Commit afdd6ae3 authored by David S. Miller's avatar David S. Miller

Merge branch 'ieee802154-for-davem-2018-02-26' of...

Merge branch 'ieee802154-for-davem-2018-02-26' of git://git.kernel.org/pub/scm/linux/kernel/git/sschmidt/wpan-next

Stefan Schmidt says:

====================
pull-request: ieee802154-next 2018-02-26

An update from ieee802154 for *net-next*

Alexander corrected a setting which got lost during some 6lowpan rework
a while back and Xue Liu provided us with a new driver for the MCR20A
transceiver.

If there are any issues let me know. If not, please pull.
====================
Signed-off-by: default avatarDavid S. Miller <davem@davemloft.net>
parents 23363b87 8c6ad9cc
* MCR20A IEEE 802.15.4 *
Required properties:
- compatible: should be "nxp,mcr20a"
- spi-max-frequency: maximal bus speed, should be set to a frequency
lower than 9000000 depends sync or async operation mode
- reg: the chipselect index
- interrupts: the interrupt generated by the device. Non high-level
can occur deadlocks while handling isr.
Optional properties:
- rst_b-gpio: GPIO spec for the RST_B pin
Example:
mcr20a@0 {
compatible = "nxp,mcr20a";
spi-max-frequency = <9000000>;
reg = <0>;
interrupts = <17 2>;
interrupt-parent = <&gpio>;
rst_b-gpio = <&gpio 27 1>
};
......@@ -8592,6 +8592,15 @@ S: Maintained
F: Documentation/ABI/testing/sysfs-bus-iio-potentiometer-mcp4531
F: drivers/iio/potentiometer/mcp4531.c
MCR20A IEEE-802.15.4 RADIO DRIVER
M: Xue Liu <liuxuenetmail@gmail.com>
L: linux-wpan@vger.kernel.org
W: https://github.com/xueliu/mcr20a-linux
S: Maintained
F: drivers/net/ieee802154/mcr20a.c
F: drivers/net/ieee802154/mcr20a.h
F: Documentation/devicetree/bindings/net/ieee802154/mcr20a.txt
MEASUREMENT COMPUTING CIO-DAC IIO DRIVER
M: William Breathitt Gray <vilhelm.gray@gmail.com>
L: linux-iio@vger.kernel.org
......
......@@ -104,3 +104,14 @@ config IEEE802154_CA8210_DEBUGFS
exposes a debugfs node for each CA8210 instance which allows
direct use of the Cascoda API, exposing the 802.15.4 MAC
management entities.
config IEEE802154_MCR20A
tristate "MCR20A transceiver driver"
depends on IEEE802154_DRIVERS && MAC802154
depends on SPI
---help---
Say Y here to enable the MCR20A SPI 802.15.4 wireless
controller.
This driver can also be built as a module. To do so, say M here.
the module will be called 'mcr20a'.
......@@ -6,3 +6,4 @@ obj-$(CONFIG_IEEE802154_CC2520) += cc2520.o
obj-$(CONFIG_IEEE802154_ATUSB) += atusb.o
obj-$(CONFIG_IEEE802154_ADF7242) += adf7242.o
obj-$(CONFIG_IEEE802154_CA8210) += ca8210.o
obj-$(CONFIG_IEEE802154_MCR20A) += mcr20a.o
/*
* Driver for NXP MCR20A 802.15.4 Wireless-PAN Networking controller
*
* Copyright (C) 2018 Xue Liu <liuxuenetmail@gmail.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2
* as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/gpio.h>
#include <linux/spi/spi.h>
#include <linux/workqueue.h>
#include <linux/interrupt.h>
#include <linux/skbuff.h>
#include <linux/of_gpio.h>
#include <linux/regmap.h>
#include <linux/ieee802154.h>
#include <linux/debugfs.h>
#include <net/mac802154.h>
#include <net/cfg802154.h>
#include <linux/device.h>
#include "mcr20a.h"
#define SPI_COMMAND_BUFFER 3
#define REGISTER_READ BIT(7)
#define REGISTER_WRITE (0 << 7)
#define REGISTER_ACCESS (0 << 6)
#define PACKET_BUFF_BURST_ACCESS BIT(6)
#define PACKET_BUFF_BYTE_ACCESS BIT(5)
#define MCR20A_WRITE_REG(x) (x)
#define MCR20A_READ_REG(x) (REGISTER_READ | (x))
#define MCR20A_BURST_READ_PACKET_BUF (0xC0)
#define MCR20A_BURST_WRITE_PACKET_BUF (0x40)
#define MCR20A_CMD_REG 0x80
#define MCR20A_CMD_REG_MASK 0x3f
#define MCR20A_CMD_WRITE 0x40
#define MCR20A_CMD_FB 0x20
/* Number of Interrupt Request Status Register */
#define MCR20A_IRQSTS_NUM 2 /* only IRQ_STS1 and IRQ_STS2 */
/* MCR20A CCA Type */
enum {
MCR20A_CCA_ED, // energy detect - CCA bit not active,
// not to be used for T and CCCA sequences
MCR20A_CCA_MODE1, // energy detect - CCA bit ACTIVE
MCR20A_CCA_MODE2, // 802.15.4 compliant signal detect - CCA bit ACTIVE
MCR20A_CCA_MODE3
};
enum {
MCR20A_XCVSEQ_IDLE = 0x00,
MCR20A_XCVSEQ_RX = 0x01,
MCR20A_XCVSEQ_TX = 0x02,
MCR20A_XCVSEQ_CCA = 0x03,
MCR20A_XCVSEQ_TR = 0x04,
MCR20A_XCVSEQ_CCCA = 0x05,
};
/* IEEE-802.15.4 defined constants (2.4 GHz logical channels) */
#define MCR20A_MIN_CHANNEL (11)
#define MCR20A_MAX_CHANNEL (26)
#define MCR20A_CHANNEL_SPACING (5)
/* MCR20A CCA Threshold constans */
#define MCR20A_MIN_CCA_THRESHOLD (0x6EU)
#define MCR20A_MAX_CCA_THRESHOLD (0x00U)
/* version 0C */
#define MCR20A_OVERWRITE_VERSION (0x0C)
/* MCR20A PLL configurations */
static const u8 PLL_INT[16] = {
/* 2405 */ 0x0B, /* 2410 */ 0x0B, /* 2415 */ 0x0B,
/* 2420 */ 0x0B, /* 2425 */ 0x0B, /* 2430 */ 0x0B,
/* 2435 */ 0x0C, /* 2440 */ 0x0C, /* 2445 */ 0x0C,
/* 2450 */ 0x0C, /* 2455 */ 0x0C, /* 2460 */ 0x0C,
/* 2465 */ 0x0D, /* 2470 */ 0x0D, /* 2475 */ 0x0D,
/* 2480 */ 0x0D
};
static const u8 PLL_FRAC[16] = {
/* 2405 */ 0x28, /* 2410 */ 0x50, /* 2415 */ 0x78,
/* 2420 */ 0xA0, /* 2425 */ 0xC8, /* 2430 */ 0xF0,
/* 2435 */ 0x18, /* 2440 */ 0x40, /* 2445 */ 0x68,
/* 2450 */ 0x90, /* 2455 */ 0xB8, /* 2460 */ 0xE0,
/* 2465 */ 0x08, /* 2470 */ 0x30, /* 2475 */ 0x58,
/* 2480 */ 0x80
};
static const struct reg_sequence mar20a_iar_overwrites[] = {
{ IAR_MISC_PAD_CTRL, 0x02 },
{ IAR_VCO_CTRL1, 0xB3 },
{ IAR_VCO_CTRL2, 0x07 },
{ IAR_PA_TUNING, 0x71 },
{ IAR_CHF_IBUF, 0x2F },
{ IAR_CHF_QBUF, 0x2F },
{ IAR_CHF_IRIN, 0x24 },
{ IAR_CHF_QRIN, 0x24 },
{ IAR_CHF_IL, 0x24 },
{ IAR_CHF_QL, 0x24 },
{ IAR_CHF_CC1, 0x32 },
{ IAR_CHF_CCL, 0x1D },
{ IAR_CHF_CC2, 0x2D },
{ IAR_CHF_IROUT, 0x24 },
{ IAR_CHF_QROUT, 0x24 },
{ IAR_PA_CAL, 0x28 },
{ IAR_AGC_THR1, 0x55 },
{ IAR_AGC_THR2, 0x2D },
{ IAR_ATT_RSSI1, 0x5F },
{ IAR_ATT_RSSI2, 0x8F },
{ IAR_RSSI_OFFSET, 0x61 },
{ IAR_CHF_PMA_GAIN, 0x03 },
{ IAR_CCA1_THRESH, 0x50 },
{ IAR_CORR_NVAL, 0x13 },
{ IAR_ACKDELAY, 0x3D },
};
#define MCR20A_VALID_CHANNELS (0x07FFF800)
struct mcr20a_platform_data {
int rst_gpio;
};
#define MCR20A_MAX_BUF (127)
#define printdev(X) (&X->spi->dev)
/* regmap information for Direct Access Register (DAR) access */
#define MCR20A_DAR_WRITE 0x01
#define MCR20A_DAR_READ 0x00
#define MCR20A_DAR_NUMREGS 0x3F
/* regmap information for Indirect Access Register (IAR) access */
#define MCR20A_IAR_ACCESS 0x80
#define MCR20A_IAR_NUMREGS 0xBEFF
/* Read/Write SPI Commands for DAR and IAR registers. */
#define MCR20A_READSHORT(reg) ((reg) << 1)
#define MCR20A_WRITESHORT(reg) ((reg) << 1 | 1)
#define MCR20A_READLONG(reg) (1 << 15 | (reg) << 5)
#define MCR20A_WRITELONG(reg) (1 << 15 | (reg) << 5 | 1 << 4)
/* Type definitions for link configuration of instantiable layers */
#define MCR20A_PHY_INDIRECT_QUEUE_SIZE (12)
static bool
mcr20a_dar_writeable(struct device *dev, unsigned int reg)
{
switch (reg) {
case DAR_IRQ_STS1:
case DAR_IRQ_STS2:
case DAR_IRQ_STS3:
case DAR_PHY_CTRL1:
case DAR_PHY_CTRL2:
case DAR_PHY_CTRL3:
case DAR_PHY_CTRL4:
case DAR_SRC_CTRL:
case DAR_SRC_ADDRS_SUM_LSB:
case DAR_SRC_ADDRS_SUM_MSB:
case DAR_T3CMP_LSB:
case DAR_T3CMP_MSB:
case DAR_T3CMP_USB:
case DAR_T2PRIMECMP_LSB:
case DAR_T2PRIMECMP_MSB:
case DAR_T1CMP_LSB:
case DAR_T1CMP_MSB:
case DAR_T1CMP_USB:
case DAR_T2CMP_LSB:
case DAR_T2CMP_MSB:
case DAR_T2CMP_USB:
case DAR_T4CMP_LSB:
case DAR_T4CMP_MSB:
case DAR_T4CMP_USB:
case DAR_PLL_INT0:
case DAR_PLL_FRAC0_LSB:
case DAR_PLL_FRAC0_MSB:
case DAR_PA_PWR:
/* no DAR_ACM */
case DAR_OVERWRITE_VER:
case DAR_CLK_OUT_CTRL:
case DAR_PWR_MODES:
return true;
default:
return false;
}
}
static bool
mcr20a_dar_readable(struct device *dev, unsigned int reg)
{
bool rc;
/* all writeable are also readable */
rc = mcr20a_dar_writeable(dev, reg);
if (rc)
return rc;
/* readonly regs */
switch (reg) {
case DAR_RX_FRM_LEN:
case DAR_CCA1_ED_FNL:
case DAR_EVENT_TMR_LSB:
case DAR_EVENT_TMR_MSB:
case DAR_EVENT_TMR_USB:
case DAR_TIMESTAMP_LSB:
case DAR_TIMESTAMP_MSB:
case DAR_TIMESTAMP_USB:
case DAR_SEQ_STATE:
case DAR_LQI_VALUE:
case DAR_RSSI_CCA_CONT:
return true;
default:
return false;
}
}
static bool
mcr20a_dar_volatile(struct device *dev, unsigned int reg)
{
/* can be changed during runtime */
switch (reg) {
case DAR_IRQ_STS1:
case DAR_IRQ_STS2:
case DAR_IRQ_STS3:
/* use them in spi_async and regmap so it's volatile */
return true;
default:
return false;
}
}
static bool
mcr20a_dar_precious(struct device *dev, unsigned int reg)
{
/* don't clear irq line on read */
switch (reg) {
case DAR_IRQ_STS1:
case DAR_IRQ_STS2:
case DAR_IRQ_STS3:
return true;
default:
return false;
}
}
static const struct regmap_config mcr20a_dar_regmap = {
.name = "mcr20a_dar",
.reg_bits = 8,
.val_bits = 8,
.write_flag_mask = REGISTER_ACCESS | REGISTER_WRITE,
.read_flag_mask = REGISTER_ACCESS | REGISTER_READ,
.cache_type = REGCACHE_RBTREE,
.writeable_reg = mcr20a_dar_writeable,
.readable_reg = mcr20a_dar_readable,
.volatile_reg = mcr20a_dar_volatile,
.precious_reg = mcr20a_dar_precious,
.fast_io = true,
.can_multi_write = true,
};
static bool
mcr20a_iar_writeable(struct device *dev, unsigned int reg)
{
switch (reg) {
case IAR_XTAL_TRIM:
case IAR_PMC_LP_TRIM:
case IAR_MACPANID0_LSB:
case IAR_MACPANID0_MSB:
case IAR_MACSHORTADDRS0_LSB:
case IAR_MACSHORTADDRS0_MSB:
case IAR_MACLONGADDRS0_0:
case IAR_MACLONGADDRS0_8:
case IAR_MACLONGADDRS0_16:
case IAR_MACLONGADDRS0_24:
case IAR_MACLONGADDRS0_32:
case IAR_MACLONGADDRS0_40:
case IAR_MACLONGADDRS0_48:
case IAR_MACLONGADDRS0_56:
case IAR_RX_FRAME_FILTER:
case IAR_PLL_INT1:
case IAR_PLL_FRAC1_LSB:
case IAR_PLL_FRAC1_MSB:
case IAR_MACPANID1_LSB:
case IAR_MACPANID1_MSB:
case IAR_MACSHORTADDRS1_LSB:
case IAR_MACSHORTADDRS1_MSB:
case IAR_MACLONGADDRS1_0:
case IAR_MACLONGADDRS1_8:
case IAR_MACLONGADDRS1_16:
case IAR_MACLONGADDRS1_24:
case IAR_MACLONGADDRS1_32:
case IAR_MACLONGADDRS1_40:
case IAR_MACLONGADDRS1_48:
case IAR_MACLONGADDRS1_56:
case IAR_DUAL_PAN_CTRL:
case IAR_DUAL_PAN_DWELL:
case IAR_CCA1_THRESH:
case IAR_CCA1_ED_OFFSET_COMP:
case IAR_LQI_OFFSET_COMP:
case IAR_CCA_CTRL:
case IAR_CCA2_CORR_PEAKS:
case IAR_CCA2_CORR_THRESH:
case IAR_TMR_PRESCALE:
case IAR_ANT_PAD_CTRL:
case IAR_MISC_PAD_CTRL:
case IAR_BSM_CTRL:
case IAR_RNG:
case IAR_RX_WTR_MARK:
case IAR_SOFT_RESET:
case IAR_TXDELAY:
case IAR_ACKDELAY:
case IAR_CORR_NVAL:
case IAR_ANT_AGC_CTRL:
case IAR_AGC_THR1:
case IAR_AGC_THR2:
case IAR_PA_CAL:
case IAR_ATT_RSSI1:
case IAR_ATT_RSSI2:
case IAR_RSSI_OFFSET:
case IAR_XTAL_CTRL:
case IAR_CHF_PMA_GAIN:
case IAR_CHF_IBUF:
case IAR_CHF_QBUF:
case IAR_CHF_IRIN:
case IAR_CHF_QRIN:
case IAR_CHF_IL:
case IAR_CHF_QL:
case IAR_CHF_CC1:
case IAR_CHF_CCL:
case IAR_CHF_CC2:
case IAR_CHF_IROUT:
case IAR_CHF_QROUT:
case IAR_PA_TUNING:
case IAR_VCO_CTRL1:
case IAR_VCO_CTRL2:
return true;
default:
return false;
}
}
static bool
mcr20a_iar_readable(struct device *dev, unsigned int reg)
{
bool rc;
/* all writeable are also readable */
rc = mcr20a_iar_writeable(dev, reg);
if (rc)
return rc;
/* readonly regs */
switch (reg) {
case IAR_PART_ID:
case IAR_DUAL_PAN_STS:
case IAR_RX_BYTE_COUNT:
case IAR_FILTERFAIL_CODE1:
case IAR_FILTERFAIL_CODE2:
case IAR_RSSI:
return true;
default:
return false;
}
}
static bool
mcr20a_iar_volatile(struct device *dev, unsigned int reg)
{
/* can be changed during runtime */
switch (reg) {
case IAR_DUAL_PAN_STS:
case IAR_RX_BYTE_COUNT:
case IAR_FILTERFAIL_CODE1:
case IAR_FILTERFAIL_CODE2:
case IAR_RSSI:
return true;
default:
return false;
}
}
static const struct regmap_config mcr20a_iar_regmap = {
.name = "mcr20a_iar",
.reg_bits = 16,
.val_bits = 8,
.write_flag_mask = REGISTER_ACCESS | REGISTER_WRITE | IAR_INDEX,
.read_flag_mask = REGISTER_ACCESS | REGISTER_READ | IAR_INDEX,
.cache_type = REGCACHE_RBTREE,
.writeable_reg = mcr20a_iar_writeable,
.readable_reg = mcr20a_iar_readable,
.volatile_reg = mcr20a_iar_volatile,
.fast_io = true,
};
struct mcr20a_local {
struct spi_device *spi;
struct ieee802154_hw *hw;
struct mcr20a_platform_data *pdata;
struct regmap *regmap_dar;
struct regmap *regmap_iar;
u8 *buf;
bool is_tx;
/* for writing tx buffer */
struct spi_message tx_buf_msg;
u8 tx_header[1];
/* burst buffer write command */
struct spi_transfer tx_xfer_header;
u8 tx_len[1];
/* len of tx packet */
struct spi_transfer tx_xfer_len;
/* data of tx packet */
struct spi_transfer tx_xfer_buf;
struct sk_buff *tx_skb;
/* for read length rxfifo */
struct spi_message reg_msg;
u8 reg_cmd[1];
u8 reg_data[MCR20A_IRQSTS_NUM];
struct spi_transfer reg_xfer_cmd;
struct spi_transfer reg_xfer_data;
/* receive handling */
struct spi_message rx_buf_msg;
u8 rx_header[1];
struct spi_transfer rx_xfer_header;
u8 rx_lqi[1];
struct spi_transfer rx_xfer_lqi;
u8 rx_buf[MCR20A_MAX_BUF];
struct spi_transfer rx_xfer_buf;
/* isr handling for reading intstat */
struct spi_message irq_msg;
u8 irq_header[1];
u8 irq_data[MCR20A_IRQSTS_NUM];
struct spi_transfer irq_xfer_data;
struct spi_transfer irq_xfer_header;
};
static void
mcr20a_write_tx_buf_complete(void *context)
{
struct mcr20a_local *lp = context;
int ret;
dev_dbg(printdev(lp), "%s\n", __func__);
lp->reg_msg.complete = NULL;
lp->reg_cmd[0] = MCR20A_WRITE_REG(DAR_PHY_CTRL1);
lp->reg_data[0] = MCR20A_XCVSEQ_TX;
lp->reg_xfer_data.len = 1;
ret = spi_async(lp->spi, &lp->reg_msg);
if (ret)
dev_err(printdev(lp), "failed to set SEQ TX\n");
}
static int
mcr20a_xmit(struct ieee802154_hw *hw, struct sk_buff *skb)
{
struct mcr20a_local *lp = hw->priv;
dev_dbg(printdev(lp), "%s\n", __func__);
lp->tx_skb = skb;
print_hex_dump_debug("mcr20a tx: ", DUMP_PREFIX_OFFSET, 16, 1,
skb->data, skb->len, 0);
lp->is_tx = 1;
lp->reg_msg.complete = NULL;
lp->reg_cmd[0] = MCR20A_WRITE_REG(DAR_PHY_CTRL1);
lp->reg_data[0] = MCR20A_XCVSEQ_IDLE;
lp->reg_xfer_data.len = 1;
return spi_async(lp->spi, &lp->reg_msg);
}
static int
mcr20a_ed(struct ieee802154_hw *hw, u8 *level)
{
WARN_ON(!level);
*level = 0xbe;
return 0;
}
static int
mcr20a_set_channel(struct ieee802154_hw *hw, u8 page, u8 channel)
{
struct mcr20a_local *lp = hw->priv;
int ret;
dev_dbg(printdev(lp), "%s\n", __func__);
/* freqency = ((PLL_INT+64) + (PLL_FRAC/65536)) * 32 MHz */
ret = regmap_write(lp->regmap_dar, DAR_PLL_INT0, PLL_INT[channel - 11]);
if (ret)
return ret;
ret = regmap_write(lp->regmap_dar, DAR_PLL_FRAC0_LSB, 0x00);
if (ret)
return ret;
ret = regmap_write(lp->regmap_dar, DAR_PLL_FRAC0_MSB,
PLL_FRAC[channel - 11]);
if (ret)
return ret;
return 0;
}
static int
mcr20a_start(struct ieee802154_hw *hw)
{
struct mcr20a_local *lp = hw->priv;
int ret;
dev_dbg(printdev(lp), "%s\n", __func__);
/* No slotted operation */
dev_dbg(printdev(lp), "no slotted operation\n");
ret = regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL1,
DAR_PHY_CTRL1_SLOTTED, 0x0);
/* enable irq */
enable_irq(lp->spi->irq);
/* Unmask SEQ interrupt */
ret = regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL2,
DAR_PHY_CTRL2_SEQMSK, 0x0);
/* Start the RX sequence */
dev_dbg(printdev(lp), "start the RX sequence\n");
ret = regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL1,
DAR_PHY_CTRL1_XCVSEQ_MASK, MCR20A_XCVSEQ_RX);
return 0;
}
static void
mcr20a_stop(struct ieee802154_hw *hw)
{
struct mcr20a_local *lp = hw->priv;
dev_dbg(printdev(lp), "%s\n", __func__);
/* stop all running sequence */
regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL1,
DAR_PHY_CTRL1_XCVSEQ_MASK, MCR20A_XCVSEQ_IDLE);
/* disable irq */
disable_irq(lp->spi->irq);
}
static int
mcr20a_set_hw_addr_filt(struct ieee802154_hw *hw,
struct ieee802154_hw_addr_filt *filt,
unsigned long changed)
{
struct mcr20a_local *lp = hw->priv;
dev_dbg(printdev(lp), "%s\n", __func__);
if (changed & IEEE802154_AFILT_SADDR_CHANGED) {
u16 addr = le16_to_cpu(filt->short_addr);
regmap_write(lp->regmap_iar, IAR_MACSHORTADDRS0_LSB, addr);
regmap_write(lp->regmap_iar, IAR_MACSHORTADDRS0_MSB, addr >> 8);
}
if (changed & IEEE802154_AFILT_PANID_CHANGED) {
u16 pan = le16_to_cpu(filt->pan_id);
regmap_write(lp->regmap_iar, IAR_MACPANID0_LSB, pan);
regmap_write(lp->regmap_iar, IAR_MACPANID0_MSB, pan >> 8);
}
if (changed & IEEE802154_AFILT_IEEEADDR_CHANGED) {
u8 addr[8], i;
memcpy(addr, &filt->ieee_addr, 8);
for (i = 0; i < 8; i++)
regmap_write(lp->regmap_iar,
IAR_MACLONGADDRS0_0 + i, addr[i]);
}
if (changed & IEEE802154_AFILT_PANC_CHANGED) {
if (filt->pan_coord) {
regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL4,
DAR_PHY_CTRL4_PANCORDNTR0, 0x10);
} else {
regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL4,
DAR_PHY_CTRL4_PANCORDNTR0, 0x00);
}
}
return 0;
}
/* -30 dBm to 10 dBm */
#define MCR20A_MAX_TX_POWERS 0x14
static const s32 mcr20a_powers[MCR20A_MAX_TX_POWERS + 1] = {
-3000, -2800, -2600, -2400, -2200, -2000, -1800, -1600, -1400,
-1200, -1000, -800, -600, -400, -200, 0, 200, 400, 600, 800, 1000
};
static int
mcr20a_set_txpower(struct ieee802154_hw *hw, s32 mbm)
{
struct mcr20a_local *lp = hw->priv;
u32 i;
dev_dbg(printdev(lp), "%s(%d)\n", __func__, mbm);
for (i = 0; i < lp->hw->phy->supported.tx_powers_size; i++) {
if (lp->hw->phy->supported.tx_powers[i] == mbm)
return regmap_write(lp->regmap_dar, DAR_PA_PWR,
((i + 8) & 0x1F));
}
return -EINVAL;
}
#define MCR20A_MAX_ED_LEVELS MCR20A_MIN_CCA_THRESHOLD
static s32 mcr20a_ed_levels[MCR20A_MAX_ED_LEVELS + 1];
static int
mcr20a_set_cca_mode(struct ieee802154_hw *hw,
const struct wpan_phy_cca *cca)
{
struct mcr20a_local *lp = hw->priv;
unsigned int cca_mode = 0xff;
bool cca_mode_and = false;
int ret;
dev_dbg(printdev(lp), "%s\n", __func__);
/* mapping 802.15.4 to driver spec */
switch (cca->mode) {
case NL802154_CCA_ENERGY:
cca_mode = MCR20A_CCA_MODE1;
break;
case NL802154_CCA_CARRIER:
cca_mode = MCR20A_CCA_MODE2;
break;
case NL802154_CCA_ENERGY_CARRIER:
switch (cca->opt) {
case NL802154_CCA_OPT_ENERGY_CARRIER_AND:
cca_mode = MCR20A_CCA_MODE3;
cca_mode_and = true;
break;
case NL802154_CCA_OPT_ENERGY_CARRIER_OR:
cca_mode = MCR20A_CCA_MODE3;
cca_mode_and = false;
break;
default:
return -EINVAL;
}
break;
default:
return -EINVAL;
}
ret = regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL4,
DAR_PHY_CTRL4_CCATYPE_MASK,
cca_mode << DAR_PHY_CTRL4_CCATYPE_SHIFT);
if (ret < 0)
return ret;
if (cca_mode == MCR20A_CCA_MODE3) {
if (cca_mode_and) {
ret = regmap_update_bits(lp->regmap_iar, IAR_CCA_CTRL,
IAR_CCA_CTRL_CCA3_AND_NOT_OR,
0x08);
} else {
ret = regmap_update_bits(lp->regmap_iar,
IAR_CCA_CTRL,
IAR_CCA_CTRL_CCA3_AND_NOT_OR,
0x00);
}
if (ret < 0)
return ret;
}
return ret;
}
static int
mcr20a_set_cca_ed_level(struct ieee802154_hw *hw, s32 mbm)
{
struct mcr20a_local *lp = hw->priv;
u32 i;
dev_dbg(printdev(lp), "%s\n", __func__);
for (i = 0; i < hw->phy->supported.cca_ed_levels_size; i++) {
if (hw->phy->supported.cca_ed_levels[i] == mbm)
return regmap_write(lp->regmap_iar, IAR_CCA1_THRESH, i);
}
return 0;
}
static int
mcr20a_set_promiscuous_mode(struct ieee802154_hw *hw, const bool on)
{
struct mcr20a_local *lp = hw->priv;
int ret;
u8 rx_frame_filter_reg = 0x0;
u8 val;
dev_dbg(printdev(lp), "%s(%d)\n", __func__, on);
if (on) {
/* All frame types accepted*/
val |= DAR_PHY_CTRL4_PROMISCUOUS;
rx_frame_filter_reg &= ~(IAR_RX_FRAME_FLT_FRM_VER);
rx_frame_filter_reg |= (IAR_RX_FRAME_FLT_ACK_FT |
IAR_RX_FRAME_FLT_NS_FT);
ret = regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL4,
DAR_PHY_CTRL4_PROMISCUOUS,
DAR_PHY_CTRL4_PROMISCUOUS);
if (ret < 0)
return ret;
ret = regmap_write(lp->regmap_iar, IAR_RX_FRAME_FILTER,
rx_frame_filter_reg);
if (ret < 0)
return ret;
} else {
ret = regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL4,
DAR_PHY_CTRL4_PROMISCUOUS, 0x0);
if (ret < 0)
return ret;
ret = regmap_write(lp->regmap_iar, IAR_RX_FRAME_FILTER,
IAR_RX_FRAME_FLT_FRM_VER |
IAR_RX_FRAME_FLT_BEACON_FT |
IAR_RX_FRAME_FLT_DATA_FT |
IAR_RX_FRAME_FLT_CMD_FT);
if (ret < 0)
return ret;
}
return 0;
}
static const struct ieee802154_ops mcr20a_hw_ops = {
.owner = THIS_MODULE,
.xmit_async = mcr20a_xmit,
.ed = mcr20a_ed,
.set_channel = mcr20a_set_channel,
.start = mcr20a_start,
.stop = mcr20a_stop,
.set_hw_addr_filt = mcr20a_set_hw_addr_filt,
.set_txpower = mcr20a_set_txpower,
.set_cca_mode = mcr20a_set_cca_mode,
.set_cca_ed_level = mcr20a_set_cca_ed_level,
.set_promiscuous_mode = mcr20a_set_promiscuous_mode,
};
static int
mcr20a_request_rx(struct mcr20a_local *lp)
{
dev_dbg(printdev(lp), "%s\n", __func__);
/* Start the RX sequence */
regmap_update_bits_async(lp->regmap_dar, DAR_PHY_CTRL1,
DAR_PHY_CTRL1_XCVSEQ_MASK, MCR20A_XCVSEQ_RX);
return 0;
}
static void
mcr20a_handle_rx_read_buf_complete(void *context)
{
struct mcr20a_local *lp = context;
u8 len = lp->reg_data[0] & DAR_RX_FRAME_LENGTH_MASK;
struct sk_buff *skb;
dev_dbg(printdev(lp), "%s\n", __func__);
dev_dbg(printdev(lp), "RX is done\n");
if (!ieee802154_is_valid_psdu_len(len)) {
dev_vdbg(&lp->spi->dev, "corrupted frame received\n");
len = IEEE802154_MTU;
}
len = len - 2; /* get rid of frame check field */
skb = dev_alloc_skb(len);
if (!skb)
return;
memcpy(skb_put(skb, len), lp->rx_buf, len);
ieee802154_rx_irqsafe(lp->hw, skb, lp->rx_lqi[0]);
print_hex_dump_debug("mcr20a rx: ", DUMP_PREFIX_OFFSET, 16, 1,
lp->rx_buf, len, 0);
pr_debug("mcr20a rx: lqi: %02hhx\n", lp->rx_lqi[0]);
/* start RX sequence */
mcr20a_request_rx(lp);
}
static void
mcr20a_handle_rx_read_len_complete(void *context)
{
struct mcr20a_local *lp = context;
u8 len;
int ret;
dev_dbg(printdev(lp), "%s\n", __func__);
/* get the length of received frame */
len = lp->reg_data[0] & DAR_RX_FRAME_LENGTH_MASK;
dev_dbg(printdev(lp), "frame len : %d\n", len);
/* prepare to read the rx buf */
lp->rx_buf_msg.complete = mcr20a_handle_rx_read_buf_complete;
lp->rx_header[0] = MCR20A_BURST_READ_PACKET_BUF;
lp->rx_xfer_buf.len = len;
ret = spi_async(lp->spi, &lp->rx_buf_msg);
if (ret)
dev_err(printdev(lp), "failed to read rx buffer length\n");
}
static int
mcr20a_handle_rx(struct mcr20a_local *lp)
{
dev_dbg(printdev(lp), "%s\n", __func__);
lp->reg_msg.complete = mcr20a_handle_rx_read_len_complete;
lp->reg_cmd[0] = MCR20A_READ_REG(DAR_RX_FRM_LEN);
lp->reg_xfer_data.len = 1;
return spi_async(lp->spi, &lp->reg_msg);
}
static int
mcr20a_handle_tx_complete(struct mcr20a_local *lp)
{
dev_dbg(printdev(lp), "%s\n", __func__);
ieee802154_xmit_complete(lp->hw, lp->tx_skb, false);
return mcr20a_request_rx(lp);
}
static int
mcr20a_handle_tx(struct mcr20a_local *lp)
{
int ret;
dev_dbg(printdev(lp), "%s\n", __func__);
/* write tx buffer */
lp->tx_header[0] = MCR20A_BURST_WRITE_PACKET_BUF;
/* add 2 bytes of FCS */
lp->tx_len[0] = lp->tx_skb->len + 2;
lp->tx_xfer_buf.tx_buf = lp->tx_skb->data;
/* add 1 byte psduLength */
lp->tx_xfer_buf.len = lp->tx_skb->len + 1;
ret = spi_async(lp->spi, &lp->tx_buf_msg);
if (ret) {
dev_err(printdev(lp), "SPI write Failed for TX buf\n");
return ret;
}
return 0;
}
static void
mcr20a_irq_clean_complete(void *context)
{
struct mcr20a_local *lp = context;
u8 seq_state = lp->irq_data[DAR_IRQ_STS1] & DAR_PHY_CTRL1_XCVSEQ_MASK;
dev_dbg(printdev(lp), "%s\n", __func__);
enable_irq(lp->spi->irq);
dev_dbg(printdev(lp), "IRQ STA1 (%02x) STA2 (%02x)\n",
lp->irq_data[DAR_IRQ_STS1], lp->irq_data[DAR_IRQ_STS2]);
switch (seq_state) {
/* TX IRQ, RX IRQ and SEQ IRQ */
case (0x03):
if (lp->is_tx) {
lp->is_tx = 0;
dev_dbg(printdev(lp), "TX is done. No ACK\n");
mcr20a_handle_tx_complete(lp);
}
break;
case (0x05):
/* rx is starting */
dev_dbg(printdev(lp), "RX is starting\n");
mcr20a_handle_rx(lp);
break;
case (0x07):
if (lp->is_tx) {
/* tx is done */
lp->is_tx = 0;
dev_dbg(printdev(lp), "TX is done. Get ACK\n");
mcr20a_handle_tx_complete(lp);
} else {
/* rx is starting */
dev_dbg(printdev(lp), "RX is starting\n");
mcr20a_handle_rx(lp);
}
break;
case (0x01):
if (lp->is_tx) {
dev_dbg(printdev(lp), "TX is starting\n");
mcr20a_handle_tx(lp);
} else {
dev_dbg(printdev(lp), "MCR20A is stop\n");
}
break;
}
}
static void mcr20a_irq_status_complete(void *context)
{
int ret;
struct mcr20a_local *lp = context;
dev_dbg(printdev(lp), "%s\n", __func__);
regmap_update_bits_async(lp->regmap_dar, DAR_PHY_CTRL1,
DAR_PHY_CTRL1_XCVSEQ_MASK, MCR20A_XCVSEQ_IDLE);
lp->reg_msg.complete = mcr20a_irq_clean_complete;
lp->reg_cmd[0] = MCR20A_WRITE_REG(DAR_IRQ_STS1);
memcpy(lp->reg_data, lp->irq_data, MCR20A_IRQSTS_NUM);
lp->reg_xfer_data.len = MCR20A_IRQSTS_NUM;
ret = spi_async(lp->spi, &lp->reg_msg);
if (ret)
dev_err(printdev(lp), "failed to clean irq status\n");
}
static irqreturn_t mcr20a_irq_isr(int irq, void *data)
{
struct mcr20a_local *lp = data;
int ret;
disable_irq_nosync(irq);
lp->irq_header[0] = MCR20A_READ_REG(DAR_IRQ_STS1);
/* read IRQSTSx */
ret = spi_async(lp->spi, &lp->irq_msg);
if (ret) {
enable_irq(irq);
return IRQ_NONE;
}
return IRQ_HANDLED;
}
static int mcr20a_get_platform_data(struct spi_device *spi,
struct mcr20a_platform_data *pdata)
{
int ret = 0;
if (!spi->dev.of_node)
return -EINVAL;
pdata->rst_gpio = of_get_named_gpio(spi->dev.of_node, "rst_b-gpio", 0);
dev_dbg(&spi->dev, "rst_b-gpio: %d\n", pdata->rst_gpio);
return ret;
}
static void mcr20a_hw_setup(struct mcr20a_local *lp)
{
u8 i;
struct ieee802154_hw *hw = lp->hw;
struct wpan_phy *phy = lp->hw->phy;
dev_dbg(printdev(lp), "%s\n", __func__);
phy->symbol_duration = 16;
phy->lifs_period = 40;
phy->sifs_period = 12;
hw->flags = IEEE802154_HW_TX_OMIT_CKSUM |
IEEE802154_HW_AFILT |
IEEE802154_HW_PROMISCUOUS;
phy->flags = WPAN_PHY_FLAG_TXPOWER | WPAN_PHY_FLAG_CCA_ED_LEVEL |
WPAN_PHY_FLAG_CCA_MODE;
phy->supported.cca_modes = BIT(NL802154_CCA_ENERGY) |
BIT(NL802154_CCA_CARRIER) | BIT(NL802154_CCA_ENERGY_CARRIER);
phy->supported.cca_opts = BIT(NL802154_CCA_OPT_ENERGY_CARRIER_AND) |
BIT(NL802154_CCA_OPT_ENERGY_CARRIER_OR);
/* initiating cca_ed_levels */
for (i = MCR20A_MAX_CCA_THRESHOLD; i < MCR20A_MIN_CCA_THRESHOLD + 1;
++i) {
mcr20a_ed_levels[i] = -i * 100;
}
phy->supported.cca_ed_levels = mcr20a_ed_levels;
phy->supported.cca_ed_levels_size = ARRAY_SIZE(mcr20a_ed_levels);
phy->cca.mode = NL802154_CCA_ENERGY;
phy->supported.channels[0] = MCR20A_VALID_CHANNELS;
phy->current_page = 0;
/* MCR20A default reset value */
phy->current_channel = 20;
phy->symbol_duration = 16;
phy->supported.tx_powers = mcr20a_powers;
phy->supported.tx_powers_size = ARRAY_SIZE(mcr20a_powers);
phy->cca_ed_level = phy->supported.cca_ed_levels[75];
phy->transmit_power = phy->supported.tx_powers[0x0F];
}
static void
mcr20a_setup_tx_spi_messages(struct mcr20a_local *lp)
{
spi_message_init(&lp->tx_buf_msg);
lp->tx_buf_msg.context = lp;
lp->tx_buf_msg.complete = mcr20a_write_tx_buf_complete;
lp->tx_xfer_header.len = 1;
lp->tx_xfer_header.tx_buf = lp->tx_header;
lp->tx_xfer_len.len = 1;
lp->tx_xfer_len.tx_buf = lp->tx_len;
spi_message_add_tail(&lp->tx_xfer_header, &lp->tx_buf_msg);
spi_message_add_tail(&lp->tx_xfer_len, &lp->tx_buf_msg);
spi_message_add_tail(&lp->tx_xfer_buf, &lp->tx_buf_msg);
}
static void
mcr20a_setup_rx_spi_messages(struct mcr20a_local *lp)
{
spi_message_init(&lp->reg_msg);
lp->reg_msg.context = lp;
lp->reg_xfer_cmd.len = 1;
lp->reg_xfer_cmd.tx_buf = lp->reg_cmd;
lp->reg_xfer_cmd.rx_buf = lp->reg_cmd;
lp->reg_xfer_data.rx_buf = lp->reg_data;
lp->reg_xfer_data.tx_buf = lp->reg_data;
spi_message_add_tail(&lp->reg_xfer_cmd, &lp->reg_msg);
spi_message_add_tail(&lp->reg_xfer_data, &lp->reg_msg);
spi_message_init(&lp->rx_buf_msg);
lp->rx_buf_msg.context = lp;
lp->rx_buf_msg.complete = mcr20a_handle_rx_read_buf_complete;
lp->rx_xfer_header.len = 1;
lp->rx_xfer_header.tx_buf = lp->rx_header;
lp->rx_xfer_header.rx_buf = lp->rx_header;
lp->rx_xfer_buf.rx_buf = lp->rx_buf;
lp->rx_xfer_lqi.len = 1;
lp->rx_xfer_lqi.rx_buf = lp->rx_lqi;
spi_message_add_tail(&lp->rx_xfer_header, &lp->rx_buf_msg);
spi_message_add_tail(&lp->rx_xfer_buf, &lp->rx_buf_msg);
spi_message_add_tail(&lp->rx_xfer_lqi, &lp->rx_buf_msg);
}
static void
mcr20a_setup_irq_spi_messages(struct mcr20a_local *lp)
{
spi_message_init(&lp->irq_msg);
lp->irq_msg.context = lp;
lp->irq_msg.complete = mcr20a_irq_status_complete;
lp->irq_xfer_header.len = 1;
lp->irq_xfer_header.tx_buf = lp->irq_header;
lp->irq_xfer_header.rx_buf = lp->irq_header;
lp->irq_xfer_data.len = MCR20A_IRQSTS_NUM;
lp->irq_xfer_data.rx_buf = lp->irq_data;
spi_message_add_tail(&lp->irq_xfer_header, &lp->irq_msg);
spi_message_add_tail(&lp->irq_xfer_data, &lp->irq_msg);
}
static int
mcr20a_phy_init(struct mcr20a_local *lp)
{
u8 index;
unsigned int phy_reg = 0;
int ret;
dev_dbg(printdev(lp), "%s\n", __func__);
/* Disable Tristate on COCO MISO for SPI reads */
ret = regmap_write(lp->regmap_iar, IAR_MISC_PAD_CTRL, 0x02);
if (ret)
goto err_ret;
/* Clear all PP IRQ bits in IRQSTS1 to avoid unexpected interrupts
* immediately after init
*/
ret = regmap_write(lp->regmap_dar, DAR_IRQ_STS1, 0xEF);
if (ret)
goto err_ret;
/* Clear all PP IRQ bits in IRQSTS2 */
ret = regmap_write(lp->regmap_dar, DAR_IRQ_STS2,
DAR_IRQSTS2_ASM_IRQ | DAR_IRQSTS2_PB_ERR_IRQ |
DAR_IRQSTS2_WAKE_IRQ);
if (ret)
goto err_ret;
/* Disable all timer interrupts */
ret = regmap_write(lp->regmap_dar, DAR_IRQ_STS3, 0xFF);
if (ret)
goto err_ret;
/* PHY_CTRL1 : default HW settings + AUTOACK enabled */
ret = regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL1,
DAR_PHY_CTRL1_AUTOACK, DAR_PHY_CTRL1_AUTOACK);
/* PHY_CTRL2 : disable all interrupts */
ret = regmap_write(lp->regmap_dar, DAR_PHY_CTRL2, 0xFF);
if (ret)
goto err_ret;
/* PHY_CTRL3 : disable all timers and remaining interrupts */
ret = regmap_write(lp->regmap_dar, DAR_PHY_CTRL3,
DAR_PHY_CTRL3_ASM_MSK | DAR_PHY_CTRL3_PB_ERR_MSK |
DAR_PHY_CTRL3_WAKE_MSK);
if (ret)
goto err_ret;
/* SRC_CTRL : enable Acknowledge Frame Pending and
* Source Address Matching Enable
*/
ret = regmap_write(lp->regmap_dar, DAR_SRC_CTRL,
DAR_SRC_CTRL_ACK_FRM_PND |
(DAR_SRC_CTRL_INDEX << DAR_SRC_CTRL_INDEX_SHIFT));
if (ret)
goto err_ret;
/* RX_FRAME_FILTER */
/* FRM_VER[1:0] = b11. Accept FrameVersion 0 and 1 packets */
ret = regmap_write(lp->regmap_iar, IAR_RX_FRAME_FILTER,
IAR_RX_FRAME_FLT_FRM_VER |
IAR_RX_FRAME_FLT_BEACON_FT |
IAR_RX_FRAME_FLT_DATA_FT |
IAR_RX_FRAME_FLT_CMD_FT);
if (ret)
goto err_ret;
dev_info(printdev(lp), "MCR20A DAR overwrites version: 0x%02x\n",
MCR20A_OVERWRITE_VERSION);
/* Overwrites direct registers */
ret = regmap_write(lp->regmap_dar, DAR_OVERWRITE_VER,
MCR20A_OVERWRITE_VERSION);
if (ret)
goto err_ret;
/* Overwrites indirect registers */
ret = regmap_multi_reg_write(lp->regmap_iar, mar20a_iar_overwrites,
ARRAY_SIZE(mar20a_iar_overwrites));
if (ret)
goto err_ret;
/* Clear HW indirect queue */
dev_dbg(printdev(lp), "clear HW indirect queue\n");
for (index = 0; index < MCR20A_PHY_INDIRECT_QUEUE_SIZE; index++) {
phy_reg = (u8)(((index & DAR_SRC_CTRL_INDEX) <<
DAR_SRC_CTRL_INDEX_SHIFT)
| (DAR_SRC_CTRL_SRCADDR_EN)
| (DAR_SRC_CTRL_INDEX_DISABLE));
ret = regmap_write(lp->regmap_dar, DAR_SRC_CTRL, phy_reg);
if (ret)
goto err_ret;
phy_reg = 0;
}
/* Assign HW Indirect hash table to PAN0 */
ret = regmap_read(lp->regmap_iar, IAR_DUAL_PAN_CTRL, &phy_reg);
if (ret)
goto err_ret;
/* Clear current lvl */
phy_reg &= ~IAR_DUAL_PAN_CTRL_DUAL_PAN_SAM_LVL_MSK;
/* Set new lvl */
phy_reg |= MCR20A_PHY_INDIRECT_QUEUE_SIZE <<
IAR_DUAL_PAN_CTRL_DUAL_PAN_SAM_LVL_SHIFT;
ret = regmap_write(lp->regmap_iar, IAR_DUAL_PAN_CTRL, phy_reg);
if (ret)
goto err_ret;
/* Set CCA threshold to -75 dBm */
ret = regmap_write(lp->regmap_iar, IAR_CCA1_THRESH, 0x4B);
if (ret)
goto err_ret;
/* Set prescaller to obtain 1 symbol (16us) timebase */
ret = regmap_write(lp->regmap_iar, IAR_TMR_PRESCALE, 0x05);
if (ret)
goto err_ret;
/* Enable autodoze mode. */
ret = regmap_update_bits(lp->regmap_dar, DAR_PWR_MODES,
DAR_PWR_MODES_AUTODOZE,
DAR_PWR_MODES_AUTODOZE);
if (ret)
goto err_ret;
/* Disable clk_out */
ret = regmap_update_bits(lp->regmap_dar, DAR_CLK_OUT_CTRL,
DAR_CLK_OUT_CTRL_EN, 0x0);
if (ret)
goto err_ret;
return 0;
err_ret:
return ret;
}
static int
mcr20a_probe(struct spi_device *spi)
{
struct ieee802154_hw *hw;
struct mcr20a_local *lp;
struct mcr20a_platform_data *pdata;
int irq_type;
int ret = -ENOMEM;
dev_dbg(&spi->dev, "%s\n", __func__);
if (!spi->irq) {
dev_err(&spi->dev, "no IRQ specified\n");
return -EINVAL;
}
pdata = kmalloc(sizeof(*pdata), GFP_KERNEL);
if (!pdata)
return -ENOMEM;
/* set mcr20a platform data */
ret = mcr20a_get_platform_data(spi, pdata);
if (ret < 0) {
dev_crit(&spi->dev, "mcr20a_get_platform_data failed.\n");
return ret;
}
/* init reset gpio */
if (gpio_is_valid(pdata->rst_gpio)) {
ret = devm_gpio_request_one(&spi->dev, pdata->rst_gpio,
GPIOF_OUT_INIT_HIGH, "reset");
if (ret)
return ret;
}
/* reset mcr20a */
if (gpio_is_valid(pdata->rst_gpio)) {
usleep_range(10, 20);
gpio_set_value_cansleep(pdata->rst_gpio, 0);
usleep_range(10, 20);
gpio_set_value_cansleep(pdata->rst_gpio, 1);
usleep_range(120, 240);
}
/* allocate ieee802154_hw and private data */
hw = ieee802154_alloc_hw(sizeof(*lp), &mcr20a_hw_ops);
if (!hw) {
dev_crit(&spi->dev, "ieee802154_alloc_hw failed\n");
return -ENOMEM;
}
/* init mcr20a local data */
lp = hw->priv;
lp->hw = hw;
lp->spi = spi;
lp->spi->dev.platform_data = pdata;
lp->pdata = pdata;
/* init ieee802154_hw */
hw->parent = &spi->dev;
ieee802154_random_extended_addr(&hw->phy->perm_extended_addr);
/* init buf */
lp->buf = devm_kzalloc(&spi->dev, SPI_COMMAND_BUFFER, GFP_KERNEL);
if (!lp->buf)
return -ENOMEM;
mcr20a_setup_tx_spi_messages(lp);
mcr20a_setup_rx_spi_messages(lp);
mcr20a_setup_irq_spi_messages(lp);
/* setup regmap */
lp->regmap_dar = devm_regmap_init_spi(spi, &mcr20a_dar_regmap);
if (IS_ERR(lp->regmap_dar)) {
ret = PTR_ERR(lp->regmap_dar);
dev_err(&spi->dev, "Failed to allocate dar map: %d\n",
ret);
goto free_dev;
}
lp->regmap_iar = devm_regmap_init_spi(spi, &mcr20a_iar_regmap);
if (IS_ERR(lp->regmap_iar)) {
ret = PTR_ERR(lp->regmap_iar);
dev_err(&spi->dev, "Failed to allocate iar map: %d\n", ret);
goto free_dev;
}
mcr20a_hw_setup(lp);
spi_set_drvdata(spi, lp);
ret = mcr20a_phy_init(lp);
if (ret < 0) {
dev_crit(&spi->dev, "mcr20a_phy_init failed\n");
goto free_dev;
}
irq_type = irq_get_trigger_type(spi->irq);
if (!irq_type)
irq_type = IRQF_TRIGGER_FALLING;
ret = devm_request_irq(&spi->dev, spi->irq, mcr20a_irq_isr,
irq_type, dev_name(&spi->dev), lp);
if (ret) {
dev_err(&spi->dev, "could not request_irq for mcr20a\n");
ret = -ENODEV;
goto free_dev;
}
/* disable_irq by default and wait for starting hardware */
disable_irq(spi->irq);
ret = ieee802154_register_hw(hw);
if (ret) {
dev_crit(&spi->dev, "ieee802154_register_hw failed\n");
goto free_dev;
}
return ret;
free_dev:
ieee802154_free_hw(lp->hw);
return ret;
}
static int mcr20a_remove(struct spi_device *spi)
{
struct mcr20a_local *lp = spi_get_drvdata(spi);
dev_dbg(&spi->dev, "%s\n", __func__);
ieee802154_unregister_hw(lp->hw);
ieee802154_free_hw(lp->hw);
return 0;
}
static const struct of_device_id mcr20a_of_match[] = {
{ .compatible = "nxp,mcr20a", },
{ },
};
MODULE_DEVICE_TABLE(of, mcr20a_of_match);
static const struct spi_device_id mcr20a_device_id[] = {
{ .name = "mcr20a", },
{ },
};
MODULE_DEVICE_TABLE(spi, mcr20a_device_id);
static struct spi_driver mcr20a_driver = {
.id_table = mcr20a_device_id,
.driver = {
.of_match_table = of_match_ptr(mcr20a_of_match),
.name = "mcr20a",
},
.probe = mcr20a_probe,
.remove = mcr20a_remove,
};
module_spi_driver(mcr20a_driver);
MODULE_DESCRIPTION("MCR20A Transceiver Driver");
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Xue Liu <liuxuenetmail@gmail>");
/*
* Driver for NXP MCR20A 802.15.4 Wireless-PAN Networking controller
*
* Copyright (C) 2018 Xue Liu <liuxuenetmail@gmail.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2
* as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#ifndef _MCR20A_H
#define _MCR20A_H
/* Direct Accress Register */
#define DAR_IRQ_STS1 0x00
#define DAR_IRQ_STS2 0x01
#define DAR_IRQ_STS3 0x02
#define DAR_PHY_CTRL1 0x03
#define DAR_PHY_CTRL2 0x04
#define DAR_PHY_CTRL3 0x05
#define DAR_RX_FRM_LEN 0x06
#define DAR_PHY_CTRL4 0x07
#define DAR_SRC_CTRL 0x08
#define DAR_SRC_ADDRS_SUM_LSB 0x09
#define DAR_SRC_ADDRS_SUM_MSB 0x0A
#define DAR_CCA1_ED_FNL 0x0B
#define DAR_EVENT_TMR_LSB 0x0C
#define DAR_EVENT_TMR_MSB 0x0D
#define DAR_EVENT_TMR_USB 0x0E
#define DAR_TIMESTAMP_LSB 0x0F
#define DAR_TIMESTAMP_MSB 0x10
#define DAR_TIMESTAMP_USB 0x11
#define DAR_T3CMP_LSB 0x12
#define DAR_T3CMP_MSB 0x13
#define DAR_T3CMP_USB 0x14
#define DAR_T2PRIMECMP_LSB 0x15
#define DAR_T2PRIMECMP_MSB 0x16
#define DAR_T1CMP_LSB 0x17
#define DAR_T1CMP_MSB 0x18
#define DAR_T1CMP_USB 0x19
#define DAR_T2CMP_LSB 0x1A
#define DAR_T2CMP_MSB 0x1B
#define DAR_T2CMP_USB 0x1C
#define DAR_T4CMP_LSB 0x1D
#define DAR_T4CMP_MSB 0x1E
#define DAR_T4CMP_USB 0x1F
#define DAR_PLL_INT0 0x20
#define DAR_PLL_FRAC0_LSB 0x21
#define DAR_PLL_FRAC0_MSB 0x22
#define DAR_PA_PWR 0x23
#define DAR_SEQ_STATE 0x24
#define DAR_LQI_VALUE 0x25
#define DAR_RSSI_CCA_CONT 0x26
/*------------------ 0x27 */
#define DAR_ASM_CTRL1 0x28
#define DAR_ASM_CTRL2 0x29
#define DAR_ASM_DATA_0 0x2A
#define DAR_ASM_DATA_1 0x2B
#define DAR_ASM_DATA_2 0x2C
#define DAR_ASM_DATA_3 0x2D
#define DAR_ASM_DATA_4 0x2E
#define DAR_ASM_DATA_5 0x2F
#define DAR_ASM_DATA_6 0x30
#define DAR_ASM_DATA_7 0x31
#define DAR_ASM_DATA_8 0x32
#define DAR_ASM_DATA_9 0x33
#define DAR_ASM_DATA_A 0x34
#define DAR_ASM_DATA_B 0x35
#define DAR_ASM_DATA_C 0x36
#define DAR_ASM_DATA_D 0x37
#define DAR_ASM_DATA_E 0x38
#define DAR_ASM_DATA_F 0x39
/*----------------------- 0x3A */
#define DAR_OVERWRITE_VER 0x3B
#define DAR_CLK_OUT_CTRL 0x3C
#define DAR_PWR_MODES 0x3D
#define IAR_INDEX 0x3E
#define IAR_DATA 0x3F
/* Indirect Resgister Memory */
#define IAR_PART_ID 0x00
#define IAR_XTAL_TRIM 0x01
#define IAR_PMC_LP_TRIM 0x02
#define IAR_MACPANID0_LSB 0x03
#define IAR_MACPANID0_MSB 0x04
#define IAR_MACSHORTADDRS0_LSB 0x05
#define IAR_MACSHORTADDRS0_MSB 0x06
#define IAR_MACLONGADDRS0_0 0x07
#define IAR_MACLONGADDRS0_8 0x08
#define IAR_MACLONGADDRS0_16 0x09
#define IAR_MACLONGADDRS0_24 0x0A
#define IAR_MACLONGADDRS0_32 0x0B
#define IAR_MACLONGADDRS0_40 0x0C
#define IAR_MACLONGADDRS0_48 0x0D
#define IAR_MACLONGADDRS0_56 0x0E
#define IAR_RX_FRAME_FILTER 0x0F
#define IAR_PLL_INT1 0x10
#define IAR_PLL_FRAC1_LSB 0x11
#define IAR_PLL_FRAC1_MSB 0x12
#define IAR_MACPANID1_LSB 0x13
#define IAR_MACPANID1_MSB 0x14
#define IAR_MACSHORTADDRS1_LSB 0x15
#define IAR_MACSHORTADDRS1_MSB 0x16
#define IAR_MACLONGADDRS1_0 0x17
#define IAR_MACLONGADDRS1_8 0x18
#define IAR_MACLONGADDRS1_16 0x19
#define IAR_MACLONGADDRS1_24 0x1A
#define IAR_MACLONGADDRS1_32 0x1B
#define IAR_MACLONGADDRS1_40 0x1C
#define IAR_MACLONGADDRS1_48 0x1D
#define IAR_MACLONGADDRS1_56 0x1E
#define IAR_DUAL_PAN_CTRL 0x1F
#define IAR_DUAL_PAN_DWELL 0x20
#define IAR_DUAL_PAN_STS 0x21
#define IAR_CCA1_THRESH 0x22
#define IAR_CCA1_ED_OFFSET_COMP 0x23
#define IAR_LQI_OFFSET_COMP 0x24
#define IAR_CCA_CTRL 0x25
#define IAR_CCA2_CORR_PEAKS 0x26
#define IAR_CCA2_CORR_THRESH 0x27
#define IAR_TMR_PRESCALE 0x28
/*-------------------- 0x29 */
#define IAR_GPIO_DATA 0x2A
#define IAR_GPIO_DIR 0x2B
#define IAR_GPIO_PUL_EN 0x2C
#define IAR_GPIO_PUL_SEL 0x2D
#define IAR_GPIO_DS 0x2E
/*------------------ 0x2F */
#define IAR_ANT_PAD_CTRL 0x30
#define IAR_MISC_PAD_CTRL 0x31
#define IAR_BSM_CTRL 0x32
/*------------------- 0x33 */
#define IAR_RNG 0x34
#define IAR_RX_BYTE_COUNT 0x35
#define IAR_RX_WTR_MARK 0x36
#define IAR_SOFT_RESET 0x37
#define IAR_TXDELAY 0x38
#define IAR_ACKDELAY 0x39
#define IAR_SEQ_MGR_CTRL 0x3A
#define IAR_SEQ_MGR_STS 0x3B
#define IAR_SEQ_T_STS 0x3C
#define IAR_ABORT_STS 0x3D
#define IAR_CCCA_BUSY_CNT 0x3E
#define IAR_SRC_ADDR_CHECKSUM1 0x3F
#define IAR_SRC_ADDR_CHECKSUM2 0x40
#define IAR_SRC_TBL_VALID1 0x41
#define IAR_SRC_TBL_VALID2 0x42
#define IAR_FILTERFAIL_CODE1 0x43
#define IAR_FILTERFAIL_CODE2 0x44
#define IAR_SLOT_PRELOAD 0x45
/*-------------------- 0x46 */
#define IAR_CORR_VT 0x47
#define IAR_SYNC_CTRL 0x48
#define IAR_PN_LSB_0 0x49
#define IAR_PN_LSB_1 0x4A
#define IAR_PN_MSB_0 0x4B
#define IAR_PN_MSB_1 0x4C
#define IAR_CORR_NVAL 0x4D
#define IAR_TX_MODE_CTRL 0x4E
#define IAR_SNF_THR 0x4F
#define IAR_FAD_THR 0x50
#define IAR_ANT_AGC_CTRL 0x51
#define IAR_AGC_THR1 0x52
#define IAR_AGC_THR2 0x53
#define IAR_AGC_HYS 0x54
#define IAR_AFC 0x55
/*------------------- 0x56 */
/*------------------- 0x57 */
#define IAR_PHY_STS 0x58
#define IAR_RX_MAX_CORR 0x59
#define IAR_RX_MAX_PREAMBLE 0x5A
#define IAR_RSSI 0x5B
/*------------------- 0x5C */
/*------------------- 0x5D */
#define IAR_PLL_DIG_CTRL 0x5E
#define IAR_VCO_CAL 0x5F
#define IAR_VCO_BEST_DIFF 0x60
#define IAR_VCO_BIAS 0x61
#define IAR_KMOD_CTRL 0x62
#define IAR_KMOD_CAL 0x63
#define IAR_PA_CAL 0x64
#define IAR_PA_PWRCAL 0x65
#define IAR_ATT_RSSI1 0x66
#define IAR_ATT_RSSI2 0x67
#define IAR_RSSI_OFFSET 0x68
#define IAR_RSSI_SLOPE 0x69
#define IAR_RSSI_CAL1 0x6A
#define IAR_RSSI_CAL2 0x6B
/*------------------- 0x6C */
/*------------------- 0x6D */
#define IAR_XTAL_CTRL 0x6E
#define IAR_XTAL_COMP_MIN 0x6F
#define IAR_XTAL_COMP_MAX 0x70
#define IAR_XTAL_GM 0x71
/*------------------- 0x72 */
/*------------------- 0x73 */
#define IAR_LNA_TUNE 0x74
#define IAR_LNA_AGCGAIN 0x75
/*------------------- 0x76 */
/*------------------- 0x77 */
#define IAR_CHF_PMA_GAIN 0x78
#define IAR_CHF_IBUF 0x79
#define IAR_CHF_QBUF 0x7A
#define IAR_CHF_IRIN 0x7B
#define IAR_CHF_QRIN 0x7C
#define IAR_CHF_IL 0x7D
#define IAR_CHF_QL 0x7E
#define IAR_CHF_CC1 0x7F
#define IAR_CHF_CCL 0x80
#define IAR_CHF_CC2 0x81
#define IAR_CHF_IROUT 0x82
#define IAR_CHF_QROUT 0x83
/*------------------- 0x84 */
/*------------------- 0x85 */
#define IAR_RSSI_CTRL 0x86
/*------------------- 0x87 */
/*------------------- 0x88 */
#define IAR_PA_BIAS 0x89
#define IAR_PA_TUNING 0x8A
/*------------------- 0x8B */
/*------------------- 0x8C */
#define IAR_PMC_HP_TRIM 0x8D
#define IAR_VREGA_TRIM 0x8E
/*------------------- 0x8F */
/*------------------- 0x90 */
#define IAR_VCO_CTRL1 0x91
#define IAR_VCO_CTRL2 0x92
/*------------------- 0x93 */
/*------------------- 0x94 */
#define IAR_ANA_SPARE_OUT1 0x95
#define IAR_ANA_SPARE_OUT2 0x96
#define IAR_ANA_SPARE_IN 0x97
#define IAR_MISCELLANEOUS 0x98
/*------------------- 0x99 */
#define IAR_SEQ_MGR_OVRD0 0x9A
#define IAR_SEQ_MGR_OVRD1 0x9B
#define IAR_SEQ_MGR_OVRD2 0x9C
#define IAR_SEQ_MGR_OVRD3 0x9D
#define IAR_SEQ_MGR_OVRD4 0x9E
#define IAR_SEQ_MGR_OVRD5 0x9F
#define IAR_SEQ_MGR_OVRD6 0xA0
#define IAR_SEQ_MGR_OVRD7 0xA1
/*------------------- 0xA2 */
#define IAR_TESTMODE_CTRL 0xA3
#define IAR_DTM_CTRL1 0xA4
#define IAR_DTM_CTRL2 0xA5
#define IAR_ATM_CTRL1 0xA6
#define IAR_ATM_CTRL2 0xA7
#define IAR_ATM_CTRL3 0xA8
/*------------------- 0xA9 */
#define IAR_LIM_FE_TEST_CTRL 0xAA
#define IAR_CHF_TEST_CTRL 0xAB
#define IAR_VCO_TEST_CTRL 0xAC
#define IAR_PLL_TEST_CTRL 0xAD
#define IAR_PA_TEST_CTRL 0xAE
#define IAR_PMC_TEST_CTRL 0xAF
#define IAR_SCAN_DTM_PROTECT_1 0xFE
#define IAR_SCAN_DTM_PROTECT_0 0xFF
/* IRQSTS1 bits */
#define DAR_IRQSTS1_RX_FRM_PEND BIT(7)
#define DAR_IRQSTS1_PLL_UNLOCK_IRQ BIT(6)
#define DAR_IRQSTS1_FILTERFAIL_IRQ BIT(5)
#define DAR_IRQSTS1_RXWTRMRKIRQ BIT(4)
#define DAR_IRQSTS1_CCAIRQ BIT(3)
#define DAR_IRQSTS1_RXIRQ BIT(2)
#define DAR_IRQSTS1_TXIRQ BIT(1)
#define DAR_IRQSTS1_SEQIRQ BIT(0)
/* IRQSTS2 bits */
#define DAR_IRQSTS2_CRCVALID BIT(7)
#define DAR_IRQSTS2_CCA BIT(6)
#define DAR_IRQSTS2_SRCADDR BIT(5)
#define DAR_IRQSTS2_PI BIT(4)
#define DAR_IRQSTS2_TMRSTATUS BIT(3)
#define DAR_IRQSTS2_ASM_IRQ BIT(2)
#define DAR_IRQSTS2_PB_ERR_IRQ BIT(1)
#define DAR_IRQSTS2_WAKE_IRQ BIT(0)
/* IRQSTS3 bits */
#define DAR_IRQSTS3_TMR4MSK BIT(7)
#define DAR_IRQSTS3_TMR3MSK BIT(6)
#define DAR_IRQSTS3_TMR2MSK BIT(5)
#define DAR_IRQSTS3_TMR1MSK BIT(4)
#define DAR_IRQSTS3_TMR4IRQ BIT(3)
#define DAR_IRQSTS3_TMR3IRQ BIT(2)
#define DAR_IRQSTS3_TMR2IRQ BIT(1)
#define DAR_IRQSTS3_TMR1IRQ BIT(0)
/* PHY_CTRL1 bits */
#define DAR_PHY_CTRL1_TMRTRIGEN BIT(7)
#define DAR_PHY_CTRL1_SLOTTED BIT(6)
#define DAR_PHY_CTRL1_CCABFRTX BIT(5)
#define DAR_PHY_CTRL1_CCABFRTX_SHIFT 5
#define DAR_PHY_CTRL1_RXACKRQD BIT(4)
#define DAR_PHY_CTRL1_AUTOACK BIT(3)
#define DAR_PHY_CTRL1_XCVSEQ_MASK 0x07
/* PHY_CTRL2 bits */
#define DAR_PHY_CTRL2_CRC_MSK BIT(7)
#define DAR_PHY_CTRL2_PLL_UNLOCK_MSK BIT(6)
#define DAR_PHY_CTRL2_FILTERFAIL_MSK BIT(5)
#define DAR_PHY_CTRL2_RX_WMRK_MSK BIT(4)
#define DAR_PHY_CTRL2_CCAMSK BIT(3)
#define DAR_PHY_CTRL2_RXMSK BIT(2)
#define DAR_PHY_CTRL2_TXMSK BIT(1)
#define DAR_PHY_CTRL2_SEQMSK BIT(0)
/* PHY_CTRL3 bits */
#define DAR_PHY_CTRL3_TMR4CMP_EN BIT(7)
#define DAR_PHY_CTRL3_TMR3CMP_EN BIT(6)
#define DAR_PHY_CTRL3_TMR2CMP_EN BIT(5)
#define DAR_PHY_CTRL3_TMR1CMP_EN BIT(4)
#define DAR_PHY_CTRL3_ASM_MSK BIT(2)
#define DAR_PHY_CTRL3_PB_ERR_MSK BIT(1)
#define DAR_PHY_CTRL3_WAKE_MSK BIT(0)
/* RX_FRM_LEN bits */
#define DAR_RX_FRAME_LENGTH_MASK (0x7F)
/* PHY_CTRL4 bits */
#define DAR_PHY_CTRL4_TRCV_MSK BIT(7)
#define DAR_PHY_CTRL4_TC3TMOUT BIT(6)
#define DAR_PHY_CTRL4_PANCORDNTR0 BIT(5)
#define DAR_PHY_CTRL4_CCATYPE (3)
#define DAR_PHY_CTRL4_CCATYPE_SHIFT (3)
#define DAR_PHY_CTRL4_CCATYPE_MASK (0x18)
#define DAR_PHY_CTRL4_TMRLOAD BIT(2)
#define DAR_PHY_CTRL4_PROMISCUOUS BIT(1)
#define DAR_PHY_CTRL4_TC2PRIME_EN BIT(0)
/* SRC_CTRL bits */
#define DAR_SRC_CTRL_INDEX (0x0F)
#define DAR_SRC_CTRL_INDEX_SHIFT (4)
#define DAR_SRC_CTRL_ACK_FRM_PND BIT(3)
#define DAR_SRC_CTRL_SRCADDR_EN BIT(2)
#define DAR_SRC_CTRL_INDEX_EN BIT(1)
#define DAR_SRC_CTRL_INDEX_DISABLE BIT(0)
/* DAR_ASM_CTRL1 bits */
#define DAR_ASM_CTRL1_CLEAR BIT(7)
#define DAR_ASM_CTRL1_START BIT(6)
#define DAR_ASM_CTRL1_SELFTST BIT(5)
#define DAR_ASM_CTRL1_CTR BIT(4)
#define DAR_ASM_CTRL1_CBC BIT(3)
#define DAR_ASM_CTRL1_AES BIT(2)
#define DAR_ASM_CTRL1_LOAD_MAC BIT(1)
/* DAR_ASM_CTRL2 bits */
#define DAR_ASM_CTRL2_DATA_REG_TYPE_SEL (7)
#define DAR_ASM_CTRL2_DATA_REG_TYPE_SEL_SHIFT (5)
#define DAR_ASM_CTRL2_TSTPAS BIT(1)
/* DAR_CLK_OUT_CTRL bits */
#define DAR_CLK_OUT_CTRL_EXTEND BIT(7)
#define DAR_CLK_OUT_CTRL_HIZ BIT(6)
#define DAR_CLK_OUT_CTRL_SR BIT(5)
#define DAR_CLK_OUT_CTRL_DS BIT(4)
#define DAR_CLK_OUT_CTRL_EN BIT(3)
#define DAR_CLK_OUT_CTRL_DIV (7)
/* DAR_PWR_MODES bits */
#define DAR_PWR_MODES_XTAL_READY BIT(5)
#define DAR_PWR_MODES_XTALEN BIT(4)
#define DAR_PWR_MODES_ASM_CLK_EN BIT(3)
#define DAR_PWR_MODES_AUTODOZE BIT(1)
#define DAR_PWR_MODES_PMC_MODE BIT(0)
/* RX_FRAME_FILTER bits */
#define IAR_RX_FRAME_FLT_FRM_VER (0xC0)
#define IAR_RX_FRAME_FLT_FRM_VER_SHIFT (6)
#define IAR_RX_FRAME_FLT_ACTIVE_PROMISCUOUS BIT(5)
#define IAR_RX_FRAME_FLT_NS_FT BIT(4)
#define IAR_RX_FRAME_FLT_CMD_FT BIT(3)
#define IAR_RX_FRAME_FLT_ACK_FT BIT(2)
#define IAR_RX_FRAME_FLT_DATA_FT BIT(1)
#define IAR_RX_FRAME_FLT_BEACON_FT BIT(0)
/* DUAL_PAN_CTRL bits */
#define IAR_DUAL_PAN_CTRL_DUAL_PAN_SAM_LVL_MSK (0xF0)
#define IAR_DUAL_PAN_CTRL_DUAL_PAN_SAM_LVL_SHIFT (4)
#define IAR_DUAL_PAN_CTRL_CURRENT_NETWORK BIT(3)
#define IAR_DUAL_PAN_CTRL_PANCORDNTR1 BIT(2)
#define IAR_DUAL_PAN_CTRL_DUAL_PAN_AUTO BIT(1)
#define IAR_DUAL_PAN_CTRL_ACTIVE_NETWORK BIT(0)
/* DUAL_PAN_STS bits */
#define IAR_DUAL_PAN_STS_RECD_ON_PAN1 BIT(7)
#define IAR_DUAL_PAN_STS_RECD_ON_PAN0 BIT(6)
#define IAR_DUAL_PAN_STS_DUAL_PAN_REMAIN (0x3F)
/* CCA_CTRL bits */
#define IAR_CCA_CTRL_AGC_FRZ_EN BIT(6)
#define IAR_CCA_CTRL_CONT_RSSI_EN BIT(5)
#define IAR_CCA_CTRL_LQI_RSSI_NOT_CORR BIT(4)
#define IAR_CCA_CTRL_CCA3_AND_NOT_OR BIT(3)
#define IAR_CCA_CTRL_POWER_COMP_EN_LQI BIT(2)
#define IAR_CCA_CTRL_POWER_COMP_EN_ED BIT(1)
#define IAR_CCA_CTRL_POWER_COMP_EN_CCA1 BIT(0)
/* ANT_PAD_CTRL bits */
#define IAR_ANT_PAD_CTRL_ANTX_POL (0x0F)
#define IAR_ANT_PAD_CTRL_ANTX_POL_SHIFT (4)
#define IAR_ANT_PAD_CTRL_ANTX_CTRLMODE BIT(3)
#define IAR_ANT_PAD_CTRL_ANTX_HZ BIT(2)
#define IAR_ANT_PAD_CTRL_ANTX_EN (3)
/* MISC_PAD_CTRL bits */
#define IAR_MISC_PAD_CTRL_MISO_HIZ_EN BIT(3)
#define IAR_MISC_PAD_CTRL_IRQ_B_OD BIT(2)
#define IAR_MISC_PAD_CTRL_NON_GPIO_DS BIT(1)
#define IAR_MISC_PAD_CTRL_ANTX_CURR (1)
/* ANT_AGC_CTRL bits */
#define IAR_ANT_AGC_CTRL_FAD_EN_SHIFT (0)
#define IAR_ANT_AGC_CTRL_FAD_EN_MASK (1)
#define IAR_ANT_AGC_CTRL_ANTX_SHIFT (1)
#define IAR_ANT_AGC_CTRL_ANTX_MASK BIT(AR_ANT_AGC_CTRL_ANTX_SHIFT)
/* BSM_CTRL bits */
#define BSM_CTRL_BSM_EN (1)
/* SOFT_RESET bits */
#define IAR_SOFT_RESET_SOG_RST BIT(7)
#define IAR_SOFT_RESET_REGS_RST BIT(4)
#define IAR_SOFT_RESET_PLL_RST BIT(3)
#define IAR_SOFT_RESET_TX_RST BIT(2)
#define IAR_SOFT_RESET_RX_RST BIT(1)
#define IAR_SOFT_RESET_SEQ_MGR_RST BIT(0)
/* SEQ_MGR_CTRL bits */
#define IAR_SEQ_MGR_CTRL_SEQ_STATE_CTRL (3)
#define IAR_SEQ_MGR_CTRL_SEQ_STATE_CTRL_SHIFT (6)
#define IAR_SEQ_MGR_CTRL_NO_RX_RECYCLE BIT(5)
#define IAR_SEQ_MGR_CTRL_LATCH_PREAMBLE BIT(4)
#define IAR_SEQ_MGR_CTRL_EVENT_TMR_DO_NOT_LATCH BIT(3)
#define IAR_SEQ_MGR_CTRL_CLR_NEW_SEQ_INHIBIT BIT(2)
#define IAR_SEQ_MGR_CTRL_PSM_LOCK_DIS BIT(1)
#define IAR_SEQ_MGR_CTRL_PLL_ABORT_OVRD BIT(0)
/* SEQ_MGR_STS bits */
#define IAR_SEQ_MGR_STS_TMR2_SEQ_TRIG_ARMED BIT(7)
#define IAR_SEQ_MGR_STS_RX_MODE BIT(6)
#define IAR_SEQ_MGR_STS_RX_TIMEOUT_PENDING BIT(5)
#define IAR_SEQ_MGR_STS_NEW_SEQ_INHIBIT BIT(4)
#define IAR_SEQ_MGR_STS_SEQ_IDLE BIT(3)
#define IAR_SEQ_MGR_STS_XCVSEQ_ACTUAL (7)
/* ABORT_STS bits */
#define IAR_ABORT_STS_PLL_ABORTED BIT(2)
#define IAR_ABORT_STS_TC3_ABORTED BIT(1)
#define IAR_ABORT_STS_SW_ABORTED BIT(0)
/* IAR_FILTERFAIL_CODE2 bits */
#define IAR_FILTERFAIL_CODE2_PAN_SEL BIT(7)
#define IAR_FILTERFAIL_CODE2_9_8 (3)
/* PHY_STS bits */
#define IAR_PHY_STS_PLL_UNLOCK BIT(7)
#define IAR_PHY_STS_PLL_LOCK_ERR BIT(6)
#define IAR_PHY_STS_PLL_LOCK BIT(5)
#define IAR_PHY_STS_CRCVALID BIT(3)
#define IAR_PHY_STS_FILTERFAIL_FLAG_SEL BIT(2)
#define IAR_PHY_STS_SFD_DET BIT(1)
#define IAR_PHY_STS_PREAMBLE_DET BIT(0)
/* TESTMODE_CTRL bits */
#define IAR_TEST_MODE_CTRL_HOT_ANT BIT(4)
#define IAR_TEST_MODE_CTRL_IDEAL_RSSI_EN BIT(3)
#define IAR_TEST_MODE_CTRL_IDEAL_PFC_EN BIT(2)
#define IAR_TEST_MODE_CTRL_CONTINUOUS_EN BIT(1)
#define IAR_TEST_MODE_CTRL_FPGA_EN BIT(0)
/* DTM_CTRL1 bits */
#define IAR_DTM_CTRL1_ATM_LOCKED BIT(7)
#define IAR_DTM_CTRL1_DTM_EN BIT(6)
#define IAR_DTM_CTRL1_PAGE5 BIT(5)
#define IAR_DTM_CTRL1_PAGE4 BIT(4)
#define IAR_DTM_CTRL1_PAGE3 BIT(3)
#define IAR_DTM_CTRL1_PAGE2 BIT(2)
#define IAR_DTM_CTRL1_PAGE1 BIT(1)
#define IAR_DTM_CTRL1_PAGE0 BIT(0)
/* TX_MODE_CTRL */
#define IAR_TX_MODE_CTRL_TX_INV BIT(4)
#define IAR_TX_MODE_CTRL_BT_EN BIT(3)
#define IAR_TX_MODE_CTRL_DTS2 BIT(2)
#define IAR_TX_MODE_CTRL_DTS1 BIT(1)
#define IAR_TX_MODE_CTRL_DTS0 BIT(0)
#define TX_MODE_CTRL_DTS_MASK (7)
#endif /* _MCR20A_H */
......@@ -104,6 +104,7 @@ static void lowpan_setup(struct net_device *ldev)
/* We need an ipv6hdr as minimum len when calling xmit */
ldev->hard_header_len = sizeof(struct ipv6hdr);
ldev->flags = IFF_BROADCAST | IFF_MULTICAST;
ldev->priv_flags |= IFF_NO_QUEUE;
ldev->netdev_ops = &lowpan_netdev_ops;
ldev->header_ops = &lowpan_header_ops;
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment