Commit a1c03319 authored by Ira Snyder's avatar Ira Snyder Committed by Dan Williams

fsldma: rename fsl_chan to chan

The name fsl_chan seems too long, so it has been shortened to chan. There
are only a few places where the higher level "struct dma_chan *chan" name
conflicts. These have been changed to "struct dma_chan *dchan" instead.
Signed-off-by: default avatarIra W. Snyder <iws@ovro.caltech.edu>
Signed-off-by: default avatarDan Williams <dan.j.williams@intel.com>
parent d3f620b2
...@@ -37,19 +37,19 @@ ...@@ -37,19 +37,19 @@
#include <asm/fsldma.h> #include <asm/fsldma.h>
#include "fsldma.h" #include "fsldma.h"
static void dma_init(struct fsldma_chan *fsl_chan) static void dma_init(struct fsldma_chan *chan)
{ {
/* Reset the channel */ /* Reset the channel */
DMA_OUT(fsl_chan, &fsl_chan->regs->mr, 0, 32); DMA_OUT(chan, &chan->regs->mr, 0, 32);
switch (fsl_chan->feature & FSL_DMA_IP_MASK) { switch (chan->feature & FSL_DMA_IP_MASK) {
case FSL_DMA_IP_85XX: case FSL_DMA_IP_85XX:
/* Set the channel to below modes: /* Set the channel to below modes:
* EIE - Error interrupt enable * EIE - Error interrupt enable
* EOSIE - End of segments interrupt enable (basic mode) * EOSIE - End of segments interrupt enable (basic mode)
* EOLNIE - End of links interrupt enable * EOLNIE - End of links interrupt enable
*/ */
DMA_OUT(fsl_chan, &fsl_chan->regs->mr, FSL_DMA_MR_EIE DMA_OUT(chan, &chan->regs->mr, FSL_DMA_MR_EIE
| FSL_DMA_MR_EOLNIE | FSL_DMA_MR_EOSIE, 32); | FSL_DMA_MR_EOLNIE | FSL_DMA_MR_EOSIE, 32);
break; break;
case FSL_DMA_IP_83XX: case FSL_DMA_IP_83XX:
...@@ -57,154 +57,154 @@ static void dma_init(struct fsldma_chan *fsl_chan) ...@@ -57,154 +57,154 @@ static void dma_init(struct fsldma_chan *fsl_chan)
* EOTIE - End-of-transfer interrupt enable * EOTIE - End-of-transfer interrupt enable
* PRC_RM - PCI read multiple * PRC_RM - PCI read multiple
*/ */
DMA_OUT(fsl_chan, &fsl_chan->regs->mr, FSL_DMA_MR_EOTIE DMA_OUT(chan, &chan->regs->mr, FSL_DMA_MR_EOTIE
| FSL_DMA_MR_PRC_RM, 32); | FSL_DMA_MR_PRC_RM, 32);
break; break;
} }
} }
static void set_sr(struct fsldma_chan *fsl_chan, u32 val) static void set_sr(struct fsldma_chan *chan, u32 val)
{ {
DMA_OUT(fsl_chan, &fsl_chan->regs->sr, val, 32); DMA_OUT(chan, &chan->regs->sr, val, 32);
} }
static u32 get_sr(struct fsldma_chan *fsl_chan) static u32 get_sr(struct fsldma_chan *chan)
{ {
return DMA_IN(fsl_chan, &fsl_chan->regs->sr, 32); return DMA_IN(chan, &chan->regs->sr, 32);
} }
static void set_desc_cnt(struct fsldma_chan *fsl_chan, static void set_desc_cnt(struct fsldma_chan *chan,
struct fsl_dma_ld_hw *hw, u32 count) struct fsl_dma_ld_hw *hw, u32 count)
{ {
hw->count = CPU_TO_DMA(fsl_chan, count, 32); hw->count = CPU_TO_DMA(chan, count, 32);
} }
static void set_desc_src(struct fsldma_chan *fsl_chan, static void set_desc_src(struct fsldma_chan *chan,
struct fsl_dma_ld_hw *hw, dma_addr_t src) struct fsl_dma_ld_hw *hw, dma_addr_t src)
{ {
u64 snoop_bits; u64 snoop_bits;
snoop_bits = ((fsl_chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0; ? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0;
hw->src_addr = CPU_TO_DMA(fsl_chan, snoop_bits | src, 64); hw->src_addr = CPU_TO_DMA(chan, snoop_bits | src, 64);
} }
static void set_desc_dst(struct fsldma_chan *fsl_chan, static void set_desc_dst(struct fsldma_chan *chan,
struct fsl_dma_ld_hw *hw, dma_addr_t dst) struct fsl_dma_ld_hw *hw, dma_addr_t dst)
{ {
u64 snoop_bits; u64 snoop_bits;
snoop_bits = ((fsl_chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
? ((u64)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE << 32) : 0; ? ((u64)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE << 32) : 0;
hw->dst_addr = CPU_TO_DMA(fsl_chan, snoop_bits | dst, 64); hw->dst_addr = CPU_TO_DMA(chan, snoop_bits | dst, 64);
} }
static void set_desc_next(struct fsldma_chan *fsl_chan, static void set_desc_next(struct fsldma_chan *chan,
struct fsl_dma_ld_hw *hw, dma_addr_t next) struct fsl_dma_ld_hw *hw, dma_addr_t next)
{ {
u64 snoop_bits; u64 snoop_bits;
snoop_bits = ((fsl_chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX) snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
? FSL_DMA_SNEN : 0; ? FSL_DMA_SNEN : 0;
hw->next_ln_addr = CPU_TO_DMA(fsl_chan, snoop_bits | next, 64); hw->next_ln_addr = CPU_TO_DMA(chan, snoop_bits | next, 64);
} }
static void set_cdar(struct fsldma_chan *fsl_chan, dma_addr_t addr) static void set_cdar(struct fsldma_chan *chan, dma_addr_t addr)
{ {
DMA_OUT(fsl_chan, &fsl_chan->regs->cdar, addr | FSL_DMA_SNEN, 64); DMA_OUT(chan, &chan->regs->cdar, addr | FSL_DMA_SNEN, 64);
} }
static dma_addr_t get_cdar(struct fsldma_chan *fsl_chan) static dma_addr_t get_cdar(struct fsldma_chan *chan)
{ {
return DMA_IN(fsl_chan, &fsl_chan->regs->cdar, 64) & ~FSL_DMA_SNEN; return DMA_IN(chan, &chan->regs->cdar, 64) & ~FSL_DMA_SNEN;
} }
static void set_ndar(struct fsldma_chan *fsl_chan, dma_addr_t addr) static void set_ndar(struct fsldma_chan *chan, dma_addr_t addr)
{ {
DMA_OUT(fsl_chan, &fsl_chan->regs->ndar, addr, 64); DMA_OUT(chan, &chan->regs->ndar, addr, 64);
} }
static dma_addr_t get_ndar(struct fsldma_chan *fsl_chan) static dma_addr_t get_ndar(struct fsldma_chan *chan)
{ {
return DMA_IN(fsl_chan, &fsl_chan->regs->ndar, 64); return DMA_IN(chan, &chan->regs->ndar, 64);
} }
static u32 get_bcr(struct fsldma_chan *fsl_chan) static u32 get_bcr(struct fsldma_chan *chan)
{ {
return DMA_IN(fsl_chan, &fsl_chan->regs->bcr, 32); return DMA_IN(chan, &chan->regs->bcr, 32);
} }
static int dma_is_idle(struct fsldma_chan *fsl_chan) static int dma_is_idle(struct fsldma_chan *chan)
{ {
u32 sr = get_sr(fsl_chan); u32 sr = get_sr(chan);
return (!(sr & FSL_DMA_SR_CB)) || (sr & FSL_DMA_SR_CH); return (!(sr & FSL_DMA_SR_CB)) || (sr & FSL_DMA_SR_CH);
} }
static void dma_start(struct fsldma_chan *fsl_chan) static void dma_start(struct fsldma_chan *chan)
{ {
u32 mode; u32 mode;
mode = DMA_IN(fsl_chan, &fsl_chan->regs->mr, 32); mode = DMA_IN(chan, &chan->regs->mr, 32);
if ((fsl_chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) { if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
if (fsl_chan->feature & FSL_DMA_CHAN_PAUSE_EXT) { if (chan->feature & FSL_DMA_CHAN_PAUSE_EXT) {
DMA_OUT(fsl_chan, &fsl_chan->regs->bcr, 0, 32); DMA_OUT(chan, &chan->regs->bcr, 0, 32);
mode |= FSL_DMA_MR_EMP_EN; mode |= FSL_DMA_MR_EMP_EN;
} else { } else {
mode &= ~FSL_DMA_MR_EMP_EN; mode &= ~FSL_DMA_MR_EMP_EN;
} }
} }
if (fsl_chan->feature & FSL_DMA_CHAN_START_EXT) if (chan->feature & FSL_DMA_CHAN_START_EXT)
mode |= FSL_DMA_MR_EMS_EN; mode |= FSL_DMA_MR_EMS_EN;
else else
mode |= FSL_DMA_MR_CS; mode |= FSL_DMA_MR_CS;
DMA_OUT(fsl_chan, &fsl_chan->regs->mr, mode, 32); DMA_OUT(chan, &chan->regs->mr, mode, 32);
} }
static void dma_halt(struct fsldma_chan *fsl_chan) static void dma_halt(struct fsldma_chan *chan)
{ {
u32 mode; u32 mode;
int i; int i;
mode = DMA_IN(fsl_chan, &fsl_chan->regs->mr, 32); mode = DMA_IN(chan, &chan->regs->mr, 32);
mode |= FSL_DMA_MR_CA; mode |= FSL_DMA_MR_CA;
DMA_OUT(fsl_chan, &fsl_chan->regs->mr, mode, 32); DMA_OUT(chan, &chan->regs->mr, mode, 32);
mode &= ~(FSL_DMA_MR_CS | FSL_DMA_MR_EMS_EN | FSL_DMA_MR_CA); mode &= ~(FSL_DMA_MR_CS | FSL_DMA_MR_EMS_EN | FSL_DMA_MR_CA);
DMA_OUT(fsl_chan, &fsl_chan->regs->mr, mode, 32); DMA_OUT(chan, &chan->regs->mr, mode, 32);
for (i = 0; i < 100; i++) { for (i = 0; i < 100; i++) {
if (dma_is_idle(fsl_chan)) if (dma_is_idle(chan))
break; break;
udelay(10); udelay(10);
} }
if (i >= 100 && !dma_is_idle(fsl_chan)) if (i >= 100 && !dma_is_idle(chan))
dev_err(fsl_chan->dev, "DMA halt timeout!\n"); dev_err(chan->dev, "DMA halt timeout!\n");
} }
static void set_ld_eol(struct fsldma_chan *fsl_chan, static void set_ld_eol(struct fsldma_chan *chan,
struct fsl_desc_sw *desc) struct fsl_desc_sw *desc)
{ {
u64 snoop_bits; u64 snoop_bits;
snoop_bits = ((fsl_chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX) snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
? FSL_DMA_SNEN : 0; ? FSL_DMA_SNEN : 0;
desc->hw.next_ln_addr = CPU_TO_DMA(fsl_chan, desc->hw.next_ln_addr = CPU_TO_DMA(chan,
DMA_TO_CPU(fsl_chan, desc->hw.next_ln_addr, 64) | FSL_DMA_EOL DMA_TO_CPU(chan, desc->hw.next_ln_addr, 64) | FSL_DMA_EOL
| snoop_bits, 64); | snoop_bits, 64);
} }
static void append_ld_queue(struct fsldma_chan *fsl_chan, static void append_ld_queue(struct fsldma_chan *chan,
struct fsl_desc_sw *new_desc) struct fsl_desc_sw *new_desc)
{ {
struct fsl_desc_sw *queue_tail = to_fsl_desc(fsl_chan->ld_queue.prev); struct fsl_desc_sw *queue_tail = to_fsl_desc(chan->ld_queue.prev);
if (list_empty(&fsl_chan->ld_queue)) if (list_empty(&chan->ld_queue))
return; return;
/* Link to the new descriptor physical address and /* Link to the new descriptor physical address and
...@@ -214,15 +214,15 @@ static void append_ld_queue(struct fsldma_chan *fsl_chan, ...@@ -214,15 +214,15 @@ static void append_ld_queue(struct fsldma_chan *fsl_chan,
* *
* For FSL_DMA_IP_83xx, the snoop enable bit need be set. * For FSL_DMA_IP_83xx, the snoop enable bit need be set.
*/ */
queue_tail->hw.next_ln_addr = CPU_TO_DMA(fsl_chan, queue_tail->hw.next_ln_addr = CPU_TO_DMA(chan,
new_desc->async_tx.phys | FSL_DMA_EOSIE | new_desc->async_tx.phys | FSL_DMA_EOSIE |
(((fsl_chan->feature & FSL_DMA_IP_MASK) (((chan->feature & FSL_DMA_IP_MASK)
== FSL_DMA_IP_83XX) ? FSL_DMA_SNEN : 0), 64); == FSL_DMA_IP_83XX) ? FSL_DMA_SNEN : 0), 64);
} }
/** /**
* fsl_chan_set_src_loop_size - Set source address hold transfer size * fsl_chan_set_src_loop_size - Set source address hold transfer size
* @fsl_chan : Freescale DMA channel * @chan : Freescale DMA channel
* @size : Address loop size, 0 for disable loop * @size : Address loop size, 0 for disable loop
* *
* The set source address hold transfer size. The source * The set source address hold transfer size. The source
...@@ -231,11 +231,11 @@ static void append_ld_queue(struct fsldma_chan *fsl_chan, ...@@ -231,11 +231,11 @@ static void append_ld_queue(struct fsldma_chan *fsl_chan,
* read data from SA, SA + 1, SA + 2, SA + 3, then loop back to SA, * read data from SA, SA + 1, SA + 2, SA + 3, then loop back to SA,
* SA + 1 ... and so on. * SA + 1 ... and so on.
*/ */
static void fsl_chan_set_src_loop_size(struct fsldma_chan *fsl_chan, int size) static void fsl_chan_set_src_loop_size(struct fsldma_chan *chan, int size)
{ {
u32 mode; u32 mode;
mode = DMA_IN(fsl_chan, &fsl_chan->regs->mr, 32); mode = DMA_IN(chan, &chan->regs->mr, 32);
switch (size) { switch (size) {
case 0: case 0:
...@@ -249,12 +249,12 @@ static void fsl_chan_set_src_loop_size(struct fsldma_chan *fsl_chan, int size) ...@@ -249,12 +249,12 @@ static void fsl_chan_set_src_loop_size(struct fsldma_chan *fsl_chan, int size)
break; break;
} }
DMA_OUT(fsl_chan, &fsl_chan->regs->mr, mode, 32); DMA_OUT(chan, &chan->regs->mr, mode, 32);
} }
/** /**
* fsl_chan_set_dst_loop_size - Set destination address hold transfer size * fsl_chan_set_dst_loop_size - Set destination address hold transfer size
* @fsl_chan : Freescale DMA channel * @chan : Freescale DMA channel
* @size : Address loop size, 0 for disable loop * @size : Address loop size, 0 for disable loop
* *
* The set destination address hold transfer size. The destination * The set destination address hold transfer size. The destination
...@@ -263,11 +263,11 @@ static void fsl_chan_set_src_loop_size(struct fsldma_chan *fsl_chan, int size) ...@@ -263,11 +263,11 @@ static void fsl_chan_set_src_loop_size(struct fsldma_chan *fsl_chan, int size)
* write data to TA, TA + 1, TA + 2, TA + 3, then loop back to TA, * write data to TA, TA + 1, TA + 2, TA + 3, then loop back to TA,
* TA + 1 ... and so on. * TA + 1 ... and so on.
*/ */
static void fsl_chan_set_dst_loop_size(struct fsldma_chan *fsl_chan, int size) static void fsl_chan_set_dst_loop_size(struct fsldma_chan *chan, int size)
{ {
u32 mode; u32 mode;
mode = DMA_IN(fsl_chan, &fsl_chan->regs->mr, 32); mode = DMA_IN(chan, &chan->regs->mr, 32);
switch (size) { switch (size) {
case 0: case 0:
...@@ -281,12 +281,12 @@ static void fsl_chan_set_dst_loop_size(struct fsldma_chan *fsl_chan, int size) ...@@ -281,12 +281,12 @@ static void fsl_chan_set_dst_loop_size(struct fsldma_chan *fsl_chan, int size)
break; break;
} }
DMA_OUT(fsl_chan, &fsl_chan->regs->mr, mode, 32); DMA_OUT(chan, &chan->regs->mr, mode, 32);
} }
/** /**
* fsl_chan_set_request_count - Set DMA Request Count for external control * fsl_chan_set_request_count - Set DMA Request Count for external control
* @fsl_chan : Freescale DMA channel * @chan : Freescale DMA channel
* @size : Number of bytes to transfer in a single request * @size : Number of bytes to transfer in a single request
* *
* The Freescale DMA channel can be controlled by the external signal DREQ#. * The Freescale DMA channel can be controlled by the external signal DREQ#.
...@@ -296,38 +296,38 @@ static void fsl_chan_set_dst_loop_size(struct fsldma_chan *fsl_chan, int size) ...@@ -296,38 +296,38 @@ static void fsl_chan_set_dst_loop_size(struct fsldma_chan *fsl_chan, int size)
* *
* A size of 0 disables external pause control. The maximum size is 1024. * A size of 0 disables external pause control. The maximum size is 1024.
*/ */
static void fsl_chan_set_request_count(struct fsldma_chan *fsl_chan, int size) static void fsl_chan_set_request_count(struct fsldma_chan *chan, int size)
{ {
u32 mode; u32 mode;
BUG_ON(size > 1024); BUG_ON(size > 1024);
mode = DMA_IN(fsl_chan, &fsl_chan->regs->mr, 32); mode = DMA_IN(chan, &chan->regs->mr, 32);
mode |= (__ilog2(size) << 24) & 0x0f000000; mode |= (__ilog2(size) << 24) & 0x0f000000;
DMA_OUT(fsl_chan, &fsl_chan->regs->mr, mode, 32); DMA_OUT(chan, &chan->regs->mr, mode, 32);
} }
/** /**
* fsl_chan_toggle_ext_pause - Toggle channel external pause status * fsl_chan_toggle_ext_pause - Toggle channel external pause status
* @fsl_chan : Freescale DMA channel * @chan : Freescale DMA channel
* @enable : 0 is disabled, 1 is enabled. * @enable : 0 is disabled, 1 is enabled.
* *
* The Freescale DMA channel can be controlled by the external signal DREQ#. * The Freescale DMA channel can be controlled by the external signal DREQ#.
* The DMA Request Count feature should be used in addition to this feature * The DMA Request Count feature should be used in addition to this feature
* to set the number of bytes to transfer before pausing the channel. * to set the number of bytes to transfer before pausing the channel.
*/ */
static void fsl_chan_toggle_ext_pause(struct fsldma_chan *fsl_chan, int enable) static void fsl_chan_toggle_ext_pause(struct fsldma_chan *chan, int enable)
{ {
if (enable) if (enable)
fsl_chan->feature |= FSL_DMA_CHAN_PAUSE_EXT; chan->feature |= FSL_DMA_CHAN_PAUSE_EXT;
else else
fsl_chan->feature &= ~FSL_DMA_CHAN_PAUSE_EXT; chan->feature &= ~FSL_DMA_CHAN_PAUSE_EXT;
} }
/** /**
* fsl_chan_toggle_ext_start - Toggle channel external start status * fsl_chan_toggle_ext_start - Toggle channel external start status
* @fsl_chan : Freescale DMA channel * @chan : Freescale DMA channel
* @enable : 0 is disabled, 1 is enabled. * @enable : 0 is disabled, 1 is enabled.
* *
* If enable the external start, the channel can be started by an * If enable the external start, the channel can be started by an
...@@ -335,26 +335,26 @@ static void fsl_chan_toggle_ext_pause(struct fsldma_chan *fsl_chan, int enable) ...@@ -335,26 +335,26 @@ static void fsl_chan_toggle_ext_pause(struct fsldma_chan *fsl_chan, int enable)
* transfer immediately. The DMA channel will wait for the * transfer immediately. The DMA channel will wait for the
* control pin asserted. * control pin asserted.
*/ */
static void fsl_chan_toggle_ext_start(struct fsldma_chan *fsl_chan, int enable) static void fsl_chan_toggle_ext_start(struct fsldma_chan *chan, int enable)
{ {
if (enable) if (enable)
fsl_chan->feature |= FSL_DMA_CHAN_START_EXT; chan->feature |= FSL_DMA_CHAN_START_EXT;
else else
fsl_chan->feature &= ~FSL_DMA_CHAN_START_EXT; chan->feature &= ~FSL_DMA_CHAN_START_EXT;
} }
static dma_cookie_t fsl_dma_tx_submit(struct dma_async_tx_descriptor *tx) static dma_cookie_t fsl_dma_tx_submit(struct dma_async_tx_descriptor *tx)
{ {
struct fsldma_chan *fsl_chan = to_fsl_chan(tx->chan); struct fsldma_chan *chan = to_fsl_chan(tx->chan);
struct fsl_desc_sw *desc = tx_to_fsl_desc(tx); struct fsl_desc_sw *desc = tx_to_fsl_desc(tx);
struct fsl_desc_sw *child; struct fsl_desc_sw *child;
unsigned long flags; unsigned long flags;
dma_cookie_t cookie; dma_cookie_t cookie;
/* cookie increment and adding to ld_queue must be atomic */ /* cookie increment and adding to ld_queue must be atomic */
spin_lock_irqsave(&fsl_chan->desc_lock, flags); spin_lock_irqsave(&chan->desc_lock, flags);
cookie = fsl_chan->common.cookie; cookie = chan->common.cookie;
list_for_each_entry(child, &desc->tx_list, node) { list_for_each_entry(child, &desc->tx_list, node) {
cookie++; cookie++;
if (cookie < 0) if (cookie < 0)
...@@ -363,33 +363,33 @@ static dma_cookie_t fsl_dma_tx_submit(struct dma_async_tx_descriptor *tx) ...@@ -363,33 +363,33 @@ static dma_cookie_t fsl_dma_tx_submit(struct dma_async_tx_descriptor *tx)
desc->async_tx.cookie = cookie; desc->async_tx.cookie = cookie;
} }
fsl_chan->common.cookie = cookie; chan->common.cookie = cookie;
append_ld_queue(fsl_chan, desc); append_ld_queue(chan, desc);
list_splice_init(&desc->tx_list, fsl_chan->ld_queue.prev); list_splice_init(&desc->tx_list, chan->ld_queue.prev);
spin_unlock_irqrestore(&fsl_chan->desc_lock, flags); spin_unlock_irqrestore(&chan->desc_lock, flags);
return cookie; return cookie;
} }
/** /**
* fsl_dma_alloc_descriptor - Allocate descriptor from channel's DMA pool. * fsl_dma_alloc_descriptor - Allocate descriptor from channel's DMA pool.
* @fsl_chan : Freescale DMA channel * @chan : Freescale DMA channel
* *
* Return - The descriptor allocated. NULL for failed. * Return - The descriptor allocated. NULL for failed.
*/ */
static struct fsl_desc_sw *fsl_dma_alloc_descriptor( static struct fsl_desc_sw *fsl_dma_alloc_descriptor(
struct fsldma_chan *fsl_chan) struct fsldma_chan *chan)
{ {
dma_addr_t pdesc; dma_addr_t pdesc;
struct fsl_desc_sw *desc_sw; struct fsl_desc_sw *desc_sw;
desc_sw = dma_pool_alloc(fsl_chan->desc_pool, GFP_ATOMIC, &pdesc); desc_sw = dma_pool_alloc(chan->desc_pool, GFP_ATOMIC, &pdesc);
if (desc_sw) { if (desc_sw) {
memset(desc_sw, 0, sizeof(struct fsl_desc_sw)); memset(desc_sw, 0, sizeof(struct fsl_desc_sw));
INIT_LIST_HEAD(&desc_sw->tx_list); INIT_LIST_HEAD(&desc_sw->tx_list);
dma_async_tx_descriptor_init(&desc_sw->async_tx, dma_async_tx_descriptor_init(&desc_sw->async_tx,
&fsl_chan->common); &chan->common);
desc_sw->async_tx.tx_submit = fsl_dma_tx_submit; desc_sw->async_tx.tx_submit = fsl_dma_tx_submit;
desc_sw->async_tx.phys = pdesc; desc_sw->async_tx.phys = pdesc;
} }
...@@ -400,29 +400,29 @@ static struct fsl_desc_sw *fsl_dma_alloc_descriptor( ...@@ -400,29 +400,29 @@ static struct fsl_desc_sw *fsl_dma_alloc_descriptor(
/** /**
* fsl_dma_alloc_chan_resources - Allocate resources for DMA channel. * fsl_dma_alloc_chan_resources - Allocate resources for DMA channel.
* @fsl_chan : Freescale DMA channel * @chan : Freescale DMA channel
* *
* This function will create a dma pool for descriptor allocation. * This function will create a dma pool for descriptor allocation.
* *
* Return - The number of descriptors allocated. * Return - The number of descriptors allocated.
*/ */
static int fsl_dma_alloc_chan_resources(struct dma_chan *chan) static int fsl_dma_alloc_chan_resources(struct dma_chan *dchan)
{ {
struct fsldma_chan *fsl_chan = to_fsl_chan(chan); struct fsldma_chan *chan = to_fsl_chan(dchan);
/* Has this channel already been allocated? */ /* Has this channel already been allocated? */
if (fsl_chan->desc_pool) if (chan->desc_pool)
return 1; return 1;
/* We need the descriptor to be aligned to 32bytes /* We need the descriptor to be aligned to 32bytes
* for meeting FSL DMA specification requirement. * for meeting FSL DMA specification requirement.
*/ */
fsl_chan->desc_pool = dma_pool_create("fsl_dma_engine_desc_pool", chan->desc_pool = dma_pool_create("fsl_dma_engine_desc_pool",
fsl_chan->dev, sizeof(struct fsl_desc_sw), chan->dev, sizeof(struct fsl_desc_sw),
32, 0); 32, 0);
if (!fsl_chan->desc_pool) { if (!chan->desc_pool) {
dev_err(fsl_chan->dev, "No memory for channel %d " dev_err(chan->dev, "No memory for channel %d "
"descriptor dma pool.\n", fsl_chan->id); "descriptor dma pool.\n", chan->id);
return 0; return 0;
} }
...@@ -431,45 +431,45 @@ static int fsl_dma_alloc_chan_resources(struct dma_chan *chan) ...@@ -431,45 +431,45 @@ static int fsl_dma_alloc_chan_resources(struct dma_chan *chan)
/** /**
* fsl_dma_free_chan_resources - Free all resources of the channel. * fsl_dma_free_chan_resources - Free all resources of the channel.
* @fsl_chan : Freescale DMA channel * @chan : Freescale DMA channel
*/ */
static void fsl_dma_free_chan_resources(struct dma_chan *chan) static void fsl_dma_free_chan_resources(struct dma_chan *dchan)
{ {
struct fsldma_chan *fsl_chan = to_fsl_chan(chan); struct fsldma_chan *chan = to_fsl_chan(dchan);
struct fsl_desc_sw *desc, *_desc; struct fsl_desc_sw *desc, *_desc;
unsigned long flags; unsigned long flags;
dev_dbg(fsl_chan->dev, "Free all channel resources.\n"); dev_dbg(chan->dev, "Free all channel resources.\n");
spin_lock_irqsave(&fsl_chan->desc_lock, flags); spin_lock_irqsave(&chan->desc_lock, flags);
list_for_each_entry_safe(desc, _desc, &fsl_chan->ld_queue, node) { list_for_each_entry_safe(desc, _desc, &chan->ld_queue, node) {
#ifdef FSL_DMA_LD_DEBUG #ifdef FSL_DMA_LD_DEBUG
dev_dbg(fsl_chan->dev, dev_dbg(chan->dev,
"LD %p will be released.\n", desc); "LD %p will be released.\n", desc);
#endif #endif
list_del(&desc->node); list_del(&desc->node);
/* free link descriptor */ /* free link descriptor */
dma_pool_free(fsl_chan->desc_pool, desc, desc->async_tx.phys); dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
} }
spin_unlock_irqrestore(&fsl_chan->desc_lock, flags); spin_unlock_irqrestore(&chan->desc_lock, flags);
dma_pool_destroy(fsl_chan->desc_pool); dma_pool_destroy(chan->desc_pool);
fsl_chan->desc_pool = NULL; chan->desc_pool = NULL;
} }
static struct dma_async_tx_descriptor * static struct dma_async_tx_descriptor *
fsl_dma_prep_interrupt(struct dma_chan *chan, unsigned long flags) fsl_dma_prep_interrupt(struct dma_chan *dchan, unsigned long flags)
{ {
struct fsldma_chan *fsl_chan; struct fsldma_chan *chan;
struct fsl_desc_sw *new; struct fsl_desc_sw *new;
if (!chan) if (!dchan)
return NULL; return NULL;
fsl_chan = to_fsl_chan(chan); chan = to_fsl_chan(dchan);
new = fsl_dma_alloc_descriptor(fsl_chan); new = fsl_dma_alloc_descriptor(chan);
if (!new) { if (!new) {
dev_err(fsl_chan->dev, "No free memory for link descriptor\n"); dev_err(chan->dev, "No free memory for link descriptor\n");
return NULL; return NULL;
} }
...@@ -480,51 +480,51 @@ fsl_dma_prep_interrupt(struct dma_chan *chan, unsigned long flags) ...@@ -480,51 +480,51 @@ fsl_dma_prep_interrupt(struct dma_chan *chan, unsigned long flags)
list_add_tail(&new->node, &new->tx_list); list_add_tail(&new->node, &new->tx_list);
/* Set End-of-link to the last link descriptor of new list*/ /* Set End-of-link to the last link descriptor of new list*/
set_ld_eol(fsl_chan, new); set_ld_eol(chan, new);
return &new->async_tx; return &new->async_tx;
} }
static struct dma_async_tx_descriptor *fsl_dma_prep_memcpy( static struct dma_async_tx_descriptor *fsl_dma_prep_memcpy(
struct dma_chan *chan, dma_addr_t dma_dst, dma_addr_t dma_src, struct dma_chan *dchan, dma_addr_t dma_dst, dma_addr_t dma_src,
size_t len, unsigned long flags) size_t len, unsigned long flags)
{ {
struct fsldma_chan *fsl_chan; struct fsldma_chan *chan;
struct fsl_desc_sw *first = NULL, *prev = NULL, *new; struct fsl_desc_sw *first = NULL, *prev = NULL, *new;
struct list_head *list; struct list_head *list;
size_t copy; size_t copy;
if (!chan) if (!dchan)
return NULL; return NULL;
if (!len) if (!len)
return NULL; return NULL;
fsl_chan = to_fsl_chan(chan); chan = to_fsl_chan(dchan);
do { do {
/* Allocate the link descriptor from DMA pool */ /* Allocate the link descriptor from DMA pool */
new = fsl_dma_alloc_descriptor(fsl_chan); new = fsl_dma_alloc_descriptor(chan);
if (!new) { if (!new) {
dev_err(fsl_chan->dev, dev_err(chan->dev,
"No free memory for link descriptor\n"); "No free memory for link descriptor\n");
goto fail; goto fail;
} }
#ifdef FSL_DMA_LD_DEBUG #ifdef FSL_DMA_LD_DEBUG
dev_dbg(fsl_chan->dev, "new link desc alloc %p\n", new); dev_dbg(chan->dev, "new link desc alloc %p\n", new);
#endif #endif
copy = min(len, (size_t)FSL_DMA_BCR_MAX_CNT); copy = min(len, (size_t)FSL_DMA_BCR_MAX_CNT);
set_desc_cnt(fsl_chan, &new->hw, copy); set_desc_cnt(chan, &new->hw, copy);
set_desc_src(fsl_chan, &new->hw, dma_src); set_desc_src(chan, &new->hw, dma_src);
set_desc_dst(fsl_chan, &new->hw, dma_dst); set_desc_dst(chan, &new->hw, dma_dst);
if (!first) if (!first)
first = new; first = new;
else else
set_desc_next(fsl_chan, &prev->hw, new->async_tx.phys); set_desc_next(chan, &prev->hw, new->async_tx.phys);
new->async_tx.cookie = 0; new->async_tx.cookie = 0;
async_tx_ack(&new->async_tx); async_tx_ack(&new->async_tx);
...@@ -542,7 +542,7 @@ static struct dma_async_tx_descriptor *fsl_dma_prep_memcpy( ...@@ -542,7 +542,7 @@ static struct dma_async_tx_descriptor *fsl_dma_prep_memcpy(
new->async_tx.cookie = -EBUSY; new->async_tx.cookie = -EBUSY;
/* Set End-of-link to the last link descriptor of new list*/ /* Set End-of-link to the last link descriptor of new list*/
set_ld_eol(fsl_chan, new); set_ld_eol(chan, new);
return &first->async_tx; return &first->async_tx;
...@@ -553,7 +553,7 @@ static struct dma_async_tx_descriptor *fsl_dma_prep_memcpy( ...@@ -553,7 +553,7 @@ static struct dma_async_tx_descriptor *fsl_dma_prep_memcpy(
list = &first->tx_list; list = &first->tx_list;
list_for_each_entry_safe_reverse(new, prev, list, node) { list_for_each_entry_safe_reverse(new, prev, list, node) {
list_del(&new->node); list_del(&new->node);
dma_pool_free(fsl_chan->desc_pool, new, new->async_tx.phys); dma_pool_free(chan->desc_pool, new, new->async_tx.phys);
} }
return NULL; return NULL;
...@@ -572,10 +572,10 @@ static struct dma_async_tx_descriptor *fsl_dma_prep_memcpy( ...@@ -572,10 +572,10 @@ static struct dma_async_tx_descriptor *fsl_dma_prep_memcpy(
* chan->private variable. * chan->private variable.
*/ */
static struct dma_async_tx_descriptor *fsl_dma_prep_slave_sg( static struct dma_async_tx_descriptor *fsl_dma_prep_slave_sg(
struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len, struct dma_chan *dchan, struct scatterlist *sgl, unsigned int sg_len,
enum dma_data_direction direction, unsigned long flags) enum dma_data_direction direction, unsigned long flags)
{ {
struct fsldma_chan *fsl_chan; struct fsldma_chan *chan;
struct fsl_desc_sw *first = NULL, *prev = NULL, *new = NULL; struct fsl_desc_sw *first = NULL, *prev = NULL, *new = NULL;
struct fsl_dma_slave *slave; struct fsl_dma_slave *slave;
struct list_head *tx_list; struct list_head *tx_list;
...@@ -588,14 +588,14 @@ static struct dma_async_tx_descriptor *fsl_dma_prep_slave_sg( ...@@ -588,14 +588,14 @@ static struct dma_async_tx_descriptor *fsl_dma_prep_slave_sg(
struct fsl_dma_hw_addr *hw; struct fsl_dma_hw_addr *hw;
dma_addr_t dma_dst, dma_src; dma_addr_t dma_dst, dma_src;
if (!chan) if (!dchan)
return NULL; return NULL;
if (!chan->private) if (!dchan->private)
return NULL; return NULL;
fsl_chan = to_fsl_chan(chan); chan = to_fsl_chan(dchan);
slave = chan->private; slave = dchan->private;
if (list_empty(&slave->addresses)) if (list_empty(&slave->addresses))
return NULL; return NULL;
...@@ -644,14 +644,14 @@ static struct dma_async_tx_descriptor *fsl_dma_prep_slave_sg( ...@@ -644,14 +644,14 @@ static struct dma_async_tx_descriptor *fsl_dma_prep_slave_sg(
} }
/* Allocate the link descriptor from DMA pool */ /* Allocate the link descriptor from DMA pool */
new = fsl_dma_alloc_descriptor(fsl_chan); new = fsl_dma_alloc_descriptor(chan);
if (!new) { if (!new) {
dev_err(fsl_chan->dev, "No free memory for " dev_err(chan->dev, "No free memory for "
"link descriptor\n"); "link descriptor\n");
goto fail; goto fail;
} }
#ifdef FSL_DMA_LD_DEBUG #ifdef FSL_DMA_LD_DEBUG
dev_dbg(fsl_chan->dev, "new link desc alloc %p\n", new); dev_dbg(chan->dev, "new link desc alloc %p\n", new);
#endif #endif
/* /*
...@@ -678,9 +678,9 @@ static struct dma_async_tx_descriptor *fsl_dma_prep_slave_sg( ...@@ -678,9 +678,9 @@ static struct dma_async_tx_descriptor *fsl_dma_prep_slave_sg(
} }
/* Fill in the descriptor */ /* Fill in the descriptor */
set_desc_cnt(fsl_chan, &new->hw, copy); set_desc_cnt(chan, &new->hw, copy);
set_desc_src(fsl_chan, &new->hw, dma_src); set_desc_src(chan, &new->hw, dma_src);
set_desc_dst(fsl_chan, &new->hw, dma_dst); set_desc_dst(chan, &new->hw, dma_dst);
/* /*
* If this is not the first descriptor, chain the * If this is not the first descriptor, chain the
...@@ -689,7 +689,7 @@ static struct dma_async_tx_descriptor *fsl_dma_prep_slave_sg( ...@@ -689,7 +689,7 @@ static struct dma_async_tx_descriptor *fsl_dma_prep_slave_sg(
if (!first) { if (!first) {
first = new; first = new;
} else { } else {
set_desc_next(fsl_chan, &prev->hw, set_desc_next(chan, &prev->hw,
new->async_tx.phys); new->async_tx.phys);
} }
...@@ -715,23 +715,23 @@ static struct dma_async_tx_descriptor *fsl_dma_prep_slave_sg( ...@@ -715,23 +715,23 @@ static struct dma_async_tx_descriptor *fsl_dma_prep_slave_sg(
new->async_tx.cookie = -EBUSY; new->async_tx.cookie = -EBUSY;
/* Set End-of-link to the last link descriptor of new list */ /* Set End-of-link to the last link descriptor of new list */
set_ld_eol(fsl_chan, new); set_ld_eol(chan, new);
/* Enable extra controller features */ /* Enable extra controller features */
if (fsl_chan->set_src_loop_size) if (chan->set_src_loop_size)
fsl_chan->set_src_loop_size(fsl_chan, slave->src_loop_size); chan->set_src_loop_size(chan, slave->src_loop_size);
if (fsl_chan->set_dst_loop_size) if (chan->set_dst_loop_size)
fsl_chan->set_dst_loop_size(fsl_chan, slave->dst_loop_size); chan->set_dst_loop_size(chan, slave->dst_loop_size);
if (fsl_chan->toggle_ext_start) if (chan->toggle_ext_start)
fsl_chan->toggle_ext_start(fsl_chan, slave->external_start); chan->toggle_ext_start(chan, slave->external_start);
if (fsl_chan->toggle_ext_pause) if (chan->toggle_ext_pause)
fsl_chan->toggle_ext_pause(fsl_chan, slave->external_pause); chan->toggle_ext_pause(chan, slave->external_pause);
if (fsl_chan->set_request_count) if (chan->set_request_count)
fsl_chan->set_request_count(fsl_chan, slave->request_count); chan->set_request_count(chan, slave->request_count);
return &first->async_tx; return &first->async_tx;
...@@ -751,62 +751,62 @@ static struct dma_async_tx_descriptor *fsl_dma_prep_slave_sg( ...@@ -751,62 +751,62 @@ static struct dma_async_tx_descriptor *fsl_dma_prep_slave_sg(
tx_list = &first->tx_list; tx_list = &first->tx_list;
list_for_each_entry_safe_reverse(new, prev, tx_list, node) { list_for_each_entry_safe_reverse(new, prev, tx_list, node) {
list_del_init(&new->node); list_del_init(&new->node);
dma_pool_free(fsl_chan->desc_pool, new, new->async_tx.phys); dma_pool_free(chan->desc_pool, new, new->async_tx.phys);
} }
return NULL; return NULL;
} }
static void fsl_dma_device_terminate_all(struct dma_chan *chan) static void fsl_dma_device_terminate_all(struct dma_chan *dchan)
{ {
struct fsldma_chan *fsl_chan; struct fsldma_chan *chan;
struct fsl_desc_sw *desc, *tmp; struct fsl_desc_sw *desc, *tmp;
unsigned long flags; unsigned long flags;
if (!chan) if (!dchan)
return; return;
fsl_chan = to_fsl_chan(chan); chan = to_fsl_chan(dchan);
/* Halt the DMA engine */ /* Halt the DMA engine */
dma_halt(fsl_chan); dma_halt(chan);
spin_lock_irqsave(&fsl_chan->desc_lock, flags); spin_lock_irqsave(&chan->desc_lock, flags);
/* Remove and free all of the descriptors in the LD queue */ /* Remove and free all of the descriptors in the LD queue */
list_for_each_entry_safe(desc, tmp, &fsl_chan->ld_queue, node) { list_for_each_entry_safe(desc, tmp, &chan->ld_queue, node) {
list_del(&desc->node); list_del(&desc->node);
dma_pool_free(fsl_chan->desc_pool, desc, desc->async_tx.phys); dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
} }
spin_unlock_irqrestore(&fsl_chan->desc_lock, flags); spin_unlock_irqrestore(&chan->desc_lock, flags);
} }
/** /**
* fsl_dma_update_completed_cookie - Update the completed cookie. * fsl_dma_update_completed_cookie - Update the completed cookie.
* @fsl_chan : Freescale DMA channel * @chan : Freescale DMA channel
*/ */
static void fsl_dma_update_completed_cookie(struct fsldma_chan *fsl_chan) static void fsl_dma_update_completed_cookie(struct fsldma_chan *chan)
{ {
struct fsl_desc_sw *cur_desc, *desc; struct fsl_desc_sw *cur_desc, *desc;
dma_addr_t ld_phy; dma_addr_t ld_phy;
ld_phy = get_cdar(fsl_chan) & FSL_DMA_NLDA_MASK; ld_phy = get_cdar(chan) & FSL_DMA_NLDA_MASK;
if (ld_phy) { if (ld_phy) {
cur_desc = NULL; cur_desc = NULL;
list_for_each_entry(desc, &fsl_chan->ld_queue, node) list_for_each_entry(desc, &chan->ld_queue, node)
if (desc->async_tx.phys == ld_phy) { if (desc->async_tx.phys == ld_phy) {
cur_desc = desc; cur_desc = desc;
break; break;
} }
if (cur_desc && cur_desc->async_tx.cookie) { if (cur_desc && cur_desc->async_tx.cookie) {
if (dma_is_idle(fsl_chan)) if (dma_is_idle(chan))
fsl_chan->completed_cookie = chan->completed_cookie =
cur_desc->async_tx.cookie; cur_desc->async_tx.cookie;
else else
fsl_chan->completed_cookie = chan->completed_cookie =
cur_desc->async_tx.cookie - 1; cur_desc->async_tx.cookie - 1;
} }
} }
...@@ -814,27 +814,27 @@ static void fsl_dma_update_completed_cookie(struct fsldma_chan *fsl_chan) ...@@ -814,27 +814,27 @@ static void fsl_dma_update_completed_cookie(struct fsldma_chan *fsl_chan)
/** /**
* fsl_chan_ld_cleanup - Clean up link descriptors * fsl_chan_ld_cleanup - Clean up link descriptors
* @fsl_chan : Freescale DMA channel * @chan : Freescale DMA channel
* *
* This function clean up the ld_queue of DMA channel. * This function clean up the ld_queue of DMA channel.
* If 'in_intr' is set, the function will move the link descriptor to * If 'in_intr' is set, the function will move the link descriptor to
* the recycle list. Otherwise, free it directly. * the recycle list. Otherwise, free it directly.
*/ */
static void fsl_chan_ld_cleanup(struct fsldma_chan *fsl_chan) static void fsl_chan_ld_cleanup(struct fsldma_chan *chan)
{ {
struct fsl_desc_sw *desc, *_desc; struct fsl_desc_sw *desc, *_desc;
unsigned long flags; unsigned long flags;
spin_lock_irqsave(&fsl_chan->desc_lock, flags); spin_lock_irqsave(&chan->desc_lock, flags);
dev_dbg(fsl_chan->dev, "chan completed_cookie = %d\n", dev_dbg(chan->dev, "chan completed_cookie = %d\n",
fsl_chan->completed_cookie); chan->completed_cookie);
list_for_each_entry_safe(desc, _desc, &fsl_chan->ld_queue, node) { list_for_each_entry_safe(desc, _desc, &chan->ld_queue, node) {
dma_async_tx_callback callback; dma_async_tx_callback callback;
void *callback_param; void *callback_param;
if (dma_async_is_complete(desc->async_tx.cookie, if (dma_async_is_complete(desc->async_tx.cookie,
fsl_chan->completed_cookie, fsl_chan->common.cookie) chan->completed_cookie, chan->common.cookie)
== DMA_IN_PROGRESS) == DMA_IN_PROGRESS)
break; break;
...@@ -844,119 +844,119 @@ static void fsl_chan_ld_cleanup(struct fsldma_chan *fsl_chan) ...@@ -844,119 +844,119 @@ static void fsl_chan_ld_cleanup(struct fsldma_chan *fsl_chan)
/* Remove from ld_queue list */ /* Remove from ld_queue list */
list_del(&desc->node); list_del(&desc->node);
dev_dbg(fsl_chan->dev, "link descriptor %p will be recycle.\n", dev_dbg(chan->dev, "link descriptor %p will be recycle.\n",
desc); desc);
dma_pool_free(fsl_chan->desc_pool, desc, desc->async_tx.phys); dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
/* Run the link descriptor callback function */ /* Run the link descriptor callback function */
if (callback) { if (callback) {
spin_unlock_irqrestore(&fsl_chan->desc_lock, flags); spin_unlock_irqrestore(&chan->desc_lock, flags);
dev_dbg(fsl_chan->dev, "link descriptor %p callback\n", dev_dbg(chan->dev, "link descriptor %p callback\n",
desc); desc);
callback(callback_param); callback(callback_param);
spin_lock_irqsave(&fsl_chan->desc_lock, flags); spin_lock_irqsave(&chan->desc_lock, flags);
} }
} }
spin_unlock_irqrestore(&fsl_chan->desc_lock, flags); spin_unlock_irqrestore(&chan->desc_lock, flags);
} }
/** /**
* fsl_chan_xfer_ld_queue - Transfer link descriptors in channel ld_queue. * fsl_chan_xfer_ld_queue - Transfer link descriptors in channel ld_queue.
* @fsl_chan : Freescale DMA channel * @chan : Freescale DMA channel
*/ */
static void fsl_chan_xfer_ld_queue(struct fsldma_chan *fsl_chan) static void fsl_chan_xfer_ld_queue(struct fsldma_chan *chan)
{ {
struct list_head *ld_node; struct list_head *ld_node;
dma_addr_t next_dst_addr; dma_addr_t next_dst_addr;
unsigned long flags; unsigned long flags;
spin_lock_irqsave(&fsl_chan->desc_lock, flags); spin_lock_irqsave(&chan->desc_lock, flags);
if (!dma_is_idle(fsl_chan)) if (!dma_is_idle(chan))
goto out_unlock; goto out_unlock;
dma_halt(fsl_chan); dma_halt(chan);
/* If there are some link descriptors /* If there are some link descriptors
* not transfered in queue. We need to start it. * not transfered in queue. We need to start it.
*/ */
/* Find the first un-transfer desciptor */ /* Find the first un-transfer desciptor */
for (ld_node = fsl_chan->ld_queue.next; for (ld_node = chan->ld_queue.next;
(ld_node != &fsl_chan->ld_queue) (ld_node != &chan->ld_queue)
&& (dma_async_is_complete( && (dma_async_is_complete(
to_fsl_desc(ld_node)->async_tx.cookie, to_fsl_desc(ld_node)->async_tx.cookie,
fsl_chan->completed_cookie, chan->completed_cookie,
fsl_chan->common.cookie) == DMA_SUCCESS); chan->common.cookie) == DMA_SUCCESS);
ld_node = ld_node->next); ld_node = ld_node->next);
if (ld_node != &fsl_chan->ld_queue) { if (ld_node != &chan->ld_queue) {
/* Get the ld start address from ld_queue */ /* Get the ld start address from ld_queue */
next_dst_addr = to_fsl_desc(ld_node)->async_tx.phys; next_dst_addr = to_fsl_desc(ld_node)->async_tx.phys;
dev_dbg(fsl_chan->dev, "xfer LDs staring from 0x%llx\n", dev_dbg(chan->dev, "xfer LDs staring from 0x%llx\n",
(unsigned long long)next_dst_addr); (unsigned long long)next_dst_addr);
set_cdar(fsl_chan, next_dst_addr); set_cdar(chan, next_dst_addr);
dma_start(fsl_chan); dma_start(chan);
} else { } else {
set_cdar(fsl_chan, 0); set_cdar(chan, 0);
set_ndar(fsl_chan, 0); set_ndar(chan, 0);
} }
out_unlock: out_unlock:
spin_unlock_irqrestore(&fsl_chan->desc_lock, flags); spin_unlock_irqrestore(&chan->desc_lock, flags);
} }
/** /**
* fsl_dma_memcpy_issue_pending - Issue the DMA start command * fsl_dma_memcpy_issue_pending - Issue the DMA start command
* @fsl_chan : Freescale DMA channel * @chan : Freescale DMA channel
*/ */
static void fsl_dma_memcpy_issue_pending(struct dma_chan *chan) static void fsl_dma_memcpy_issue_pending(struct dma_chan *dchan)
{ {
struct fsldma_chan *fsl_chan = to_fsl_chan(chan); struct fsldma_chan *chan = to_fsl_chan(dchan);
#ifdef FSL_DMA_LD_DEBUG #ifdef FSL_DMA_LD_DEBUG
struct fsl_desc_sw *ld; struct fsl_desc_sw *ld;
unsigned long flags; unsigned long flags;
spin_lock_irqsave(&fsl_chan->desc_lock, flags); spin_lock_irqsave(&chan->desc_lock, flags);
if (list_empty(&fsl_chan->ld_queue)) { if (list_empty(&chan->ld_queue)) {
spin_unlock_irqrestore(&fsl_chan->desc_lock, flags); spin_unlock_irqrestore(&chan->desc_lock, flags);
return; return;
} }
dev_dbg(fsl_chan->dev, "--memcpy issue--\n"); dev_dbg(chan->dev, "--memcpy issue--\n");
list_for_each_entry(ld, &fsl_chan->ld_queue, node) { list_for_each_entry(ld, &chan->ld_queue, node) {
int i; int i;
dev_dbg(fsl_chan->dev, "Ch %d, LD %08x\n", dev_dbg(chan->dev, "Ch %d, LD %08x\n",
fsl_chan->id, ld->async_tx.phys); chan->id, ld->async_tx.phys);
for (i = 0; i < 8; i++) for (i = 0; i < 8; i++)
dev_dbg(fsl_chan->dev, "LD offset %d: %08x\n", dev_dbg(chan->dev, "LD offset %d: %08x\n",
i, *(((u32 *)&ld->hw) + i)); i, *(((u32 *)&ld->hw) + i));
} }
dev_dbg(fsl_chan->dev, "----------------\n"); dev_dbg(chan->dev, "----------------\n");
spin_unlock_irqrestore(&fsl_chan->desc_lock, flags); spin_unlock_irqrestore(&chan->desc_lock, flags);
#endif #endif
fsl_chan_xfer_ld_queue(fsl_chan); fsl_chan_xfer_ld_queue(chan);
} }
/** /**
* fsl_dma_is_complete - Determine the DMA status * fsl_dma_is_complete - Determine the DMA status
* @fsl_chan : Freescale DMA channel * @chan : Freescale DMA channel
*/ */
static enum dma_status fsl_dma_is_complete(struct dma_chan *chan, static enum dma_status fsl_dma_is_complete(struct dma_chan *dchan,
dma_cookie_t cookie, dma_cookie_t cookie,
dma_cookie_t *done, dma_cookie_t *done,
dma_cookie_t *used) dma_cookie_t *used)
{ {
struct fsldma_chan *fsl_chan = to_fsl_chan(chan); struct fsldma_chan *chan = to_fsl_chan(dchan);
dma_cookie_t last_used; dma_cookie_t last_used;
dma_cookie_t last_complete; dma_cookie_t last_complete;
fsl_chan_ld_cleanup(fsl_chan); fsl_chan_ld_cleanup(chan);
last_used = chan->cookie; last_used = dchan->cookie;
last_complete = fsl_chan->completed_cookie; last_complete = chan->completed_cookie;
if (done) if (done)
*done = last_complete; *done = last_complete;
...@@ -973,30 +973,30 @@ static enum dma_status fsl_dma_is_complete(struct dma_chan *chan, ...@@ -973,30 +973,30 @@ static enum dma_status fsl_dma_is_complete(struct dma_chan *chan,
static irqreturn_t fsldma_chan_irq(int irq, void *data) static irqreturn_t fsldma_chan_irq(int irq, void *data)
{ {
struct fsldma_chan *fsl_chan = data; struct fsldma_chan *chan = data;
u32 stat;
int update_cookie = 0; int update_cookie = 0;
int xfer_ld_q = 0; int xfer_ld_q = 0;
u32 stat;
stat = get_sr(fsl_chan); stat = get_sr(chan);
dev_dbg(fsl_chan->dev, "event: channel %d, stat = 0x%x\n", dev_dbg(chan->dev, "event: channel %d, stat = 0x%x\n",
fsl_chan->id, stat); chan->id, stat);
set_sr(fsl_chan, stat); /* Clear the event register */ set_sr(chan, stat); /* Clear the event register */
stat &= ~(FSL_DMA_SR_CB | FSL_DMA_SR_CH); stat &= ~(FSL_DMA_SR_CB | FSL_DMA_SR_CH);
if (!stat) if (!stat)
return IRQ_NONE; return IRQ_NONE;
if (stat & FSL_DMA_SR_TE) if (stat & FSL_DMA_SR_TE)
dev_err(fsl_chan->dev, "Transfer Error!\n"); dev_err(chan->dev, "Transfer Error!\n");
/* Programming Error /* Programming Error
* The DMA_INTERRUPT async_tx is a NULL transfer, which will * The DMA_INTERRUPT async_tx is a NULL transfer, which will
* triger a PE interrupt. * triger a PE interrupt.
*/ */
if (stat & FSL_DMA_SR_PE) { if (stat & FSL_DMA_SR_PE) {
dev_dbg(fsl_chan->dev, "event: Programming Error INT\n"); dev_dbg(chan->dev, "event: Programming Error INT\n");
if (get_bcr(fsl_chan) == 0) { if (get_bcr(chan) == 0) {
/* BCR register is 0, this is a DMA_INTERRUPT async_tx. /* BCR register is 0, this is a DMA_INTERRUPT async_tx.
* Now, update the completed cookie, and continue the * Now, update the completed cookie, and continue the
* next uncompleted transfer. * next uncompleted transfer.
...@@ -1011,10 +1011,10 @@ static irqreturn_t fsldma_chan_irq(int irq, void *data) ...@@ -1011,10 +1011,10 @@ static irqreturn_t fsldma_chan_irq(int irq, void *data)
* we will recycle the used descriptor. * we will recycle the used descriptor.
*/ */
if (stat & FSL_DMA_SR_EOSI) { if (stat & FSL_DMA_SR_EOSI) {
dev_dbg(fsl_chan->dev, "event: End-of-segments INT\n"); dev_dbg(chan->dev, "event: End-of-segments INT\n");
dev_dbg(fsl_chan->dev, "event: clndar 0x%llx, nlndar 0x%llx\n", dev_dbg(chan->dev, "event: clndar 0x%llx, nlndar 0x%llx\n",
(unsigned long long)get_cdar(fsl_chan), (unsigned long long)get_cdar(chan),
(unsigned long long)get_ndar(fsl_chan)); (unsigned long long)get_ndar(chan));
stat &= ~FSL_DMA_SR_EOSI; stat &= ~FSL_DMA_SR_EOSI;
update_cookie = 1; update_cookie = 1;
} }
...@@ -1023,7 +1023,7 @@ static irqreturn_t fsldma_chan_irq(int irq, void *data) ...@@ -1023,7 +1023,7 @@ static irqreturn_t fsldma_chan_irq(int irq, void *data)
* and start the next transfer if it exist. * and start the next transfer if it exist.
*/ */
if (stat & FSL_DMA_SR_EOCDI) { if (stat & FSL_DMA_SR_EOCDI) {
dev_dbg(fsl_chan->dev, "event: End-of-Chain link INT\n"); dev_dbg(chan->dev, "event: End-of-Chain link INT\n");
stat &= ~FSL_DMA_SR_EOCDI; stat &= ~FSL_DMA_SR_EOCDI;
update_cookie = 1; update_cookie = 1;
xfer_ld_q = 1; xfer_ld_q = 1;
...@@ -1034,28 +1034,28 @@ static irqreturn_t fsldma_chan_irq(int irq, void *data) ...@@ -1034,28 +1034,28 @@ static irqreturn_t fsldma_chan_irq(int irq, void *data)
* prepare next transfer. * prepare next transfer.
*/ */
if (stat & FSL_DMA_SR_EOLNI) { if (stat & FSL_DMA_SR_EOLNI) {
dev_dbg(fsl_chan->dev, "event: End-of-link INT\n"); dev_dbg(chan->dev, "event: End-of-link INT\n");
stat &= ~FSL_DMA_SR_EOLNI; stat &= ~FSL_DMA_SR_EOLNI;
xfer_ld_q = 1; xfer_ld_q = 1;
} }
if (update_cookie) if (update_cookie)
fsl_dma_update_completed_cookie(fsl_chan); fsl_dma_update_completed_cookie(chan);
if (xfer_ld_q) if (xfer_ld_q)
fsl_chan_xfer_ld_queue(fsl_chan); fsl_chan_xfer_ld_queue(chan);
if (stat) if (stat)
dev_dbg(fsl_chan->dev, "event: unhandled sr 0x%02x\n", dev_dbg(chan->dev, "event: unhandled sr 0x%02x\n",
stat); stat);
dev_dbg(fsl_chan->dev, "event: Exit\n"); dev_dbg(chan->dev, "event: Exit\n");
tasklet_schedule(&fsl_chan->tasklet); tasklet_schedule(&chan->tasklet);
return IRQ_HANDLED; return IRQ_HANDLED;
} }
static void dma_do_tasklet(unsigned long data) static void dma_do_tasklet(unsigned long data)
{ {
struct fsldma_chan *fsl_chan = (struct fsldma_chan *)data; struct fsldma_chan *chan = (struct fsldma_chan *)data;
fsl_chan_ld_cleanup(fsl_chan); fsl_chan_ld_cleanup(chan);
} }
static irqreturn_t fsldma_ctrl_irq(int irq, void *data) static irqreturn_t fsldma_ctrl_irq(int irq, void *data)
...@@ -1171,24 +1171,24 @@ static int fsldma_request_irqs(struct fsldma_device *fdev) ...@@ -1171,24 +1171,24 @@ static int fsldma_request_irqs(struct fsldma_device *fdev)
static int __devinit fsl_dma_chan_probe(struct fsldma_device *fdev, static int __devinit fsl_dma_chan_probe(struct fsldma_device *fdev,
struct device_node *node, u32 feature, const char *compatible) struct device_node *node, u32 feature, const char *compatible)
{ {
struct fsldma_chan *fchan; struct fsldma_chan *chan;
struct resource res; struct resource res;
int err; int err;
/* alloc channel */ /* alloc channel */
fchan = kzalloc(sizeof(*fchan), GFP_KERNEL); chan = kzalloc(sizeof(*chan), GFP_KERNEL);
if (!fchan) { if (!chan) {
dev_err(fdev->dev, "no free memory for DMA channels!\n"); dev_err(fdev->dev, "no free memory for DMA channels!\n");
err = -ENOMEM; err = -ENOMEM;
goto out_return; goto out_return;
} }
/* ioremap registers for use */ /* ioremap registers for use */
fchan->regs = of_iomap(node, 0); chan->regs = of_iomap(node, 0);
if (!fchan->regs) { if (!chan->regs) {
dev_err(fdev->dev, "unable to ioremap registers\n"); dev_err(fdev->dev, "unable to ioremap registers\n");
err = -ENOMEM; err = -ENOMEM;
goto out_free_fchan; goto out_free_chan;
} }
err = of_address_to_resource(node, 0, &res); err = of_address_to_resource(node, 0, &res);
...@@ -1197,74 +1197,74 @@ static int __devinit fsl_dma_chan_probe(struct fsldma_device *fdev, ...@@ -1197,74 +1197,74 @@ static int __devinit fsl_dma_chan_probe(struct fsldma_device *fdev,
goto out_iounmap_regs; goto out_iounmap_regs;
} }
fchan->feature = feature; chan->feature = feature;
if (!fdev->feature) if (!fdev->feature)
fdev->feature = fchan->feature; fdev->feature = chan->feature;
/* /*
* If the DMA device's feature is different than the feature * If the DMA device's feature is different than the feature
* of its channels, report the bug * of its channels, report the bug
*/ */
WARN_ON(fdev->feature != fchan->feature); WARN_ON(fdev->feature != chan->feature);
fchan->dev = fdev->dev; chan->dev = fdev->dev;
fchan->id = ((res.start - 0x100) & 0xfff) >> 7; chan->id = ((res.start - 0x100) & 0xfff) >> 7;
if (fchan->id >= FSL_DMA_MAX_CHANS_PER_DEVICE) { if (chan->id >= FSL_DMA_MAX_CHANS_PER_DEVICE) {
dev_err(fdev->dev, "too many channels for device\n"); dev_err(fdev->dev, "too many channels for device\n");
err = -EINVAL; err = -EINVAL;
goto out_iounmap_regs; goto out_iounmap_regs;
} }
fdev->chan[fchan->id] = fchan; fdev->chan[chan->id] = chan;
tasklet_init(&fchan->tasklet, dma_do_tasklet, (unsigned long)fchan); tasklet_init(&chan->tasklet, dma_do_tasklet, (unsigned long)chan);
/* Initialize the channel */ /* Initialize the channel */
dma_init(fchan); dma_init(chan);
/* Clear cdar registers */ /* Clear cdar registers */
set_cdar(fchan, 0); set_cdar(chan, 0);
switch (fchan->feature & FSL_DMA_IP_MASK) { switch (chan->feature & FSL_DMA_IP_MASK) {
case FSL_DMA_IP_85XX: case FSL_DMA_IP_85XX:
fchan->toggle_ext_pause = fsl_chan_toggle_ext_pause; chan->toggle_ext_pause = fsl_chan_toggle_ext_pause;
case FSL_DMA_IP_83XX: case FSL_DMA_IP_83XX:
fchan->toggle_ext_start = fsl_chan_toggle_ext_start; chan->toggle_ext_start = fsl_chan_toggle_ext_start;
fchan->set_src_loop_size = fsl_chan_set_src_loop_size; chan->set_src_loop_size = fsl_chan_set_src_loop_size;
fchan->set_dst_loop_size = fsl_chan_set_dst_loop_size; chan->set_dst_loop_size = fsl_chan_set_dst_loop_size;
fchan->set_request_count = fsl_chan_set_request_count; chan->set_request_count = fsl_chan_set_request_count;
} }
spin_lock_init(&fchan->desc_lock); spin_lock_init(&chan->desc_lock);
INIT_LIST_HEAD(&fchan->ld_queue); INIT_LIST_HEAD(&chan->ld_queue);
fchan->common.device = &fdev->common; chan->common.device = &fdev->common;
/* find the IRQ line, if it exists in the device tree */ /* find the IRQ line, if it exists in the device tree */
fchan->irq = irq_of_parse_and_map(node, 0); chan->irq = irq_of_parse_and_map(node, 0);
/* Add the channel to DMA device channel list */ /* Add the channel to DMA device channel list */
list_add_tail(&fchan->common.device_node, &fdev->common.channels); list_add_tail(&chan->common.device_node, &fdev->common.channels);
fdev->common.chancnt++; fdev->common.chancnt++;
dev_info(fdev->dev, "#%d (%s), irq %d\n", fchan->id, compatible, dev_info(fdev->dev, "#%d (%s), irq %d\n", chan->id, compatible,
fchan->irq != NO_IRQ ? fchan->irq : fdev->irq); chan->irq != NO_IRQ ? chan->irq : fdev->irq);
return 0; return 0;
out_iounmap_regs: out_iounmap_regs:
iounmap(fchan->regs); iounmap(chan->regs);
out_free_fchan: out_free_chan:
kfree(fchan); kfree(chan);
out_return: out_return:
return err; return err;
} }
static void fsl_dma_chan_remove(struct fsldma_chan *fchan) static void fsl_dma_chan_remove(struct fsldma_chan *chan)
{ {
irq_dispose_mapping(fchan->irq); irq_dispose_mapping(chan->irq);
list_del(&fchan->common.device_node); list_del(&chan->common.device_node);
iounmap(fchan->regs); iounmap(chan->regs);
kfree(fchan); kfree(chan);
} }
static int __devinit fsldma_of_probe(struct of_device *op, static int __devinit fsldma_of_probe(struct of_device *op,
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment