC, mcf_edma->dma_dev.cap_mask);
mcf_edma->dma_dev.dev = &pdev->dev;
mcf_edma->dma_dev.device_alloc_chan_resources =
fsl_edma_alloc_chan_resources;
mcf_edma->dma_dev.device_free_chan_resources =
fsl_edma_free_chan_resources;
mcf_edma->dma_dev.device_config = fsl_edma_slave_config;
mcf_edma->dma_dev.device_prep_dma_cyclic =
fsl_edma_prep_dma_cyclic;
mcf_edma->dma_dev.device_prep_slave_sg = fsl_edma_prep_slave_sg;
mcf_edma->dma_dev.device_tx_status = fsl_edma_tx_status;
mcf_edma->dma_dev.device_pause = fsl_edma_pause;
mcf_edma->dma_dev.device_resume = fsl_edma_resume;
mcf_edma->dma_dev.device_terminate_all = fsl_edma_terminate_all;
mcf_edma->dma_dev.device_issue_pending = fsl_edma_issue_pending;
mcf_edma->dma_dev.src_addr_widths = FSL_EDMA_BUSWIDTHS;
mcf_edma->dma_dev.dst_addr_widths = FSL_EDMA_BUSWIDTHS;
mcf_edma->dma_dev.directions =
BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
mcf_edma->dma_dev.filter.fn = mcf_edma_filter_fn;
mcf_edma->dma_dev.filter.map = pdata->slave_map;
mcf_edma->dma_dev.filter.mapcnt = pdata->slavecnt;
platform_set_drvdata(pdev, mcf_edma);
ret = dma_async_device_register(&mcf_edma->dma_dev);
if (ret) {
dev_err(&pdev->dev,
"Can't register Freescale eDMA engine. (%d)\n", ret);
return ret;
}
/* Enable round robin arbitration */
iowrite32(EDMA_CR_ERGA | EDMA_CR_ERCA, regs->cr);
return 0;
}
static int mcf_edma_remove(struct platform_device *pdev)
{
struct fsl_edma_engine *mcf_edma = platform_get_drvdata(pdev);
mcf_edma_irq_free(pdev, mcf_edma);
fsl_edma_cleanup_vchan(&mcf_edma->dma_dev);
dma_async_device_unregister(&mcf_edma->dma_dev);
return 0;
}
static struct platform_driver mcf_edma_driver = {
.driver = {
.name = "mcf-edma",
},
.probe = mcf_edma_probe,
.remove = mcf_edma_remove,
};
bool mcf_edma_filter_fn(struct dma_chan *chan, void *param)
{
if (chan->device->dev->driver == &mcf_edma_driver.driver) {
struct fsl_edma_chan *mcf_chan = to_fsl_edma_chan(chan);
return (mcf_chan->slave_id == (uintptr_t)param);
}
return false;
}
EXPORT_SYMBOL(mcf_edma_filter_fn);
static int __init mcf_edma_init(void)
{
return platform_driver_register(&mcf_edma_driver);
}
subsys_initcall(mcf_edma_init);
static void __exit mcf_edma_exit(void)
{
platform_driver_unregister(&mcf_edma_driver);
}
module_exit(mcf_edma_exit);
MODULE_ALIAS("platform:mcf-edma");
MODULE_DESCRIPTION("Freescale eDMA engine driver, ColdFire family");
MODULE_LICENSE("GPL v2");
/* SPDX-License-Identifier: GPL-2.0 */
/*
* Freescale eDMA platform data, ColdFire SoC's family.
*
* Copyright (c) 2017 Angelo Dureghello <angelo@sysam.it>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#ifndef __LINUX_PLATFORM_DATA_MCF_EDMA_H__
#define __LINUX_PLATFORM_DATA_MCF_EDMA_H__
struct dma_slave_map;
bool mcf_edma_filter_fn(struct dma_chan *chan, void *param);
#define MCF_EDMA_FILTER_PARAM(ch) ((void *)ch)
/**
* struct mcf_edma_platform_data - platform specific data for eDMA engine
*
* @ver The eDMA module version.
* @dma_channels The number of eDMA channels.
*/
struct mcf_edma_platform_data {
int dma_channels;
const struct dma_slave_map *slave_map;
int slavecnt;
};
#endif /* __LINUX_PLATFORM_DATA_MCF_EDMA_H__ */
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment