Commit b481de9c authored by Zhu Yi's avatar Zhu Yi Committed by David S. Miller

[IWLWIFI]: add iwlwifi wireless drivers

This patch adds the mac80211 based wireless drivers for the Intel
PRO/Wireless 3945ABG/BG Network Connection and Intel Wireless WiFi
Link AGN (4965) adapters.

[ Move driver into it's own directory -DaveM ]
Signed-off-by: default avatarZhu Yi <yi.zhu@intel.com>
Signed-off-by: default avatarJohn W. Linville <linville@tuxdriver.com>
Signed-off-by: default avatarDavid S. Miller <davem@davemloft.net>
parent 75388acd
......@@ -2080,6 +2080,15 @@ L: http://lists.sourceforge.net/mailman/listinfo/ipw2100-devel
W: http://ipw2200.sourceforge.net
S: Supported
INTEL WIRELESS WIFI LINK (iwlwifi)
P: Zhu Yi
M: yi.zhu@intel.com
L: linux-wireless@vger.kernel.org
L: ipw3945-devel@lists.sourceforge.net
W: http://intellinuxwireless.org
T: git git://intellinuxwireless.org/repos/iwlwifi
S: Supported
IOC3 ETHERNET DRIVER
P: Ralf Baechle
M: ralf@linux-mips.org
......
......@@ -577,6 +577,7 @@ config ADM8211
Thanks to Infineon-ADMtek for their support of this driver.
source "drivers/net/wireless/iwlwifi/Kconfig"
source "drivers/net/wireless/hostap/Kconfig"
source "drivers/net/wireless/bcm43xx/Kconfig"
source "drivers/net/wireless/b43/Kconfig"
......
......@@ -51,3 +51,5 @@ rtl8187-objs := rtl8187_dev.o rtl8187_rtl8225.o
obj-$(CONFIG_RTL8187) += rtl8187.o
obj-$(CONFIG_ADM8211) += adm8211.o
obj-$(CONFIG_IWLWIFI) += iwlwifi/
config IWLWIFI
bool "Intel Wireless WiFi Link Drivers"
depends on PCI && MAC80211 && WLAN_80211 && EXPERIMENTAL
select FW_LOADER
default n
---help---
Select to enable drivers based on the iwlwifi project. This
project provides a common foundation for Intel's wireless
drivers designed to use the mac80211 subsystem.
See <file:Documentation/networking/README.iwlwifi> for
information on the capabilities currently enabled in this
driver and for tips for debugging issues and problems.
config IWLWIFI_DEBUG
bool "Enable full debugging output in iwlwifi drivers"
depends on IWLWIFI
default y
---help---
This option will enable debug tracing output for the iwlwifi
drivers.
This will result in the kernel module being ~100k larger. You can
control which debug output is sent to the kernel log by setting the
value in
/sys/bus/pci/drivers/${DRIVER}/debug_level
This entry will only exist if this option is enabled.
To set a value, simply echo an 8-byte hex value to the same file:
% echo 0x43fff > /sys/bus/pci/drivers/${DRIVER}/debug_level
You can find the list of debug mask values in:
drivers/net/wireless/mac80211/iwlwifi/iwl-debug.h
If this is your first time using this driver, you should say Y here
as the debug information can assist others in helping you resolve
any problems you may encounter.
config IWLWIFI_SENSITIVITY
bool "Enable Sensitivity Calibration in iwlwifi drivers"
depends on IWLWIFI
default y
---help---
This option will enable sensitivity calibration for the iwlwifi
drivers.
config IWLWIFI_SPECTRUM_MEASUREMENT
bool "Enable Spectrum Measurement in iwlwifi drivers"
depends on IWLWIFI
default y
---help---
This option will enable spectrum measurement for the iwlwifi drivers.
config IWLWIFI_QOS
bool "Enable Wireless QoS in iwlwifi drivers"
depends on IWLWIFI
default y
---help---
This option will enable wireless quality of service (QoS) for the
iwlwifi drivers.
config IWLWIFI_HT
bool "Enable 802.11n HT features in iwlwifi drivers"
depends on EXPERIMENTAL
depends on IWLWIFI && MAC80211_HT
default n
---help---
This option enables IEEE 802.11n High Throughput features
for the iwlwifi drivers.
config IWL4965
tristate "Intel Wireless WiFi 4965AGN"
depends on m && IWLWIFI && EXPERIMENTAL
default m
---help---
Select to build the driver supporting the:
Intel Wireless WiFi Link 4965AGN
This driver uses the kernel's mac80211 subsystem.
See <file:Documentation/networking/README.iwlwifi> for
information on the capabilities currently enabled in this
driver and for tips for debugging any issues or problems.
In order to use this driver, you will need a microcode (uCode)
image for it. You can obtain the microcode from:
<http://intellinuxwireless.org/>.
See the above referenced README.iwlwifi for information on where
to install the microcode images.
If you want to compile the driver as a module ( = code which can be
inserted in and remvoed from the running kernel whenever you want),
say M here and read <file:Documentation/modules.txt>. The module
will be called iwl4965.ko.
config IWL3945
tristate "Intel PRO/Wireless 3945ABG/BG Network Connection"
depends on m && IWLWIFI && EXPERIMENTAL
default m
---help---
Select to build the driver supporting the:
Intel PRO/Wireless 3945ABG/BG Network Connection
This driver uses the kernel's mac80211 subsystem.
See <file:Documentation/networking/README.iwlwifi> for
information on the capabilities currently enabled in this
driver and for tips for debugging any issues or problems.
In order to use this driver, you will need a microcode (uCode)
image for it. You can obtain the microcode from:
<http://intellinuxwireless.org/>.
See the above referenced README.iwlwifi for information on where
to install the microcode images.
If you want to compile the driver as a module ( = code which can be
inserted in and remvoed from the running kernel whenever you want),
say M here and read <file:Documentation/modules.txt>. The module
will be called iwl3945.ko.
obj-$(CONFIG_IWL3945) += iwl3945.o
iwl3945-objs = iwl3945-base.o iwl-3945.o iwl-3945-rs.o
CFLAGS_iwl3945-base.o = -DIWL=3945
CFLAGS_iwl-3945.o = -DIWL=3945
CFLAGS_iwl-3945-rs.o = -DIWL=3945
obj-$(CONFIG_IWL4965) += iwl4965.o
iwl4965-objs = iwl4965-base.o iwl-4965.o iwl-4965-rs.o
CFLAGS_iwl4965-base.o = -DIWL=4965
CFLAGS_iwl-4965.o = -DIWL=4965
CFLAGS_iwl-4965-rs.o = -DIWL=4965
/******************************************************************************
*
* This file is provided under a dual BSD/GPLv2 license. When using or
* redistributing this file, you may do so under either license.
*
* GPL LICENSE SUMMARY
*
* Copyright(c) 2005 - 2007 Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU Geeral Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
* USA
*
* The full GNU General Public License is included in this distribution
* in the file called LICENSE.GPL.
*
* Contact Information:
* James P. Ketrenos <ipw2100-admin@linux.intel.com>
* Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*
* BSD LICENSE
*
* Copyright(c) 2005 - 2007 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*****************************************************************************/
#ifndef __iwl_3945_hw__
#define __iwl_3945_hw__
#define IWL_RX_BUF_SIZE 3000
/* card static random access memory (SRAM) for processor data and instructs */
#define ALM_RTC_INST_UPPER_BOUND (0x014000)
#define ALM_RTC_DATA_UPPER_BOUND (0x808000)
#define ALM_RTC_INST_SIZE (ALM_RTC_INST_UPPER_BOUND - RTC_INST_LOWER_BOUND)
#define ALM_RTC_DATA_SIZE (ALM_RTC_DATA_UPPER_BOUND - RTC_DATA_LOWER_BOUND)
#define IWL_MAX_BSM_SIZE ALM_RTC_INST_SIZE
#define IWL_MAX_INST_SIZE ALM_RTC_INST_SIZE
#define IWL_MAX_DATA_SIZE ALM_RTC_DATA_SIZE
#define IWL_MAX_NUM_QUEUES 8
static inline int iwl_hw_valid_rtc_data_addr(u32 addr)
{
return (addr >= RTC_DATA_LOWER_BOUND) &&
(addr < ALM_RTC_DATA_UPPER_BOUND);
}
/* Base physical address of iwl_shared is provided to FH_TSSR_CBB_BASE
* and &iwl_shared.rx_read_ptr[0] is provided to FH_RCSR_RPTR_ADDR(0) */
struct iwl_shared {
__le32 tx_base_ptr[8];
__le32 rx_read_ptr[3];
} __attribute__ ((packed));
struct iwl_tfd_frame_data {
__le32 addr;
__le32 len;
} __attribute__ ((packed));
struct iwl_tfd_frame {
__le32 control_flags;
struct iwl_tfd_frame_data pa[4];
u8 reserved[28];
} __attribute__ ((packed));
static inline u8 iwl_hw_get_rate(__le16 rate_n_flags)
{
return le16_to_cpu(rate_n_flags) & 0xFF;
}
static inline u16 iwl_hw_get_rate_n_flags(__le16 rate_n_flags)
{
return le16_to_cpu(rate_n_flags);
}
static inline __le16 iwl_hw_set_rate_n_flags(u8 rate, u16 flags)
{
return cpu_to_le16((u16)rate|flags);
}
#endif
/******************************************************************************
*
* Copyright(c) 2005 - 2007 Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
*
* The full GNU General Public License is included in this distribution in the
* file called LICENSE.
*
* Contact Information:
* James P. Ketrenos <ipw2100-admin@linux.intel.com>
* Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*
*****************************************************************************/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/skbuff.h>
#include <linux/wireless.h>
#include <net/mac80211.h>
#include <net/ieee80211.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/delay.h>
#include <linux/workqueue.h>
#include <net/mac80211.h>
#include <linux/wireless.h>
#include "../net/mac80211/ieee80211_rate.h"
#include "iwlwifi.h"
#define RS_NAME "iwl-3945-rs"
struct iwl_rate_scale_data {
u64 data;
s32 success_counter;
s32 success_ratio;
s32 counter;
s32 average_tpt;
unsigned long stamp;
};
struct iwl_rate_scale_priv {
spinlock_t lock;
s32 *expected_tpt;
unsigned long last_partial_flush;
unsigned long last_flush;
u32 flush_time;
u32 last_tx_packets;
u32 tx_packets;
u8 tgg;
u8 flush_pending;
u8 start_rate;
u8 ibss_sta_added;
struct timer_list rate_scale_flush;
struct iwl_rate_scale_data win[IWL_RATE_COUNT];
};
static s32 iwl_expected_tpt_g[IWL_RATE_COUNT] = {
0, 0, 76, 104, 130, 168, 191, 202, 7, 13, 35, 58
};
static s32 iwl_expected_tpt_g_prot[IWL_RATE_COUNT] = {
0, 0, 0, 80, 93, 113, 123, 125, 7, 13, 35, 58
};
static s32 iwl_expected_tpt_a[IWL_RATE_COUNT] = {
40, 57, 72, 98, 121, 154, 177, 186, 0, 0, 0, 0
};
static s32 iwl_expected_tpt_b[IWL_RATE_COUNT] = {
0, 0, 0, 0, 0, 0, 0, 0, 7, 13, 35, 58
};
struct iwl_tpt_entry {
s8 min_rssi;
u8 index;
};
static struct iwl_tpt_entry iwl_tpt_table_a[] = {
{-60, IWL_RATE_54M_INDEX},
{-64, IWL_RATE_48M_INDEX},
{-72, IWL_RATE_36M_INDEX},
{-80, IWL_RATE_24M_INDEX},
{-84, IWL_RATE_18M_INDEX},
{-85, IWL_RATE_12M_INDEX},
{-87, IWL_RATE_9M_INDEX},
{-89, IWL_RATE_6M_INDEX}
};
static struct iwl_tpt_entry iwl_tpt_table_b[] = {
{-86, IWL_RATE_11M_INDEX},
{-88, IWL_RATE_5M_INDEX},
{-90, IWL_RATE_2M_INDEX},
{-92, IWL_RATE_1M_INDEX}
};
static struct iwl_tpt_entry iwl_tpt_table_g[] = {
{-60, IWL_RATE_54M_INDEX},
{-64, IWL_RATE_48M_INDEX},
{-68, IWL_RATE_36M_INDEX},
{-80, IWL_RATE_24M_INDEX},
{-84, IWL_RATE_18M_INDEX},
{-85, IWL_RATE_12M_INDEX},
{-86, IWL_RATE_11M_INDEX},
{-88, IWL_RATE_5M_INDEX},
{-90, IWL_RATE_2M_INDEX},
{-92, IWL_RATE_1M_INDEX}
};
#define IWL_RATE_MAX_WINDOW 62
#define IWL_RATE_FLUSH (3*HZ/10)
#define IWL_RATE_WIN_FLUSH (HZ/2)
#define IWL_RATE_HIGH_TH 11520
#define IWL_RATE_MIN_FAILURE_TH 8
#define IWL_RATE_MIN_SUCCESS_TH 8
#define IWL_RATE_DECREASE_TH 1920
static u8 iwl_get_rate_index_by_rssi(s32 rssi, u8 mode)
{
u32 index = 0;
u32 table_size = 0;
struct iwl_tpt_entry *tpt_table = NULL;
if ((rssi < IWL_MIN_RSSI_VAL) || (rssi > IWL_MAX_RSSI_VAL))
rssi = IWL_MIN_RSSI_VAL;
switch (mode) {
case MODE_IEEE80211G:
tpt_table = iwl_tpt_table_g;
table_size = ARRAY_SIZE(iwl_tpt_table_g);
break;
case MODE_IEEE80211A:
tpt_table = iwl_tpt_table_a;
table_size = ARRAY_SIZE(iwl_tpt_table_a);
break;
default:
case MODE_IEEE80211B:
tpt_table = iwl_tpt_table_b;
table_size = ARRAY_SIZE(iwl_tpt_table_b);
break;
}
while ((index < table_size) && (rssi < tpt_table[index].min_rssi))
index++;
index = min(index, (table_size - 1));
return tpt_table[index].index;
}
static void iwl_clear_window(struct iwl_rate_scale_data *window)
{
window->data = 0;
window->success_counter = 0;
window->success_ratio = IWL_INVALID_VALUE;
window->counter = 0;
window->average_tpt = IWL_INVALID_VALUE;
window->stamp = 0;
}
/**
* iwl_rate_scale_flush_windows - flush out the rate scale windows
*
* Returns the number of windows that have gathered data but were
* not flushed. If there were any that were not flushed, then
* reschedule the rate flushing routine.
*/
static int iwl_rate_scale_flush_windows(struct iwl_rate_scale_priv *rs_priv)
{
int unflushed = 0;
int i;
unsigned long flags;
/*
* For each rate, if we have collected data on that rate
* and it has been more than IWL_RATE_WIN_FLUSH
* since we flushed, clear out the gathered statistics
*/
for (i = 0; i < IWL_RATE_COUNT; i++) {
if (!rs_priv->win[i].counter)
continue;
spin_lock_irqsave(&rs_priv->lock, flags);
if (time_after(jiffies, rs_priv->win[i].stamp +
IWL_RATE_WIN_FLUSH)) {
IWL_DEBUG_RATE("flushing %d samples of rate "
"index %d\n",
rs_priv->win[i].counter, i);
iwl_clear_window(&rs_priv->win[i]);
} else
unflushed++;
spin_unlock_irqrestore(&rs_priv->lock, flags);
}
return unflushed;
}
#define IWL_RATE_FLUSH_MAX 5000 /* msec */
#define IWL_RATE_FLUSH_MIN 50 /* msec */
static void iwl_bg_rate_scale_flush(unsigned long data)
{
struct iwl_rate_scale_priv *rs_priv = (void *)data;
int unflushed = 0;
unsigned long flags;
u32 packet_count, duration, pps;
IWL_DEBUG_RATE("enter\n");
unflushed = iwl_rate_scale_flush_windows(rs_priv);
spin_lock_irqsave(&rs_priv->lock, flags);
rs_priv->flush_pending = 0;
/* Number of packets Rx'd since last time this timer ran */
packet_count = (rs_priv->tx_packets - rs_priv->last_tx_packets) + 1;
rs_priv->last_tx_packets = rs_priv->tx_packets + 1;
if (unflushed) {
duration =
jiffies_to_msecs(jiffies - rs_priv->last_partial_flush);
/* duration = jiffies_to_msecs(rs_priv->flush_time); */
IWL_DEBUG_RATE("Tx'd %d packets in %dms\n",
packet_count, duration);
/* Determine packets per second */
if (duration)
pps = (packet_count * 1000) / duration;
else
pps = 0;
if (pps) {
duration = IWL_RATE_FLUSH_MAX / pps;
if (duration < IWL_RATE_FLUSH_MIN)
duration = IWL_RATE_FLUSH_MIN;
} else
duration = IWL_RATE_FLUSH_MAX;
rs_priv->flush_time = msecs_to_jiffies(duration);
IWL_DEBUG_RATE("new flush period: %d msec ave %d\n",
duration, packet_count);
mod_timer(&rs_priv->rate_scale_flush, jiffies +
rs_priv->flush_time);
rs_priv->last_partial_flush = jiffies;
}
/* If there weren't any unflushed entries, we don't schedule the timer
* to run again */
rs_priv->last_flush = jiffies;
spin_unlock_irqrestore(&rs_priv->lock, flags);
IWL_DEBUG_RATE("leave\n");
}
/**
* iwl_collect_tx_data - Update the success/failure sliding window
*
* We keep a sliding window of the last 64 packets transmitted
* at this rate. window->data contains the bitmask of successful
* packets.
*/
static void iwl_collect_tx_data(struct iwl_rate_scale_priv *rs_priv,
struct iwl_rate_scale_data *window,
int success, int retries)
{
unsigned long flags;
if (!retries) {
IWL_DEBUG_RATE("leave: retries == 0 -- should be at least 1\n");
return;
}
while (retries--) {
spin_lock_irqsave(&rs_priv->lock, flags);
/* If we have filled up the window then subtract one from the
* success counter if the high-bit is counting toward
* success */
if (window->counter == IWL_RATE_MAX_WINDOW) {
if (window->data & (1ULL << (IWL_RATE_MAX_WINDOW - 1)))
window->success_counter--;
} else
window->counter++;
/* Slide the window to the left one bit */
window->data = (window->data << 1);
/* If this packet was a success then set the low bit high */
if (success) {
window->success_counter++;
window->data |= 1;
}
/* window->counter can't be 0 -- it is either >0 or
* IWL_RATE_MAX_WINDOW */
window->success_ratio = 12800 * window->success_counter /
window->counter;
/* Tag this window as having been updated */
window->stamp = jiffies;
spin_unlock_irqrestore(&rs_priv->lock, flags);
}
}
static void rs_rate_init(void *priv_rate, void *priv_sta,
struct ieee80211_local *local, struct sta_info *sta)
{
int i;
IWL_DEBUG_RATE("enter\n");
/* TODO: what is a good starting rate for STA? About middle? Maybe not
* the lowest or the highest rate.. Could consider using RSSI from
* previous packets? Need to have IEEE 802.1X auth succeed immediately
* after assoc.. */
for (i = IWL_RATE_COUNT - 1; i >= 0; i--) {
if (sta->supp_rates & (1 << i)) {
sta->txrate = i;
break;
}
}
sta->last_txrate = sta->txrate;
IWL_DEBUG_RATE("leave\n");
}
static void *rs_alloc(struct ieee80211_local *local)
{
return local->hw.priv;
}
/* rate scale requires free function to be implmented */
static void rs_free(void *priv)
{
return;
}
static void rs_clear(void *priv)
{
return;
}
static void *rs_alloc_sta(void *priv, gfp_t gfp)
{
struct iwl_rate_scale_priv *rs_priv;
int i;
IWL_DEBUG_RATE("enter\n");
rs_priv = kzalloc(sizeof(struct iwl_rate_scale_priv), gfp);
if (!rs_priv) {
IWL_DEBUG_RATE("leave: ENOMEM\n");
return NULL;
}
spin_lock_init(&rs_priv->lock);
rs_priv->start_rate = IWL_RATE_INVALID;
/* default to just 802.11b */
rs_priv->expected_tpt = iwl_expected_tpt_b;
rs_priv->last_partial_flush = jiffies;
rs_priv->last_flush = jiffies;
rs_priv->flush_time = IWL_RATE_FLUSH;
rs_priv->last_tx_packets = 0;
rs_priv->ibss_sta_added = 0;
init_timer(&rs_priv->rate_scale_flush);
rs_priv->rate_scale_flush.data = (unsigned long)rs_priv;
rs_priv->rate_scale_flush.function = &iwl_bg_rate_scale_flush;
for (i = 0; i < IWL_RATE_COUNT; i++)
iwl_clear_window(&rs_priv->win[i]);
IWL_DEBUG_RATE("leave\n");
return rs_priv;
}
static void rs_free_sta(void *priv, void *priv_sta)
{
struct iwl_rate_scale_priv *rs_priv = priv_sta;
IWL_DEBUG_RATE("enter\n");
del_timer_sync(&rs_priv->rate_scale_flush);
kfree(rs_priv);
IWL_DEBUG_RATE("leave\n");
}
/**
* rs_tx_status - Update rate control values based on Tx results
*
* NOTE: Uses iwl_priv->retry_rate for the # of retries attempted by
* the hardware for each rate.
*/
static void rs_tx_status(void *priv_rate,
struct net_device *dev,
struct sk_buff *skb,
struct ieee80211_tx_status *tx_resp)
{
u8 retries, current_count;
int scale_rate_index, first_index, last_index;
unsigned long flags;
struct sta_info *sta;
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
struct iwl_priv *priv = (struct iwl_priv *)priv_rate;
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct iwl_rate_scale_priv *rs_priv;
IWL_DEBUG_RATE("enter\n");
retries = tx_resp->retry_count;
first_index = tx_resp->control.tx_rate;
if ((first_index < 0) || (first_index >= IWL_RATE_COUNT)) {
IWL_DEBUG_RATE("leave: Rate out of bounds: %0x for %d\n",
tx_resp->control.tx_rate, first_index);
return;
}
sta = sta_info_get(local, hdr->addr1);
if (!sta || !sta->rate_ctrl_priv) {
if (sta)
sta_info_put(sta);
IWL_DEBUG_RATE("leave: No STA priv data to update!\n");
return;
}
rs_priv = (void *)sta->rate_ctrl_priv;
rs_priv->tx_packets++;
scale_rate_index = first_index;
last_index = first_index;
/*
* Update the window for each rate. We determine which rates
* were Tx'd based on the total number of retries vs. the number
* of retries configured for each rate -- currently set to the
* priv value 'retry_rate' vs. rate specific
*
* On exit from this while loop last_index indicates the rate
* at which the frame was finally transmitted (or failed if no
* ACK)
*/
while (retries > 0) {
if (retries < priv->retry_rate) {
current_count = retries;
last_index = scale_rate_index;
} else {
current_count = priv->retry_rate;
last_index = iwl_get_prev_ieee_rate(scale_rate_index);
}
/* Update this rate accounting for as many retries
* as was used for it (per current_count) */
iwl_collect_tx_data(rs_priv,
&rs_priv->win[scale_rate_index],
0, current_count);
IWL_DEBUG_RATE("Update rate %d for %d retries.\n",
scale_rate_index, current_count);
retries -= current_count;
if (retries)
scale_rate_index =
iwl_get_prev_ieee_rate(scale_rate_index);
}
/* Update the last index window with success/failure based on ACK */
IWL_DEBUG_RATE("Update rate %d with %s.\n",
last_index,
(tx_resp->flags & IEEE80211_TX_STATUS_ACK) ?
"success" : "failure");
iwl_collect_tx_data(rs_priv,
&rs_priv->win[last_index],
tx_resp->flags & IEEE80211_TX_STATUS_ACK, 1);
/* We updated the rate scale window -- if its been more than
* flush_time since the last run, schedule the flush
* again */
spin_lock_irqsave(&rs_priv->lock, flags);
if (!rs_priv->flush_pending &&
time_after(jiffies, rs_priv->last_partial_flush +
rs_priv->flush_time)) {
rs_priv->flush_pending = 1;
mod_timer(&rs_priv->rate_scale_flush,
jiffies + rs_priv->flush_time);
}
spin_unlock_irqrestore(&rs_priv->lock, flags);
sta_info_put(sta);
IWL_DEBUG_RATE("leave\n");
return;
}
static struct ieee80211_rate *iwl_get_lowest_rate(struct ieee80211_local
*local)
{
struct ieee80211_hw_mode *mode = local->oper_hw_mode;
int i;
for (i = 0; i < mode->num_rates; i++) {
struct ieee80211_rate *rate = &mode->rates[i];
if (rate->flags & IEEE80211_RATE_SUPPORTED)
return rate;
}
return &mode->rates[0];
}
static u16 iwl_get_adjacent_rate(struct iwl_rate_scale_priv *rs_priv,
u8 index, u16 rate_mask, int phymode)
{
u8 high = IWL_RATE_INVALID;
u8 low = IWL_RATE_INVALID;
/* 802.11A walks to the next literal adjascent rate in
* the rate table */
if (unlikely(phymode == MODE_IEEE80211A)) {
int i;
u32 mask;
/* Find the previous rate that is in the rate mask */
i = index - 1;
for (mask = (1 << i); i >= 0; i--, mask >>= 1) {
if (rate_mask & mask) {
low = i;
break;
}
}
/* Find the next rate that is in the rate mask */
i = index + 1;
for (mask = (1 << i); i < IWL_RATE_COUNT; i++, mask <<= 1) {
if (rate_mask & mask) {
high = i;
break;
}
}
return (high << 8) | low;
}
low = index;
while (low != IWL_RATE_INVALID) {
if (rs_priv->tgg)
low = iwl_rates[low].prev_rs_tgg;
else
low = iwl_rates[low].prev_rs;
if (low == IWL_RATE_INVALID)
break;
if (rate_mask & (1 << low))
break;
IWL_DEBUG_RATE("Skipping masked lower rate: %d\n", low);
}
high = index;
while (high != IWL_RATE_INVALID) {
if (rs_priv->tgg)
high = iwl_rates[high].next_rs_tgg;
else
high = iwl_rates[high].next_rs;
if (high == IWL_RATE_INVALID)
break;
if (rate_mask & (1 << high))
break;
IWL_DEBUG_RATE("Skipping masked higher rate: %d\n", high);
}
return (high << 8) | low;
}
/**
* rs_get_rate - find the rate for the requested packet
*
* Returns the ieee80211_rate structure allocated by the driver.
*
* The rate control algorithm has no internal mapping between hw_mode's
* rate ordering and the rate ordering used by the rate control algorithm.
*
* The rate control algorithm uses a single table of rates that goes across
* the entire A/B/G spectrum vs. being limited to just one particular
* hw_mode.
*
* As such, we can't convert the index obtained below into the hw_mode's
* rate table and must reference the driver allocated rate table
*
*/
static struct ieee80211_rate *rs_get_rate(void *priv_rate,
struct net_device *dev,
struct sk_buff *skb,
struct rate_control_extra *extra)
{
u8 low = IWL_RATE_INVALID;
u8 high = IWL_RATE_INVALID;
u16 high_low;
int index;
struct iwl_rate_scale_priv *rs_priv;
struct iwl_rate_scale_data *window = NULL;
int current_tpt = IWL_INVALID_VALUE;
int low_tpt = IWL_INVALID_VALUE;
int high_tpt = IWL_INVALID_VALUE;
u32 fail_count;
s8 scale_action = 0;
unsigned long flags;
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
struct sta_info *sta;
u16 fc, rate_mask;
struct iwl_priv *priv = (struct iwl_priv *)priv_rate;
IWL_DEBUG_RATE("enter\n");
memset(extra, 0, sizeof(*extra));
fc = le16_to_cpu(hdr->frame_control);
if (((fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA) ||
(is_multicast_ether_addr(hdr->addr1))) {
/* Send management frames and broadcast/multicast data using
* lowest rate. */
/* TODO: this could probably be improved.. */
IWL_DEBUG_RATE("leave: lowest rate (not data or is "
"multicast)\n");
return iwl_get_lowest_rate(local);
}
sta = sta_info_get(local, hdr->addr1);
if (!sta || !sta->rate_ctrl_priv) {
IWL_DEBUG_RATE("leave: No STA priv data to update!\n");
if (sta)
sta_info_put(sta);
return NULL;
}
rate_mask = sta->supp_rates;
index = min(sta->txrate & 0xffff, IWL_RATE_COUNT - 1);
rs_priv = (void *)sta->rate_ctrl_priv;
if ((priv->iw_mode == IEEE80211_IF_TYPE_IBSS) &&
!rs_priv->ibss_sta_added) {
u8 sta_id = iwl_hw_find_station(priv, hdr->addr1);
if (sta_id == IWL_INVALID_STATION) {
IWL_DEBUG_RATE("LQ: ADD station " MAC_FMT "\n",
MAC_ARG(hdr->addr1));
sta_id = iwl_add_station(priv,
hdr->addr1, 0, CMD_ASYNC);
}
if (sta_id != IWL_INVALID_STATION)
rs_priv->ibss_sta_added = 1;
}
spin_lock_irqsave(&rs_priv->lock, flags);
if (rs_priv->start_rate != IWL_RATE_INVALID) {
index = rs_priv->start_rate;
rs_priv->start_rate = IWL_RATE_INVALID;
}
window = &(rs_priv->win[index]);
fail_count = window->counter - window->success_counter;
if (((fail_count <= IWL_RATE_MIN_FAILURE_TH) &&
(window->success_counter < IWL_RATE_MIN_SUCCESS_TH))) {
window->average_tpt = IWL_INVALID_VALUE;
spin_unlock_irqrestore(&rs_priv->lock, flags);
IWL_DEBUG_RATE("Invalid average_tpt on rate %d: "
"counter: %d, success_counter: %d, "
"expected_tpt is %sNULL\n",
index,
window->counter,
window->success_counter,
rs_priv->expected_tpt ? "not " : "");
goto out;
}
window->average_tpt = ((window->success_ratio *
rs_priv->expected_tpt[index] + 64) / 128);
current_tpt = window->average_tpt;
high_low = iwl_get_adjacent_rate(rs_priv, index, rate_mask,
local->hw.conf.phymode);
low = high_low & 0xff;
high = (high_low >> 8) & 0xff;
if (low != IWL_RATE_INVALID)
low_tpt = rs_priv->win[low].average_tpt;
if (high != IWL_RATE_INVALID)
high_tpt = rs_priv->win[high].average_tpt;
spin_unlock_irqrestore(&rs_priv->lock, flags);
scale_action = 1;
if ((window->success_ratio < IWL_RATE_DECREASE_TH) || !current_tpt) {
IWL_DEBUG_RATE("decrease rate because of low success_ratio\n");
scale_action = -1;
} else if ((low_tpt == IWL_INVALID_VALUE) &&
(high_tpt == IWL_INVALID_VALUE))
scale_action = 1;
else if ((low_tpt != IWL_INVALID_VALUE) &&
(high_tpt != IWL_INVALID_VALUE)
&& (low_tpt < current_tpt)
&& (high_tpt < current_tpt)) {
IWL_DEBUG_RATE("No action -- low [%d] & high [%d] < "
"current_tpt [%d]\n",
low_tpt, high_tpt, current_tpt);
scale_action = 0;
} else {
if (high_tpt != IWL_INVALID_VALUE) {
if (high_tpt > current_tpt)
scale_action = 1;
else {
IWL_DEBUG_RATE
("decrease rate because of high tpt\n");
scale_action = -1;
}
} else if (low_tpt != IWL_INVALID_VALUE) {
if (low_tpt > current_tpt) {
IWL_DEBUG_RATE
("decrease rate because of low tpt\n");
scale_action = -1;
} else
scale_action = 1;
}
}
if ((window->success_ratio > IWL_RATE_HIGH_TH) ||
(current_tpt > window->average_tpt)) {
IWL_DEBUG_RATE("No action -- success_ratio [%d] > HIGH_TH or "
"current_tpt [%d] > average_tpt [%d]\n",
window->success_ratio,
current_tpt, window->average_tpt);
scale_action = 0;
}
switch (scale_action) {
case -1:
if (low != IWL_RATE_INVALID)
index = low;
break;
case 1:
if (high != IWL_RATE_INVALID)
index = high;
break;
case 0:
default:
break;
}
IWL_DEBUG_RATE("Selected %d (action %d) - low %d high %d\n",
index, scale_action, low, high);
out:
sta->last_txrate = index;
sta->txrate = sta->last_txrate;
sta_info_put(sta);
IWL_DEBUG_RATE("leave: %d\n", index);
return &priv->ieee_rates[index];
}
static struct rate_control_ops rs_ops = {
.module = NULL,
.name = RS_NAME,
.tx_status = rs_tx_status,
.get_rate = rs_get_rate,
.rate_init = rs_rate_init,
.clear = rs_clear,
.alloc = rs_alloc,
.free = rs_free,
.alloc_sta = rs_alloc_sta,
.free_sta = rs_free_sta,
};
int iwl_fill_rs_info(struct ieee80211_hw *hw, char *buf, u8 sta_id)
{
struct ieee80211_local *local = hw_to_local(hw);
struct iwl_priv *priv = hw->priv;
struct iwl_rate_scale_priv *rs_priv;
struct sta_info *sta;
unsigned long flags;
int count = 0, i;
u32 samples = 0, success = 0, good = 0;
unsigned long now = jiffies;
u32 max_time = 0;
sta = sta_info_get(local, priv->stations[sta_id].sta.sta.addr);
if (!sta || !sta->rate_ctrl_priv) {
if (sta) {
sta_info_put(sta);
IWL_DEBUG_RATE("leave - no private rate data!\n");
} else
IWL_DEBUG_RATE("leave - no station!\n");
return sprintf(buf, "station %d not found\n", sta_id);
}
rs_priv = (void *)sta->rate_ctrl_priv;
spin_lock_irqsave(&rs_priv->lock, flags);
i = IWL_RATE_54M_INDEX;
while (1) {
u64 mask;
int j;
count +=
sprintf(&buf[count], " %2dMbs: ", iwl_rates[i].ieee / 2);
mask = (1ULL << (IWL_RATE_MAX_WINDOW - 1));
for (j = 0; j < IWL_RATE_MAX_WINDOW; j++, mask >>= 1)
buf[count++] =
(rs_priv->win[i].data & mask) ? '1' : '0';
samples += rs_priv->win[i].counter;
good += rs_priv->win[i].success_counter;
success += rs_priv->win[i].success_counter * iwl_rates[i].ieee;
if (rs_priv->win[i].stamp) {
int delta =
jiffies_to_msecs(now - rs_priv->win[i].stamp);
if (delta > max_time)
max_time = delta;
count += sprintf(&buf[count], "%5dms\n", delta);
} else
buf[count++] = '\n';
j = iwl_get_prev_ieee_rate(i);
if (j == i)
break;
i = j;
}
spin_unlock_irqrestore(&rs_priv->lock, flags);
sta_info_put(sta);
/* Display the average rate of all samples taken.
*
* NOTE: We multiple # of samples by 2 since the IEEE measurement
* added from iwl_rates is actually 2X the rate */
if (samples)
count += sprintf(
&buf[count],
"\nAverage rate is %3d.%02dMbs over last %4dms\n"
"%3d%% success (%d good packets over %d tries)\n",
success / (2 * samples), (success * 5 / samples) % 10,
max_time, good * 100 / samples, good, samples);
else
count += sprintf(&buf[count], "\nAverage rate: 0Mbs\n");
return count;
}
void iwl_rate_scale_init(struct ieee80211_hw *hw, s32 sta_id)
{
struct iwl_priv *priv = hw->priv;
s32 rssi = 0;
unsigned long flags;
struct ieee80211_local *local = hw_to_local(hw);
struct iwl_rate_scale_priv *rs_priv;
struct sta_info *sta;
IWL_DEBUG_RATE("enter\n");
if (!local->rate_ctrl->ops->name ||
strcmp(local->rate_ctrl->ops->name, RS_NAME)) {
IWL_WARNING("iwl-3945-rs not selected as rate control algo!\n");
IWL_DEBUG_RATE("leave - mac80211 picked the wrong RC algo.\n");
return;
}
sta = sta_info_get(local, priv->stations[sta_id].sta.sta.addr);
if (!sta || !sta->rate_ctrl_priv) {
if (sta)
sta_info_put(sta);
IWL_DEBUG_RATE("leave - no private rate data!\n");
return;
}
rs_priv = (void *)sta->rate_ctrl_priv;
spin_lock_irqsave(&rs_priv->lock, flags);
rs_priv->tgg = 0;
switch (priv->phymode) {
case MODE_IEEE80211G:
if (priv->active_rxon.flags & RXON_FLG_TGG_PROTECT_MSK) {
rs_priv->tgg = 1;
rs_priv->expected_tpt = iwl_expected_tpt_g_prot;
} else
rs_priv->expected_tpt = iwl_expected_tpt_g;
break;
case MODE_IEEE80211A:
rs_priv->expected_tpt = iwl_expected_tpt_a;
break;
default:
IWL_WARNING("Invalid phymode. Defaulting to 802.11b\n");
case MODE_IEEE80211B:
rs_priv->expected_tpt = iwl_expected_tpt_b;
break;
}
sta_info_put(sta);
spin_unlock_irqrestore(&rs_priv->lock, flags);
rssi = priv->last_rx_rssi;
if (rssi == 0)
rssi = IWL_MIN_RSSI_VAL;
IWL_DEBUG(IWL_DL_INFO | IWL_DL_RATE, "Network RSSI: %d\n", rssi);
rs_priv->start_rate = iwl_get_rate_index_by_rssi(rssi, priv->phymode);
IWL_DEBUG_RATE("leave: rssi %d assign rate index: "
"%d (plcp 0x%x)\n", rssi, rs_priv->start_rate,
iwl_rates[rs_priv->start_rate].plcp);
}
void iwl_rate_control_register(struct ieee80211_hw *hw)
{
ieee80211_rate_control_register(&rs_ops);
}
void iwl_rate_control_unregister(struct ieee80211_hw *hw)
{
ieee80211_rate_control_unregister(&rs_ops);
}
/******************************************************************************
*
* Copyright(c) 2005 - 2007 Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
*
* The full GNU General Public License is included in this distribution in the
* file called LICENSE.
*
* Contact Information:
* James P. Ketrenos <ipw2100-admin@linux.intel.com>
* Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*
*****************************************************************************/
#ifndef __iwl_3945_rs_h__
#define __iwl_3945_rs_h__
struct iwl_rate_info {
u8 plcp;
u8 ieee;
u8 prev_ieee; /* previous rate in IEEE speeds */
u8 next_ieee; /* next rate in IEEE speeds */
u8 prev_rs; /* previous rate used in rs algo */
u8 next_rs; /* next rate used in rs algo */
u8 prev_rs_tgg; /* previous rate used in TGG rs algo */
u8 next_rs_tgg; /* next rate used in TGG rs algo */
};
enum {
IWL_RATE_6M_INDEX = 0,
IWL_RATE_9M_INDEX,
IWL_RATE_12M_INDEX,
IWL_RATE_18M_INDEX,
IWL_RATE_24M_INDEX,
IWL_RATE_36M_INDEX,
IWL_RATE_48M_INDEX,
IWL_RATE_54M_INDEX,
IWL_RATE_1M_INDEX,
IWL_RATE_2M_INDEX,
IWL_RATE_5M_INDEX,
IWL_RATE_11M_INDEX,
IWL_RATE_COUNT,
IWL_RATE_INVM_INDEX,
IWL_RATE_INVALID = IWL_RATE_INVM_INDEX
};
enum {
IWL_FIRST_OFDM_RATE = IWL_RATE_6M_INDEX,
IWL_LAST_OFDM_RATE = IWL_RATE_54M_INDEX,
IWL_FIRST_CCK_RATE = IWL_RATE_1M_INDEX,
IWL_LAST_CCK_RATE = IWL_RATE_11M_INDEX,
};
/* #define vs. enum to keep from defaulting to 'large integer' */
#define IWL_RATE_6M_MASK (1<<IWL_RATE_6M_INDEX)
#define IWL_RATE_9M_MASK (1<<IWL_RATE_9M_INDEX)
#define IWL_RATE_12M_MASK (1<<IWL_RATE_12M_INDEX)
#define IWL_RATE_18M_MASK (1<<IWL_RATE_18M_INDEX)
#define IWL_RATE_24M_MASK (1<<IWL_RATE_24M_INDEX)
#define IWL_RATE_36M_MASK (1<<IWL_RATE_36M_INDEX)
#define IWL_RATE_48M_MASK (1<<IWL_RATE_48M_INDEX)
#define IWL_RATE_54M_MASK (1<<IWL_RATE_54M_INDEX)
#define IWL_RATE_1M_MASK (1<<IWL_RATE_1M_INDEX)
#define IWL_RATE_2M_MASK (1<<IWL_RATE_2M_INDEX)
#define IWL_RATE_5M_MASK (1<<IWL_RATE_5M_INDEX)
#define IWL_RATE_11M_MASK (1<<IWL_RATE_11M_INDEX)
enum {
IWL_RATE_6M_PLCP = 13,
IWL_RATE_9M_PLCP = 15,
IWL_RATE_12M_PLCP = 5,
IWL_RATE_18M_PLCP = 7,
IWL_RATE_24M_PLCP = 9,
IWL_RATE_36M_PLCP = 11,
IWL_RATE_48M_PLCP = 1,
IWL_RATE_54M_PLCP = 3,
IWL_RATE_1M_PLCP = 10,
IWL_RATE_2M_PLCP = 20,
IWL_RATE_5M_PLCP = 55,
IWL_RATE_11M_PLCP = 110,
};
enum {
IWL_RATE_6M_IEEE = 12,
IWL_RATE_9M_IEEE = 18,
IWL_RATE_12M_IEEE = 24,
IWL_RATE_18M_IEEE = 36,
IWL_RATE_24M_IEEE = 48,
IWL_RATE_36M_IEEE = 72,
IWL_RATE_48M_IEEE = 96,
IWL_RATE_54M_IEEE = 108,
IWL_RATE_1M_IEEE = 2,
IWL_RATE_2M_IEEE = 4,
IWL_RATE_5M_IEEE = 11,
IWL_RATE_11M_IEEE = 22,
};
#define IWL_CCK_BASIC_RATES_MASK \
(IWL_RATE_1M_MASK | \
IWL_RATE_2M_MASK)
#define IWL_CCK_RATES_MASK \
(IWL_BASIC_RATES_MASK | \
IWL_RATE_5M_MASK | \
IWL_RATE_11M_MASK)
#define IWL_OFDM_BASIC_RATES_MASK \
(IWL_RATE_6M_MASK | \
IWL_RATE_12M_MASK | \
IWL_RATE_24M_MASK)
#define IWL_OFDM_RATES_MASK \
(IWL_OFDM_BASIC_RATES_MASK | \
IWL_RATE_9M_MASK | \
IWL_RATE_18M_MASK | \
IWL_RATE_36M_MASK | \
IWL_RATE_48M_MASK | \
IWL_RATE_54M_MASK)
#define IWL_BASIC_RATES_MASK \
(IWL_OFDM_BASIC_RATES_MASK | \
IWL_CCK_BASIC_RATES_MASK)
#define IWL_RATES_MASK ((1<<IWL_RATE_COUNT)-1)
#define IWL_INVALID_VALUE -1
#define IWL_MIN_RSSI_VAL -100
#define IWL_MAX_RSSI_VAL 0
extern const struct iwl_rate_info iwl_rates[IWL_RATE_COUNT];
static inline u8 iwl_get_prev_ieee_rate(u8 rate_index)
{
u8 rate = iwl_rates[rate_index].prev_ieee;
if (rate == IWL_RATE_INVALID)
rate = rate_index;
return rate;
}
/**
* iwl_fill_rs_info - Fill an output text buffer with the rate representation
*
* NOTE: This is provided as a quick mechanism for a user to visualize
* the performance of the rate control alogirthm and is not meant to be
* parsed software.
*/
extern int iwl_fill_rs_info(struct ieee80211_hw *, char *buf, u8 sta_id);
/**
* iwl_rate_scale_init - Initialize the rate scale table based on assoc info
*
* The specific througput table used is based on the type of network
* the associated with, including A, B, G, and G w/ TGG protection
*/
extern void iwl_rate_scale_init(struct ieee80211_hw *hw, s32 sta_id);
/**
* iwl_rate_control_register - Register the rate control algorithm callbacks
*
* Since the rate control algorithm is hardware specific, there is no need
* or reason to place it as a stand alone module. The driver can call
* iwl_rate_control_register in order to register the rate control callbacks
* with the mac80211 subsystem. This should be performed prior to calling
* ieee80211_register_hw
*
*/
extern void iwl_rate_control_register(struct ieee80211_hw *hw);
/**
* iwl_rate_control_unregister - Unregister the rate control callbacks
*
* This should be called after calling ieee80211_unregister_hw, but before
* the driver is unloaded.
*/
extern void iwl_rate_control_unregister(struct ieee80211_hw *hw);
#endif
/******************************************************************************
*
* Copyright(c) 2003 - 2007 Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
*
* The full GNU General Public License is included in this distribution in the
* file called LICENSE.
*
* Contact Information:
* James P. Ketrenos <ipw2100-admin@linux.intel.com>
* Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*
*****************************************************************************/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/version.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/dma-mapping.h>
#include <linux/delay.h>
#include <linux/skbuff.h>
#include <linux/netdevice.h>
#include <linux/wireless.h>
#include <linux/firmware.h>
#include <net/mac80211.h>
#include <linux/etherdevice.h>
#include <linux/delay.h>
#include "iwlwifi.h"
#include "iwl-helpers.h"
#include "iwl-3945.h"
#include "iwl-3945-rs.h"
#define IWL_DECLARE_RATE_INFO(r, ip, in, rp, rn, pp, np) \
[IWL_RATE_##r##M_INDEX] = { IWL_RATE_##r##M_PLCP, \
IWL_RATE_##r##M_IEEE, \
IWL_RATE_##ip##M_INDEX, \
IWL_RATE_##in##M_INDEX, \
IWL_RATE_##rp##M_INDEX, \
IWL_RATE_##rn##M_INDEX, \
IWL_RATE_##pp##M_INDEX, \
IWL_RATE_##np##M_INDEX }
/*
* Parameter order:
* rate, prev rate, next rate, prev tgg rate, next tgg rate
*
* If there isn't a valid next or previous rate then INV is used which
* maps to IWL_RATE_INVALID
*
*/
const struct iwl_rate_info iwl_rates[IWL_RATE_COUNT] = {
IWL_DECLARE_RATE_INFO(6, 5, 9, 5, 11, 5, 11), /* 6mbps */
IWL_DECLARE_RATE_INFO(9, 6, 11, 5, 11, 5, 11), /* 9mbps */
IWL_DECLARE_RATE_INFO(12, 11, 18, 11, 18, 11, 18), /* 12mbps */
IWL_DECLARE_RATE_INFO(18, 12, 24, 12, 24, 11, 24), /* 18mbps */
IWL_DECLARE_RATE_INFO(24, 18, 36, 18, 36, 18, 36), /* 24mbps */
IWL_DECLARE_RATE_INFO(36, 24, 48, 24, 48, 24, 48), /* 36mbps */
IWL_DECLARE_RATE_INFO(48, 36, 54, 36, 54, 36, 54), /* 48mbps */
IWL_DECLARE_RATE_INFO(54, 48, INV, 48, INV, 48, INV),/* 54mbps */
IWL_DECLARE_RATE_INFO(1, INV, 2, INV, 2, INV, 2), /* 1mbps */
IWL_DECLARE_RATE_INFO(2, 1, 5, 1, 5, 1, 5), /* 2mbps */
IWL_DECLARE_RATE_INFO(5, 2, 6, 2, 11, 2, 11), /*5.5mbps */
IWL_DECLARE_RATE_INFO(11, 9, 12, 5, 12, 5, 18), /* 11mbps */
};
/* 1 = enable the iwl_disable_events() function */
#define IWL_EVT_DISABLE (0)
#define IWL_EVT_DISABLE_SIZE (1532/32)
/**
* iwl_disable_events - Disable selected events in uCode event log
*
* Disable an event by writing "1"s into "disable"
* bitmap in SRAM. Bit position corresponds to Event # (id/type).
* Default values of 0 enable uCode events to be logged.
* Use for only special debugging. This function is just a placeholder as-is,
* you'll need to provide the special bits! ...
* ... and set IWL_EVT_DISABLE to 1. */
void iwl_disable_events(struct iwl_priv *priv)
{
int rc;
int i;
u32 base; /* SRAM address of event log header */
u32 disable_ptr; /* SRAM address of event-disable bitmap array */
u32 array_size; /* # of u32 entries in array */
u32 evt_disable[IWL_EVT_DISABLE_SIZE] = {
0x00000000, /* 31 - 0 Event id numbers */
0x00000000, /* 63 - 32 */
0x00000000, /* 95 - 64 */
0x00000000, /* 127 - 96 */
0x00000000, /* 159 - 128 */
0x00000000, /* 191 - 160 */
0x00000000, /* 223 - 192 */
0x00000000, /* 255 - 224 */
0x00000000, /* 287 - 256 */
0x00000000, /* 319 - 288 */
0x00000000, /* 351 - 320 */
0x00000000, /* 383 - 352 */
0x00000000, /* 415 - 384 */
0x00000000, /* 447 - 416 */
0x00000000, /* 479 - 448 */
0x00000000, /* 511 - 480 */
0x00000000, /* 543 - 512 */
0x00000000, /* 575 - 544 */
0x00000000, /* 607 - 576 */
0x00000000, /* 639 - 608 */
0x00000000, /* 671 - 640 */
0x00000000, /* 703 - 672 */
0x00000000, /* 735 - 704 */
0x00000000, /* 767 - 736 */
0x00000000, /* 799 - 768 */
0x00000000, /* 831 - 800 */
0x00000000, /* 863 - 832 */
0x00000000, /* 895 - 864 */
0x00000000, /* 927 - 896 */
0x00000000, /* 959 - 928 */
0x00000000, /* 991 - 960 */
0x00000000, /* 1023 - 992 */
0x00000000, /* 1055 - 1024 */
0x00000000, /* 1087 - 1056 */
0x00000000, /* 1119 - 1088 */
0x00000000, /* 1151 - 1120 */
0x00000000, /* 1183 - 1152 */
0x00000000, /* 1215 - 1184 */
0x00000000, /* 1247 - 1216 */
0x00000000, /* 1279 - 1248 */
0x00000000, /* 1311 - 1280 */
0x00000000, /* 1343 - 1312 */
0x00000000, /* 1375 - 1344 */
0x00000000, /* 1407 - 1376 */
0x00000000, /* 1439 - 1408 */
0x00000000, /* 1471 - 1440 */
0x00000000, /* 1503 - 1472 */
};
base = le32_to_cpu(priv->card_alive.log_event_table_ptr);
if (!iwl_hw_valid_rtc_data_addr(base)) {
IWL_ERROR("Invalid event log pointer 0x%08X\n", base);
return;
}
rc = iwl_grab_restricted_access(priv);
if (rc) {
IWL_WARNING("Can not read from adapter at this time.\n");
return;
}
disable_ptr = iwl_read_restricted_mem(priv, base + (4 * sizeof(u32)));
array_size = iwl_read_restricted_mem(priv, base + (5 * sizeof(u32)));
iwl_release_restricted_access(priv);
if (IWL_EVT_DISABLE && (array_size == IWL_EVT_DISABLE_SIZE)) {
IWL_DEBUG_INFO("Disabling selected uCode log events at 0x%x\n",
disable_ptr);
rc = iwl_grab_restricted_access(priv);
for (i = 0; i < IWL_EVT_DISABLE_SIZE; i++)
iwl_write_restricted_mem(priv,
disable_ptr +
(i * sizeof(u32)),
evt_disable[i]);
iwl_release_restricted_access(priv);
} else {
IWL_DEBUG_INFO("Selected uCode log events may be disabled\n");
IWL_DEBUG_INFO(" by writing \"1\"s into disable bitmap\n");
IWL_DEBUG_INFO(" in SRAM at 0x%x, size %d u32s\n",
disable_ptr, array_size);
}
}
/**
* iwl3945_get_antenna_flags - Get antenna flags for RXON command
* @priv: eeprom and antenna fields are used to determine antenna flags
*
* priv->eeprom is used to determine if antenna AUX/MAIN are reversed
* priv->antenna specifies the antenna diversity mode:
*
* IWL_ANTENNA_DIVERISTY - NIC selects best antenna by itself
* IWL_ANTENNA_MAIN - Force MAIN antenna
* IWL_ANTENNA_AUX - Force AUX antenna
*/
__le32 iwl3945_get_antenna_flags(const struct iwl_priv *priv)
{
switch (priv->antenna) {
case IWL_ANTENNA_DIVERSITY:
return 0;
case IWL_ANTENNA_MAIN:
if (priv->eeprom.antenna_switch_type)
return RXON_FLG_DIS_DIV_MSK | RXON_FLG_ANT_B_MSK;
return RXON_FLG_DIS_DIV_MSK | RXON_FLG_ANT_A_MSK;
case IWL_ANTENNA_AUX:
if (priv->eeprom.antenna_switch_type)
return RXON_FLG_DIS_DIV_MSK | RXON_FLG_ANT_A_MSK;
return RXON_FLG_DIS_DIV_MSK | RXON_FLG_ANT_B_MSK;
}
/* bad antenna selector value */
IWL_ERROR("Bad antenna selector value (0x%x)\n", priv->antenna);
return 0; /* "diversity" is default if error */
}
/*****************************************************************************
*
* Intel PRO/Wireless 3945ABG/BG Network Connection
*
* RX handler implementations
*
* Used by iwl-base.c
*
*****************************************************************************/
void iwl_hw_rx_statistics(struct iwl_priv *priv, struct iwl_rx_mem_buffer *rxb)
{
struct iwl_rx_packet *pkt = (void *)rxb->skb->data;
IWL_DEBUG_RX("Statistics notification received (%d vs %d).\n",
(int)sizeof(struct iwl_notif_statistics),
le32_to_cpu(pkt->len));
memcpy(&priv->statistics, pkt->u.raw, sizeof(priv->statistics));
priv->last_statistics_time = jiffies;
}
static void iwl3945_handle_data_packet(struct iwl_priv *priv, int is_data,
struct iwl_rx_mem_buffer *rxb,
struct ieee80211_rx_status *stats,
u16 phy_flags)
{
struct ieee80211_hdr *hdr;
struct iwl_rx_packet *pkt = (struct iwl_rx_packet *)rxb->skb->data;
struct iwl_rx_frame_hdr *rx_hdr = IWL_RX_HDR(pkt);
struct iwl_rx_frame_end *rx_end = IWL_RX_END(pkt);
short len = le16_to_cpu(rx_hdr->len);
/* We received data from the HW, so stop the watchdog */
if (unlikely((len + IWL_RX_FRAME_SIZE) > skb_tailroom(rxb->skb))) {
IWL_DEBUG_DROP("Corruption detected!\n");
return;
}
/* We only process data packets if the interface is open */
if (unlikely(!priv->is_open)) {
IWL_DEBUG_DROP_LIMIT
("Dropping packet while interface is not open.\n");
return;
}
if (priv->iw_mode == IEEE80211_IF_TYPE_MNTR) {
if (iwl_param_hwcrypto)
iwl_set_decrypted_flag(priv, rxb->skb,
le32_to_cpu(rx_end->status),
stats);
iwl_handle_data_packet_monitor(priv, rxb, IWL_RX_DATA(pkt),
len, stats, phy_flags);
return;
}
skb_reserve(rxb->skb, (void *)rx_hdr->payload - (void *)pkt);
/* Set the size of the skb to the size of the frame */
skb_put(rxb->skb, le16_to_cpu(rx_hdr->len));
hdr = (void *)rxb->skb->data;
if (iwl_param_hwcrypto)
iwl_set_decrypted_flag(priv, rxb->skb,
le32_to_cpu(rx_end->status), stats);
ieee80211_rx_irqsafe(priv->hw, rxb->skb, stats);
rxb->skb = NULL;
}
static void iwl3945_rx_reply_rx(struct iwl_priv *priv,
struct iwl_rx_mem_buffer *rxb)
{
struct iwl_rx_packet *pkt = (void *)rxb->skb->data;
struct iwl_rx_frame_stats *rx_stats = IWL_RX_STATS(pkt);
struct iwl_rx_frame_hdr *rx_hdr = IWL_RX_HDR(pkt);
struct iwl_rx_frame_end *rx_end = IWL_RX_END(pkt);
struct ieee80211_hdr *header;
u16 phy_flags = le16_to_cpu(rx_hdr->phy_flags);
u16 rx_stats_sig_avg = le16_to_cpu(rx_stats->sig_avg);
u16 rx_stats_noise_diff = le16_to_cpu(rx_stats->noise_diff);
struct ieee80211_rx_status stats = {
.mactime = le64_to_cpu(rx_end->timestamp),
.freq = ieee80211chan2mhz(le16_to_cpu(rx_hdr->channel)),
.channel = le16_to_cpu(rx_hdr->channel),
.phymode = (rx_hdr->phy_flags & RX_RES_PHY_FLAGS_BAND_24_MSK) ?
MODE_IEEE80211G : MODE_IEEE80211A,
.antenna = 0,
.rate = rx_hdr->rate,
.flag = 0,
};
u8 network_packet;
int snr;
if ((unlikely(rx_stats->phy_count > 20))) {
IWL_DEBUG_DROP
("dsp size out of range [0,20]: "
"%d/n", rx_stats->phy_count);
return;
}
if (!(rx_end->status & RX_RES_STATUS_NO_CRC32_ERROR)
|| !(rx_end->status & RX_RES_STATUS_NO_RXE_OVERFLOW)) {
IWL_DEBUG_RX("Bad CRC or FIFO: 0x%08X.\n", rx_end->status);
return;
}
if (priv->iw_mode == IEEE80211_IF_TYPE_MNTR) {
iwl3945_handle_data_packet(priv, 1, rxb, &stats, phy_flags);
return;
}
/* Convert 3945's rssi indicator to dBm */
stats.ssi = rx_stats->rssi - IWL_RSSI_OFFSET;
/* Set default noise value to -127 */
if (priv->last_rx_noise == 0)
priv->last_rx_noise = IWL_NOISE_MEAS_NOT_AVAILABLE;
/* 3945 provides noise info for OFDM frames only.
* sig_avg and noise_diff are measured by the 3945's digital signal
* processor (DSP), and indicate linear levels of signal level and
* distortion/noise within the packet preamble after
* automatic gain control (AGC). sig_avg should stay fairly
* constant if the radio's AGC is working well.
* Since these values are linear (not dB or dBm), linear
* signal-to-noise ratio (SNR) is (sig_avg / noise_diff).
* Convert linear SNR to dB SNR, then subtract that from rssi dBm
* to obtain noise level in dBm.
* Calculate stats.signal (quality indicator in %) based on SNR. */
if (rx_stats_noise_diff) {
snr = rx_stats_sig_avg / rx_stats_noise_diff;
stats.noise = stats.ssi - iwl_calc_db_from_ratio(snr);
stats.signal = iwl_calc_sig_qual(stats.ssi, stats.noise);
/* If noise info not available, calculate signal quality indicator (%)
* using just the dBm signal level. */
} else {
stats.noise = priv->last_rx_noise;
stats.signal = iwl_calc_sig_qual(stats.ssi, 0);
}
IWL_DEBUG_STATS("Rssi %d noise %d qual %d sig_avg %d noise_diff %d\n",
stats.ssi, stats.noise, stats.signal,
rx_stats_sig_avg, rx_stats_noise_diff);
stats.freq = ieee80211chan2mhz(stats.channel);
/* can be covered by iwl_report_frame() in most cases */
/* IWL_DEBUG_RX("RX status: 0x%08X\n", rx_end->status); */
header = (struct ieee80211_hdr *)IWL_RX_DATA(pkt);
network_packet = iwl_is_network_packet(priv, header);
#ifdef CONFIG_IWLWIFI_DEBUG
if (iwl_debug_level & IWL_DL_STATS && net_ratelimit())
IWL_DEBUG_STATS
("[%c] %d RSSI: %d Signal: %u, Noise: %u, Rate: %u\n",
network_packet ? '*' : ' ',
stats.channel, stats.ssi, stats.ssi,
stats.ssi, stats.rate);
if (iwl_debug_level & (IWL_DL_RX))
/* Set "1" to report good data frames in groups of 100 */
iwl_report_frame(priv, pkt, header, 1);
#endif
if (network_packet) {
priv->last_beacon_time = le32_to_cpu(rx_end->beacon_timestamp);
priv->last_tsf = le64_to_cpu(rx_end->timestamp);
priv->last_rx_rssi = stats.ssi;
priv->last_rx_noise = stats.noise;
}
switch (le16_to_cpu(header->frame_control) & IEEE80211_FCTL_FTYPE) {
case IEEE80211_FTYPE_MGMT:
switch (le16_to_cpu(header->frame_control) &
IEEE80211_FCTL_STYPE) {
case IEEE80211_STYPE_PROBE_RESP:
case IEEE80211_STYPE_BEACON:{
/* If this is a beacon or probe response for
* our network then cache the beacon
* timestamp */
if ((((priv->iw_mode == IEEE80211_IF_TYPE_STA)
&& !compare_ether_addr(header->addr2,
priv->bssid)) ||
((priv->iw_mode == IEEE80211_IF_TYPE_IBSS)
&& !compare_ether_addr(header->addr3,
priv->bssid)))) {
struct ieee80211_mgmt *mgmt =
(struct ieee80211_mgmt *)header;
__le32 *pos;
pos =
(__le32 *) & mgmt->u.beacon.
timestamp;
priv->timestamp0 = le32_to_cpu(pos[0]);
priv->timestamp1 = le32_to_cpu(pos[1]);
priv->beacon_int = le16_to_cpu(
mgmt->u.beacon.beacon_int);
if (priv->call_post_assoc_from_beacon &&
(priv->iw_mode ==
IEEE80211_IF_TYPE_STA))
queue_work(priv->workqueue,
&priv->post_associate.work);
priv->call_post_assoc_from_beacon = 0;
}
break;
}
case IEEE80211_STYPE_ACTION:
/* TODO: Parse 802.11h frames for CSA... */
break;
/*
* TODO: There is no callback function from upper
* stack to inform us when associated status. this
* work around to sniff assoc_resp management frame
* and finish the association process.
*/
case IEEE80211_STYPE_ASSOC_RESP:
case IEEE80211_STYPE_REASSOC_RESP:{
struct ieee80211_mgmt *mgnt =
(struct ieee80211_mgmt *)header;
priv->assoc_id = (~((1 << 15) | (1 << 14)) &
le16_to_cpu(mgnt->u.
assoc_resp.aid));
priv->assoc_capability =
le16_to_cpu(mgnt->u.assoc_resp.capab_info);
if (priv->beacon_int)
queue_work(priv->workqueue,
&priv->post_associate.work);
else
priv->call_post_assoc_from_beacon = 1;
break;
}
case IEEE80211_STYPE_PROBE_REQ:{
if (priv->iw_mode == IEEE80211_IF_TYPE_IBSS)
IWL_DEBUG_DROP
("Dropping (non network): " MAC_FMT
", " MAC_FMT ", " MAC_FMT "\n",
MAC_ARG(header->addr1),
MAC_ARG(header->addr2),
MAC_ARG(header->addr3));
return;
}
}
iwl3945_handle_data_packet(priv, 0, rxb, &stats, phy_flags);
break;
case IEEE80211_FTYPE_CTL:
break;
case IEEE80211_FTYPE_DATA:
if (unlikely(is_duplicate_packet(priv, header)))
IWL_DEBUG_DROP("Dropping (dup): " MAC_FMT ", "
MAC_FMT ", " MAC_FMT "\n",
MAC_ARG(header->addr1),
MAC_ARG(header->addr2),
MAC_ARG(header->addr3));
else
iwl3945_handle_data_packet(priv, 1, rxb, &stats,
phy_flags);
break;
}
}
int iwl_hw_txq_attach_buf_to_tfd(struct iwl_priv *priv, void *ptr,
dma_addr_t addr, u16 len)
{
int count;
u32 pad;
struct iwl_tfd_frame *tfd = (struct iwl_tfd_frame *)ptr;
count = TFD_CTL_COUNT_GET(le32_to_cpu(tfd->control_flags));
pad = TFD_CTL_PAD_GET(le32_to_cpu(tfd->control_flags));
if ((count >= NUM_TFD_CHUNKS) || (count < 0)) {
IWL_ERROR("Error can not send more than %d chunks\n",
NUM_TFD_CHUNKS);
return -EINVAL;
}
tfd->pa[count].addr = cpu_to_le32(addr);
tfd->pa[count].len = cpu_to_le32(len);
count++;
tfd->control_flags = cpu_to_le32(TFD_CTL_COUNT_SET(count) |
TFD_CTL_PAD_SET(pad));
return 0;
}
/**
* iwl_hw_txq_free_tfd - Free one TFD, those at index [txq->q.last_used]
*
* Does NOT advance any indexes
*/
int iwl_hw_txq_free_tfd(struct iwl_priv *priv, struct iwl_tx_queue *txq)
{
struct iwl_tfd_frame *bd_tmp = (struct iwl_tfd_frame *)&txq->bd[0];
struct iwl_tfd_frame *bd = &bd_tmp[txq->q.last_used];
struct pci_dev *dev = priv->pci_dev;
int i;
int counter;
/* classify bd */
if (txq->q.id == IWL_CMD_QUEUE_NUM)
/* nothing to cleanup after for host commands */
return 0;
/* sanity check */
counter = TFD_CTL_COUNT_GET(le32_to_cpu(bd->control_flags));
if (counter > NUM_TFD_CHUNKS) {
IWL_ERROR("Too many chunks: %i\n", counter);
/* @todo issue fatal error, it is quite serious situation */
return 0;
}
/* unmap chunks if any */
for (i = 1; i < counter; i++) {
pci_unmap_single(dev, le32_to_cpu(bd->pa[i].addr),
le32_to_cpu(bd->pa[i].len), PCI_DMA_TODEVICE);
if (txq->txb[txq->q.last_used].skb[0]) {
struct sk_buff *skb = txq->txb[txq->q.last_used].skb[0];
if (txq->txb[txq->q.last_used].skb[0]) {
/* Can be called from interrupt context */
dev_kfree_skb_any(skb);
txq->txb[txq->q.last_used].skb[0] = NULL;
}
}
}
return 0;
}
u8 iwl_hw_find_station(struct iwl_priv *priv, const u8 *addr)
{
int i;
int ret = IWL_INVALID_STATION;
unsigned long flags;
spin_lock_irqsave(&priv->sta_lock, flags);
for (i = IWL_STA_ID; i < priv->hw_setting.max_stations; i++)
if ((priv->stations[i].used) &&
(!compare_ether_addr
(priv->stations[i].sta.sta.addr, addr))) {
ret = i;
goto out;
}
IWL_DEBUG_INFO("can not find STA " MAC_FMT " (total %d)\n",
MAC_ARG(addr), priv->num_stations);
out:
spin_unlock_irqrestore(&priv->sta_lock, flags);
return ret;
}
/**
* iwl_hw_build_tx_cmd_rate - Add rate portion to TX_CMD:
*
*/
void iwl_hw_build_tx_cmd_rate(struct iwl_priv *priv,
struct iwl_cmd *cmd,
struct ieee80211_tx_control *ctrl,
struct ieee80211_hdr *hdr, int sta_id, int tx_id)
{
unsigned long flags;
u16 rate_index = min(ctrl->tx_rate & 0xffff, IWL_RATE_COUNT - 1);
u16 rate_mask;
int rate;
u8 rts_retry_limit;
u8 data_retry_limit;
__le32 tx_flags;
u16 fc = le16_to_cpu(hdr->frame_control);
rate = iwl_rates[rate_index].plcp;
tx_flags = cmd->cmd.tx.tx_flags;
/* We need to figure out how to get the sta->supp_rates while
* in this running context; perhaps encoding into ctrl->tx_rate? */
rate_mask = IWL_RATES_MASK;
spin_lock_irqsave(&priv->sta_lock, flags);
priv->stations[sta_id].current_rate.rate_n_flags = rate;
if ((priv->iw_mode == IEEE80211_IF_TYPE_IBSS) &&
(sta_id != IWL3945_BROADCAST_ID) &&
(sta_id != IWL_MULTICAST_ID))
priv->stations[IWL_STA_ID].current_rate.rate_n_flags = rate;
spin_unlock_irqrestore(&priv->sta_lock, flags);
if (tx_id >= IWL_CMD_QUEUE_NUM)
rts_retry_limit = 3;
else
rts_retry_limit = 7;
if (ieee80211_is_probe_response(fc)) {
data_retry_limit = 3;
if (data_retry_limit < rts_retry_limit)
rts_retry_limit = data_retry_limit;
} else
data_retry_limit = IWL_DEFAULT_TX_RETRY;
if (priv->data_retry_limit != -1)
data_retry_limit = priv->data_retry_limit;
if ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT) {
switch (fc & IEEE80211_FCTL_STYPE) {
case IEEE80211_STYPE_AUTH:
case IEEE80211_STYPE_DEAUTH:
case IEEE80211_STYPE_ASSOC_REQ:
case IEEE80211_STYPE_REASSOC_REQ:
if (tx_flags & TX_CMD_FLG_RTS_MSK) {
tx_flags &= ~TX_CMD_FLG_RTS_MSK;
tx_flags |= TX_CMD_FLG_CTS_MSK;
}
break;
default:
break;
}
}
cmd->cmd.tx.rts_retry_limit = rts_retry_limit;
cmd->cmd.tx.data_retry_limit = data_retry_limit;
cmd->cmd.tx.rate = rate;
cmd->cmd.tx.tx_flags = tx_flags;
/* OFDM */
cmd->cmd.tx.supp_rates[0] = rate_mask & IWL_OFDM_RATES_MASK;
/* CCK */
cmd->cmd.tx.supp_rates[1] = (rate_mask >> 8) & 0xF;
IWL_DEBUG_RATE("Tx sta id: %d, rate: %d (plcp), flags: 0x%4X "
"cck/ofdm mask: 0x%x/0x%x\n", sta_id,
cmd->cmd.tx.rate, le32_to_cpu(cmd->cmd.tx.tx_flags),
cmd->cmd.tx.supp_rates[1], cmd->cmd.tx.supp_rates[0]);
}
u8 iwl3945_sync_sta(struct iwl_priv *priv, int sta_id, u16 tx_rate, u8 flags)
{
unsigned long flags_spin;
struct iwl_station_entry *station;
if (sta_id == IWL_INVALID_STATION)
return IWL_INVALID_STATION;
spin_lock_irqsave(&priv->sta_lock, flags_spin);
station = &priv->stations[sta_id];
station->sta.sta.modify_mask = STA_MODIFY_TX_RATE_MSK;
station->sta.rate_n_flags = cpu_to_le16(tx_rate);
station->current_rate.rate_n_flags = tx_rate;
station->sta.mode = STA_CONTROL_MODIFY_MSK;
spin_unlock_irqrestore(&priv->sta_lock, flags_spin);
iwl_send_add_station(priv, &station->sta, flags);
IWL_DEBUG_RATE("SCALE sync station %d to rate %d\n",
sta_id, tx_rate);
return sta_id;
}
void iwl_hw_card_show_info(struct iwl_priv *priv)
{
IWL_DEBUG_INFO("3945ABG HW Version %u.%u.%u\n",
((priv->eeprom.board_revision >> 8) & 0x0F),
((priv->eeprom.board_revision >> 8) >> 4),
(priv->eeprom.board_revision & 0x00FF));
IWL_DEBUG_INFO("3945ABG PBA Number %.*s\n",
(int)sizeof(priv->eeprom.board_pba_number),
priv->eeprom.board_pba_number);
IWL_DEBUG_INFO("EEPROM_ANTENNA_SWITCH_TYPE is 0x%02X\n",
priv->eeprom.antenna_switch_type);
}
static int iwl3945_nic_set_pwr_src(struct iwl_priv *priv, int pwr_max)
{
int rc;
unsigned long flags;
spin_lock_irqsave(&priv->lock, flags);
rc = iwl_grab_restricted_access(priv);
if (rc) {
spin_unlock_irqrestore(&priv->lock, flags);
return rc;
}
if (!pwr_max) {
u32 val;
rc = pci_read_config_dword(priv->pci_dev,
PCI_POWER_SOURCE, &val);
if (val & PCI_CFG_PMC_PME_FROM_D3COLD_SUPPORT) {
iwl_set_bits_mask_restricted_reg(priv, APMG_PS_CTRL_REG,
APMG_PS_CTRL_VAL_PWR_SRC_VAUX,
~APMG_PS_CTRL_MSK_PWR_SRC);
iwl_release_restricted_access(priv);
iwl_poll_bit(priv, CSR_GPIO_IN,
CSR_GPIO_IN_VAL_VAUX_PWR_SRC,
CSR_GPIO_IN_BIT_AUX_POWER, 5000);
} else
iwl_release_restricted_access(priv);
} else {
iwl_set_bits_mask_restricted_reg(priv, APMG_PS_CTRL_REG,
APMG_PS_CTRL_VAL_PWR_SRC_VMAIN,
~APMG_PS_CTRL_MSK_PWR_SRC);
iwl_release_restricted_access(priv);
iwl_poll_bit(priv, CSR_GPIO_IN, CSR_GPIO_IN_VAL_VMAIN_PWR_SRC,
CSR_GPIO_IN_BIT_AUX_POWER, 5000); /* uS */
}
spin_unlock_irqrestore(&priv->lock, flags);
return rc;
}
static int iwl3945_rx_init(struct iwl_priv *priv, struct iwl_rx_queue *rxq)
{
int rc;
unsigned long flags;
spin_lock_irqsave(&priv->lock, flags);
rc = iwl_grab_restricted_access(priv);
if (rc) {
spin_unlock_irqrestore(&priv->lock, flags);
return rc;
}
iwl_write_restricted(priv, FH_RCSR_RBD_BASE(0), rxq->dma_addr);
iwl_write_restricted(priv, FH_RCSR_RPTR_ADDR(0),
priv->hw_setting.shared_phys +
offsetof(struct iwl_shared, rx_read_ptr[0]));
iwl_write_restricted(priv, FH_RCSR_WPTR(0), 0);
iwl_write_restricted(priv, FH_RCSR_CONFIG(0),
ALM_FH_RCSR_RX_CONFIG_REG_VAL_DMA_CHNL_EN_ENABLE |
ALM_FH_RCSR_RX_CONFIG_REG_VAL_RDRBD_EN_ENABLE |
ALM_FH_RCSR_RX_CONFIG_REG_BIT_WR_STTS_EN |
ALM_FH_RCSR_RX_CONFIG_REG_VAL_MAX_FRAG_SIZE_128 |
(RX_QUEUE_SIZE_LOG << ALM_FH_RCSR_RX_CONFIG_REG_POS_RBDC_SIZE) |
ALM_FH_RCSR_RX_CONFIG_REG_VAL_IRQ_DEST_INT_HOST |
(1 << ALM_FH_RCSR_RX_CONFIG_REG_POS_IRQ_RBTH) |
ALM_FH_RCSR_RX_CONFIG_REG_VAL_MSG_MODE_FH);
/* fake read to flush all prev I/O */
iwl_read_restricted(priv, FH_RSSR_CTRL);
iwl_release_restricted_access(priv);
spin_unlock_irqrestore(&priv->lock, flags);
return 0;
}
static int iwl3945_tx_reset(struct iwl_priv *priv)
{
int rc;
unsigned long flags;
spin_lock_irqsave(&priv->lock, flags);
rc = iwl_grab_restricted_access(priv);
if (rc) {
spin_unlock_irqrestore(&priv->lock, flags);
return rc;
}
/* bypass mode */
iwl_write_restricted_reg(priv, SCD_MODE_REG, 0x2);
/* RA 0 is active */
iwl_write_restricted_reg(priv, SCD_ARASTAT_REG, 0x01);
/* all 6 fifo are active */
iwl_write_restricted_reg(priv, SCD_TXFACT_REG, 0x3f);
iwl_write_restricted_reg(priv, SCD_SBYP_MODE_1_REG, 0x010000);
iwl_write_restricted_reg(priv, SCD_SBYP_MODE_2_REG, 0x030002);
iwl_write_restricted_reg(priv, SCD_TXF4MF_REG, 0x000004);
iwl_write_restricted_reg(priv, SCD_TXF5MF_REG, 0x000005);
iwl_write_restricted(priv, FH_TSSR_CBB_BASE,
priv->hw_setting.shared_phys);
iwl_write_restricted(priv, FH_TSSR_MSG_CONFIG,
ALM_FH_TSSR_TX_MSG_CONFIG_REG_VAL_SNOOP_RD_TXPD_ON |
ALM_FH_TSSR_TX_MSG_CONFIG_REG_VAL_ORDER_RD_TXPD_ON |
ALM_FH_TSSR_TX_MSG_CONFIG_REG_VAL_MAX_FRAG_SIZE_128B |
ALM_FH_TSSR_TX_MSG_CONFIG_REG_VAL_SNOOP_RD_TFD_ON |
ALM_FH_TSSR_TX_MSG_CONFIG_REG_VAL_ORDER_RD_CBB_ON |
ALM_FH_TSSR_TX_MSG_CONFIG_REG_VAL_ORDER_RSP_WAIT_TH |
ALM_FH_TSSR_TX_MSG_CONFIG_REG_VAL_RSP_WAIT_TH);
iwl_release_restricted_access(priv);
spin_unlock_irqrestore(&priv->lock, flags);
return 0;
}
/**
* iwl3945_txq_ctx_reset - Reset TX queue context
*
* Destroys all DMA structures and initialize them again
*/
static int iwl3945_txq_ctx_reset(struct iwl_priv *priv)
{
int rc;
int txq_id, slots_num;
iwl_hw_txq_ctx_free(priv);
/* Tx CMD queue */
rc = iwl3945_tx_reset(priv);
if (rc)
goto error;
/* Tx queue(s) */
for (txq_id = 0; txq_id < TFD_QUEUE_MAX; txq_id++) {
slots_num = (txq_id == IWL_CMD_QUEUE_NUM) ?
TFD_CMD_SLOTS : TFD_TX_CMD_SLOTS;
rc = iwl_tx_queue_init(priv, &priv->txq[txq_id], slots_num,
txq_id);
if (rc) {
IWL_ERROR("Tx %d queue init failed\n", txq_id);
goto error;
}
}
return rc;
error:
iwl_hw_txq_ctx_free(priv);
return rc;
}
int iwl_hw_nic_init(struct iwl_priv *priv)
{
u8 rev_id;
int rc;
unsigned long flags;
struct iwl_rx_queue *rxq = &priv->rxq;
iwl_power_init_handle(priv);
spin_lock_irqsave(&priv->lock, flags);
iwl_set_bit(priv, CSR_ANA_PLL_CFG, (1 << 24));
iwl_set_bit(priv, CSR_GIO_CHICKEN_BITS,
CSR_GIO_CHICKEN_BITS_REG_BIT_L1A_NO_L0S_RX);
iwl_set_bit(priv, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_INIT_DONE);
rc = iwl_poll_bit(priv, CSR_GP_CNTRL,
CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY, 25000);
if (rc < 0) {
spin_unlock_irqrestore(&priv->lock, flags);
IWL_DEBUG_INFO("Failed to init the card\n");
return rc;
}
rc = iwl_grab_restricted_access(priv);
if (rc) {
spin_unlock_irqrestore(&priv->lock, flags);
return rc;
}
iwl_write_restricted_reg(priv, APMG_CLK_EN_REG,
APMG_CLK_VAL_DMA_CLK_RQT |
APMG_CLK_VAL_BSM_CLK_RQT);
udelay(20);
iwl_set_bits_restricted_reg(priv, APMG_PCIDEV_STT_REG,
APMG_PCIDEV_STT_VAL_L1_ACT_DIS);
iwl_release_restricted_access(priv);
spin_unlock_irqrestore(&priv->lock, flags);
/* Determine HW type */
rc = pci_read_config_byte(priv->pci_dev, PCI_REVISION_ID, &rev_id);
if (rc)
return rc;
IWL_DEBUG_INFO("HW Revision ID = 0x%X\n", rev_id);
iwl3945_nic_set_pwr_src(priv, 1);
spin_lock_irqsave(&priv->lock, flags);
if (rev_id & PCI_CFG_REV_ID_BIT_RTP)
IWL_DEBUG_INFO("RTP type \n");
else if (rev_id & PCI_CFG_REV_ID_BIT_BASIC_SKU) {
IWL_DEBUG_INFO("ALM-MB type\n");
iwl_set_bit(priv, CSR_HW_IF_CONFIG_REG,
CSR_HW_IF_CONFIG_REG_BIT_ALMAGOR_MB);
} else {
IWL_DEBUG_INFO("ALM-MM type\n");
iwl_set_bit(priv, CSR_HW_IF_CONFIG_REG,
CSR_HW_IF_CONFIG_REG_BIT_ALMAGOR_MM);
}
spin_unlock_irqrestore(&priv->lock, flags);
/* Initialize the EEPROM */
rc = iwl_eeprom_init(priv);
if (rc)
return rc;
spin_lock_irqsave(&priv->lock, flags);
if (EEPROM_SKU_CAP_OP_MODE_MRC == priv->eeprom.sku_cap) {
IWL_DEBUG_INFO("SKU OP mode is mrc\n");
iwl_set_bit(priv, CSR_HW_IF_CONFIG_REG,
CSR_HW_IF_CONFIG_REG_BIT_SKU_MRC);
} else
IWL_DEBUG_INFO("SKU OP mode is basic\n");
if ((priv->eeprom.board_revision & 0xF0) == 0xD0) {
IWL_DEBUG_INFO("3945ABG revision is 0x%X\n",
priv->eeprom.board_revision);
iwl_set_bit(priv, CSR_HW_IF_CONFIG_REG,
CSR_HW_IF_CONFIG_REG_BIT_BOARD_TYPE);
} else {
IWL_DEBUG_INFO("3945ABG revision is 0x%X\n",
priv->eeprom.board_revision);
iwl_clear_bit(priv, CSR_HW_IF_CONFIG_REG,
CSR_HW_IF_CONFIG_REG_BIT_BOARD_TYPE);
}
if (priv->eeprom.almgor_m_version <= 1) {
iwl_set_bit(priv, CSR_HW_IF_CONFIG_REG,
CSR_HW_IF_CONFIG_REG_BITS_SILICON_TYPE_A);
IWL_DEBUG_INFO("Card M type A version is 0x%X\n",
priv->eeprom.almgor_m_version);
} else {
IWL_DEBUG_INFO("Card M type B version is 0x%X\n",
priv->eeprom.almgor_m_version);
iwl_set_bit(priv, CSR_HW_IF_CONFIG_REG,
CSR_HW_IF_CONFIG_REG_BITS_SILICON_TYPE_B);
}
spin_unlock_irqrestore(&priv->lock, flags);
if (priv->eeprom.sku_cap & EEPROM_SKU_CAP_SW_RF_KILL_ENABLE)
IWL_DEBUG_RF_KILL("SW RF KILL supported in EEPROM.\n");
if (priv->eeprom.sku_cap & EEPROM_SKU_CAP_HW_RF_KILL_ENABLE)
IWL_DEBUG_RF_KILL("HW RF KILL supported in EEPROM.\n");
/* Allocate the RX queue, or reset if it is already allocated */
if (!rxq->bd) {
rc = iwl_rx_queue_alloc(priv);
if (rc) {
IWL_ERROR("Unable to initialize Rx queue\n");
return -ENOMEM;
}
} else
iwl_rx_queue_reset(priv, rxq);
iwl_rx_replenish(priv);
iwl3945_rx_init(priv, rxq);
spin_lock_irqsave(&priv->lock, flags);
/* Look at using this instead:
rxq->need_update = 1;
iwl_rx_queue_update_write_ptr(priv, rxq);
*/
rc = iwl_grab_restricted_access(priv);
if (rc) {
spin_unlock_irqrestore(&priv->lock, flags);
return rc;
}
iwl_write_restricted(priv, FH_RCSR_WPTR(0), rxq->write & ~7);
iwl_release_restricted_access(priv);
spin_unlock_irqrestore(&priv->lock, flags);
rc = iwl3945_txq_ctx_reset(priv);
if (rc)
return rc;
set_bit(STATUS_INIT, &priv->status);
return 0;
}
/**
* iwl_hw_txq_ctx_free - Free TXQ Context
*
* Destroy all TX DMA queues and structures
*/
void iwl_hw_txq_ctx_free(struct iwl_priv *priv)
{
int txq_id;
/* Tx queues */
for (txq_id = 0; txq_id < TFD_QUEUE_MAX; txq_id++)
iwl_tx_queue_free(priv, &priv->txq[txq_id]);
}
void iwl_hw_txq_ctx_stop(struct iwl_priv *priv)
{
int queue;
unsigned long flags;
spin_lock_irqsave(&priv->lock, flags);
if (iwl_grab_restricted_access(priv)) {
spin_unlock_irqrestore(&priv->lock, flags);
iwl_hw_txq_ctx_free(priv);
return;
}
/* stop SCD */
iwl_write_restricted_reg(priv, SCD_MODE_REG, 0);
/* reset TFD queues */
for (queue = TFD_QUEUE_MIN; queue < TFD_QUEUE_MAX; queue++) {
iwl_write_restricted(priv, FH_TCSR_CONFIG(queue), 0x0);
iwl_poll_restricted_bit(priv, FH_TSSR_TX_STATUS,
ALM_FH_TSSR_TX_STATUS_REG_MSK_CHNL_IDLE(queue),
1000);
}
iwl_release_restricted_access(priv);
spin_unlock_irqrestore(&priv->lock, flags);
iwl_hw_txq_ctx_free(priv);
}
int iwl_hw_nic_stop_master(struct iwl_priv *priv)
{
int rc = 0;
u32 reg_val;
unsigned long flags;
spin_lock_irqsave(&priv->lock, flags);
/* set stop master bit */
iwl_set_bit(priv, CSR_RESET, CSR_RESET_REG_FLAG_STOP_MASTER);
reg_val = iwl_read32(priv, CSR_GP_CNTRL);
if (CSR_GP_CNTRL_REG_FLAG_MAC_POWER_SAVE ==
(reg_val & CSR_GP_CNTRL_REG_MSK_POWER_SAVE_TYPE))
IWL_DEBUG_INFO("Card in power save, master is already "
"stopped\n");
else {
rc = iwl_poll_bit(priv, CSR_RESET,
CSR_RESET_REG_FLAG_MASTER_DISABLED,
CSR_RESET_REG_FLAG_MASTER_DISABLED, 100);
if (rc < 0) {
spin_unlock_irqrestore(&priv->lock, flags);
return rc;
}
}
spin_unlock_irqrestore(&priv->lock, flags);
IWL_DEBUG_INFO("stop master\n");
return rc;
}
int iwl_hw_nic_reset(struct iwl_priv *priv)
{
int rc;
unsigned long flags;
iwl_hw_nic_stop_master(priv);
spin_lock_irqsave(&priv->lock, flags);
iwl_set_bit(priv, CSR_RESET, CSR_RESET_REG_FLAG_SW_RESET);
rc = iwl_poll_bit(priv, CSR_GP_CNTRL,
CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY, 25000);
rc = iwl_grab_restricted_access(priv);
if (!rc) {
iwl_write_restricted_reg(priv, APMG_CLK_CTRL_REG,
APMG_CLK_VAL_BSM_CLK_RQT);
udelay(10);
iwl_set_bit(priv, CSR_GP_CNTRL,
CSR_GP_CNTRL_REG_FLAG_INIT_DONE);
iwl_write_restricted_reg(priv, APMG_RTC_INT_MSK_REG, 0x0);
iwl_write_restricted_reg(priv, APMG_RTC_INT_STT_REG,
0xFFFFFFFF);
/* enable DMA */
iwl_write_restricted_reg(priv, APMG_CLK_EN_REG,
APMG_CLK_VAL_DMA_CLK_RQT |
APMG_CLK_VAL_BSM_CLK_RQT);
udelay(10);
iwl_set_bits_restricted_reg(priv, APMG_PS_CTRL_REG,
APMG_PS_CTRL_VAL_RESET_REQ);
udelay(5);
iwl_clear_bits_restricted_reg(priv, APMG_PS_CTRL_REG,
APMG_PS_CTRL_VAL_RESET_REQ);
iwl_release_restricted_access(priv);
}
/* Clear the 'host command active' bit... */
clear_bit(STATUS_HCMD_ACTIVE, &priv->status);
wake_up_interruptible(&priv->wait_command_queue);
spin_unlock_irqrestore(&priv->lock, flags);
return rc;
}
/**
* iwl_hw_reg_adjust_power_by_temp - return index delta into power gain settings table
*/
static int iwl_hw_reg_adjust_power_by_temp(int new_reading, int old_reading)
{
return (new_reading - old_reading) * (-11) / 100;
}
/**
* iwl_hw_reg_temp_out_of_range - Keep temperature in sane range
*/
static inline int iwl_hw_reg_temp_out_of_range(int temperature)
{
return (((temperature < -260) || (temperature > 25)) ? 1 : 0);
}
int iwl_hw_get_temperature(struct iwl_priv *priv)
{
return iwl_read32(priv, CSR_UCODE_DRV_GP2);
}
/**
* iwl_hw_reg_txpower_get_temperature - get current temperature by reading from NIC
*/
static int iwl_hw_reg_txpower_get_temperature(struct iwl_priv *priv)
{
int temperature;
temperature = iwl_hw_get_temperature(priv);
/* driver's okay range is -260 to +25.
* human readable okay range is 0 to +285 */
IWL_DEBUG_INFO("Temperature: %d\n", temperature + IWL_TEMP_CONVERT);
/* handle insane temp reading */
if (iwl_hw_reg_temp_out_of_range(temperature)) {
IWL_ERROR("Error bad temperature value %d\n", temperature);
/* if really really hot(?),
* substitute the 3rd band/group's temp measured at factory */
if (priv->last_temperature > 100)
temperature = priv->eeprom.groups[2].temperature;
else /* else use most recent "sane" value from driver */
temperature = priv->last_temperature;
}
return temperature; /* raw, not "human readable" */
}
/* Adjust Txpower only if temperature variance is greater than threshold.
*
* Both are lower than older versions' 9 degrees */
#define IWL_TEMPERATURE_LIMIT_TIMER 6
/**
* is_temp_calib_needed - determines if new calibration is needed
*
* records new temperature in tx_mgr->temperature.
* replaces tx_mgr->last_temperature *only* if calib needed
* (assumes caller will actually do the calibration!). */
static int is_temp_calib_needed(struct iwl_priv *priv)
{
int temp_diff;
priv->temperature = iwl_hw_reg_txpower_get_temperature(priv);
temp_diff = priv->temperature - priv->last_temperature;
/* get absolute value */
if (temp_diff < 0) {
IWL_DEBUG_POWER("Getting cooler, delta %d,\n", temp_diff);
temp_diff = -temp_diff;
} else if (temp_diff == 0)
IWL_DEBUG_POWER("Same temp,\n");
else
IWL_DEBUG_POWER("Getting warmer, delta %d,\n", temp_diff);
/* if we don't need calibration, *don't* update last_temperature */
if (temp_diff < IWL_TEMPERATURE_LIMIT_TIMER) {
IWL_DEBUG_POWER("Timed thermal calib not needed\n");
return 0;
}
IWL_DEBUG_POWER("Timed thermal calib needed\n");
/* assume that caller will actually do calib ...
* update the "last temperature" value */
priv->last_temperature = priv->temperature;
return 1;
}
#define IWL_MAX_GAIN_ENTRIES 78
#define IWL_CCK_FROM_OFDM_POWER_DIFF -5
#define IWL_CCK_FROM_OFDM_INDEX_DIFF (10)
/* radio and DSP power table, each step is 1/2 dB.
* 1st number is for RF analog gain, 2nd number is for DSP pre-DAC gain. */
static struct iwl_tx_power power_gain_table[2][IWL_MAX_GAIN_ENTRIES] = {
{
{251, 127}, /* 2.4 GHz, highest power */
{251, 127},
{251, 127},
{251, 127},
{251, 125},
{251, 110},
{251, 105},
{251, 98},
{187, 125},
{187, 115},
{187, 108},
{187, 99},
{243, 119},
{243, 111},
{243, 105},
{243, 97},
{243, 92},
{211, 106},
{211, 100},
{179, 120},
{179, 113},
{179, 107},
{147, 125},
{147, 119},
{147, 112},
{147, 106},
{147, 101},
{147, 97},
{147, 91},
{115, 107},
{235, 121},
{235, 115},
{235, 109},
{203, 127},
{203, 121},
{203, 115},
{203, 108},
{203, 102},
{203, 96},
{203, 92},
{171, 110},
{171, 104},
{171, 98},
{139, 116},
{227, 125},
{227, 119},
{227, 113},
{227, 107},
{227, 101},
{227, 96},
{195, 113},
{195, 106},
{195, 102},
{195, 95},
{163, 113},
{163, 106},
{163, 102},
{163, 95},
{131, 113},
{131, 106},
{131, 102},
{131, 95},
{99, 113},
{99, 106},
{99, 102},
{99, 95},
{67, 113},
{67, 106},
{67, 102},
{67, 95},
{35, 113},
{35, 106},
{35, 102},
{35, 95},
{3, 113},
{3, 106},
{3, 102},
{3, 95} }, /* 2.4 GHz, lowest power */
{
{251, 127}, /* 5.x GHz, highest power */
{251, 120},
{251, 114},
{219, 119},
{219, 101},
{187, 113},
{187, 102},
{155, 114},
{155, 103},
{123, 117},
{123, 107},
{123, 99},
{123, 92},
{91, 108},
{59, 125},
{59, 118},
{59, 109},
{59, 102},
{59, 96},
{59, 90},
{27, 104},
{27, 98},
{27, 92},
{115, 118},
{115, 111},
{115, 104},
{83, 126},
{83, 121},
{83, 113},
{83, 105},
{83, 99},
{51, 118},
{51, 111},
{51, 104},
{51, 98},
{19, 116},
{19, 109},
{19, 102},
{19, 98},
{19, 93},
{171, 113},
{171, 107},
{171, 99},
{139, 120},
{139, 113},
{139, 107},
{139, 99},
{107, 120},
{107, 113},
{107, 107},
{107, 99},
{75, 120},
{75, 113},
{75, 107},
{75, 99},
{43, 120},
{43, 113},
{43, 107},
{43, 99},
{11, 120},
{11, 113},
{11, 107},
{11, 99},
{131, 107},
{131, 99},
{99, 120},
{99, 113},
{99, 107},
{99, 99},
{67, 120},
{67, 113},
{67, 107},
{67, 99},
{35, 120},
{35, 113},
{35, 107},
{35, 99},
{3, 120} } /* 5.x GHz, lowest power */
};
static inline u8 iwl_hw_reg_fix_power_index(int index)
{
if (index < 0)
return 0;
if (index >= IWL_MAX_GAIN_ENTRIES)
return IWL_MAX_GAIN_ENTRIES - 1;
return (u8) index;
}
/* Kick off thermal recalibration check every 60 seconds */
#define REG_RECALIB_PERIOD (60)
/**
* iwl_hw_reg_set_scan_power - Set Tx power for scan probe requests
*
* Set (in our channel info database) the direct scan Tx power for 1 Mbit (CCK)
* or 6 Mbit (OFDM) rates.
*/
static void iwl_hw_reg_set_scan_power(struct iwl_priv *priv, u32 scan_tbl_index,
s32 rate_index, const s8 *clip_pwrs,
struct iwl_channel_info *ch_info,
int band_index)
{
struct iwl_scan_power_info *scan_power_info;
s8 power;
u8 power_index;
scan_power_info = &ch_info->scan_pwr_info[scan_tbl_index];
/* use this channel group's 6Mbit clipping/saturation pwr,
* but cap at regulatory scan power restriction (set during init
* based on eeprom channel data) for this channel. */
power = min(ch_info->scan_power, clip_pwrs[IWL_RATE_6M_INDEX]);
/* further limit to user's max power preference.
* FIXME: Other spectrum management power limitations do not
* seem to apply?? */
power = min(power, priv->user_txpower_limit);
scan_power_info->requested_power = power;
/* find difference between new scan *power* and current "normal"
* Tx *power* for 6Mb. Use this difference (x2) to adjust the
* current "normal" temperature-compensated Tx power *index* for
* this rate (1Mb or 6Mb) to yield new temp-compensated scan power
* *index*. */
power_index = ch_info->power_info[rate_index].power_table_index
- (power - ch_info->power_info
[IWL_RATE_6M_INDEX].requested_power) * 2;
/* store reference index that we use when adjusting *all* scan
* powers. So we can accommodate user (all channel) or spectrum
* management (single channel) power changes "between" temperature
* feedback compensation procedures.
* don't force fit this reference index into gain table; it may be a
* negative number. This will help avoid errors when we're at
* the lower bounds (highest gains, for warmest temperatures)
* of the table. */
/* don't exceed table bounds for "real" setting */
power_index = iwl_hw_reg_fix_power_index(power_index);
scan_power_info->power_table_index = power_index;
scan_power_info->tpc.tx_gain =
power_gain_table[band_index][power_index].tx_gain;
scan_power_info->tpc.dsp_atten =
power_gain_table[band_index][power_index].dsp_atten;
}
/**
* iwl_hw_reg_send_txpower - fill in Tx Power command with gain settings
*
* Configures power settings for all rates for the current channel,
* using values from channel info struct, and send to NIC
*/
int iwl_hw_reg_send_txpower(struct iwl_priv *priv)
{
int rate_idx;
const struct iwl_channel_info *ch_info = NULL;
struct iwl_txpowertable_cmd txpower = {
.channel = priv->active_rxon.channel,
};
txpower.band = (priv->phymode == MODE_IEEE80211A) ? 0 : 1;
ch_info = iwl_get_channel_info(priv,
priv->phymode,
le16_to_cpu(priv->active_rxon.channel));
if (!ch_info) {
IWL_ERROR
("Failed to get channel info for channel %d [%d]\n",
le16_to_cpu(priv->active_rxon.channel), priv->phymode);
return -EINVAL;
}
if (!is_channel_valid(ch_info)) {
IWL_DEBUG_POWER("Not calling TX_PWR_TABLE_CMD on "
"non-Tx channel.\n");
return 0;
}
/* fill cmd with power settings for all rates for current channel */
for (rate_idx = 0; rate_idx < IWL_RATE_COUNT; rate_idx++) {
txpower.power[rate_idx].tpc = ch_info->power_info[rate_idx].tpc;
txpower.power[rate_idx].rate = iwl_rates[rate_idx].plcp;
IWL_DEBUG_POWER("ch %d:%d rf %d dsp %3d rate code 0x%02x\n",
le16_to_cpu(txpower.channel),
txpower.band,
txpower.power[rate_idx].tpc.tx_gain,
txpower.power[rate_idx].tpc.dsp_atten,
txpower.power[rate_idx].rate);
}
return iwl_send_cmd_pdu(priv, REPLY_TX_PWR_TABLE_CMD,
sizeof(struct iwl_txpowertable_cmd), &txpower);
}
/**
* iwl_hw_reg_set_new_power - Configures power tables at new levels
* @ch_info: Channel to update. Uses power_info.requested_power.
*
* Replace requested_power and base_power_index ch_info fields for
* one channel.
*
* Called if user or spectrum management changes power preferences.
* Takes into account h/w and modulation limitations (clip power).
*
* This does *not* send anything to NIC, just sets up ch_info for one channel.
*
* NOTE: reg_compensate_for_temperature_dif() *must* be run after this to
* properly fill out the scan powers, and actual h/w gain settings,
* and send changes to NIC
*/
static int iwl_hw_reg_set_new_power(struct iwl_priv *priv,
struct iwl_channel_info *ch_info)
{
struct iwl_channel_power_info *power_info;
int power_changed = 0;
int i;
const s8 *clip_pwrs;
int power;
/* Get this chnlgrp's rate-to-max/clip-powers table */
clip_pwrs = priv->clip_groups[ch_info->group_index].clip_powers;
/* Get this channel's rate-to-current-power settings table */
power_info = ch_info->power_info;
/* update OFDM Txpower settings */
for (i = IWL_FIRST_OFDM_RATE; i <= IWL_LAST_OFDM_RATE;
i++, ++power_info) {
int delta_idx;
/* limit new power to be no more than h/w capability */
power = min(ch_info->curr_txpow, clip_pwrs[i]);
if (power == power_info->requested_power)
continue;
/* find difference between old and new requested powers,
* update base (non-temp-compensated) power index */
delta_idx = (power - power_info->requested_power) * 2;
power_info->base_power_index -= delta_idx;
/* save new requested power value */
power_info->requested_power = power;
power_changed = 1;
}
/* update CCK Txpower settings, based on OFDM 12M setting ...
* ... all CCK power settings for a given channel are the *same*. */
if (power_changed) {
power =
ch_info->power_info[IWL_RATE_12M_INDEX].
requested_power + IWL_CCK_FROM_OFDM_POWER_DIFF;
/* do all CCK rates' iwl_channel_power_info structures */
for (i = IWL_FIRST_CCK_RATE; i <= IWL_LAST_CCK_RATE; i++) {
power_info->requested_power = power;
power_info->base_power_index =
ch_info->power_info[IWL_RATE_12M_INDEX].
base_power_index + IWL_CCK_FROM_OFDM_INDEX_DIFF;
++power_info;
}
}
return 0;
}
/**
* iwl_hw_reg_get_ch_txpower_limit - returns new power limit for channel
*
* NOTE: Returned power limit may be less (but not more) than requested,
* based strictly on regulatory (eeprom and spectrum mgt) limitations
* (no consideration for h/w clipping limitations).
*/
static int iwl_hw_reg_get_ch_txpower_limit(struct iwl_channel_info *ch_info)
{
s8 max_power;
#if 0
/* if we're using TGd limits, use lower of TGd or EEPROM */
if (ch_info->tgd_data.max_power != 0)
max_power = min(ch_info->tgd_data.max_power,
ch_info->eeprom.max_power_avg);
/* else just use EEPROM limits */
else
#endif
max_power = ch_info->eeprom.max_power_avg;
return min(max_power, ch_info->max_power_avg);
}
/**
* iwl_hw_reg_comp_txpower_temp - Compensate for temperature
*
* Compensate txpower settings of *all* channels for temperature.
* This only accounts for the difference between current temperature
* and the factory calibration temperatures, and bases the new settings
* on the channel's base_power_index.
*
* If RxOn is "associated", this sends the new Txpower to NIC!
*/
static int iwl_hw_reg_comp_txpower_temp(struct iwl_priv *priv)
{
struct iwl_channel_info *ch_info = NULL;
int delta_index;
const s8 *clip_pwrs; /* array of h/w max power levels for each rate */
u8 a_band;
u8 rate_index;
u8 scan_tbl_index;
u8 i;
int ref_temp;
int temperature = priv->temperature;
/* set up new Tx power info for each and every channel, 2.4 and 5.x */
for (i = 0; i < priv->channel_count; i++) {
ch_info = &priv->channel_info[i];
a_band = is_channel_a_band(ch_info);
/* Get this chnlgrp's factory calibration temperature */
ref_temp = (s16)priv->eeprom.groups[ch_info->group_index].
temperature;
/* get power index adjustment based on curr and factory
* temps */
delta_index = iwl_hw_reg_adjust_power_by_temp(temperature,
ref_temp);
/* set tx power value for all rates, OFDM and CCK */
for (rate_index = 0; rate_index < IWL_RATE_COUNT;
rate_index++) {
int power_idx =
ch_info->power_info[rate_index].base_power_index;
/* temperature compensate */
power_idx += delta_index;
/* stay within table range */
power_idx = iwl_hw_reg_fix_power_index(power_idx);
ch_info->power_info[rate_index].
power_table_index = (u8) power_idx;
ch_info->power_info[rate_index].tpc =
power_gain_table[a_band][power_idx];
}
/* Get this chnlgrp's rate-to-max/clip-powers table */
clip_pwrs = priv->clip_groups[ch_info->group_index].clip_powers;
/* set scan tx power, 1Mbit for CCK, 6Mbit for OFDM */
for (scan_tbl_index = 0;
scan_tbl_index < IWL_NUM_SCAN_RATES; scan_tbl_index++) {
s32 actual_index = (scan_tbl_index == 0) ?
IWL_RATE_1M_INDEX : IWL_RATE_6M_INDEX;
iwl_hw_reg_set_scan_power(priv, scan_tbl_index,
actual_index, clip_pwrs,
ch_info, a_band);
}
}
/* send Txpower command for current channel to ucode */
return iwl_hw_reg_send_txpower(priv);
}
int iwl_hw_reg_set_txpower(struct iwl_priv *priv, s8 power)
{
struct iwl_channel_info *ch_info;
s8 max_power;
u8 a_band;
u8 i;
if (priv->user_txpower_limit == power) {
IWL_DEBUG_POWER("Requested Tx power same as current "
"limit: %ddBm.\n", power);
return 0;
}
IWL_DEBUG_POWER("Setting upper limit clamp to %ddBm.\n", power);
priv->user_txpower_limit = power;
/* set up new Tx powers for each and every channel, 2.4 and 5.x */
for (i = 0; i < priv->channel_count; i++) {
ch_info = &priv->channel_info[i];
a_band = is_channel_a_band(ch_info);
/* find minimum power of all user and regulatory constraints
* (does not consider h/w clipping limitations) */
max_power = iwl_hw_reg_get_ch_txpower_limit(ch_info);
max_power = min(power, max_power);
if (max_power != ch_info->curr_txpow) {
ch_info->curr_txpow = max_power;
/* this considers the h/w clipping limitations */
iwl_hw_reg_set_new_power(priv, ch_info);
}
}
/* update txpower settings for all channels,
* send to NIC if associated. */
is_temp_calib_needed(priv);
iwl_hw_reg_comp_txpower_temp(priv);
return 0;
}
/* will add 3945 channel switch cmd handling later */
int iwl_hw_channel_switch(struct iwl_priv *priv, u16 channel)
{
return 0;
}
/**
* iwl3945_reg_txpower_periodic - called when time to check our temperature.
*
* -- reset periodic timer
* -- see if temp has changed enough to warrant re-calibration ... if so:
* -- correct coeffs for temp (can reset temp timer)
* -- save this temp as "last",
* -- send new set of gain settings to NIC
* NOTE: This should continue working, even when we're not associated,
* so we can keep our internal table of scan powers current. */
void iwl3945_reg_txpower_periodic(struct iwl_priv *priv)
{
/* This will kick in the "brute force"
* iwl_hw_reg_comp_txpower_temp() below */
if (!is_temp_calib_needed(priv))
goto reschedule;
/* Set up a new set of temp-adjusted TxPowers, send to NIC.
* This is based *only* on current temperature,
* ignoring any previous power measurements */
iwl_hw_reg_comp_txpower_temp(priv);
reschedule:
queue_delayed_work(priv->workqueue,
&priv->thermal_periodic, REG_RECALIB_PERIOD * HZ);
}
void iwl3945_bg_reg_txpower_periodic(struct work_struct *work)
{
struct iwl_priv *priv = container_of(work, struct iwl_priv,
thermal_periodic.work);
if (test_bit(STATUS_EXIT_PENDING, &priv->status))
return;
mutex_lock(&priv->mutex);
iwl3945_reg_txpower_periodic(priv);
mutex_unlock(&priv->mutex);
}
/**
* iwl_hw_reg_get_ch_grp_index - find the channel-group index (0-4)
* for the channel.
*
* This function is used when initializing channel-info structs.
*
* NOTE: These channel groups do *NOT* match the bands above!
* These channel groups are based on factory-tested channels;
* on A-band, EEPROM's "group frequency" entries represent the top
* channel in each group 1-4. Group 5 All B/G channels are in group 0.
*/
static u16 iwl_hw_reg_get_ch_grp_index(struct iwl_priv *priv,
const struct iwl_channel_info *ch_info)
{
struct iwl_eeprom_txpower_group *ch_grp = &priv->eeprom.groups[0];
u8 group;
u16 group_index = 0; /* based on factory calib frequencies */
u8 grp_channel;
/* Find the group index for the channel ... don't use index 1(?) */
if (is_channel_a_band(ch_info)) {
for (group = 1; group < 5; group++) {
grp_channel = ch_grp[group].group_channel;
if (ch_info->channel <= grp_channel) {
group_index = group;
break;
}
}
/* group 4 has a few channels *above* its factory cal freq */
if (group == 5)
group_index = 4;
} else
group_index = 0; /* 2.4 GHz, group 0 */
IWL_DEBUG_POWER("Chnl %d mapped to grp %d\n", ch_info->channel,
group_index);
return group_index;
}
/**
* iwl_hw_reg_get_matched_power_index - Interpolate to get nominal index
*
* Interpolate to get nominal (i.e. at factory calibration temperature) index
* into radio/DSP gain settings table for requested power.
*/
static int iwl_hw_reg_get_matched_power_index(struct iwl_priv *priv,
s8 requested_power,
s32 setting_index, s32 *new_index)
{
const struct iwl_eeprom_txpower_group *chnl_grp = NULL;
s32 index0, index1;
s32 power = 2 * requested_power;
s32 i;
const struct iwl_eeprom_txpower_sample *samples;
s32 gains0, gains1;
s32 res;
s32 denominator;
chnl_grp = &priv->eeprom.groups[setting_index];
samples = chnl_grp->samples;
for (i = 0; i < 5; i++) {
if (power == samples[i].power) {
*new_index = samples[i].gain_index;
return 0;
}
}
if (power > samples[1].power) {
index0 = 0;
index1 = 1;
} else if (power > samples[2].power) {
index0 = 1;
index1 = 2;
} else if (power > samples[3].power) {
index0 = 2;
index1 = 3;
} else {
index0 = 3;
index1 = 4;
}
denominator = (s32) samples[index1].power - (s32) samples[index0].power;
if (denominator == 0)
return -EINVAL;
gains0 = (s32) samples[index0].gain_index * (1 << 19);
gains1 = (s32) samples[index1].gain_index * (1 << 19);
res = gains0 + (gains1 - gains0) *
((s32) power - (s32) samples[index0].power) / denominator +
(1 << 18);
*new_index = res >> 19;
return 0;
}
static void iwl_hw_reg_init_channel_groups(struct iwl_priv *priv)
{
u32 i;
s32 rate_index;
const struct iwl_eeprom_txpower_group *group;
IWL_DEBUG_POWER("Initializing factory calib info from EEPROM\n");
for (i = 0; i < IWL_NUM_TX_CALIB_GROUPS; i++) {
s8 *clip_pwrs; /* table of power levels for each rate */
s8 satur_pwr; /* saturation power for each chnl group */
group = &priv->eeprom.groups[i];
/* sanity check on factory saturation power value */
if (group->saturation_power < 40) {
IWL_WARNING("Error: saturation power is %d, "
"less than minimum expected 40\n",
group->saturation_power);
return;
}
/*
* Derive requested power levels for each rate, based on
* hardware capabilities (saturation power for band).
* Basic value is 3dB down from saturation, with further
* power reductions for highest 3 data rates. These
* backoffs provide headroom for high rate modulation
* power peaks, without too much distortion (clipping).
*/
/* we'll fill in this array with h/w max power levels */
clip_pwrs = (s8 *) priv->clip_groups[i].clip_powers;
/* divide factory saturation power by 2 to find -3dB level */
satur_pwr = (s8) (group->saturation_power >> 1);
/* fill in channel group's nominal powers for each rate */
for (rate_index = 0;
rate_index < IWL_RATE_COUNT; rate_index++, clip_pwrs++) {
switch (rate_index) {
case IWL_RATE_36M_INDEX:
if (i == 0) /* B/G */
*clip_pwrs = satur_pwr;
else /* A */
*clip_pwrs = satur_pwr - 5;
break;
case IWL_RATE_48M_INDEX:
if (i == 0)
*clip_pwrs = satur_pwr - 7;
else
*clip_pwrs = satur_pwr - 10;
break;
case IWL_RATE_54M_INDEX:
if (i == 0)
*clip_pwrs = satur_pwr - 9;
else
*clip_pwrs = satur_pwr - 12;
break;
default:
*clip_pwrs = satur_pwr;
break;
}
}
}
}
/**
* iwl3945_txpower_set_from_eeprom - Set channel power info based on EEPROM
*
* Second pass (during init) to set up priv->channel_info
*
* Set up Tx-power settings in our channel info database for each VALID
* (for this geo/SKU) channel, at all Tx data rates, based on eeprom values
* and current temperature.
*
* Since this is based on current temperature (at init time), these values may
* not be valid for very long, but it gives us a starting/default point,
* and allows us to active (i.e. using Tx) scan.
*
* This does *not* write values to NIC, just sets up our internal table.
*/
int iwl3945_txpower_set_from_eeprom(struct iwl_priv *priv)
{
struct iwl_channel_info *ch_info = NULL;
struct iwl_channel_power_info *pwr_info;
int delta_index;
u8 rate_index;
u8 scan_tbl_index;
const s8 *clip_pwrs; /* array of power levels for each rate */
u8 gain, dsp_atten;
s8 power;
u8 pwr_index, base_pwr_index, a_band;
u8 i;
int temperature;
/* save temperature reference,
* so we can determine next time to calibrate */
temperature = iwl_hw_reg_txpower_get_temperature(priv);
priv->last_temperature = temperature;
iwl_hw_reg_init_channel_groups(priv);
/* initialize Tx power info for each and every channel, 2.4 and 5.x */
for (i = 0, ch_info = priv->channel_info; i < priv->channel_count;
i++, ch_info++) {
a_band = is_channel_a_band(ch_info);
if (!is_channel_valid(ch_info))
continue;
/* find this channel's channel group (*not* "band") index */
ch_info->group_index =
iwl_hw_reg_get_ch_grp_index(priv, ch_info);
/* Get this chnlgrp's rate->max/clip-powers table */
clip_pwrs = priv->clip_groups[ch_info->group_index].clip_powers;
/* calculate power index *adjustment* value according to
* diff between current temperature and factory temperature */
delta_index = iwl_hw_reg_adjust_power_by_temp(temperature,
priv->eeprom.groups[ch_info->group_index].
temperature);
IWL_DEBUG_POWER("Delta index for channel %d: %d [%d]\n",
ch_info->channel, delta_index, temperature +
IWL_TEMP_CONVERT);
/* set tx power value for all OFDM rates */
for (rate_index = 0; rate_index < IWL_OFDM_RATES;
rate_index++) {
s32 power_idx;
int rc;
/* use channel group's clip-power table,
* but don't exceed channel's max power */
s8 pwr = min(ch_info->max_power_avg,
clip_pwrs[rate_index]);
pwr_info = &ch_info->power_info[rate_index];
/* get base (i.e. at factory-measured temperature)
* power table index for this rate's power */
rc = iwl_hw_reg_get_matched_power_index(priv, pwr,
ch_info->group_index,
&power_idx);
if (rc) {
IWL_ERROR("Invalid power index\n");
return rc;
}
pwr_info->base_power_index = (u8) power_idx;
/* temperature compensate */
power_idx += delta_index;
/* stay within range of gain table */
power_idx = iwl_hw_reg_fix_power_index(power_idx);
/* fill 1 OFDM rate's iwl_channel_power_info struct */
pwr_info->requested_power = pwr;
pwr_info->power_table_index = (u8) power_idx;
pwr_info->tpc.tx_gain =
power_gain_table[a_band][power_idx].tx_gain;
pwr_info->tpc.dsp_atten =
power_gain_table[a_band][power_idx].dsp_atten;
}
/* set tx power for CCK rates, based on OFDM 12 Mbit settings*/
pwr_info = &ch_info->power_info[IWL_RATE_12M_INDEX];
power = pwr_info->requested_power +
IWL_CCK_FROM_OFDM_POWER_DIFF;
pwr_index = pwr_info->power_table_index +
IWL_CCK_FROM_OFDM_INDEX_DIFF;
base_pwr_index = pwr_info->base_power_index +
IWL_CCK_FROM_OFDM_INDEX_DIFF;
/* stay within table range */
pwr_index = iwl_hw_reg_fix_power_index(pwr_index);
gain = power_gain_table[a_band][pwr_index].tx_gain;
dsp_atten = power_gain_table[a_band][pwr_index].dsp_atten;
/* fill each CCK rate's iwl_channel_power_info structure
* NOTE: All CCK-rate Txpwrs are the same for a given chnl!
* NOTE: CCK rates start at end of OFDM rates! */
for (rate_index = IWL_OFDM_RATES;
rate_index < IWL_RATE_COUNT; rate_index++) {
pwr_info = &ch_info->power_info[rate_index];
pwr_info->requested_power = power;
pwr_info->power_table_index = pwr_index;
pwr_info->base_power_index = base_pwr_index;
pwr_info->tpc.tx_gain = gain;
pwr_info->tpc.dsp_atten = dsp_atten;
}
/* set scan tx power, 1Mbit for CCK, 6Mbit for OFDM */
for (scan_tbl_index = 0;
scan_tbl_index < IWL_NUM_SCAN_RATES; scan_tbl_index++) {
s32 actual_index = (scan_tbl_index == 0) ?
IWL_RATE_1M_INDEX : IWL_RATE_6M_INDEX;
iwl_hw_reg_set_scan_power(priv, scan_tbl_index,
actual_index, clip_pwrs, ch_info, a_band);
}
}
return 0;
}
int iwl_hw_rxq_stop(struct iwl_priv *priv)
{
int rc;
unsigned long flags;
spin_lock_irqsave(&priv->lock, flags);
rc = iwl_grab_restricted_access(priv);
if (rc) {
spin_unlock_irqrestore(&priv->lock, flags);
return rc;
}
iwl_write_restricted(priv, FH_RCSR_CONFIG(0), 0);
rc = iwl_poll_restricted_bit(priv, FH_RSSR_STATUS, (1 << 24), 1000);
if (rc < 0)
IWL_ERROR("Can't stop Rx DMA.\n");
iwl_release_restricted_access(priv);
spin_unlock_irqrestore(&priv->lock, flags);
return 0;
}
int iwl_hw_tx_queue_init(struct iwl_priv *priv, struct iwl_tx_queue *txq)
{
int rc;
unsigned long flags;
int txq_id = txq->q.id;
struct iwl_shared *shared_data = priv->hw_setting.shared_virt;
shared_data->tx_base_ptr[txq_id] = cpu_to_le32((u32)txq->q.dma_addr);
spin_lock_irqsave(&priv->lock, flags);
rc = iwl_grab_restricted_access(priv);
if (rc) {
spin_unlock_irqrestore(&priv->lock, flags);
return rc;
}
iwl_write_restricted(priv, FH_CBCC_CTRL(txq_id), 0);
iwl_write_restricted(priv, FH_CBCC_BASE(txq_id), 0);
iwl_write_restricted(priv, FH_TCSR_CONFIG(txq_id),
ALM_FH_TCSR_TX_CONFIG_REG_VAL_CIRQ_RTC_NOINT |
ALM_FH_TCSR_TX_CONFIG_REG_VAL_MSG_MODE_TXF |
ALM_FH_TCSR_TX_CONFIG_REG_VAL_CIRQ_HOST_IFTFD |
ALM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_ENABLE_VAL |
ALM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE);
iwl_release_restricted_access(priv);
/* fake read to flush all prev. writes */
iwl_read32(priv, FH_TSSR_CBB_BASE);
spin_unlock_irqrestore(&priv->lock, flags);
return 0;
}
int iwl_hw_get_rx_read(struct iwl_priv *priv)
{
struct iwl_shared *shared_data = priv->hw_setting.shared_virt;
return le32_to_cpu(shared_data->rx_read_ptr[0]);
}
/**
* iwl3945_init_hw_rate_table - Initialize the hardware rate fallback table
*/
int iwl3945_init_hw_rate_table(struct iwl_priv *priv)
{
int rc, i;
struct iwl_rate_scaling_cmd rate_cmd = {
.reserved = {0, 0, 0},
};
struct iwl_rate_scaling_info *table = rate_cmd.table;
for (i = 0; i < ARRAY_SIZE(iwl_rates); i++) {
table[i].rate_n_flags =
iwl_hw_set_rate_n_flags(iwl_rates[i].plcp, 0);
table[i].try_cnt = priv->retry_rate;
table[i].next_rate_index = iwl_get_prev_ieee_rate(i);
}
switch (priv->phymode) {
case MODE_IEEE80211A:
IWL_DEBUG_RATE("Select A mode rate scale\n");
/* If one of the following CCK rates is used,
* have it fall back to the 6M OFDM rate */
for (i = IWL_FIRST_CCK_RATE; i <= IWL_LAST_CCK_RATE; i++)
table[i].next_rate_index = IWL_FIRST_OFDM_RATE;
/* Don't fall back to CCK rates */
table[IWL_RATE_12M_INDEX].next_rate_index = IWL_RATE_9M_INDEX;
/* Don't drop out of OFDM rates */
table[IWL_FIRST_OFDM_RATE].next_rate_index =
IWL_FIRST_OFDM_RATE;
break;
case MODE_IEEE80211B:
IWL_DEBUG_RATE("Select B mode rate scale\n");
/* If an OFDM rate is used, have it fall back to the
* 1M CCK rates */
for (i = IWL_FIRST_OFDM_RATE; i <= IWL_LAST_OFDM_RATE; i++)
table[i].next_rate_index = IWL_FIRST_CCK_RATE;
/* CCK shouldn't fall back to OFDM... */
table[IWL_RATE_11M_INDEX].next_rate_index = IWL_RATE_5M_INDEX;
break;
default:
IWL_DEBUG_RATE("Select G mode rate scale\n");
break;
}
/* Update the rate scaling for control frame Tx */
rate_cmd.table_id = 0;
rc = iwl_send_cmd_pdu(priv, REPLY_RATE_SCALE, sizeof(rate_cmd),
&rate_cmd);
if (rc)
return rc;
/* Update the rate scaling for data frame Tx */
rate_cmd.table_id = 1;
return iwl_send_cmd_pdu(priv, REPLY_RATE_SCALE, sizeof(rate_cmd),
&rate_cmd);
}
int iwl_hw_set_hw_setting(struct iwl_priv *priv)
{
memset((void *)&priv->hw_setting, 0,
sizeof(struct iwl_driver_hw_info));
priv->hw_setting.shared_virt =
pci_alloc_consistent(priv->pci_dev,
sizeof(struct iwl_shared),
&priv->hw_setting.shared_phys);
if (!priv->hw_setting.shared_virt) {
IWL_ERROR("failed to allocate pci memory\n");
mutex_unlock(&priv->mutex);
return -ENOMEM;
}
priv->hw_setting.ac_queue_count = AC_NUM;
priv->hw_setting.rx_buffer_size = IWL_RX_BUF_SIZE;
priv->hw_setting.tx_cmd_len = sizeof(struct iwl_tx_cmd);
priv->hw_setting.max_rxq_size = RX_QUEUE_SIZE;
priv->hw_setting.max_rxq_log = RX_QUEUE_SIZE_LOG;
priv->hw_setting.cck_flag = 0;
priv->hw_setting.max_stations = IWL3945_STATION_COUNT;
priv->hw_setting.bcast_sta_id = IWL3945_BROADCAST_ID;
return 0;
}
unsigned int iwl_hw_get_beacon_cmd(struct iwl_priv *priv,
struct iwl_frame *frame, u8 rate)
{
struct iwl_tx_beacon_cmd *tx_beacon_cmd;
unsigned int frame_size;
tx_beacon_cmd = (struct iwl_tx_beacon_cmd *)&frame->u;
memset(tx_beacon_cmd, 0, sizeof(*tx_beacon_cmd));
tx_beacon_cmd->tx.sta_id = IWL3945_BROADCAST_ID;
tx_beacon_cmd->tx.stop_time.life_time = TX_CMD_LIFE_TIME_INFINITE;
frame_size = iwl_fill_beacon_frame(priv,
tx_beacon_cmd->frame,
BROADCAST_ADDR,
sizeof(frame->u) - sizeof(*tx_beacon_cmd));
BUG_ON(frame_size > MAX_MPDU_SIZE);
tx_beacon_cmd->tx.len = cpu_to_le16((u16)frame_size);
tx_beacon_cmd->tx.rate = rate;
tx_beacon_cmd->tx.tx_flags = (TX_CMD_FLG_SEQ_CTL_MSK |
TX_CMD_FLG_TSF_MSK);
/* supp_rates[0] == OFDM */
tx_beacon_cmd->tx.supp_rates[0] = IWL_OFDM_BASIC_RATES_MASK;
/* supp_rates[1] == CCK
*
* NOTE: IWL_*_RATES_MASK are not in the order that supp_rates
* expects so we have to shift them around.
*
* supp_rates expects:
* CCK rates are bit0..3
*
* However IWL_*_RATES_MASK has:
* CCK rates are bit8..11
*/
tx_beacon_cmd->tx.supp_rates[1] =
(IWL_CCK_BASIC_RATES_MASK >> 8) & 0xF;
return (sizeof(struct iwl_tx_beacon_cmd) + frame_size);
}
void iwl_hw_rx_handler_setup(struct iwl_priv *priv)
{
priv->rx_handlers[REPLY_3945_RX] = iwl3945_rx_reply_rx;
}
void iwl_hw_setup_deferred_work(struct iwl_priv *priv)
{
INIT_DELAYED_WORK(&priv->thermal_periodic,
iwl3945_bg_reg_txpower_periodic);
}
void iwl_hw_cancel_deferred_work(struct iwl_priv *priv)
{
cancel_delayed_work(&priv->thermal_periodic);
}
struct pci_device_id iwl_hw_card_ids[] = {
{0x8086, 0x4222, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
{0x8086, 0x4227, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
{0}
};
inline int iwl_eeprom_aqcuire_semaphore(struct iwl_priv *priv)
{
_iwl_clear_bit(priv, CSR_EEPROM_GP, CSR_EEPROM_GP_IF_OWNER_MSK);
return 0;
}
MODULE_DEVICE_TABLE(pci, iwl_hw_card_ids);
/******************************************************************************
*
* Copyright(c) 2003 - 2007 Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
*
* The full GNU General Public License is included in this distribution in the
* file called LICENSE.
*
* Contact Information:
* James P. Ketrenos <ipw2100-admin@linux.intel.com>
* Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*
*****************************************************************************/
#ifndef __iwl_3945_h__
#define __iwl_3945_h__
/*
* Forward declare iwl-3945.c functions for iwl-base.c
*/
extern int iwl_eeprom_aqcuire_semaphore(struct iwl_priv *priv);
extern __le32 iwl3945_get_antenna_flags(const struct iwl_priv *priv);
extern int iwl3945_init_hw_rate_table(struct iwl_priv *priv);
extern void iwl3945_reg_txpower_periodic(struct iwl_priv *priv);
extern void iwl3945_bg_reg_txpower_periodic(struct work_struct *work);
extern int iwl3945_txpower_set_from_eeprom(struct iwl_priv *priv);
extern u8 iwl3945_sync_sta(struct iwl_priv *priv, int sta_id,
u16 tx_rate, u8 flags);
#endif
/******************************************************************************
*
* This file is provided under a dual BSD/GPLv2 license. When using or
* redistributing this file, you may do so under either license.
*
* GPL LICENSE SUMMARY
*
* Copyright(c) 2005 - 2007 Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU Geeral Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
* USA
*
* The full GNU General Public License is included in this distribution
* in the file called LICENSE.GPL.
*
* Contact Information:
* James P. Ketrenos <ipw2100-admin@linux.intel.com>
* Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*
* BSD LICENSE
*
* Copyright(c) 2005 - 2007 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*****************************************************************************/
#ifndef __iwl_4965_hw_h__
#define __iwl_4965_hw_h__
#define IWL_RX_BUF_SIZE (4 * 1024)
#define IWL_MAX_BSM_SIZE BSM_SRAM_SIZE
#define KDR_RTC_INST_UPPER_BOUND (0x018000)
#define KDR_RTC_DATA_UPPER_BOUND (0x80A000)
#define KDR_RTC_INST_SIZE (KDR_RTC_INST_UPPER_BOUND - RTC_INST_LOWER_BOUND)
#define KDR_RTC_DATA_SIZE (KDR_RTC_DATA_UPPER_BOUND - RTC_DATA_LOWER_BOUND)
#define IWL_MAX_INST_SIZE KDR_RTC_INST_SIZE
#define IWL_MAX_DATA_SIZE KDR_RTC_DATA_SIZE
static inline int iwl_hw_valid_rtc_data_addr(u32 addr)
{
return (addr >= RTC_DATA_LOWER_BOUND) &&
(addr < KDR_RTC_DATA_UPPER_BOUND);
}
/********************* START TXPOWER *****************************************/
enum {
HT_IE_EXT_CHANNEL_NONE = 0,
HT_IE_EXT_CHANNEL_ABOVE,
HT_IE_EXT_CHANNEL_INVALID,
HT_IE_EXT_CHANNEL_BELOW,
HT_IE_EXT_CHANNEL_MAX
};
enum {
CALIB_CH_GROUP_1 = 0,
CALIB_CH_GROUP_2 = 1,
CALIB_CH_GROUP_3 = 2,
CALIB_CH_GROUP_4 = 3,
CALIB_CH_GROUP_5 = 4,
CALIB_CH_GROUP_MAX
};
/* Temperature calibration offset is 3% 0C in Kelvin */
#define TEMPERATURE_CALIB_KELVIN_OFFSET 8
#define TEMPERATURE_CALIB_A_VAL 259
#define IWL_TX_POWER_TEMPERATURE_MIN (263)
#define IWL_TX_POWER_TEMPERATURE_MAX (410)
#define IWL_TX_POWER_TEMPERATURE_OUT_OF_RANGE(t) \
(((t) < IWL_TX_POWER_TEMPERATURE_MIN) || \
((t) > IWL_TX_POWER_TEMPERATURE_MAX))
#define IWL_TX_POWER_ILLEGAL_TEMPERATURE (300)
#define IWL_TX_POWER_TEMPERATURE_DIFFERENCE (2)
#define IWL_TX_POWER_MIMO_REGULATORY_COMPENSATION (6)
#define IWL_TX_POWER_TARGET_POWER_MIN (0) /* 0 dBm = 1 milliwatt */
#define IWL_TX_POWER_TARGET_POWER_MAX (16) /* 16 dBm */
/* timeout equivalent to 3 minutes */
#define IWL_TX_POWER_TIMELIMIT_NOCALIB 1800000000
#define IWL_TX_POWER_CCK_COMPENSATION (9)
#define MIN_TX_GAIN_INDEX (0)
#define MIN_TX_GAIN_INDEX_52GHZ_EXT (-9)
#define MAX_TX_GAIN_INDEX_52GHZ (98)
#define MIN_TX_GAIN_52GHZ (98)
#define MAX_TX_GAIN_INDEX_24GHZ (98)
#define MIN_TX_GAIN_24GHZ (98)
#define MAX_TX_GAIN (0)
#define MAX_TX_GAIN_52GHZ_EXT (-9)
#define IWL_TX_POWER_DEFAULT_REGULATORY_24 (34)
#define IWL_TX_POWER_DEFAULT_REGULATORY_52 (34)
#define IWL_TX_POWER_REGULATORY_MIN (0)
#define IWL_TX_POWER_REGULATORY_MAX (34)
#define IWL_TX_POWER_DEFAULT_SATURATION_24 (38)
#define IWL_TX_POWER_DEFAULT_SATURATION_52 (38)
#define IWL_TX_POWER_SATURATION_MIN (20)
#define IWL_TX_POWER_SATURATION_MAX (50)
/* dv *0.4 = dt; so that 5 degrees temperature diff equals
* 12.5 in voltage diff */
#define IWL_TX_TEMPERATURE_UPDATE_LIMIT 9
#define IWL_INVALID_CHANNEL (0xffffffff)
#define IWL_TX_POWER_REGITRY_BIT (2)
#define MIN_IWL_TX_POWER_CALIB_DUR (100)
#define IWL_CCK_FROM_OFDM_POWER_DIFF (-5)
#define IWL_CCK_FROM_OFDM_INDEX_DIFF (9)
/* Number of entries in the gain table */
#define POWER_GAIN_NUM_ENTRIES 78
#define TX_POW_MAX_SESSION_NUM 5
/* timeout equivalent to 3 minutes */
#define TX_IWL_TIMELIMIT_NOCALIB 1800000000
/* Kedron TX_CALIB_STATES */
#define IWL_TX_CALIB_STATE_SEND_TX 0x00000001
#define IWL_TX_CALIB_WAIT_TX_RESPONSE 0x00000002
#define IWL_TX_CALIB_ENABLED 0x00000004
#define IWL_TX_CALIB_XVT_ON 0x00000008
#define IWL_TX_CALIB_TEMPERATURE_CORRECT 0x00000010
#define IWL_TX_CALIB_WORKING_WITH_XVT 0x00000020
#define IWL_TX_CALIB_XVT_PERIODICAL 0x00000040
#define NUM_IWL_TX_CALIB_SETTINS 5 /* Number of tx correction groups */
#define IWL_MIN_POWER_IN_VP_TABLE 1 /* 0.5dBm multiplied by 2 */
#define IWL_MAX_POWER_IN_VP_TABLE 40 /* 20dBm - multiplied by 2 (because
* entries are for each 0.5dBm) */
#define IWL_STEP_IN_VP_TABLE 1 /* 0.5dB - multiplied by 2 */
#define IWL_NUM_POINTS_IN_VPTABLE \
(1 + IWL_MAX_POWER_IN_VP_TABLE - IWL_MIN_POWER_IN_VP_TABLE)
#define MIN_TX_GAIN_INDEX (0)
#define MAX_TX_GAIN_INDEX_52GHZ (98)
#define MIN_TX_GAIN_52GHZ (98)
#define MAX_TX_GAIN_INDEX_24GHZ (98)
#define MIN_TX_GAIN_24GHZ (98)
#define MAX_TX_GAIN (0)
/* First and last channels of all groups */
#define CALIB_IWL_TX_ATTEN_GR1_FCH 34
#define CALIB_IWL_TX_ATTEN_GR1_LCH 43
#define CALIB_IWL_TX_ATTEN_GR2_FCH 44
#define CALIB_IWL_TX_ATTEN_GR2_LCH 70
#define CALIB_IWL_TX_ATTEN_GR3_FCH 71
#define CALIB_IWL_TX_ATTEN_GR3_LCH 124
#define CALIB_IWL_TX_ATTEN_GR4_FCH 125
#define CALIB_IWL_TX_ATTEN_GR4_LCH 200
#define CALIB_IWL_TX_ATTEN_GR5_FCH 1
#define CALIB_IWL_TX_ATTEN_GR5_LCH 20
union iwl_tx_power_dual_stream {
struct {
u8 radio_tx_gain[2];
u8 dsp_predis_atten[2];
} s;
u32 dw;
};
/********************* END TXPOWER *****************************************/
/* HT flags */
#define RXON_FLG_CTRL_CHANNEL_LOC_POS (22)
#define RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK __constant_cpu_to_le32(0x1<<22)
#define RXON_FLG_HT_OPERATING_MODE_POS (23)
#define RXON_FLG_HT_PROT_MSK __constant_cpu_to_le32(0x1<<23)
#define RXON_FLG_FAT_PROT_MSK __constant_cpu_to_le32(0x2<<23)
#define RXON_FLG_CHANNEL_MODE_POS (25)
#define RXON_FLG_CHANNEL_MODE_MSK __constant_cpu_to_le32(0x3<<25)
#define RXON_FLG_CHANNEL_MODE_PURE_40_MSK __constant_cpu_to_le32(0x1<<25)
#define RXON_FLG_CHANNEL_MODE_MIXED_MSK __constant_cpu_to_le32(0x2<<25)
#define RXON_RX_CHAIN_DRIVER_FORCE_MSK __constant_cpu_to_le16(0x1<<0)
#define RXON_RX_CHAIN_VALID_MSK __constant_cpu_to_le16(0x7<<1)
#define RXON_RX_CHAIN_VALID_POS (1)
#define RXON_RX_CHAIN_FORCE_SEL_MSK __constant_cpu_to_le16(0x7<<4)
#define RXON_RX_CHAIN_FORCE_SEL_POS (4)
#define RXON_RX_CHAIN_FORCE_MIMO_SEL_MSK __constant_cpu_to_le16(0x7<<7)
#define RXON_RX_CHAIN_FORCE_MIMO_SEL_POS (7)
#define RXON_RX_CHAIN_CNT_MSK __constant_cpu_to_le16(0x3<<10)
#define RXON_RX_CHAIN_CNT_POS (10)
#define RXON_RX_CHAIN_MIMO_CNT_MSK __constant_cpu_to_le16(0x3<<12)
#define RXON_RX_CHAIN_MIMO_CNT_POS (12)
#define RXON_RX_CHAIN_MIMO_FORCE_MSK __constant_cpu_to_le16(0x1<<14)
#define RXON_RX_CHAIN_MIMO_FORCE_POS (14)
#define MCS_DUP_6M_PLCP 0x20
/* OFDM HT rate masks */
/* ***************************************** */
#define R_MCS_6M_MSK 0x1
#define R_MCS_12M_MSK 0x2
#define R_MCS_18M_MSK 0x4
#define R_MCS_24M_MSK 0x8
#define R_MCS_36M_MSK 0x10
#define R_MCS_48M_MSK 0x20
#define R_MCS_54M_MSK 0x40
#define R_MCS_60M_MSK 0x80
#define R_MCS_12M_DUAL_MSK 0x100
#define R_MCS_24M_DUAL_MSK 0x200
#define R_MCS_36M_DUAL_MSK 0x400
#define R_MCS_48M_DUAL_MSK 0x800
#define is_legacy(tbl) (((tbl) == LQ_G) || ((tbl) == LQ_A))
#define is_siso(tbl) (((tbl) == LQ_SISO))
#define is_mimo(tbl) (((tbl) == LQ_MIMO))
#define is_Ht(tbl) (is_siso(tbl) || is_mimo(tbl))
#define is_a_band(tbl) (((tbl) == LQ_A))
#define is_g_and(tbl) (((tbl) == LQ_G))
/* Flow Handler Definitions */
/**********************/
/* Addresses */
/**********************/
#define FH_MEM_LOWER_BOUND (0x1000)
#define FH_MEM_UPPER_BOUND (0x1EF0)
#define IWL_FH_REGS_LOWER_BOUND (0x1000)
#define IWL_FH_REGS_UPPER_BOUND (0x2000)
#define IWL_FH_KW_MEM_ADDR_REG (FH_MEM_LOWER_BOUND + 0x97C)
/* CBBC Area - Circular buffers base address cache pointers table */
#define FH_MEM_CBBC_LOWER_BOUND (FH_MEM_LOWER_BOUND + 0x9D0)
#define FH_MEM_CBBC_UPPER_BOUND (FH_MEM_LOWER_BOUND + 0xA10)
/* queues 0 - 15 */
#define FH_MEM_CBBC_QUEUE(x) (FH_MEM_CBBC_LOWER_BOUND + (x) * 0x4)
/* RSCSR Area */
#define FH_MEM_RSCSR_LOWER_BOUND (FH_MEM_LOWER_BOUND + 0xBC0)
#define FH_MEM_RSCSR_UPPER_BOUND (FH_MEM_LOWER_BOUND + 0xC00)
#define FH_MEM_RSCSR_CHNL0 (FH_MEM_RSCSR_LOWER_BOUND)
#define FH_RSCSR_CHNL0_STTS_WPTR_REG (FH_MEM_RSCSR_CHNL0)
#define FH_RSCSR_CHNL0_RBDCB_BASE_REG (FH_MEM_RSCSR_CHNL0 + 0x004)
#define FH_RSCSR_CHNL0_RBDCB_WPTR_REG (FH_MEM_RSCSR_CHNL0 + 0x008)
/* RCSR Area - Registers address map */
#define FH_MEM_RCSR_LOWER_BOUND (FH_MEM_LOWER_BOUND + 0xC00)
#define FH_MEM_RCSR_UPPER_BOUND (FH_MEM_LOWER_BOUND + 0xCC0)
#define FH_MEM_RCSR_CHNL0 (FH_MEM_RCSR_LOWER_BOUND)
#define FH_MEM_RCSR_CHNL0_CONFIG_REG (FH_MEM_RCSR_CHNL0)
/* RSSR Area - Rx shared ctrl & status registers */
#define FH_MEM_RSSR_LOWER_BOUND (FH_MEM_LOWER_BOUND + 0xC40)
#define FH_MEM_RSSR_UPPER_BOUND (FH_MEM_LOWER_BOUND + 0xD00)
#define FH_MEM_RSSR_SHARED_CTRL_REG (FH_MEM_RSSR_LOWER_BOUND)
#define FH_MEM_RSSR_RX_STATUS_REG (FH_MEM_RSSR_LOWER_BOUND + 0x004)
#define FH_MEM_RSSR_RX_ENABLE_ERR_IRQ2DRV (FH_MEM_RSSR_LOWER_BOUND + 0x008)
/* TCSR */
#define IWL_FH_TCSR_LOWER_BOUND (IWL_FH_REGS_LOWER_BOUND + 0xD00)
#define IWL_FH_TCSR_UPPER_BOUND (IWL_FH_REGS_LOWER_BOUND + 0xE60)
#define IWL_FH_TCSR_CHNL_NUM (7)
#define IWL_FH_TCSR_CHNL_TX_CONFIG_REG(_chnl) \
(IWL_FH_TCSR_LOWER_BOUND + 0x20 * _chnl)
/* TSSR Area - Tx shared status registers */
/* TSSR */
#define IWL_FH_TSSR_LOWER_BOUND (IWL_FH_REGS_LOWER_BOUND + 0xEA0)
#define IWL_FH_TSSR_UPPER_BOUND (IWL_FH_REGS_LOWER_BOUND + 0xEC0)
#define IWL_FH_TSSR_TX_MSG_CONFIG_REG (IWL_FH_TSSR_LOWER_BOUND + 0x008)
#define IWL_FH_TSSR_TX_STATUS_REG (IWL_FH_TSSR_LOWER_BOUND + 0x010)
#define IWL_FH_TSSR_TX_MSG_CONFIG_REG_VAL_SNOOP_RD_TXPD_ON (0xFF000000)
#define IWL_FH_TSSR_TX_MSG_CONFIG_REG_VAL_ORDER_RD_TXPD_ON (0x00FF0000)
#define IWL_FH_TSSR_TX_MSG_CONFIG_REG_VAL_MAX_FRAG_SIZE_64B (0x00000000)
#define IWL_FH_TSSR_TX_MSG_CONFIG_REG_VAL_MAX_FRAG_SIZE_128B (0x00000400)
#define IWL_FH_TSSR_TX_MSG_CONFIG_REG_VAL_MAX_FRAG_SIZE_256B (0x00000800)
#define IWL_FH_TSSR_TX_MSG_CONFIG_REG_VAL_MAX_FRAG_SIZE_512B (0x00000C00)
#define IWL_FH_TSSR_TX_MSG_CONFIG_REG_VAL_SNOOP_RD_TFD_ON (0x00000100)
#define IWL_FH_TSSR_TX_MSG_CONFIG_REG_VAL_ORDER_RD_CBB_ON (0x00000080)
#define IWL_FH_TSSR_TX_MSG_CONFIG_REG_VAL_ORDER_RSP_WAIT_TH (0x00000020)
#define IWL_FH_TSSR_TX_MSG_CONFIG_REG_VAL_RSP_WAIT_TH (0x00000005)
#define IWL_FH_TSSR_TX_STATUS_REG_BIT_BUFS_EMPTY(_chnl) \
((1 << (_chnl)) << 24)
#define IWL_FH_TSSR_TX_STATUS_REG_BIT_NO_PEND_REQ(_chnl) \
((1 << (_chnl)) << 16)
#define IWL_FH_TSSR_TX_STATUS_REG_MSK_CHNL_IDLE(_chnl) \
(IWL_FH_TSSR_TX_STATUS_REG_BIT_BUFS_EMPTY(_chnl) | \
IWL_FH_TSSR_TX_STATUS_REG_BIT_NO_PEND_REQ(_chnl))
/* TCSR: tx_config register values */
#define IWL_FH_TCSR_TX_CONFIG_REG_VAL_MSG_MODE_TXF (0x00000000)
#define IWL_FH_TCSR_TX_CONFIG_REG_VAL_MSG_MODE_DRIVER (0x00000001)
#define IWL_FH_TCSR_TX_CONFIG_REG_VAL_MSG_MODE_ARC (0x00000002)
#define IWL_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_DISABLE_VAL (0x00000000)
#define IWL_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_ENABLE_VAL (0x00000008)
#define IWL_FH_TCSR_TX_CONFIG_REG_VAL_CIRQ_HOST_NOINT (0x00000000)
#define IWL_FH_TCSR_TX_CONFIG_REG_VAL_CIRQ_HOST_ENDTFD (0x00100000)
#define IWL_FH_TCSR_TX_CONFIG_REG_VAL_CIRQ_HOST_IFTFD (0x00200000)
#define IWL_FH_TCSR_TX_CONFIG_REG_VAL_CIRQ_RTC_NOINT (0x00000000)
#define IWL_FH_TCSR_TX_CONFIG_REG_VAL_CIRQ_RTC_ENDTFD (0x00400000)
#define IWL_FH_TCSR_TX_CONFIG_REG_VAL_CIRQ_RTC_IFTFD (0x00800000)
#define IWL_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_PAUSE (0x00000000)
#define IWL_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_PAUSE_EOF (0x40000000)
#define IWL_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE (0x80000000)
#define IWL_FH_TCSR_CHNL_TX_BUF_STS_REG_VAL_TFDB_EMPTY (0x00000000)
#define IWL_FH_TCSR_CHNL_TX_BUF_STS_REG_VAL_TFDB_WAIT (0x00002000)
#define IWL_FH_TCSR_CHNL_TX_BUF_STS_REG_VAL_TFDB_VALID (0x00000003)
#define IWL_FH_TCSR_CHNL_TX_BUF_STS_REG_BIT_TFDB_WPTR (0x00000001)
#define IWL_FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_NUM (20)
#define IWL_FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_IDX (12)
/* RCSR: channel 0 rx_config register defines */
#define FH_RCSR_CHNL0_RX_CONFIG_DMA_CHNL_EN_MASK (0xC0000000) /* bits 30-31 */
#define FH_RCSR_CHNL0_RX_CONFIG_RBDBC_SIZE_MASK (0x00F00000) /* bits 20-23 */
#define FH_RCSR_CHNL0_RX_CONFIG_RB_SIZE_MASK (0x00030000) /* bits 16-17 */
#define FH_RCSR_CHNL0_RX_CONFIG_SINGLE_FRAME_MASK (0x00008000) /* bit 15 */
#define FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_MASK (0x00001000) /* bit 12 */
#define FH_RCSR_CHNL0_RX_CONFIG_RB_TIMEOUT_MASK (0x00000FF0) /* bit 4-11 */
#define FH_RCSR_RX_CONFIG_RBDCB_SIZE_BITSHIFT (20)
#define FH_RCSR_RX_CONFIG_RB_SIZE_BITSHIFT (16)
/* RCSR: rx_config register values */
#define FH_RCSR_RX_CONFIG_CHNL_EN_PAUSE_VAL (0x00000000)
#define FH_RCSR_RX_CONFIG_CHNL_EN_PAUSE_EOF_VAL (0x40000000)
#define FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL (0x80000000)
#define IWL_FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K (0x00000000)
/* RCSR channel 0 config register values */
#define FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_NO_INT_VAL (0x00000000)
#define FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL (0x00001000)
/* RSCSR: defs used in normal mode */
#define FH_RSCSR_CHNL0_RBDCB_WPTR_MASK (0x00000FFF) /* bits 0-11 */
#define SCD_WIN_SIZE 64
#define SCD_FRAME_LIMIT 64
/* memory mapped registers */
#define SCD_START_OFFSET 0xa02c00
#define SCD_SRAM_BASE_ADDR (SCD_START_OFFSET + 0x0)
#define SCD_EMPTY_BITS (SCD_START_OFFSET + 0x4)
#define SCD_DRAM_BASE_ADDR (SCD_START_OFFSET + 0x10)
#define SCD_AIT (SCD_START_OFFSET + 0x18)
#define SCD_TXFACT (SCD_START_OFFSET + 0x1c)
#define SCD_QUEUE_WRPTR(x) (SCD_START_OFFSET + 0x24 + (x) * 4)
#define SCD_QUEUE_RDPTR(x) (SCD_START_OFFSET + 0x64 + (x) * 4)
#define SCD_SETQUEUENUM (SCD_START_OFFSET + 0xa4)
#define SCD_SET_TXSTAT_TXED (SCD_START_OFFSET + 0xa8)
#define SCD_SET_TXSTAT_DONE (SCD_START_OFFSET + 0xac)
#define SCD_SET_TXSTAT_NOT_SCHD (SCD_START_OFFSET + 0xb0)
#define SCD_DECREASE_CREDIT (SCD_START_OFFSET + 0xb4)
#define SCD_DECREASE_SCREDIT (SCD_START_OFFSET + 0xb8)
#define SCD_LOAD_CREDIT (SCD_START_OFFSET + 0xbc)
#define SCD_LOAD_SCREDIT (SCD_START_OFFSET + 0xc0)
#define SCD_BAR (SCD_START_OFFSET + 0xc4)
#define SCD_BAR_DW0 (SCD_START_OFFSET + 0xc8)
#define SCD_BAR_DW1 (SCD_START_OFFSET + 0xcc)
#define SCD_QUEUECHAIN_SEL (SCD_START_OFFSET + 0xd0)
#define SCD_QUERY_REQ (SCD_START_OFFSET + 0xd8)
#define SCD_QUERY_RES (SCD_START_OFFSET + 0xdc)
#define SCD_PENDING_FRAMES (SCD_START_OFFSET + 0xe0)
#define SCD_INTERRUPT_MASK (SCD_START_OFFSET + 0xe4)
#define SCD_INTERRUPT_THRESHOLD (SCD_START_OFFSET + 0xe8)
#define SCD_QUERY_MIN_FRAME_SIZE (SCD_START_OFFSET + 0x100)
#define SCD_QUEUE_STATUS_BITS(x) (SCD_START_OFFSET + 0x104 + (x) * 4)
/* SRAM structures */
#define SCD_CONTEXT_DATA_OFFSET 0x380
#define SCD_TX_STTS_BITMAP_OFFSET 0x400
#define SCD_TRANSLATE_TBL_OFFSET 0x500
#define SCD_CONTEXT_QUEUE_OFFSET(x) (SCD_CONTEXT_DATA_OFFSET + ((x) * 8))
#define SCD_TRANSLATE_TBL_OFFSET_QUEUE(x) \
((SCD_TRANSLATE_TBL_OFFSET + ((x) * 2)) & 0xfffffffc)
#define SCD_TXFACT_REG_TXFIFO_MASK(lo, hi) \
((1<<(hi))|((1<<(hi))-(1<<(lo))))
#define SCD_MODE_REG_BIT_SEARCH_MODE (1<<0)
#define SCD_MODE_REG_BIT_SBYP_MODE (1<<1)
#define SCD_TXFIFO_POS_TID (0)
#define SCD_TXFIFO_POS_RA (4)
#define SCD_QUEUE_STTS_REG_POS_ACTIVE (0)
#define SCD_QUEUE_STTS_REG_POS_TXF (1)
#define SCD_QUEUE_STTS_REG_POS_WSL (5)
#define SCD_QUEUE_STTS_REG_POS_SCD_ACK (8)
#define SCD_QUEUE_STTS_REG_POS_SCD_ACT_EN (10)
#define SCD_QUEUE_STTS_REG_MSK (0x0007FC00)
#define SCD_QUEUE_RA_TID_MAP_RATID_MSK (0x01FF)
#define SCD_QUEUE_CTX_REG1_WIN_SIZE_POS (0)
#define SCD_QUEUE_CTX_REG1_WIN_SIZE_MSK (0x0000007F)
#define SCD_QUEUE_CTX_REG1_CREDIT_POS (8)
#define SCD_QUEUE_CTX_REG1_CREDIT_MSK (0x00FFFF00)
#define SCD_QUEUE_CTX_REG1_SUPER_CREDIT_POS (24)
#define SCD_QUEUE_CTX_REG1_SUPER_CREDIT_MSK (0xFF000000)
#define SCD_QUEUE_CTX_REG2_FRAME_LIMIT_POS (16)
#define SCD_QUEUE_CTX_REG2_FRAME_LIMIT_MSK (0x007F0000)
#define CSR_HW_IF_CONFIG_REG_BIT_KEDRON_R (0x00000010)
#define CSR_HW_IF_CONFIG_REG_MSK_BOARD_VER (0x00000C00)
#define CSR_HW_IF_CONFIG_REG_BIT_MAC_SI (0x00000100)
#define CSR_HW_IF_CONFIG_REG_BIT_RADIO_SI (0x00000200)
static inline u8 iwl_hw_get_rate(__le32 rate_n_flags)
{
return le32_to_cpu(rate_n_flags) & 0xFF;
}
static inline u16 iwl_hw_get_rate_n_flags(__le32 rate_n_flags)
{
return le32_to_cpu(rate_n_flags) & 0xFFFF;
}
static inline __le32 iwl_hw_set_rate_n_flags(u8 rate, u16 flags)
{
return cpu_to_le32(flags|(u16)rate);
}
struct iwl_tfd_frame_data {
__le32 tb1_addr;
__le32 val1;
/* __le32 ptb1_32_35:4; */
#define IWL_tb1_addr_hi_POS 0
#define IWL_tb1_addr_hi_LEN 4
#define IWL_tb1_addr_hi_SYM val1
/* __le32 tb_len1:12; */
#define IWL_tb1_len_POS 4
#define IWL_tb1_len_LEN 12
#define IWL_tb1_len_SYM val1
/* __le32 ptb2_0_15:16; */
#define IWL_tb2_addr_lo16_POS 16
#define IWL_tb2_addr_lo16_LEN 16
#define IWL_tb2_addr_lo16_SYM val1
__le32 val2;
/* __le32 ptb2_16_35:20; */
#define IWL_tb2_addr_hi20_POS 0
#define IWL_tb2_addr_hi20_LEN 20
#define IWL_tb2_addr_hi20_SYM val2
/* __le32 tb_len2:12; */
#define IWL_tb2_len_POS 20
#define IWL_tb2_len_LEN 12
#define IWL_tb2_len_SYM val2
} __attribute__ ((packed));
struct iwl_tfd_frame {
__le32 val0;
/* __le32 rsvd1:24; */
/* __le32 num_tbs:5; */
#define IWL_num_tbs_POS 24
#define IWL_num_tbs_LEN 5
#define IWL_num_tbs_SYM val0
/* __le32 rsvd2:1; */
/* __le32 padding:2; */
struct iwl_tfd_frame_data pa[10];
__le32 reserved;
} __attribute__ ((packed));
#define IWL4965_MAX_WIN_SIZE 64
#define IWL4965_QUEUE_SIZE 256
#define IWL4965_NUM_FIFOS 7
#define IWL_MAX_NUM_QUEUES 16
struct iwl4965_queue_byte_cnt_entry {
__le16 val;
/* __le16 byte_cnt:12; */
#define IWL_byte_cnt_POS 0
#define IWL_byte_cnt_LEN 12
#define IWL_byte_cnt_SYM val
/* __le16 rsvd:4; */
} __attribute__ ((packed));
struct iwl4965_sched_queue_byte_cnt_tbl {
struct iwl4965_queue_byte_cnt_entry tfd_offset[IWL4965_QUEUE_SIZE +
IWL4965_MAX_WIN_SIZE];
u8 dont_care[1024 -
(IWL4965_QUEUE_SIZE + IWL4965_MAX_WIN_SIZE) *
sizeof(__le16)];
} __attribute__ ((packed));
/* Base physical address of iwl_shared is provided to SCD_DRAM_BASE_ADDR
* and &iwl_shared.val0 is provided to FH_RSCSR_CHNL0_STTS_WPTR_REG */
struct iwl_shared {
struct iwl4965_sched_queue_byte_cnt_tbl
queues_byte_cnt_tbls[IWL_MAX_NUM_QUEUES];
__le32 val0;
/* __le32 rb_closed_stts_rb_num:12; */
#define IWL_rb_closed_stts_rb_num_POS 0
#define IWL_rb_closed_stts_rb_num_LEN 12
#define IWL_rb_closed_stts_rb_num_SYM val0
/* __le32 rsrv1:4; */
/* __le32 rb_closed_stts_rx_frame_num:12; */
#define IWL_rb_closed_stts_rx_frame_num_POS 16
#define IWL_rb_closed_stts_rx_frame_num_LEN 12
#define IWL_rb_closed_stts_rx_frame_num_SYM val0
/* __le32 rsrv2:4; */
__le32 val1;
/* __le32 frame_finished_stts_rb_num:12; */
#define IWL_frame_finished_stts_rb_num_POS 0
#define IWL_frame_finished_stts_rb_num_LEN 12
#define IWL_frame_finished_stts_rb_num_SYM val1
/* __le32 rsrv3:4; */
/* __le32 frame_finished_stts_rx_frame_num:12; */
#define IWL_frame_finished_stts_rx_frame_num_POS 16
#define IWL_frame_finished_stts_rx_frame_num_LEN 12
#define IWL_frame_finished_stts_rx_frame_num_SYM val1
/* __le32 rsrv4:4; */
__le32 padding1; /* so that allocation will be aligned to 16B */
__le32 padding2;
} __attribute__ ((packed));
#endif /* __iwl_4965_hw_h__ */
/******************************************************************************
*
* Copyright(c) 2005 - 2007 Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
*
* The full GNU General Public License is included in this distribution in the
* file called LICENSE.
*
* Contact Information:
* James P. Ketrenos <ipw2100-admin@linux.intel.com>
* Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*
*****************************************************************************/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/skbuff.h>
#include <linux/wireless.h>
#include <net/mac80211.h>
#include <net/ieee80211.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/delay.h>
#include <linux/workqueue.h>
#include <net/mac80211.h>
#include <linux/wireless.h>
#include "../net/mac80211/ieee80211_rate.h"
#include "iwlwifi.h"
#include "iwl-helpers.h"
#define RS_NAME "iwl-4965-rs"
#define NUM_TRY_BEFORE_ANTENNA_TOGGLE 1
#define IWL_NUMBER_TRY 1
#define IWL_HT_NUMBER_TRY 3
#define IWL_RATE_MAX_WINDOW 62
#define IWL_RATE_HIGH_TH 10880
#define IWL_RATE_MIN_FAILURE_TH 6
#define IWL_RATE_MIN_SUCCESS_TH 8
#define IWL_RATE_DECREASE_TH 1920
#define IWL_RATE_INCREASE_TH 8960
#define IWL_RATE_SCALE_FLUSH_INTVL (2*HZ) /*2 seconds */
static u8 rs_ht_to_legacy[] = {
IWL_RATE_6M_INDEX, IWL_RATE_6M_INDEX,
IWL_RATE_6M_INDEX, IWL_RATE_6M_INDEX,
IWL_RATE_6M_INDEX,
IWL_RATE_6M_INDEX, IWL_RATE_9M_INDEX,
IWL_RATE_12M_INDEX, IWL_RATE_18M_INDEX,
IWL_RATE_24M_INDEX, IWL_RATE_36M_INDEX,
IWL_RATE_48M_INDEX, IWL_RATE_54M_INDEX
};
struct iwl_rate {
u32 rate_n_flags;
} __attribute__ ((packed));
struct iwl_rate_scale_data {
u64 data;
s32 success_counter;
s32 success_ratio;
s32 counter;
s32 average_tpt;
unsigned long stamp;
};
struct iwl_scale_tbl_info {
enum iwl_table_type lq_type;
enum iwl_antenna_type antenna_type;
u8 is_SGI;
u8 is_fat;
u8 is_dup;
u8 action;
s32 *expected_tpt;
struct iwl_rate current_rate;
struct iwl_rate_scale_data win[IWL_RATE_COUNT];
};
struct iwl_rate_scale_priv {
u8 active_tbl;
u8 enable_counter;
u8 stay_in_tbl;
u8 search_better_tbl;
s32 last_tpt;
u32 table_count_limit;
u32 max_failure_limit;
u32 max_success_limit;
u32 table_count;
u32 total_failed;
u32 total_success;
u32 flush_timer;
u8 action_counter;
u8 antenna;
u8 valid_antenna;
u8 is_green;
u8 is_dup;
u8 phymode;
u8 ibss_sta_added;
u16 active_rate;
u16 active_siso_rate;
u16 active_mimo_rate;
u16 active_rate_basic;
struct iwl_link_quality_cmd lq;
struct iwl_scale_tbl_info lq_info[LQ_SIZE];
};
static void rs_rate_scale_perform(struct iwl_priv *priv,
struct net_device *dev,
struct ieee80211_hdr *hdr,
struct sta_info *sta);
static int rs_fill_link_cmd(struct iwl_rate_scale_priv *lq_data,
struct iwl_rate *tx_mcs,
struct iwl_link_quality_cmd *tbl,
struct sta_info *sta);
static s32 expected_tpt_A[IWL_RATE_COUNT] = {
0, 0, 0, 0, 40, 57, 72, 98, 121, 154, 177, 186, 186
};
static s32 expected_tpt_G[IWL_RATE_COUNT] = {
7, 13, 35, 58, 40, 57, 72, 98, 121, 154, 177, 186, 186
};
static s32 expected_tpt_siso20MHz[IWL_RATE_COUNT] = {
0, 0, 0, 0, 42, 42, 76, 102, 124, 159, 183, 193, 202
};
static s32 expected_tpt_siso20MHzSGI[IWL_RATE_COUNT] = {
0, 0, 0, 0, 46, 46, 82, 110, 132, 168, 192, 202, 211
};
static s32 expected_tpt_mimo20MHz[IWL_RATE_COUNT] = {
0, 0, 0, 0, 74, 74, 123, 155, 179, 214, 236, 244, 251
};
static s32 expected_tpt_mimo20MHzSGI[IWL_RATE_COUNT] = {
0, 0, 0, 0, 81, 81, 131, 164, 188, 222, 243, 251, 257
};
static s32 expected_tpt_siso40MHz[IWL_RATE_COUNT] = {
0, 0, 0, 0, 77, 77, 127, 160, 184, 220, 242, 250, 257
};
static s32 expected_tpt_siso40MHzSGI[IWL_RATE_COUNT] = {
0, 0, 0, 0, 83, 83, 135, 169, 193, 229, 250, 257, 264
};
static s32 expected_tpt_mimo40MHz[IWL_RATE_COUNT] = {
0, 0, 0, 0, 123, 123, 182, 214, 235, 264, 279, 285, 289
};
static s32 expected_tpt_mimo40MHzSGI[IWL_RATE_COUNT] = {
0, 0, 0, 0, 131, 131, 191, 222, 242, 270, 284, 289, 293
};
static int iwl_lq_sync_callback(struct iwl_priv *priv,
struct iwl_cmd *cmd, struct sk_buff *skb)
{
/*We didn't cache the SKB; let the caller free it */
return 1;
}
static inline u8 iwl_rate_get_rate(u32 rate_n_flags)
{
return (u8)(rate_n_flags & 0xFF);
}
static int rs_send_lq_cmd(struct iwl_priv *priv,
struct iwl_link_quality_cmd *lq, u8 flags)
{
#ifdef CONFIG_IWLWIFI_DEBUG
int i;
#endif
int rc = -1;
struct iwl_host_cmd cmd = {
.id = REPLY_TX_LINK_QUALITY_CMD,
.len = sizeof(struct iwl_link_quality_cmd),
.meta.flags = flags,
.data = lq,
};
if ((lq->sta_id == 0xFF) &&
(priv->iw_mode == IEEE80211_IF_TYPE_IBSS))
return rc;
if (lq->sta_id == 0xFF)
lq->sta_id = IWL_AP_ID;
IWL_DEBUG_RATE("lq station id 0x%x\n", lq->sta_id);
IWL_DEBUG_RATE("lq dta 0x%X 0x%X\n",
lq->general_params.single_stream_ant_msk,
lq->general_params.dual_stream_ant_msk);
#ifdef CONFIG_IWLWIFI_DEBUG
for (i = 0; i < LINK_QUAL_MAX_RETRY_NUM; i++)
IWL_DEBUG_RATE("lq index %d 0x%X\n",
i, lq->rs_table[i].rate_n_flags);
#endif
if (flags & CMD_ASYNC)
cmd.meta.u.callback = iwl_lq_sync_callback;
if (iwl_is_associated(priv) && priv->assoc_station_added &&
priv->lq_mngr.lq_ready)
rc = iwl_send_cmd(priv, &cmd);
return rc;
}
static int rs_rate_scale_clear_window(struct iwl_rate_scale_data *window)
{
window->data = 0;
window->success_counter = 0;
window->success_ratio = IWL_INVALID_VALUE;
window->counter = 0;
window->average_tpt = IWL_INVALID_VALUE;
window->stamp = 0;
return 0;
}
static int rs_collect_tx_data(struct iwl_rate_scale_data *windows,
int scale_index, s32 tpt, u32 status)
{
int rc = 0;
struct iwl_rate_scale_data *window = NULL;
u64 mask;
u8 win_size = IWL_RATE_MAX_WINDOW;
s32 fail_count;
if (scale_index < 0)
return -1;
if (scale_index >= IWL_RATE_COUNT)
return -1;
window = &(windows[scale_index]);
if (window->counter >= win_size) {
window->counter = win_size - 1;
mask = 1;
mask = (mask << (win_size - 1));
if ((window->data & mask)) {
window->data &= ~mask;
window->success_counter = window->success_counter - 1;
}
}
window->counter = window->counter + 1;
mask = window->data;
window->data = (mask << 1);
if (status != 0) {
window->success_counter = window->success_counter + 1;
window->data |= 0x1;
}
if (window->counter > 0)
window->success_ratio = 128 * (100 * window->success_counter)
/ window->counter;
else
window->success_ratio = IWL_INVALID_VALUE;
fail_count = window->counter - window->success_counter;
if ((fail_count >= IWL_RATE_MIN_FAILURE_TH) ||
(window->success_counter >= IWL_RATE_MIN_SUCCESS_TH))
window->average_tpt = (window->success_ratio * tpt + 64) / 128;
else
window->average_tpt = IWL_INVALID_VALUE;
window->stamp = jiffies;
return rc;
}
int static rs_mcs_from_tbl(struct iwl_rate *mcs_rate,
struct iwl_scale_tbl_info *tbl,
int index, u8 use_green)
{
int rc = 0;
if (is_legacy(tbl->lq_type)) {
mcs_rate->rate_n_flags = iwl_rates[index].plcp;
if (index >= IWL_FIRST_CCK_RATE && index <= IWL_LAST_CCK_RATE)
mcs_rate->rate_n_flags |= RATE_MCS_CCK_MSK;
} else if (is_siso(tbl->lq_type)) {
if (index > IWL_LAST_OFDM_RATE)
index = IWL_LAST_OFDM_RATE;
mcs_rate->rate_n_flags = iwl_rates[index].plcp_siso |
RATE_MCS_HT_MSK;
} else {
if (index > IWL_LAST_OFDM_RATE)
index = IWL_LAST_OFDM_RATE;
mcs_rate->rate_n_flags = iwl_rates[index].plcp_mimo |
RATE_MCS_HT_MSK;
}
switch (tbl->antenna_type) {
case ANT_BOTH:
mcs_rate->rate_n_flags |= RATE_MCS_ANT_AB_MSK;
break;
case ANT_MAIN:
mcs_rate->rate_n_flags |= RATE_MCS_ANT_A_MSK;
break;
case ANT_AUX:
mcs_rate->rate_n_flags |= RATE_MCS_ANT_B_MSK;
break;
case ANT_NONE:
break;
}
if (is_legacy(tbl->lq_type))
return rc;
if (tbl->is_fat) {
if (tbl->is_dup)
mcs_rate->rate_n_flags |= RATE_MCS_DUP_MSK;
else
mcs_rate->rate_n_flags |= RATE_MCS_FAT_MSK;
}
if (tbl->is_SGI)
mcs_rate->rate_n_flags |= RATE_MCS_SGI_MSK;
if (use_green) {
mcs_rate->rate_n_flags |= RATE_MCS_GF_MSK;
if (is_siso(tbl->lq_type))
mcs_rate->rate_n_flags &= ~RATE_MCS_SGI_MSK;
}
return rc;
}
static int rs_get_tbl_info_from_mcs(const struct iwl_rate *mcs_rate,
int phymode, struct iwl_scale_tbl_info *tbl,
int *rate_idx)
{
int index;
u32 ant_msk;
index = iwl_rate_index_from_plcp(mcs_rate->rate_n_flags);
if (index == IWL_RATE_INVALID) {
*rate_idx = -1;
return -1;
}
tbl->is_SGI = 0;
tbl->is_fat = 0;
tbl->is_dup = 0;
tbl->antenna_type = ANT_BOTH;
if (!(mcs_rate->rate_n_flags & RATE_MCS_HT_MSK)) {
ant_msk = (mcs_rate->rate_n_flags & RATE_MCS_ANT_AB_MSK);
if (ant_msk == RATE_MCS_ANT_AB_MSK)
tbl->lq_type = LQ_NONE;
else {
if (phymode == MODE_IEEE80211A)
tbl->lq_type = LQ_A;
else
tbl->lq_type = LQ_G;
if (mcs_rate->rate_n_flags & RATE_MCS_ANT_A_MSK)
tbl->antenna_type = ANT_MAIN;
else
tbl->antenna_type = ANT_AUX;
}
*rate_idx = index;
} else if (iwl_rate_get_rate(mcs_rate->rate_n_flags)
<= IWL_RATE_SISO_60M_PLCP) {
tbl->lq_type = LQ_SISO;
ant_msk = (mcs_rate->rate_n_flags & RATE_MCS_ANT_AB_MSK);
if (ant_msk == RATE_MCS_ANT_AB_MSK)
tbl->lq_type = LQ_NONE;
else {
if (mcs_rate->rate_n_flags & RATE_MCS_ANT_A_MSK)
tbl->antenna_type = ANT_MAIN;
else
tbl->antenna_type = ANT_AUX;
}
if (mcs_rate->rate_n_flags & RATE_MCS_SGI_MSK)
tbl->is_SGI = 1;
if ((mcs_rate->rate_n_flags & RATE_MCS_FAT_MSK) ||
(mcs_rate->rate_n_flags & RATE_MCS_DUP_MSK))
tbl->is_fat = 1;
if (mcs_rate->rate_n_flags & RATE_MCS_DUP_MSK)
tbl->is_dup = 1;
*rate_idx = index;
} else {
tbl->lq_type = LQ_MIMO;
if (mcs_rate->rate_n_flags & RATE_MCS_SGI_MSK)
tbl->is_SGI = 1;
if ((mcs_rate->rate_n_flags & RATE_MCS_FAT_MSK) ||
(mcs_rate->rate_n_flags & RATE_MCS_DUP_MSK))
tbl->is_fat = 1;
if (mcs_rate->rate_n_flags & RATE_MCS_DUP_MSK)
tbl->is_dup = 1;
*rate_idx = index;
}
return 0;
}
static inline void rs_toggle_antenna(struct iwl_rate *new_rate,
struct iwl_scale_tbl_info *tbl)
{
if (tbl->antenna_type == ANT_AUX) {
tbl->antenna_type = ANT_MAIN;
new_rate->rate_n_flags &= ~RATE_MCS_ANT_B_MSK;
new_rate->rate_n_flags |= RATE_MCS_ANT_A_MSK;
} else {
tbl->antenna_type = ANT_AUX;
new_rate->rate_n_flags &= ~RATE_MCS_ANT_A_MSK;
new_rate->rate_n_flags |= RATE_MCS_ANT_B_MSK;
}
}
static inline s8 rs_use_green(struct iwl_priv *priv)
{
s8 rc = 0;
#ifdef CONFIG_IWLWIFI_HT
if (!priv->is_ht_enabled || !priv->current_assoc_ht.is_ht)
return 0;
if ((priv->current_assoc_ht.is_green_field) &&
!(priv->current_assoc_ht.operating_mode & 0x4))
rc = 1;
#endif /*CONFIG_IWLWIFI_HT */
return rc;
}
/**
* rs_get_supported_rates - get the available rates
*
* if management frame or broadcast frame only return
* basic available rates.
*
*/
static void rs_get_supported_rates(struct iwl_rate_scale_priv *lq_data,
struct ieee80211_hdr *hdr,
enum iwl_table_type rate_type,
u16 *data_rate)
{
if (is_legacy(rate_type))
*data_rate = lq_data->active_rate;
else {
if (is_siso(rate_type))
*data_rate = lq_data->active_siso_rate;
else
*data_rate = lq_data->active_mimo_rate;
}
if (hdr && is_multicast_ether_addr(hdr->addr1) &&
lq_data->active_rate_basic)
*data_rate = lq_data->active_rate_basic;
}
static u16 rs_get_adjacent_rate(u8 index, u16 rate_mask, int rate_type)
{
u8 high = IWL_RATE_INVALID;
u8 low = IWL_RATE_INVALID;
/* 802.11A or ht walks to the next literal adjascent rate in
* the rate table */
if (is_a_band(rate_type) || !is_legacy(rate_type)) {
int i;
u32 mask;
/* Find the previous rate that is in the rate mask */
i = index - 1;
for (mask = (1 << i); i >= 0; i--, mask >>= 1) {
if (rate_mask & mask) {
low = i;
break;
}
}
/* Find the next rate that is in the rate mask */
i = index + 1;
for (mask = (1 << i); i < IWL_RATE_COUNT; i++, mask <<= 1) {
if (rate_mask & mask) {
high = i;
break;
}
}
return (high << 8) | low;
}
low = index;
while (low != IWL_RATE_INVALID) {
low = iwl_rates[low].prev_rs;
if (low == IWL_RATE_INVALID)
break;
if (rate_mask & (1 << low))
break;
IWL_DEBUG_RATE("Skipping masked lower rate: %d\n", low);
}
high = index;
while (high != IWL_RATE_INVALID) {
high = iwl_rates[high].next_rs;
if (high == IWL_RATE_INVALID)
break;
if (rate_mask & (1 << high))
break;
IWL_DEBUG_RATE("Skipping masked higher rate: %d\n", high);
}
return (high << 8) | low;
}
static int rs_get_lower_rate(struct iwl_rate_scale_priv *lq_data,
struct iwl_scale_tbl_info *tbl, u8 scale_index,
u8 ht_possible, struct iwl_rate *mcs_rate,
struct sta_info *sta)
{
u8 is_green = lq_data->is_green;
s32 low;
u16 rate_mask;
u16 high_low;
u8 switch_to_legacy = 0;
/* check if we need to switch from HT to legacy rates.
* assumption is that mandatory rates (1Mbps or 6Mbps)
* are always supported (spec demand) */
if (!is_legacy(tbl->lq_type) && (!ht_possible || !scale_index)) {
switch_to_legacy = 1;
scale_index = rs_ht_to_legacy[scale_index];
if (lq_data->phymode == MODE_IEEE80211A)
tbl->lq_type = LQ_A;
else
tbl->lq_type = LQ_G;
if ((tbl->antenna_type == ANT_BOTH) ||
(tbl->antenna_type == ANT_NONE))
tbl->antenna_type = ANT_MAIN;
tbl->is_fat = 0;
tbl->is_SGI = 0;
}
rs_get_supported_rates(lq_data, NULL, tbl->lq_type, &rate_mask);
/* mask with station rate restriction */
if (is_legacy(tbl->lq_type)) {
if (lq_data->phymode == (u8) MODE_IEEE80211A)
rate_mask = (u16)(rate_mask &
(sta->supp_rates << IWL_FIRST_OFDM_RATE));
else
rate_mask = (u16)(rate_mask & sta->supp_rates);
}
/* if we did switched from HT to legacy check current rate */
if ((switch_to_legacy) &&
(rate_mask & (1 << scale_index))) {
rs_mcs_from_tbl(mcs_rate, tbl, scale_index, is_green);
return 0;
}
high_low = rs_get_adjacent_rate(scale_index, rate_mask, tbl->lq_type);
low = high_low & 0xff;
if (low != IWL_RATE_INVALID)
rs_mcs_from_tbl(mcs_rate, tbl, low, is_green);
else
rs_mcs_from_tbl(mcs_rate, tbl, scale_index, is_green);
return 0;
}
static void rs_tx_status(void *priv_rate,
struct net_device *dev,
struct sk_buff *skb,
struct ieee80211_tx_status *tx_resp)
{
int status;
u8 retries;
int rs_index, index = 0;
struct iwl_rate_scale_priv *lq;
struct iwl_link_quality_cmd *table;
struct sta_info *sta;
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
struct iwl_priv *priv = (struct iwl_priv *)priv_rate;
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct iwl_rate_scale_data *window = NULL;
struct iwl_rate_scale_data *search_win = NULL;
struct iwl_rate tx_mcs;
struct iwl_scale_tbl_info tbl_type;
struct iwl_scale_tbl_info *curr_tbl, *search_tbl;
u8 active_index = 0;
u16 fc = le16_to_cpu(hdr->frame_control);
s32 tpt = 0;
IWL_DEBUG_RATE("get frame ack response, update rate scale window\n");
if (!ieee80211_is_data(fc) || is_multicast_ether_addr(hdr->addr1))
return;
retries = tx_resp->retry_count;
if (retries > 15)
retries = 15;
sta = sta_info_get(local, hdr->addr1);
if (!sta || !sta->rate_ctrl_priv) {
if (sta)
sta_info_put(sta);
return;
}
lq = (struct iwl_rate_scale_priv *)sta->rate_ctrl_priv;
if (!priv->lq_mngr.lq_ready)
return;
if ((priv->iw_mode == IEEE80211_IF_TYPE_IBSS) && !lq->ibss_sta_added)
return;
table = &lq->lq;
active_index = lq->active_tbl;
lq->antenna = (lq->valid_antenna & local->hw.conf.antenna_sel_tx);
if (!lq->antenna)
lq->antenna = lq->valid_antenna;
lq->antenna = lq->valid_antenna;
curr_tbl = &(lq->lq_info[active_index]);
search_tbl = &(lq->lq_info[(1 - active_index)]);
window = (struct iwl_rate_scale_data *)
&(curr_tbl->win[0]);
search_win = (struct iwl_rate_scale_data *)
&(search_tbl->win[0]);
tx_mcs.rate_n_flags = tx_resp->control.tx_rate;
rs_get_tbl_info_from_mcs(&tx_mcs, priv->phymode,
&tbl_type, &rs_index);
if ((rs_index < 0) || (rs_index >= IWL_RATE_COUNT)) {
IWL_DEBUG_RATE("bad rate index at: %d rate 0x%X\n",
rs_index, tx_mcs.rate_n_flags);
sta_info_put(sta);
return;
}
if (retries &&
(tx_mcs.rate_n_flags !=
le32_to_cpu(table->rs_table[0].rate_n_flags))) {
IWL_DEBUG_RATE("initial rate does not match 0x%x 0x%x\n",
tx_mcs.rate_n_flags,
le32_to_cpu(table->rs_table[0].rate_n_flags));
sta_info_put(sta);
return;
}
while (retries) {
tx_mcs.rate_n_flags =
le32_to_cpu(table->rs_table[index].rate_n_flags);
rs_get_tbl_info_from_mcs(&tx_mcs, priv->phymode,
&tbl_type, &rs_index);
if ((tbl_type.lq_type == search_tbl->lq_type) &&
(tbl_type.antenna_type == search_tbl->antenna_type) &&
(tbl_type.is_SGI == search_tbl->is_SGI)) {
if (search_tbl->expected_tpt)
tpt = search_tbl->expected_tpt[rs_index];
else
tpt = 0;
rs_collect_tx_data(search_win,
rs_index, tpt, 0);
} else if ((tbl_type.lq_type == curr_tbl->lq_type) &&
(tbl_type.antenna_type == curr_tbl->antenna_type) &&
(tbl_type.is_SGI == curr_tbl->is_SGI)) {
if (curr_tbl->expected_tpt)
tpt = curr_tbl->expected_tpt[rs_index];
else
tpt = 0;
rs_collect_tx_data(window, rs_index, tpt, 0);
}
if (lq->stay_in_tbl)
lq->total_failed++;
--retries;
index++;
}
if (!tx_resp->retry_count)
tx_mcs.rate_n_flags = tx_resp->control.tx_rate;
else
tx_mcs.rate_n_flags =
le32_to_cpu(table->rs_table[index].rate_n_flags);
rs_get_tbl_info_from_mcs(&tx_mcs, priv->phymode,
&tbl_type, &rs_index);
if (tx_resp->flags & IEEE80211_TX_STATUS_ACK)
status = 1;
else
status = 0;
if ((tbl_type.lq_type == search_tbl->lq_type) &&
(tbl_type.antenna_type == search_tbl->antenna_type) &&
(tbl_type.is_SGI == search_tbl->is_SGI)) {
if (search_tbl->expected_tpt)
tpt = search_tbl->expected_tpt[rs_index];
else
tpt = 0;
rs_collect_tx_data(search_win,
rs_index, tpt, status);
} else if ((tbl_type.lq_type == curr_tbl->lq_type) &&
(tbl_type.antenna_type == curr_tbl->antenna_type) &&
(tbl_type.is_SGI == curr_tbl->is_SGI)) {
if (curr_tbl->expected_tpt)
tpt = curr_tbl->expected_tpt[rs_index];
else
tpt = 0;
rs_collect_tx_data(window, rs_index, tpt, status);
}
if (lq->stay_in_tbl) {
if (status)
lq->total_success++;
else
lq->total_failed++;
}
rs_rate_scale_perform(priv, dev, hdr, sta);
sta_info_put(sta);
return;
}
static u8 rs_is_ant_connected(u8 valid_antenna,
enum iwl_antenna_type antenna_type)
{
if (antenna_type == ANT_AUX)
return ((valid_antenna & 0x2) ? 1:0);
else if (antenna_type == ANT_MAIN)
return ((valid_antenna & 0x1) ? 1:0);
else if (antenna_type == ANT_BOTH) {
if ((valid_antenna & 0x3) == 0x3)
return 1;
else
return 0;
}
return 1;
}
static u8 rs_is_other_ant_connected(u8 valid_antenna,
enum iwl_antenna_type antenna_type)
{
if (antenna_type == ANT_AUX)
return (rs_is_ant_connected(valid_antenna, ANT_MAIN));
else
return (rs_is_ant_connected(valid_antenna, ANT_AUX));
return 0;
}
static void rs_set_stay_in_table(u8 is_legacy,
struct iwl_rate_scale_priv *lq_data)
{
IWL_DEBUG_HT("we are staying in the same table\n");
lq_data->stay_in_tbl = 1;
if (is_legacy) {
lq_data->table_count_limit = IWL_LEGACY_TABLE_COUNT;
lq_data->max_failure_limit = IWL_LEGACY_FAILURE_LIMIT;
lq_data->max_success_limit = IWL_LEGACY_TABLE_COUNT;
} else {
lq_data->table_count_limit = IWL_NONE_LEGACY_TABLE_COUNT;
lq_data->max_failure_limit = IWL_NONE_LEGACY_FAILURE_LIMIT;
lq_data->max_success_limit = IWL_NONE_LEGACY_SUCCESS_LIMIT;
}
lq_data->table_count = 0;
lq_data->total_failed = 0;
lq_data->total_success = 0;
}
static void rs_get_expected_tpt_table(struct iwl_rate_scale_priv *lq_data,
struct iwl_scale_tbl_info *tbl)
{
if (is_legacy(tbl->lq_type)) {
if (!is_a_band(tbl->lq_type))
tbl->expected_tpt = expected_tpt_G;
else
tbl->expected_tpt = expected_tpt_A;
} else if (is_siso(tbl->lq_type)) {
if (tbl->is_fat && !lq_data->is_dup)
if (tbl->is_SGI)
tbl->expected_tpt = expected_tpt_siso40MHzSGI;
else
tbl->expected_tpt = expected_tpt_siso40MHz;
else if (tbl->is_SGI)
tbl->expected_tpt = expected_tpt_siso20MHzSGI;
else
tbl->expected_tpt = expected_tpt_siso20MHz;
} else if (is_mimo(tbl->lq_type)) {
if (tbl->is_fat && !lq_data->is_dup)
if (tbl->is_SGI)
tbl->expected_tpt = expected_tpt_mimo40MHzSGI;
else
tbl->expected_tpt = expected_tpt_mimo40MHz;
else if (tbl->is_SGI)
tbl->expected_tpt = expected_tpt_mimo20MHzSGI;
else
tbl->expected_tpt = expected_tpt_mimo20MHz;
} else
tbl->expected_tpt = expected_tpt_G;
}
#ifdef CONFIG_IWLWIFI_HT
static s32 rs_get_best_rate(struct iwl_priv *priv,
struct iwl_rate_scale_priv *lq_data,
struct iwl_scale_tbl_info *tbl,
u16 rate_mask, s8 index, s8 rate)
{
struct iwl_scale_tbl_info *active_tbl =
&(lq_data->lq_info[lq_data->active_tbl]);
s32 new_rate, high, low, start_hi;
s32 active_sr = active_tbl->win[index].success_ratio;
s32 *tpt_tbl = tbl->expected_tpt;
s32 active_tpt = active_tbl->expected_tpt[index];
u16 high_low;
new_rate = high = low = start_hi = IWL_RATE_INVALID;
for (; ;) {
high_low = rs_get_adjacent_rate(rate, rate_mask, tbl->lq_type);
low = high_low & 0xff;
high = (high_low >> 8) & 0xff;
if ((((100 * tpt_tbl[rate]) > lq_data->last_tpt) &&
((active_sr > IWL_RATE_DECREASE_TH) &&
(active_sr <= IWL_RATE_HIGH_TH) &&
(tpt_tbl[rate] <= active_tpt))) ||
((active_sr >= IWL_RATE_SCALE_SWITCH) &&
(tpt_tbl[rate] > active_tpt))) {
if (start_hi != IWL_RATE_INVALID) {
new_rate = start_hi;
break;
}
new_rate = rate;
if (low != IWL_RATE_INVALID)
rate = low;
else
break;
} else {
if (new_rate != IWL_RATE_INVALID)
break;
else if (high != IWL_RATE_INVALID) {
start_hi = high;
rate = high;
} else {
new_rate = rate;
break;
}
}
}
return new_rate;
}
#endif /* CONFIG_IWLWIFI_HT */
static inline u8 rs_is_both_ant_supp(u8 valid_antenna)
{
return (rs_is_ant_connected(valid_antenna, ANT_BOTH));
}
static int rs_switch_to_mimo(struct iwl_priv *priv,
struct iwl_rate_scale_priv *lq_data,
struct iwl_scale_tbl_info *tbl, int index)
{
int rc = -1;
#ifdef CONFIG_IWLWIFI_HT
u16 rate_mask;
s32 rate;
s8 is_green = lq_data->is_green;
if (!priv->is_ht_enabled || !priv->current_assoc_ht.is_ht)
return -1;
IWL_DEBUG_HT("LQ: try to switch to MIMO\n");
tbl->lq_type = LQ_MIMO;
rs_get_supported_rates(lq_data, NULL, tbl->lq_type,
&rate_mask);
if (priv->current_assoc_ht.tx_mimo_ps_mode == IWL_MIMO_PS_STATIC)
return -1;
if (!rs_is_both_ant_supp(lq_data->antenna))
return -1;
rc = 0;
tbl->is_dup = lq_data->is_dup;
tbl->action = 0;
if (priv->current_channel_width == IWL_CHANNEL_WIDTH_40MHZ)
tbl->is_fat = 1;
else
tbl->is_fat = 0;
if (tbl->is_fat) {
if (priv->current_assoc_ht.sgf & HT_SHORT_GI_40MHZ_ONLY)
tbl->is_SGI = 1;
else
tbl->is_SGI = 0;
} else if (priv->current_assoc_ht.sgf & HT_SHORT_GI_20MHZ_ONLY)
tbl->is_SGI = 1;
else
tbl->is_SGI = 0;
rs_get_expected_tpt_table(lq_data, tbl);
rate = rs_get_best_rate(priv, lq_data, tbl, rate_mask, index, index);
IWL_DEBUG_HT("LQ: MIMO best rate %d mask %X\n", rate, rate_mask);
if ((rate == IWL_RATE_INVALID) || !((1 << rate) & rate_mask))
return -1;
rs_mcs_from_tbl(&tbl->current_rate, tbl, rate, is_green);
IWL_DEBUG_HT("LQ: Switch to new mcs %X index is green %X\n",
tbl->current_rate.rate_n_flags, is_green);
#endif /*CONFIG_IWLWIFI_HT */
return rc;
}
static int rs_switch_to_siso(struct iwl_priv *priv,
struct iwl_rate_scale_priv *lq_data,
struct iwl_scale_tbl_info *tbl, int index)
{
int rc = -1;
#ifdef CONFIG_IWLWIFI_HT
u16 rate_mask;
u8 is_green = lq_data->is_green;
s32 rate;
IWL_DEBUG_HT("LQ: try to switch to SISO\n");
if (!priv->is_ht_enabled || !priv->current_assoc_ht.is_ht)
return -1;
rc = 0;
tbl->is_dup = lq_data->is_dup;
tbl->lq_type = LQ_SISO;
tbl->action = 0;
rs_get_supported_rates(lq_data, NULL, tbl->lq_type,
&rate_mask);
if (priv->current_channel_width == IWL_CHANNEL_WIDTH_40MHZ)
tbl->is_fat = 1;
else
tbl->is_fat = 0;
if (tbl->is_fat) {
if (priv->current_assoc_ht.sgf & HT_SHORT_GI_40MHZ_ONLY)
tbl->is_SGI = 1;
else
tbl->is_SGI = 0;
} else if (priv->current_assoc_ht.sgf & HT_SHORT_GI_20MHZ_ONLY)
tbl->is_SGI = 1;
else
tbl->is_SGI = 0;
if (is_green)
tbl->is_SGI = 0;
rs_get_expected_tpt_table(lq_data, tbl);
rate = rs_get_best_rate(priv, lq_data, tbl, rate_mask, index, index);
IWL_DEBUG_HT("LQ: get best rate %d mask %X\n", rate, rate_mask);
if ((rate == IWL_RATE_INVALID) || !((1 << rate) & rate_mask)) {
IWL_DEBUG_HT("can not switch with index %d rate mask %x\n",
rate, rate_mask);
return -1;
}
rs_mcs_from_tbl(&tbl->current_rate, tbl, rate, is_green);
IWL_DEBUG_HT("LQ: Switch to new mcs %X index is green %X\n",
tbl->current_rate.rate_n_flags, is_green);
#endif /*CONFIG_IWLWIFI_HT */
return rc;
}
static int rs_move_legacy_other(struct iwl_priv *priv,
struct iwl_rate_scale_priv *lq_data,
int index)
{
int rc = 0;
struct iwl_scale_tbl_info *tbl =
&(lq_data->lq_info[lq_data->active_tbl]);
struct iwl_scale_tbl_info *search_tbl =
&(lq_data->lq_info[(1 - lq_data->active_tbl)]);
struct iwl_rate_scale_data *window = &(tbl->win[index]);
u32 sz = (sizeof(struct iwl_scale_tbl_info) -
(sizeof(struct iwl_rate_scale_data) * IWL_RATE_COUNT));
u8 start_action = tbl->action;
for (; ;) {
switch (tbl->action) {
case IWL_LEGACY_SWITCH_ANTENNA:
IWL_DEBUG_HT("LQ Legacy switch Antenna\n");
search_tbl->lq_type = LQ_NONE;
lq_data->action_counter++;
if (window->success_ratio >= IWL_RS_GOOD_RATIO)
break;
if (!rs_is_other_ant_connected(lq_data->antenna,
tbl->antenna_type))
break;
memcpy(search_tbl, tbl, sz);
rs_toggle_antenna(&(search_tbl->current_rate),
search_tbl);
rs_get_expected_tpt_table(lq_data, search_tbl);
lq_data->search_better_tbl = 1;
goto out;
case IWL_LEGACY_SWITCH_SISO:
IWL_DEBUG_HT("LQ: Legacy switch to SISO\n");
memcpy(search_tbl, tbl, sz);
search_tbl->lq_type = LQ_SISO;
search_tbl->is_SGI = 0;
search_tbl->is_fat = 0;
rc = rs_switch_to_siso(priv, lq_data, search_tbl,
index);
if (!rc) {
lq_data->search_better_tbl = 1;
lq_data->action_counter = 0;
}
if (!rc)
goto out;
break;
case IWL_LEGACY_SWITCH_MIMO:
IWL_DEBUG_HT("LQ: Legacy switch MIMO\n");
memcpy(search_tbl, tbl, sz);
search_tbl->lq_type = LQ_MIMO;
search_tbl->is_SGI = 0;
search_tbl->is_fat = 0;
search_tbl->antenna_type = ANT_BOTH;
rc = rs_switch_to_mimo(priv, lq_data, search_tbl,
index);
if (!rc) {
lq_data->search_better_tbl = 1;
lq_data->action_counter = 0;
}
if (!rc)
goto out;
break;
}
tbl->action++;
if (tbl->action > IWL_LEGACY_SWITCH_MIMO)
tbl->action = IWL_LEGACY_SWITCH_ANTENNA;
if (tbl->action == start_action)
break;
}
return 0;
out:
tbl->action++;
if (tbl->action > IWL_LEGACY_SWITCH_MIMO)
tbl->action = IWL_LEGACY_SWITCH_ANTENNA;
return 0;
}
static int rs_move_siso_to_other(struct iwl_priv *priv,
struct iwl_rate_scale_priv *lq_data,
int index)
{
int rc = -1;
u8 is_green = lq_data->is_green;
struct iwl_scale_tbl_info *tbl =
&(lq_data->lq_info[lq_data->active_tbl]);
struct iwl_scale_tbl_info *search_tbl =
&(lq_data->lq_info[(1 - lq_data->active_tbl)]);
struct iwl_rate_scale_data *window = &(tbl->win[index]);
u32 sz = (sizeof(struct iwl_scale_tbl_info) -
(sizeof(struct iwl_rate_scale_data) * IWL_RATE_COUNT));
u8 start_action = tbl->action;
for (;;) {
lq_data->action_counter++;
switch (tbl->action) {
case IWL_SISO_SWITCH_ANTENNA:
IWL_DEBUG_HT("LQ: SISO SWITCH ANTENNA SISO\n");
search_tbl->lq_type = LQ_NONE;
if (window->success_ratio >= IWL_RS_GOOD_RATIO)
break;
if (!rs_is_other_ant_connected(lq_data->antenna,
tbl->antenna_type))
break;
memcpy(search_tbl, tbl, sz);
search_tbl->action = IWL_SISO_SWITCH_MIMO;
rs_toggle_antenna(&(search_tbl->current_rate),
search_tbl);
lq_data->search_better_tbl = 1;
goto out;
case IWL_SISO_SWITCH_MIMO:
IWL_DEBUG_HT("LQ: SISO SWITCH TO MIMO FROM SISO\n");
memcpy(search_tbl, tbl, sz);
search_tbl->lq_type = LQ_MIMO;
search_tbl->is_SGI = 0;
search_tbl->is_fat = 0;
search_tbl->antenna_type = ANT_BOTH;
rc = rs_switch_to_mimo(priv, lq_data, search_tbl,
index);
if (!rc)
lq_data->search_better_tbl = 1;
if (!rc)
goto out;
break;
case IWL_SISO_SWITCH_GI:
IWL_DEBUG_HT("LQ: SISO SWITCH TO GI\n");
memcpy(search_tbl, tbl, sz);
search_tbl->action = 0;
if (search_tbl->is_SGI)
search_tbl->is_SGI = 0;
else if (!is_green)
search_tbl->is_SGI = 1;
else
break;
lq_data->search_better_tbl = 1;
if ((tbl->lq_type == LQ_SISO) &&
(tbl->is_SGI)) {
s32 tpt = lq_data->last_tpt / 100;
if (((!tbl->is_fat) &&
(tpt >= expected_tpt_siso20MHz[index])) ||
((tbl->is_fat) &&
(tpt >= expected_tpt_siso40MHz[index])))
lq_data->search_better_tbl = 0;
}
rs_get_expected_tpt_table(lq_data, search_tbl);
rs_mcs_from_tbl(&search_tbl->current_rate,
search_tbl, index, is_green);
goto out;
}
tbl->action++;
if (tbl->action > IWL_SISO_SWITCH_GI)
tbl->action = IWL_SISO_SWITCH_ANTENNA;
if (tbl->action == start_action)
break;
}
return 0;
out:
tbl->action++;
if (tbl->action > IWL_SISO_SWITCH_GI)
tbl->action = IWL_SISO_SWITCH_ANTENNA;
return 0;
}
static int rs_move_mimo_to_other(struct iwl_priv *priv,
struct iwl_rate_scale_priv *lq_data,
int index)
{
int rc = -1;
s8 is_green = lq_data->is_green;
struct iwl_scale_tbl_info *tbl =
&(lq_data->lq_info[lq_data->active_tbl]);
struct iwl_scale_tbl_info *search_tbl =
&(lq_data->lq_info[(1 - lq_data->active_tbl)]);
u32 sz = (sizeof(struct iwl_scale_tbl_info) -
(sizeof(struct iwl_rate_scale_data) * IWL_RATE_COUNT));
u8 start_action = tbl->action;
for (;;) {
lq_data->action_counter++;
switch (tbl->action) {
case IWL_MIMO_SWITCH_ANTENNA_A:
case IWL_MIMO_SWITCH_ANTENNA_B:
IWL_DEBUG_HT("LQ: MIMO SWITCH TO SISO\n");
memcpy(search_tbl, tbl, sz);
search_tbl->lq_type = LQ_SISO;
search_tbl->is_SGI = 0;
search_tbl->is_fat = 0;
if (tbl->action == IWL_MIMO_SWITCH_ANTENNA_A)
search_tbl->antenna_type = ANT_MAIN;
else
search_tbl->antenna_type = ANT_AUX;
rc = rs_switch_to_siso(priv, lq_data, search_tbl,
index);
if (!rc) {
lq_data->search_better_tbl = 1;
goto out;
}
break;
case IWL_MIMO_SWITCH_GI:
IWL_DEBUG_HT("LQ: MIMO SWITCH TO GI\n");
memcpy(search_tbl, tbl, sz);
search_tbl->lq_type = LQ_MIMO;
search_tbl->antenna_type = ANT_BOTH;
search_tbl->action = 0;
if (search_tbl->is_SGI)
search_tbl->is_SGI = 0;
else
search_tbl->is_SGI = 1;
lq_data->search_better_tbl = 1;
if ((tbl->lq_type == LQ_MIMO) &&
(tbl->is_SGI)) {
s32 tpt = lq_data->last_tpt / 100;
if (((!tbl->is_fat) &&
(tpt >= expected_tpt_mimo20MHz[index])) ||
((tbl->is_fat) &&
(tpt >= expected_tpt_mimo40MHz[index])))
lq_data->search_better_tbl = 0;
}
rs_get_expected_tpt_table(lq_data, search_tbl);
rs_mcs_from_tbl(&search_tbl->current_rate,
search_tbl, index, is_green);
goto out;
}
tbl->action++;
if (tbl->action > IWL_MIMO_SWITCH_GI)
tbl->action = IWL_MIMO_SWITCH_ANTENNA_A;
if (tbl->action == start_action)
break;
}
return 0;
out:
tbl->action++;
if (tbl->action > IWL_MIMO_SWITCH_GI)
tbl->action = IWL_MIMO_SWITCH_ANTENNA_A;
return 0;
}
static void rs_stay_in_table(struct iwl_rate_scale_priv *lq_data)
{
struct iwl_scale_tbl_info *tbl;
int i;
int active_tbl;
int flush_interval_passed = 0;
active_tbl = lq_data->active_tbl;
tbl = &(lq_data->lq_info[active_tbl]);
if (lq_data->stay_in_tbl) {
if (lq_data->flush_timer)
flush_interval_passed =
time_after(jiffies,
(unsigned long)(lq_data->flush_timer +
IWL_RATE_SCALE_FLUSH_INTVL));
flush_interval_passed = 0;
if ((lq_data->total_failed > lq_data->max_failure_limit) ||
(lq_data->total_success > lq_data->max_success_limit) ||
((!lq_data->search_better_tbl) && (lq_data->flush_timer)
&& (flush_interval_passed))) {
IWL_DEBUG_HT("LQ: stay is expired %d %d %d\n:",
lq_data->total_failed,
lq_data->total_success,
flush_interval_passed);
lq_data->stay_in_tbl = 0;
lq_data->total_failed = 0;
lq_data->total_success = 0;
lq_data->flush_timer = 0;
} else if (lq_data->table_count > 0) {
lq_data->table_count++;
if (lq_data->table_count >=
lq_data->table_count_limit) {
lq_data->table_count = 0;
IWL_DEBUG_HT("LQ: stay in table clear win\n");
for (i = 0; i < IWL_RATE_COUNT; i++)
rs_rate_scale_clear_window(
&(tbl->win[i]));
}
}
if (!lq_data->stay_in_tbl) {
for (i = 0; i < IWL_RATE_COUNT; i++)
rs_rate_scale_clear_window(&(tbl->win[i]));
}
}
}
static void rs_rate_scale_perform(struct iwl_priv *priv,
struct net_device *dev,
struct ieee80211_hdr *hdr,
struct sta_info *sta)
{
int low = IWL_RATE_INVALID;
int high = IWL_RATE_INVALID;
int index;
int i;
struct iwl_rate_scale_data *window = NULL;
int current_tpt = IWL_INVALID_VALUE;
int low_tpt = IWL_INVALID_VALUE;
int high_tpt = IWL_INVALID_VALUE;
u32 fail_count;
s8 scale_action = 0;
u16 fc, rate_mask;
u8 update_lq = 0;
struct iwl_rate_scale_priv *lq_data;
struct iwl_scale_tbl_info *tbl, *tbl1;
u16 rate_scale_index_msk = 0;
struct iwl_rate mcs_rate;
u8 is_green = 0;
u8 active_tbl = 0;
u8 done_search = 0;
u16 high_low;
IWL_DEBUG_RATE("rate scale calculate new rate for skb\n");
fc = le16_to_cpu(hdr->frame_control);
if (!ieee80211_is_data(fc) || is_multicast_ether_addr(hdr->addr1)) {
/* Send management frames and broadcast/multicast data using
* lowest rate. */
/* TODO: this could probably be improved.. */
return;
}
if (!sta || !sta->rate_ctrl_priv)
return;
if (!priv->lq_mngr.lq_ready) {
IWL_DEBUG_RATE("still rate scaling not ready\n");
return;
}
lq_data = (struct iwl_rate_scale_priv *)sta->rate_ctrl_priv;
if (!lq_data->search_better_tbl)
active_tbl = lq_data->active_tbl;
else
active_tbl = 1 - lq_data->active_tbl;
tbl = &(lq_data->lq_info[active_tbl]);
is_green = lq_data->is_green;
index = sta->last_txrate;
IWL_DEBUG_RATE("Rate scale index %d for type %d\n", index,
tbl->lq_type);
rs_get_supported_rates(lq_data, hdr, tbl->lq_type,
&rate_mask);
IWL_DEBUG_RATE("mask 0x%04X \n", rate_mask);
/* mask with station rate restriction */
if (is_legacy(tbl->lq_type)) {
if (lq_data->phymode == (u8) MODE_IEEE80211A)
rate_scale_index_msk = (u16) (rate_mask &
(sta->supp_rates << IWL_FIRST_OFDM_RATE));
else
rate_scale_index_msk = (u16) (rate_mask &
sta->supp_rates);
} else
rate_scale_index_msk = rate_mask;
if (!rate_scale_index_msk)
rate_scale_index_msk = rate_mask;
if (index < 0 || !((1 << index) & rate_scale_index_msk)) {
index = IWL_INVALID_VALUE;
update_lq = 1;
/* get the lowest availabe rate */
for (i = 0; i <= IWL_RATE_COUNT; i++) {
if ((1 << i) & rate_scale_index_msk)
index = i;
}
if (index == IWL_INVALID_VALUE) {
IWL_WARNING("Can not find a suitable rate\n");
return;
}
}
if (!tbl->expected_tpt)
rs_get_expected_tpt_table(lq_data, tbl);
window = &(tbl->win[index]);
fail_count = window->counter - window->success_counter;
if (((fail_count < IWL_RATE_MIN_FAILURE_TH) &&
(window->success_counter < IWL_RATE_MIN_SUCCESS_TH))
|| (tbl->expected_tpt == NULL)) {
IWL_DEBUG_RATE("LQ: still below TH succ %d total %d "
"for index %d\n",
window->success_counter, window->counter, index);
window->average_tpt = IWL_INVALID_VALUE;
rs_stay_in_table(lq_data);
if (update_lq) {
rs_mcs_from_tbl(&mcs_rate, tbl, index, is_green);
rs_fill_link_cmd(lq_data, &mcs_rate, &lq_data->lq, sta);
rs_send_lq_cmd(priv, &lq_data->lq, CMD_ASYNC);
}
goto out;
} else
window->average_tpt = ((window->success_ratio *
tbl->expected_tpt[index] + 64) / 128);
if (lq_data->search_better_tbl) {
int success_limit = IWL_RATE_SCALE_SWITCH;
if ((window->success_ratio > success_limit) ||
(window->average_tpt > lq_data->last_tpt)) {
if (!is_legacy(tbl->lq_type)) {
IWL_DEBUG_HT("LQ: we are switching to HT"
" rate suc %d current tpt %d"
" old tpt %d\n",
window->success_ratio,
window->average_tpt,
lq_data->last_tpt);
lq_data->enable_counter = 1;
}
lq_data->active_tbl = active_tbl;
current_tpt = window->average_tpt;
} else {
tbl->lq_type = LQ_NONE;
active_tbl = lq_data->active_tbl;
tbl = &(lq_data->lq_info[active_tbl]);
index = iwl_rate_index_from_plcp(
tbl->current_rate.rate_n_flags);
update_lq = 1;
current_tpt = lq_data->last_tpt;
IWL_DEBUG_HT("XXY GO BACK TO OLD TABLE\n");
}
lq_data->search_better_tbl = 0;
done_search = 1;
goto lq_update;
}
high_low = rs_get_adjacent_rate(index, rate_scale_index_msk,
tbl->lq_type);
low = high_low & 0xff;
high = (high_low >> 8) & 0xff;
current_tpt = window->average_tpt;
if (low != IWL_RATE_INVALID)
low_tpt = tbl->win[low].average_tpt;
if (high != IWL_RATE_INVALID)
high_tpt = tbl->win[high].average_tpt;
scale_action = 1;
if ((window->success_ratio <= IWL_RATE_DECREASE_TH) ||
(current_tpt == 0)) {
IWL_DEBUG_RATE("decrease rate because of low success_ratio\n");
scale_action = -1;
} else if ((low_tpt == IWL_INVALID_VALUE) &&
(high_tpt == IWL_INVALID_VALUE))
scale_action = 1;
else if ((low_tpt != IWL_INVALID_VALUE) &&
(high_tpt != IWL_INVALID_VALUE) &&
(low_tpt < current_tpt) &&
(high_tpt < current_tpt))
scale_action = 0;
else {
if (high_tpt != IWL_INVALID_VALUE) {
if (high_tpt > current_tpt)
scale_action = 1;
else {
IWL_DEBUG_RATE
("decrease rate because of high tpt\n");
scale_action = -1;
}
} else if (low_tpt != IWL_INVALID_VALUE) {
if (low_tpt > current_tpt) {
IWL_DEBUG_RATE
("decrease rate because of low tpt\n");
scale_action = -1;
} else
scale_action = 1;
}
}
if (scale_action == -1) {
if ((low != IWL_RATE_INVALID) &&
((window->success_ratio > IWL_RATE_HIGH_TH) ||
(current_tpt > (100 * tbl->expected_tpt[low]))))
scale_action = 0;
} else if ((scale_action == 1) &&
(window->success_ratio < IWL_RATE_INCREASE_TH))
scale_action = 0;
switch (scale_action) {
case -1:
if (low != IWL_RATE_INVALID) {
update_lq = 1;
index = low;
}
break;
case 1:
if (high != IWL_RATE_INVALID) {
update_lq = 1;
index = high;
}
break;
case 0:
default:
break;
}
IWL_DEBUG_HT("choose rate scale index %d action %d low %d "
"high %d type %d\n",
index, scale_action, low, high, tbl->lq_type);
lq_update:
if (update_lq) {
rs_mcs_from_tbl(&mcs_rate, tbl, index, is_green);
rs_fill_link_cmd(lq_data, &mcs_rate, &lq_data->lq, sta);
rs_send_lq_cmd(priv, &lq_data->lq, CMD_ASYNC);
}
rs_stay_in_table(lq_data);
if (!update_lq && !done_search && !lq_data->stay_in_tbl) {
lq_data->last_tpt = current_tpt;
if (is_legacy(tbl->lq_type))
rs_move_legacy_other(priv, lq_data, index);
else if (is_siso(tbl->lq_type))
rs_move_siso_to_other(priv, lq_data, index);
else
rs_move_mimo_to_other(priv, lq_data, index);
if (lq_data->search_better_tbl) {
tbl = &(lq_data->lq_info[(1 - lq_data->active_tbl)]);
for (i = 0; i < IWL_RATE_COUNT; i++)
rs_rate_scale_clear_window(&(tbl->win[i]));
index = iwl_rate_index_from_plcp(
tbl->current_rate.rate_n_flags);
IWL_DEBUG_HT("Switch current mcs: %X index: %d\n",
tbl->current_rate.rate_n_flags, index);
rs_fill_link_cmd(lq_data, &tbl->current_rate,
&(lq_data->lq), sta);
rs_send_lq_cmd(priv, &lq_data->lq, CMD_ASYNC);
}
tbl1 = &(lq_data->lq_info[lq_data->active_tbl]);
if (is_legacy(tbl1->lq_type) &&
#ifdef CONFIG_IWLWIFI_HT
!priv->current_assoc_ht.is_ht &&
#endif
(lq_data->action_counter >= 1)) {
lq_data->action_counter = 0;
IWL_DEBUG_HT("LQ: STAY in legacy table\n");
rs_set_stay_in_table(1, lq_data);
}
if (lq_data->enable_counter &&
(lq_data->action_counter >= IWL_ACTION_LIMIT)) {
#ifdef CONFIG_IWLWIFI_HT_AGG
if ((lq_data->last_tpt > TID_AGG_TPT_THREHOLD) &&
(priv->lq_mngr.agg_ctrl.auto_agg)) {
priv->lq_mngr.agg_ctrl.tid_retry =
TID_ALL_SPECIFIED;
schedule_work(&priv->agg_work);
}
#endif /*CONFIG_IWLWIFI_HT_AGG */
lq_data->action_counter = 0;
rs_set_stay_in_table(0, lq_data);
}
} else {
if ((!update_lq) && (!done_search) && (!lq_data->flush_timer))
lq_data->flush_timer = jiffies;
}
out:
rs_mcs_from_tbl(&tbl->current_rate, tbl, index, is_green);
i = index;
sta->last_txrate = i;
/* sta->txrate is an index to A mode rates which start
* at IWL_FIRST_OFDM_RATE
*/
if (lq_data->phymode == (u8) MODE_IEEE80211A)
sta->txrate = i - IWL_FIRST_OFDM_RATE;
else
sta->txrate = i;
return;
}
static void rs_initialize_lq(struct iwl_priv *priv,
struct sta_info *sta)
{
int i;
struct iwl_rate_scale_priv *lq;
struct iwl_scale_tbl_info *tbl;
u8 active_tbl = 0;
int rate_idx;
u8 use_green = rs_use_green(priv);
struct iwl_rate mcs_rate;
if (!sta || !sta->rate_ctrl_priv)
goto out;
lq = (struct iwl_rate_scale_priv *)sta->rate_ctrl_priv;
i = sta->last_txrate;
if ((lq->lq.sta_id == 0xff) &&
(priv->iw_mode == IEEE80211_IF_TYPE_IBSS))
goto out;
if (!lq->search_better_tbl)
active_tbl = lq->active_tbl;
else
active_tbl = 1 - lq->active_tbl;
tbl = &(lq->lq_info[active_tbl]);
if ((i < 0) || (i >= IWL_RATE_COUNT))
i = 0;
mcs_rate.rate_n_flags = iwl_rates[i].plcp ;
mcs_rate.rate_n_flags |= RATE_MCS_ANT_B_MSK;
mcs_rate.rate_n_flags &= ~RATE_MCS_ANT_A_MSK;
if (i >= IWL_FIRST_CCK_RATE && i <= IWL_LAST_CCK_RATE)
mcs_rate.rate_n_flags |= RATE_MCS_CCK_MSK;
tbl->antenna_type = ANT_AUX;
rs_get_tbl_info_from_mcs(&mcs_rate, priv->phymode, tbl, &rate_idx);
if (!rs_is_ant_connected(priv->valid_antenna, tbl->antenna_type))
rs_toggle_antenna(&mcs_rate, tbl),
rs_mcs_from_tbl(&mcs_rate, tbl, rate_idx, use_green);
tbl->current_rate.rate_n_flags = mcs_rate.rate_n_flags;
rs_get_expected_tpt_table(lq, tbl);
rs_fill_link_cmd(lq, &mcs_rate, &(lq->lq), sta);
rs_send_lq_cmd(priv, &lq->lq, CMD_ASYNC);
out:
return;
}
static struct ieee80211_rate *rs_get_lowest_rate(struct ieee80211_local
*local)
{
struct ieee80211_hw_mode *mode = local->oper_hw_mode;
int i;
for (i = 0; i < mode->num_rates; i++) {
struct ieee80211_rate *rate = &mode->rates[i];
if (rate->flags & IEEE80211_RATE_SUPPORTED)
return rate;
}
return &mode->rates[0];
}
static struct ieee80211_rate *rs_get_rate(void *priv_rate,
struct net_device *dev,
struct sk_buff *skb,
struct rate_control_extra
*extra)
{
int i;
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
struct sta_info *sta;
u16 fc;
struct iwl_priv *priv = (struct iwl_priv *)priv_rate;
struct iwl_rate_scale_priv *lq;
IWL_DEBUG_RATE("rate scale calculate new rate for skb\n");
memset(extra, 0, sizeof(*extra));
fc = le16_to_cpu(hdr->frame_control);
if (!ieee80211_is_data(fc) || is_multicast_ether_addr(hdr->addr1)) {
/* Send management frames and broadcast/multicast data using
* lowest rate. */
/* TODO: this could probably be improved.. */
return rs_get_lowest_rate(local);
}
sta = sta_info_get(local, hdr->addr1);
if (!sta || !sta->rate_ctrl_priv) {
if (sta)
sta_info_put(sta);
return rs_get_lowest_rate(local);
}
lq = (struct iwl_rate_scale_priv *)sta->rate_ctrl_priv;
i = sta->last_txrate;
if ((priv->iw_mode == IEEE80211_IF_TYPE_IBSS) && !lq->ibss_sta_added) {
u8 sta_id = iwl_hw_find_station(priv, hdr->addr1);
if (sta_id == IWL_INVALID_STATION) {
IWL_DEBUG_RATE("LQ: ADD station " MAC_FMT "\n",
MAC_ARG(hdr->addr1));
sta_id = iwl_add_station(priv,
hdr->addr1, 0, CMD_ASYNC);
}
if ((sta_id != IWL_INVALID_STATION)) {
lq->lq.sta_id = sta_id;
lq->lq.rs_table[0].rate_n_flags = 0;
lq->ibss_sta_added = 1;
rs_initialize_lq(priv, sta);
}
if (!lq->ibss_sta_added)
goto done;
}
done:
sta_info_put(sta);
if ((i < 0) || (i > IWL_RATE_COUNT))
return rs_get_lowest_rate(local);
return &priv->ieee_rates[i];
}
static void *rs_alloc_sta(void *priv, gfp_t gfp)
{
struct iwl_rate_scale_priv *crl;
int i, j;
IWL_DEBUG_RATE("create station rate scale window\n");
crl = kzalloc(sizeof(struct iwl_rate_scale_priv), gfp);
if (crl == NULL)
return NULL;
memset(crl, 0, sizeof(struct iwl_rate_scale_priv));
crl->lq.sta_id = 0xff;
for (j = 0; j < LQ_SIZE; j++)
for (i = 0; i < IWL_RATE_COUNT; i++)
rs_rate_scale_clear_window(&(crl->lq_info[j].win[i]));
return crl;
}
static void rs_rate_init(void *priv_rate, void *priv_sta,
struct ieee80211_local *local,
struct sta_info *sta)
{
int i, j;
struct ieee80211_hw_mode *mode = local->oper_hw_mode;
struct iwl_priv *priv = (struct iwl_priv *)priv_rate;
struct iwl_rate_scale_priv *crl = priv_sta;
memset(crl, 0, sizeof(struct iwl_rate_scale_priv));
crl->lq.sta_id = 0xff;
crl->flush_timer = 0;
sta->txrate = 3;
for (j = 0; j < LQ_SIZE; j++)
for (i = 0; i < IWL_RATE_COUNT; i++)
rs_rate_scale_clear_window(&(crl->lq_info[j].win[i]));
IWL_DEBUG_RATE("rate scale global init\n");
/* TODO: what is a good starting rate for STA? About middle? Maybe not
* the lowest or the highest rate.. Could consider using RSSI from
* previous packets? Need to have IEEE 802.1X auth succeed immediately
* after assoc.. */
crl->ibss_sta_added = 0;
if (priv->iw_mode == IEEE80211_IF_TYPE_AP) {
u8 sta_id = iwl_hw_find_station(priv, sta->addr);
/* for IBSS the call are from tasklet */
IWL_DEBUG_HT("LQ: ADD station " MAC_FMT " \n",
MAC_ARG(sta->addr));
if (sta_id == IWL_INVALID_STATION) {
IWL_DEBUG_RATE("LQ: ADD station " MAC_FMT "\n",
MAC_ARG(sta->addr));
sta_id = iwl_add_station(priv,
sta->addr, 0, CMD_ASYNC);
}
if ((sta_id != IWL_INVALID_STATION)) {
crl->lq.sta_id = sta_id;
crl->lq.rs_table[0].rate_n_flags = 0;
}
/* FIXME: this is w/a remove it later */
priv->assoc_station_added = 1;
}
for (i = 0; i < mode->num_rates; i++) {
if ((sta->supp_rates & BIT(i)) &&
(mode->rates[i].flags & IEEE80211_RATE_SUPPORTED))
sta->txrate = i;
}
sta->last_txrate = sta->txrate;
/* For MODE_IEEE80211A mode cck rate are at end
* rate table
*/
if (local->hw.conf.phymode == MODE_IEEE80211A)
sta->last_txrate += IWL_FIRST_OFDM_RATE;
crl->is_dup = priv->is_dup;
crl->valid_antenna = priv->valid_antenna;
crl->antenna = priv->antenna;
crl->is_green = rs_use_green(priv);
crl->active_rate = priv->active_rate;
crl->active_rate &= ~(0x1000);
crl->active_rate_basic = priv->active_rate_basic;
crl->phymode = priv->phymode;
#ifdef CONFIG_IWLWIFI_HT
crl->active_siso_rate = (priv->current_assoc_ht.supp_rates[0] << 1);
crl->active_siso_rate |= (priv->current_assoc_ht.supp_rates[0] & 0x1);
crl->active_siso_rate &= ~((u16)0x2);
crl->active_siso_rate = crl->active_siso_rate << IWL_FIRST_OFDM_RATE;
crl->active_mimo_rate = (priv->current_assoc_ht.supp_rates[1] << 1);
crl->active_mimo_rate |= (priv->current_assoc_ht.supp_rates[1] & 0x1);
crl->active_mimo_rate &= ~((u16)0x2);
crl->active_mimo_rate = crl->active_mimo_rate << IWL_FIRST_OFDM_RATE;
IWL_DEBUG_HT("MIMO RATE 0x%X SISO MASK 0x%X\n", crl->active_siso_rate,
crl->active_mimo_rate);
#endif /*CONFIG_IWLWIFI_HT*/
if (priv->assoc_station_added)
priv->lq_mngr.lq_ready = 1;
rs_initialize_lq(priv, sta);
}
static int rs_fill_link_cmd(struct iwl_rate_scale_priv *lq_data,
struct iwl_rate *tx_mcs,
struct iwl_link_quality_cmd *lq_cmd,
struct sta_info *sta)
{
int index = 0;
int rc = 0;
int rate_idx;
u8 ant_toggle_count = 0;
u8 use_ht_possible = 1;
u8 repeat_cur_rate = 0;
struct iwl_rate new_rate;
struct iwl_scale_tbl_info tbl_type = { 0 };
rs_get_tbl_info_from_mcs(tx_mcs, lq_data->phymode,
&tbl_type, &rate_idx);
if (is_legacy(tbl_type.lq_type)) {
ant_toggle_count = 1;
repeat_cur_rate = IWL_NUMBER_TRY;
} else
repeat_cur_rate = IWL_HT_NUMBER_TRY;
lq_cmd->general_params.mimo_delimiter =
is_mimo(tbl_type.lq_type) ? 1 : 0;
lq_cmd->rs_table[index].rate_n_flags =
cpu_to_le32(tx_mcs->rate_n_flags);
new_rate.rate_n_flags = tx_mcs->rate_n_flags;
if (is_mimo(tbl_type.lq_type) || (tbl_type.antenna_type == ANT_MAIN))
lq_cmd->general_params.single_stream_ant_msk = 1;
else
lq_cmd->general_params.single_stream_ant_msk = 2;
index++;
repeat_cur_rate--;
while (index < LINK_QUAL_MAX_RETRY_NUM) {
while (repeat_cur_rate && (index < LINK_QUAL_MAX_RETRY_NUM)) {
if (is_legacy(tbl_type.lq_type)) {
if (ant_toggle_count <
NUM_TRY_BEFORE_ANTENNA_TOGGLE)
ant_toggle_count++;
else {
rs_toggle_antenna(&new_rate, &tbl_type);
ant_toggle_count = 1;
}
}
lq_cmd->rs_table[index].rate_n_flags =
cpu_to_le32(new_rate.rate_n_flags);
repeat_cur_rate--;
index++;
}
rs_get_tbl_info_from_mcs(&new_rate, lq_data->phymode, &tbl_type,
&rate_idx);
if (is_mimo(tbl_type.lq_type))
lq_cmd->general_params.mimo_delimiter = index;
rs_get_lower_rate(lq_data, &tbl_type, rate_idx,
use_ht_possible, &new_rate, sta);
if (is_legacy(tbl_type.lq_type)) {
if (ant_toggle_count < NUM_TRY_BEFORE_ANTENNA_TOGGLE)
ant_toggle_count++;
else {
rs_toggle_antenna(&new_rate, &tbl_type);
ant_toggle_count = 1;
}
repeat_cur_rate = IWL_NUMBER_TRY;
} else
repeat_cur_rate = IWL_HT_NUMBER_TRY;
use_ht_possible = 0;
lq_cmd->rs_table[index].rate_n_flags =
cpu_to_le32(new_rate.rate_n_flags);
/* lq_cmd->rs_table[index].rate_n_flags = 0x800d; */
index++;
repeat_cur_rate--;
}
/* lq_cmd->rs_table[0].rate_n_flags = 0x800d; */
lq_cmd->general_params.dual_stream_ant_msk = 3;
lq_cmd->agg_params.agg_dis_start_th = 3;
lq_cmd->agg_params.agg_time_limit = cpu_to_le16(4000);
return rc;
}
static void *rs_alloc(struct ieee80211_local *local)
{
return local->hw.priv;
}
/* rate scale requires free function to be implemented */
static void rs_free(void *priv_rate)
{
return;
}
static void rs_clear(void *priv_rate)
{
struct iwl_priv *priv = (struct iwl_priv *) priv_rate;
IWL_DEBUG_RATE("enter\n");
priv->lq_mngr.lq_ready = 0;
#ifdef CONFIG_IWLWIFI_HT
#ifdef CONFIG_IWLWIFI_HT_AGG
if (priv->lq_mngr.agg_ctrl.granted_ba)
iwl4965_turn_off_agg(priv, TID_ALL_SPECIFIED);
#endif /*CONFIG_IWLWIFI_HT_AGG */
#endif /* CONFIG_IWLWIFI_HT */
IWL_DEBUG_RATE("leave\n");
}
static void rs_free_sta(void *priv, void *priv_sta)
{
struct iwl_rate_scale_priv *rs_priv = priv_sta;
IWL_DEBUG_RATE("enter\n");
kfree(rs_priv);
IWL_DEBUG_RATE("leave\n");
}
static struct rate_control_ops rs_ops = {
.module = NULL,
.name = RS_NAME,
.tx_status = rs_tx_status,
.get_rate = rs_get_rate,
.rate_init = rs_rate_init,
.clear = rs_clear,
.alloc = rs_alloc,
.free = rs_free,
.alloc_sta = rs_alloc_sta,
.free_sta = rs_free_sta,
};
int iwl_fill_rs_info(struct ieee80211_hw *hw, char *buf, u8 sta_id)
{
struct ieee80211_local *local = hw_to_local(hw);
struct iwl_priv *priv = hw->priv;
struct iwl_rate_scale_priv *rs_priv;
struct sta_info *sta;
int count = 0, i;
u32 samples = 0, success = 0, good = 0;
unsigned long now = jiffies;
u32 max_time = 0;
u8 lq_type, antenna;
sta = sta_info_get(local, priv->stations[sta_id].sta.sta.addr);
if (!sta || !sta->rate_ctrl_priv) {
if (sta) {
sta_info_put(sta);
IWL_DEBUG_RATE("leave - no private rate data!\n");
} else
IWL_DEBUG_RATE("leave - no station!\n");
return sprintf(buf, "station %d not found\n", sta_id);
}
rs_priv = (void *)sta->rate_ctrl_priv;
lq_type = rs_priv->lq_info[rs_priv->active_tbl].lq_type;
antenna = rs_priv->lq_info[rs_priv->active_tbl].antenna_type;
if (is_legacy(lq_type))
i = IWL_RATE_54M_INDEX;
else
i = IWL_RATE_60M_INDEX;
while (1) {
u64 mask;
int j;
int active = rs_priv->active_tbl;
count +=
sprintf(&buf[count], " %2dMbs: ", iwl_rates[i].ieee / 2);
mask = (1ULL << (IWL_RATE_MAX_WINDOW - 1));
for (j = 0; j < IWL_RATE_MAX_WINDOW; j++, mask >>= 1)
buf[count++] =
(rs_priv->lq_info[active].win[i].data & mask)
? '1' : '0';
samples += rs_priv->lq_info[active].win[i].counter;
good += rs_priv->lq_info[active].win[i].success_counter;
success += rs_priv->lq_info[active].win[i].success_counter *
iwl_rates[i].ieee;
if (rs_priv->lq_info[active].win[i].stamp) {
int delta =
jiffies_to_msecs(now -
rs_priv->lq_info[active].win[i].stamp);
if (delta > max_time)
max_time = delta;
count += sprintf(&buf[count], "%5dms\n", delta);
} else
buf[count++] = '\n';
j = iwl_get_prev_ieee_rate(i);
if (j == i)
break;
i = j;
}
/* Display the average rate of all samples taken.
*
* NOTE: We multiple # of samples by 2 since the IEEE measurement
* added from iwl_rates is actually 2X the rate */
if (samples)
count += sprintf(&buf[count],
"\nAverage rate is %3d.%02dMbs over last %4dms\n"
"%3d%% success (%d good packets over %d tries)\n",
success / (2 * samples), (success * 5 / samples) % 10,
max_time, good * 100 / samples, good, samples);
else
count += sprintf(&buf[count], "\nAverage rate: 0Mbs\n");
count += sprintf(&buf[count], "\nrate scale type %d anntena %d "
"active_search %d rate index %d\n", lq_type, antenna,
rs_priv->search_better_tbl, sta->last_txrate);
sta_info_put(sta);
return count;
}
void iwl_rate_scale_init(struct ieee80211_hw *hw, s32 sta_id)
{
struct iwl_priv *priv = hw->priv;
priv->lq_mngr.lq_ready = 1;
}
void iwl_rate_control_register(struct ieee80211_hw *hw)
{
ieee80211_rate_control_register(&rs_ops);
}
void iwl_rate_control_unregister(struct ieee80211_hw *hw)
{
ieee80211_rate_control_unregister(&rs_ops);
}
/******************************************************************************
*
* Copyright(c) 2003 - 2007 Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
*
* The full GNU General Public License is included in this distribution in the
* file called LICENSE.
*
* Contact Information:
* James P. Ketrenos <ipw2100-admin@linux.intel.com>
* Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*
*****************************************************************************/
#ifndef __iwl_4965_rs_h__
#define __iwl_4965_rs_h__
#include "iwl-4965.h"
struct iwl_rate_info {
u8 plcp;
u8 plcp_siso;
u8 plcp_mimo;
u8 ieee;
u8 prev_ieee; /* previous rate in IEEE speeds */
u8 next_ieee; /* next rate in IEEE speeds */
u8 prev_rs; /* previous rate used in rs algo */
u8 next_rs; /* next rate used in rs algo */
u8 prev_rs_tgg; /* previous rate used in TGG rs algo */
u8 next_rs_tgg; /* next rate used in TGG rs algo */
};
enum {
IWL_RATE_1M_INDEX = 0,
IWL_RATE_2M_INDEX,
IWL_RATE_5M_INDEX,
IWL_RATE_11M_INDEX,
IWL_RATE_6M_INDEX,
IWL_RATE_9M_INDEX,
IWL_RATE_12M_INDEX,
IWL_RATE_18M_INDEX,
IWL_RATE_24M_INDEX,
IWL_RATE_36M_INDEX,
IWL_RATE_48M_INDEX,
IWL_RATE_54M_INDEX,
IWL_RATE_60M_INDEX,
IWL_RATE_COUNT,
IWL_RATE_INVM_INDEX = IWL_RATE_COUNT,
IWL_RATE_INVALID = IWL_RATE_INVM_INDEX
};
enum {
IWL_FIRST_OFDM_RATE = IWL_RATE_6M_INDEX,
IWL_LAST_OFDM_RATE = IWL_RATE_60M_INDEX,
IWL_FIRST_CCK_RATE = IWL_RATE_1M_INDEX,
IWL_LAST_CCK_RATE = IWL_RATE_11M_INDEX,
};
/* #define vs. enum to keep from defaulting to 'large integer' */
#define IWL_RATE_6M_MASK (1<<IWL_RATE_6M_INDEX)
#define IWL_RATE_9M_MASK (1<<IWL_RATE_9M_INDEX)
#define IWL_RATE_12M_MASK (1<<IWL_RATE_12M_INDEX)
#define IWL_RATE_18M_MASK (1<<IWL_RATE_18M_INDEX)
#define IWL_RATE_24M_MASK (1<<IWL_RATE_24M_INDEX)
#define IWL_RATE_36M_MASK (1<<IWL_RATE_36M_INDEX)
#define IWL_RATE_48M_MASK (1<<IWL_RATE_48M_INDEX)
#define IWL_RATE_54M_MASK (1<<IWL_RATE_54M_INDEX)
#define IWL_RATE_60M_MASK (1<<IWL_RATE_60M_INDEX)
#define IWL_RATE_1M_MASK (1<<IWL_RATE_1M_INDEX)
#define IWL_RATE_2M_MASK (1<<IWL_RATE_2M_INDEX)
#define IWL_RATE_5M_MASK (1<<IWL_RATE_5M_INDEX)
#define IWL_RATE_11M_MASK (1<<IWL_RATE_11M_INDEX)
enum {
IWL_RATE_6M_PLCP = 13,
IWL_RATE_9M_PLCP = 15,
IWL_RATE_12M_PLCP = 5,
IWL_RATE_18M_PLCP = 7,
IWL_RATE_24M_PLCP = 9,
IWL_RATE_36M_PLCP = 11,
IWL_RATE_48M_PLCP = 1,
IWL_RATE_54M_PLCP = 3,
IWL_RATE_60M_PLCP = 3,
IWL_RATE_1M_PLCP = 10,
IWL_RATE_2M_PLCP = 20,
IWL_RATE_5M_PLCP = 55,
IWL_RATE_11M_PLCP = 110,
};
/* OFDM HT rate plcp */
enum {
IWL_RATE_SISO_6M_PLCP = 0,
IWL_RATE_SISO_12M_PLCP = 1,
IWL_RATE_SISO_18M_PLCP = 2,
IWL_RATE_SISO_24M_PLCP = 3,
IWL_RATE_SISO_36M_PLCP = 4,
IWL_RATE_SISO_48M_PLCP = 5,
IWL_RATE_SISO_54M_PLCP = 6,
IWL_RATE_SISO_60M_PLCP = 7,
IWL_RATE_MIMO_6M_PLCP = 0x8,
IWL_RATE_MIMO_12M_PLCP = 0x9,
IWL_RATE_MIMO_18M_PLCP = 0xa,
IWL_RATE_MIMO_24M_PLCP = 0xb,
IWL_RATE_MIMO_36M_PLCP = 0xc,
IWL_RATE_MIMO_48M_PLCP = 0xd,
IWL_RATE_MIMO_54M_PLCP = 0xe,
IWL_RATE_MIMO_60M_PLCP = 0xf,
IWL_RATE_SISO_INVM_PLCP,
IWL_RATE_MIMO_INVM_PLCP = IWL_RATE_SISO_INVM_PLCP,
};
enum {
IWL_RATE_6M_IEEE = 12,
IWL_RATE_9M_IEEE = 18,
IWL_RATE_12M_IEEE = 24,
IWL_RATE_18M_IEEE = 36,
IWL_RATE_24M_IEEE = 48,
IWL_RATE_36M_IEEE = 72,
IWL_RATE_48M_IEEE = 96,
IWL_RATE_54M_IEEE = 108,
IWL_RATE_60M_IEEE = 120,
IWL_RATE_1M_IEEE = 2,
IWL_RATE_2M_IEEE = 4,
IWL_RATE_5M_IEEE = 11,
IWL_RATE_11M_IEEE = 22,
};
#define IWL_CCK_BASIC_RATES_MASK \
(IWL_RATE_1M_MASK | \
IWL_RATE_2M_MASK)
#define IWL_CCK_RATES_MASK \
(IWL_BASIC_RATES_MASK | \
IWL_RATE_5M_MASK | \
IWL_RATE_11M_MASK)
#define IWL_OFDM_BASIC_RATES_MASK \
(IWL_RATE_6M_MASK | \
IWL_RATE_12M_MASK | \
IWL_RATE_24M_MASK)
#define IWL_OFDM_RATES_MASK \
(IWL_OFDM_BASIC_RATES_MASK | \
IWL_RATE_9M_MASK | \
IWL_RATE_18M_MASK | \
IWL_RATE_36M_MASK | \
IWL_RATE_48M_MASK | \
IWL_RATE_54M_MASK)
#define IWL_BASIC_RATES_MASK \
(IWL_OFDM_BASIC_RATES_MASK | \
IWL_CCK_BASIC_RATES_MASK)
#define IWL_RATES_MASK ((1<<IWL_RATE_COUNT)-1)
#define IWL_INVALID_VALUE -1
#define IWL_MIN_RSSI_VAL -100
#define IWL_MAX_RSSI_VAL 0
#define IWL_LEGACY_SWITCH_ANTENNA 0
#define IWL_LEGACY_SWITCH_SISO 1
#define IWL_LEGACY_SWITCH_MIMO 2
#define IWL_RS_GOOD_RATIO 12800
#define IWL_ACTION_LIMIT 3
#define IWL_LEGACY_FAILURE_LIMIT 160
#define IWL_LEGACY_SUCCESS_LIMIT 480
#define IWL_LEGACY_TABLE_COUNT 160
#define IWL_NONE_LEGACY_FAILURE_LIMIT 400
#define IWL_NONE_LEGACY_SUCCESS_LIMIT 4500
#define IWL_NONE_LEGACY_TABLE_COUNT 1500
#define IWL_RATE_SCALE_SWITCH (10880)
#define IWL_SISO_SWITCH_ANTENNA 0
#define IWL_SISO_SWITCH_MIMO 1
#define IWL_SISO_SWITCH_GI 2
#define IWL_MIMO_SWITCH_ANTENNA_A 0
#define IWL_MIMO_SWITCH_ANTENNA_B 1
#define IWL_MIMO_SWITCH_GI 2
#define LQ_SIZE 2
extern const struct iwl_rate_info iwl_rates[IWL_RATE_COUNT];
enum iwl_table_type {
LQ_NONE,
LQ_G,
LQ_A,
LQ_SISO,
LQ_MIMO,
LQ_MAX,
};
enum iwl_antenna_type {
ANT_NONE,
ANT_MAIN,
ANT_AUX,
ANT_BOTH,
};
static inline u8 iwl_get_prev_ieee_rate(u8 rate_index)
{
u8 rate = iwl_rates[rate_index].prev_ieee;
if (rate == IWL_RATE_INVALID)
rate = rate_index;
return rate;
}
extern int iwl_rate_index_from_plcp(int plcp);
/**
* iwl_fill_rs_info - Fill an output text buffer with the rate representation
*
* NOTE: This is provided as a quick mechanism for a user to visualize
* the performance of the rate control alogirthm and is not meant to be
* parsed software.
*/
extern int iwl_fill_rs_info(struct ieee80211_hw *, char *buf, u8 sta_id);
/**
* iwl_rate_scale_init - Initialize the rate scale table based on assoc info
*
* The specific througput table used is based on the type of network
* the associated with, including A, B, G, and G w/ TGG protection
*/
extern void iwl_rate_scale_init(struct ieee80211_hw *hw, s32 sta_id);
/**
* iwl_rate_control_register - Register the rate control algorithm callbacks
*
* Since the rate control algorithm is hardware specific, there is no need
* or reason to place it as a stand alone module. The driver can call
* iwl_rate_control_register in order to register the rate control callbacks
* with the mac80211 subsystem. This should be performed prior to calling
* ieee80211_register_hw
*
*/
extern void iwl_rate_control_register(struct ieee80211_hw *hw);
/**
* iwl_rate_control_unregister - Unregister the rate control callbacks
*
* This should be called after calling ieee80211_unregister_hw, but before
* the driver is unloaded.
*/
extern void iwl_rate_control_unregister(struct ieee80211_hw *hw);
#endif
This source diff could not be displayed because it is too large. You can view the blob instead.
/******************************************************************************
*
* Copyright(c) 2003 - 2007 Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
*
* The full GNU General Public License is included in this distribution in the
* file called LICENSE.
*
* Contact Information:
* James P. Ketrenos <ipw2100-admin@linux.intel.com>
* Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*
*****************************************************************************/
#ifndef __iwl_4965_h__
#define __iwl_4965_h__
struct iwl_priv;
struct sta_ht_info;
/*
* Forward declare iwl-4965.c functions for iwl-base.c
*/
extern int iwl_eeprom_aqcuire_semaphore(struct iwl_priv *priv);
extern void iwl_eeprom_release_semaphore(struct iwl_priv *priv);
extern int iwl4965_tx_queue_update_wr_ptr(struct iwl_priv *priv,
struct iwl_tx_queue *txq,
u16 byte_cnt);
extern void iwl4965_add_station(struct iwl_priv *priv, const u8 *addr,
int is_ap);
extern void iwl4965_set_rxon_ht(struct iwl_priv *priv,
struct sta_ht_info *ht_info);
extern void iwl4965_set_rxon_chain(struct iwl_priv *priv);
extern int iwl4965_tx_cmd(struct iwl_priv *priv, struct iwl_cmd *out_cmd,
u8 sta_id, dma_addr_t txcmd_phys,
struct ieee80211_hdr *hdr, u8 hdr_len,
struct ieee80211_tx_control *ctrl, void *sta_in);
extern int iwl4965_init_hw_rates(struct iwl_priv *priv,
struct ieee80211_rate *rates);
extern int iwl4965_alive_notify(struct iwl_priv *priv);
extern void iwl4965_update_rate_scaling(struct iwl_priv *priv, u8 mode);
extern void iwl4965_set_ht_add_station(struct iwl_priv *priv, u8 index);
extern void iwl4965_chain_noise_reset(struct iwl_priv *priv);
extern void iwl4965_init_sensitivity(struct iwl_priv *priv, u8 flags,
u8 force);
extern int iwl4965_set_fat_chan_info(struct iwl_priv *priv, int phymode,
u16 channel,
const struct iwl_eeprom_channel *eeprom_ch,
u8 fat_extension_channel);
extern void iwl4965_rf_kill_ct_config(struct iwl_priv *priv);
#ifdef CONFIG_IWLWIFI_HT
#ifdef CONFIG_IWLWIFI_HT_AGG
extern int iwl_mac_ht_tx_agg_start(struct ieee80211_hw *hw, u8 *da,
u16 tid, u16 *start_seq_num);
extern int iwl_mac_ht_rx_agg_start(struct ieee80211_hw *hw, u8 *da,
u16 tid, u16 start_seq_num);
extern int iwl_mac_ht_rx_agg_stop(struct ieee80211_hw *hw, u8 *da,
u16 tid, int generator);
extern int iwl_mac_ht_tx_agg_stop(struct ieee80211_hw *hw, u8 *da,
u16 tid, int generator);
extern void iwl4965_turn_off_agg(struct iwl_priv *priv, u8 tid);
#endif /* CONFIG_IWLWIFI_HT_AGG */
#endif /*CONFIG_IWLWIFI_HT */
/* Structures, enum, and defines specific to the 4965 */
#define IWL4965_KW_SIZE 0x1000 /*4k */
struct iwl_kw {
dma_addr_t dma_addr;
void *v_addr;
size_t size;
};
#define TID_QUEUE_CELL_SPACING 50 /*mS */
#define TID_QUEUE_MAX_SIZE 20
#define TID_ROUND_VALUE 5 /* mS */
#define TID_MAX_LOAD_COUNT 8
#define TID_MAX_TIME_DIFF ((TID_QUEUE_MAX_SIZE - 1) * TID_QUEUE_CELL_SPACING)
#define TIME_WRAP_AROUND(x, y) (((y) > (x)) ? (y) - (x) : (0-(x)) + (y))
#define TID_ALL_ENABLED 0x7f
#define TID_ALL_SPECIFIED 0xff
#define TID_AGG_TPT_THREHOLD 0x0
#define IWL_CHANNEL_WIDTH_20MHZ 0
#define IWL_CHANNEL_WIDTH_40MHZ 1
#define IWL_MIMO_PS_STATIC 0
#define IWL_MIMO_PS_NONE 3
#define IWL_MIMO_PS_DYNAMIC 1
#define IWL_MIMO_PS_INVALID 2
#define IWL_OPERATION_MODE_AUTO 0
#define IWL_OPERATION_MODE_HT_ONLY 1
#define IWL_OPERATION_MODE_MIXED 2
#define IWL_OPERATION_MODE_20MHZ 3
#define IWL_EXT_CHANNEL_OFFSET_AUTO 0
#define IWL_EXT_CHANNEL_OFFSET_ABOVE 1
#define IWL_EXT_CHANNEL_OFFSET_ 2
#define IWL_EXT_CHANNEL_OFFSET_BELOW 3
#define IWL_EXT_CHANNEL_OFFSET_MAX 4
#define NRG_NUM_PREV_STAT_L 20
#define NUM_RX_CHAINS (3)
#define TX_POWER_IWL_ILLEGAL_VDET -100000
#define TX_POWER_IWL_ILLEGAL_VOLTAGE -10000
#define TX_POWER_IWL_CLOSED_LOOP_MIN_POWER 18
#define TX_POWER_IWL_CLOSED_LOOP_MAX_POWER 34
#define TX_POWER_IWL_VDET_SLOPE_BELOW_NOMINAL 17
#define TX_POWER_IWL_VDET_SLOPE_ABOVE_NOMINAL 20
#define TX_POWER_IWL_NOMINAL_POWER 26
#define TX_POWER_IWL_CLOSED_LOOP_ITERATION_LIMIT 1
#define TX_POWER_IWL_VOLTAGE_CODES_PER_03V 7
#define TX_POWER_IWL_DEGREES_PER_VDET_CODE 11
#define IWL_TX_POWER_MAX_NUM_PA_MEASUREMENTS 1
#define IWL_TX_POWER_CCK_COMPENSATION_B_STEP (9)
#define IWL_TX_POWER_CCK_COMPENSATION_C_STEP (5)
struct iwl_traffic_load {
unsigned long time_stamp;
u32 packet_count[TID_QUEUE_MAX_SIZE];
u8 queue_count;
u8 head;
u32 total;
};
#ifdef CONFIG_IWLWIFI_HT_AGG
struct iwl_agg_control {
unsigned long next_retry;
u32 wait_for_agg_status;
u32 tid_retry;
u32 requested_ba;
u32 granted_ba;
u8 auto_agg;
u32 tid_traffic_load_threshold;
u32 ba_timeout;
struct iwl_traffic_load traffic_load[TID_MAX_LOAD_COUNT];
};
#endif /*CONFIG_IWLWIFI_HT_AGG */
struct iwl_lq_mngr {
#ifdef CONFIG_IWLWIFI_HT_AGG
struct iwl_agg_control agg_ctrl;
#endif
spinlock_t lock;
s32 max_window_size;
s32 *expected_tpt;
u8 *next_higher_rate;
u8 *next_lower_rate;
unsigned long stamp;
unsigned long stamp_last;
u32 flush_time;
u32 tx_packets;
u8 lq_ready;
};
/* Sensitivity and chain noise calibration */
#define INTERFERENCE_DATA_AVAILABLE __constant_cpu_to_le32(1)
#define INITIALIZATION_VALUE 0xFFFF
#define CAL_NUM_OF_BEACONS 20
#define MAXIMUM_ALLOWED_PATHLOSS 15
/* Param table within SENSITIVITY_CMD */
#define HD_MIN_ENERGY_CCK_DET_INDEX (0)
#define HD_MIN_ENERGY_OFDM_DET_INDEX (1)
#define HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX (2)
#define HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX (3)
#define HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX (4)
#define HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX (5)
#define HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX (6)
#define HD_BARKER_CORR_TH_ADD_MIN_INDEX (7)
#define HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX (8)
#define HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX (9)
#define HD_OFDM_ENERGY_TH_IN_INDEX (10)
#define SENSITIVITY_CMD_CONTROL_DEFAULT_TABLE __constant_cpu_to_le16(0)
#define SENSITIVITY_CMD_CONTROL_WORK_TABLE __constant_cpu_to_le16(1)
#define CHAIN_NOISE_MAX_DELTA_GAIN_CODE 3
#define MAX_FA_OFDM 50
#define MIN_FA_OFDM 5
#define MAX_FA_CCK 50
#define MIN_FA_CCK 5
#define NRG_MIN_CCK 97
#define NRG_MAX_CCK 0
#define AUTO_CORR_MIN_OFDM 85
#define AUTO_CORR_MIN_OFDM_MRC 170
#define AUTO_CORR_MIN_OFDM_X1 105
#define AUTO_CORR_MIN_OFDM_MRC_X1 220
#define AUTO_CORR_MAX_OFDM 120
#define AUTO_CORR_MAX_OFDM_MRC 210
#define AUTO_CORR_MAX_OFDM_X1 140
#define AUTO_CORR_MAX_OFDM_MRC_X1 270
#define AUTO_CORR_STEP_OFDM 1
#define AUTO_CORR_MIN_CCK (125)
#define AUTO_CORR_MAX_CCK (200)
#define AUTO_CORR_MIN_CCK_MRC 200
#define AUTO_CORR_MAX_CCK_MRC 400
#define AUTO_CORR_STEP_CCK 3
#define AUTO_CORR_MAX_TH_CCK 160
#define NRG_ALG 0
#define AUTO_CORR_ALG 1
#define NRG_DIFF 2
#define NRG_STEP_CCK 2
#define NRG_MARGIN 8
#define MAX_NUMBER_CCK_NO_FA 100
#define AUTO_CORR_CCK_MIN_VAL_DEF (125)
#define CHAIN_A 0
#define CHAIN_B 1
#define CHAIN_C 2
#define CHAIN_NOISE_DELTA_GAIN_INIT_VAL 4
#define ALL_BAND_FILTER 0xFF00
#define IN_BAND_FILTER 0xFF
#define MIN_AVERAGE_NOISE_MAX_VALUE 0xFFFFFFFF
enum iwl_false_alarm_state {
IWL_FA_TOO_MANY = 0,
IWL_FA_TOO_FEW = 1,
IWL_FA_GOOD_RANGE = 2,
};
enum iwl_chain_noise_state {
IWL_CHAIN_NOISE_ALIVE = 0, /* must be 0 */
IWL_CHAIN_NOISE_ACCUMULATE = 1,
IWL_CHAIN_NOISE_CALIBRATED = 2,
};
enum iwl_sensitivity_state {
IWL_SENS_CALIB_ALLOWED = 0,
IWL_SENS_CALIB_NEED_REINIT = 1,
};
enum iwl_calib_enabled_state {
IWL_CALIB_DISABLED = 0, /* must be 0 */
IWL_CALIB_ENABLED = 1,
};
struct statistics_general_data {
u32 beacon_silence_rssi_a;
u32 beacon_silence_rssi_b;
u32 beacon_silence_rssi_c;
u32 beacon_energy_a;
u32 beacon_energy_b;
u32 beacon_energy_c;
};
/* Sensitivity calib data */
struct iwl_sensitivity_data {
u32 auto_corr_ofdm;
u32 auto_corr_ofdm_mrc;
u32 auto_corr_ofdm_x1;
u32 auto_corr_ofdm_mrc_x1;
u32 auto_corr_cck;
u32 auto_corr_cck_mrc;
u32 last_bad_plcp_cnt_ofdm;
u32 last_fa_cnt_ofdm;
u32 last_bad_plcp_cnt_cck;
u32 last_fa_cnt_cck;
u32 nrg_curr_state;
u32 nrg_prev_state;
u32 nrg_value[10];
u8 nrg_silence_rssi[NRG_NUM_PREV_STAT_L];
u32 nrg_silence_ref;
u32 nrg_energy_idx;
u32 nrg_silence_idx;
u32 nrg_th_cck;
s32 nrg_auto_corr_silence_diff;
u32 num_in_cck_no_fa;
u32 nrg_th_ofdm;
u8 state;
};
/* Chain noise (differential Rx gain) calib data */
struct iwl_chain_noise_data {
u8 state;
u16 beacon_count;
u32 chain_noise_a;
u32 chain_noise_b;
u32 chain_noise_c;
u32 chain_signal_a;
u32 chain_signal_b;
u32 chain_signal_c;
u8 disconn_array[NUM_RX_CHAINS];
u8 delta_gain_code[NUM_RX_CHAINS];
u8 radio_write;
};
/* IWL4965 */
#define RATE_MCS_CODE_MSK 0x7
#define RATE_MCS_MIMO_POS 3
#define RATE_MCS_MIMO_MSK 0x8
#define RATE_MCS_HT_DUP_POS 5
#define RATE_MCS_HT_DUP_MSK 0x20
#define RATE_MCS_FLAGS_POS 8
#define RATE_MCS_HT_POS 8
#define RATE_MCS_HT_MSK 0x100
#define RATE_MCS_CCK_POS 9
#define RATE_MCS_CCK_MSK 0x200
#define RATE_MCS_GF_POS 10
#define RATE_MCS_GF_MSK 0x400
#define RATE_MCS_FAT_POS 11
#define RATE_MCS_FAT_MSK 0x800
#define RATE_MCS_DUP_POS 12
#define RATE_MCS_DUP_MSK 0x1000
#define RATE_MCS_SGI_POS 13
#define RATE_MCS_SGI_MSK 0x2000
#define EEPROM_SEM_TIMEOUT 10
#define EEPROM_SEM_RETRY_LIMIT 1000
#endif /* __iwl_4965_h__ */
/******************************************************************************
*
* Copyright(c) 2005 - 2007 Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
*
* The full GNU General Public License is included in this distribution in the
* file called LICENSE.
*
* Contact Information:
* James P. Ketrenos <ipw2100-admin@linux.intel.com>
* Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*
*****************************************************************************/
#ifndef __iwl_channel_h__
#define __iwl_channel_h__
#define IWL_NUM_SCAN_RATES (2)
struct iwl_channel_tgd_info {
u8 type;
s8 max_power;
};
struct iwl_channel_tgh_info {
s64 last_radar_time;
};
/* current Tx power values to use, one for each rate for each channel.
* requested power is limited by:
* -- regulatory EEPROM limits for this channel
* -- hardware capabilities (clip-powers)
* -- spectrum management
* -- user preference (e.g. iwconfig)
* when requested power is set, base power index must also be set. */
struct iwl_channel_power_info {
struct iwl_tx_power tpc; /* actual radio and DSP gain settings */
s8 power_table_index; /* actual (compenst'd) index into gain table */
s8 base_power_index; /* gain index for power at factory temp. */
s8 requested_power; /* power (dBm) requested for this chnl/rate */
};
/* current scan Tx power values to use, one for each scan rate for each
* channel. */
struct iwl_scan_power_info {
struct iwl_tx_power tpc; /* actual radio and DSP gain settings */
s8 power_table_index; /* actual (compenst'd) index into gain table */
s8 requested_power; /* scan pwr (dBm) requested for chnl/rate */
};
/* Channel unlock period is 15 seconds. If no beacon or probe response
* has been received within 15 seconds on a locked channel then the channel
* remains locked. */
#define TX_UNLOCK_PERIOD 15
/* CSA lock period is 15 seconds. If a CSA has been received on a channel in
* the last 15 seconds, the channel is locked */
#define CSA_LOCK_PERIOD 15
/*
* One for each channel, holds all channel setup data
* Some of the fields (e.g. eeprom and flags/max_power_avg) are redundant
* with one another!
*/
#define IWL4965_MAX_RATE (33)
struct iwl_channel_info {
struct iwl_channel_tgd_info tgd;
struct iwl_channel_tgh_info tgh;
struct iwl_eeprom_channel eeprom; /* EEPROM regulatory limit */
struct iwl_eeprom_channel fat_eeprom; /* EEPROM regulatory limit for
* FAT channel */
u8 channel; /* channel number */
u8 flags; /* flags copied from EEPROM */
s8 max_power_avg; /* (dBm) regul. eeprom, normal Tx, any rate */
s8 curr_txpow; /* (dBm) regulatory/spectrum/user (not h/w) */
s8 min_power; /* always 0 */
s8 scan_power; /* (dBm) regul. eeprom, direct scans, any rate */
u8 group_index; /* 0-4, maps channel to group1/2/3/4/5 */
u8 band_index; /* 0-4, maps channel to band1/2/3/4/5 */
u8 phymode; /* MODE_IEEE80211{A,B,G} */
/* Radio/DSP gain settings for each "normal" data Tx rate.
* These include, in addition to RF and DSP gain, a few fields for
* remembering/modifying gain settings (indexes). */
struct iwl_channel_power_info power_info[IWL4965_MAX_RATE];
#if IWL == 4965
/* FAT channel info */
s8 fat_max_power_avg; /* (dBm) regul. eeprom, normal Tx, any rate */
s8 fat_curr_txpow; /* (dBm) regulatory/spectrum/user (not h/w) */
s8 fat_min_power; /* always 0 */
s8 fat_scan_power; /* (dBm) eeprom, direct scans, any rate */
u8 fat_flags; /* flags copied from EEPROM */
u8 fat_extension_channel;
#endif
/* Radio/DSP gain settings for each scan rate, for directed scans. */
struct iwl_scan_power_info scan_pwr_info[IWL_NUM_SCAN_RATES];
};
struct iwl_clip_group {
/* maximum power level to prevent clipping for each rate, derived by
* us from this band's saturation power in EEPROM */
const s8 clip_powers[IWL_MAX_RATES];
};
static inline int is_channel_valid(const struct iwl_channel_info *ch_info)
{
if (ch_info == NULL)
return 0;
return (ch_info->flags & EEPROM_CHANNEL_VALID) ? 1 : 0;
}
static inline int is_channel_narrow(const struct iwl_channel_info *ch_info)
{
return (ch_info->flags & EEPROM_CHANNEL_NARROW) ? 1 : 0;
}
static inline int is_channel_radar(const struct iwl_channel_info *ch_info)
{
return (ch_info->flags & EEPROM_CHANNEL_RADAR) ? 1 : 0;
}
static inline u8 is_channel_a_band(const struct iwl_channel_info *ch_info)
{
return ch_info->phymode == MODE_IEEE80211A;
}
static inline u8 is_channel_bg_band(const struct iwl_channel_info *ch_info)
{
return ((ch_info->phymode == MODE_IEEE80211B) ||
(ch_info->phymode == MODE_IEEE80211G));
}
static inline int is_channel_passive(const struct iwl_channel_info *ch)
{
return (!(ch->flags & EEPROM_CHANNEL_ACTIVE)) ? 1 : 0;
}
static inline int is_channel_ibss(const struct iwl_channel_info *ch)
{
return ((ch->flags & EEPROM_CHANNEL_IBSS)) ? 1 : 0;
}
extern const struct iwl_channel_info *iwl_get_channel_info(
const struct iwl_priv *priv, int phymode, u16 channel);
#endif
/******************************************************************************
*
* This file is provided under a dual BSD/GPLv2 license. When using or
* redistributing this file, you may do so under either license.
*
* GPL LICENSE SUMMARY
*
* Copyright(c) 2005 - 2007 Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU Geeral Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
* USA
*
* The full GNU General Public License is included in this distribution
* in the file called LICENSE.GPL.
*
* Contact Information:
* James P. Ketrenos <ipw2100-admin@linux.intel.com>
* Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*
* BSD LICENSE
*
* Copyright(c) 2005 - 2007 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*****************************************************************************/
#ifndef __iwl_commands_h__
#define __iwl_commands_h__
enum {
REPLY_ALIVE = 0x1,
REPLY_ERROR = 0x2,
/* RXON and QOS commands */
REPLY_RXON = 0x10,
REPLY_RXON_ASSOC = 0x11,
REPLY_QOS_PARAM = 0x13,
REPLY_RXON_TIMING = 0x14,
/* Multi-Station support */
REPLY_ADD_STA = 0x18,
REPLY_REMOVE_STA = 0x19, /* not used */
REPLY_REMOVE_ALL_STA = 0x1a, /* not used */
/* RX, TX, LEDs */
#if IWL == 3945
REPLY_3945_RX = 0x1b, /* 3945 only */
#endif
REPLY_TX = 0x1c,
REPLY_RATE_SCALE = 0x47, /* 3945 only */
REPLY_LEDS_CMD = 0x48,
REPLY_TX_LINK_QUALITY_CMD = 0x4e, /* 4965 only */
/* 802.11h related */
RADAR_NOTIFICATION = 0x70, /* not used */
REPLY_QUIET_CMD = 0x71, /* not used */
REPLY_CHANNEL_SWITCH = 0x72,
CHANNEL_SWITCH_NOTIFICATION = 0x73,
REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74,
SPECTRUM_MEASURE_NOTIFICATION = 0x75,
/* Power Management */
POWER_TABLE_CMD = 0x77,
PM_SLEEP_NOTIFICATION = 0x7A,
PM_DEBUG_STATISTIC_NOTIFIC = 0x7B,
/* Scan commands and notifications */
REPLY_SCAN_CMD = 0x80,
REPLY_SCAN_ABORT_CMD = 0x81,
SCAN_START_NOTIFICATION = 0x82,
SCAN_RESULTS_NOTIFICATION = 0x83,
SCAN_COMPLETE_NOTIFICATION = 0x84,
/* IBSS/AP commands */
BEACON_NOTIFICATION = 0x90,
REPLY_TX_BEACON = 0x91,
WHO_IS_AWAKE_NOTIFICATION = 0x94, /* not used */
/* Miscellaneous commands */
QUIET_NOTIFICATION = 0x96, /* not used */
REPLY_TX_PWR_TABLE_CMD = 0x97,
MEASURE_ABORT_NOTIFICATION = 0x99, /* not used */
/* BT config command */
REPLY_BT_CONFIG = 0x9b,
/* 4965 Statistics */
REPLY_STATISTICS_CMD = 0x9c,
STATISTICS_NOTIFICATION = 0x9d,
/* RF-KILL commands and notifications */
REPLY_CARD_STATE_CMD = 0xa0,
CARD_STATE_NOTIFICATION = 0xa1,
/* Missed beacons notification */
MISSED_BEACONS_NOTIFICATION = 0xa2,
#if IWL == 4965
REPLY_CT_KILL_CONFIG_CMD = 0xa4,
SENSITIVITY_CMD = 0xa8,
REPLY_PHY_CALIBRATION_CMD = 0xb0,
REPLY_RX_PHY_CMD = 0xc0,
REPLY_RX_MPDU_CMD = 0xc1,
REPLY_4965_RX = 0xc3,
REPLY_COMPRESSED_BA = 0xc5,
#endif
REPLY_MAX = 0xff
};
/******************************************************************************
* (0)
* Header
*
*****************************************************************************/
#define IWL_CMD_FAILED_MSK 0x40
struct iwl_cmd_header {
u8 cmd;
u8 flags;
/* We have 15 LSB to use as we please (MSB indicates
* a frame Rx'd from the HW). We encode the following
* information into the sequence field:
*
* 0:7 index in fifo
* 8:13 fifo selection
* 14:14 bit indicating if this packet references the 'extra'
* storage at the end of the memory queue
* 15:15 (Rx indication)
*
*/
__le16 sequence;
/* command data follows immediately */
u8 data[0];
} __attribute__ ((packed));
/******************************************************************************
* (0a)
* Alive and Error Commands & Responses:
*
*****************************************************************************/
#define UCODE_VALID_OK __constant_cpu_to_le32(0x1)
#define INITIALIZE_SUBTYPE (9)
/*
* REPLY_ALIVE = 0x1 (response only, not a command)
*/
struct iwl_alive_resp {
u8 ucode_minor;
u8 ucode_major;
__le16 reserved1;
u8 sw_rev[8];
u8 ver_type;
u8 ver_subtype;
__le16 reserved2;
__le32 log_event_table_ptr;
__le32 error_event_table_ptr;
__le32 timestamp;
__le32 is_valid;
} __attribute__ ((packed));
struct iwl_init_alive_resp {
u8 ucode_minor;
u8 ucode_major;
__le16 reserved1;
u8 sw_rev[8];
u8 ver_type;
u8 ver_subtype;
__le16 reserved2;
__le32 log_event_table_ptr;
__le32 error_event_table_ptr;
__le32 timestamp;
__le32 is_valid;
#if IWL == 4965
/* calibration values from "initialize" uCode */
__le32 voltage; /* signed */
__le32 therm_r1[2]; /* signed 1st for normal, 2nd for FAT channel */
__le32 therm_r2[2]; /* signed */
__le32 therm_r3[2]; /* signed */
__le32 therm_r4[2]; /* signed */
__le32 tx_atten[5][2]; /* signed MIMO gain comp, 5 freq groups,
* 2 Tx chains */
#endif
} __attribute__ ((packed));
union tsf {
u8 byte[8];
__le16 word[4];
__le32 dw[2];
};
/*
* REPLY_ERROR = 0x2 (response only, not a command)
*/
struct iwl_error_resp {
__le32 error_type;
u8 cmd_id;
u8 reserved1;
__le16 bad_cmd_seq_num;
#if IWL == 3945
__le16 reserved2;
#endif
__le32 error_info;
union tsf timestamp;
} __attribute__ ((packed));
/******************************************************************************
* (1)
* RXON Commands & Responses:
*
*****************************************************************************/
/*
* Rx config defines & structure
*/
/* rx_config device types */
enum {
RXON_DEV_TYPE_AP = 1,
RXON_DEV_TYPE_ESS = 3,
RXON_DEV_TYPE_IBSS = 4,
RXON_DEV_TYPE_SNIFFER = 6,
};
/* rx_config flags */
/* band & modulation selection */
#define RXON_FLG_BAND_24G_MSK __constant_cpu_to_le32(1 << 0)
#define RXON_FLG_CCK_MSK __constant_cpu_to_le32(1 << 1)
/* auto detection enable */
#define RXON_FLG_AUTO_DETECT_MSK __constant_cpu_to_le32(1 << 2)
/* TGg protection when tx */
#define RXON_FLG_TGG_PROTECT_MSK __constant_cpu_to_le32(1 << 3)
/* cck short slot & preamble */
#define RXON_FLG_SHORT_SLOT_MSK __constant_cpu_to_le32(1 << 4)
#define RXON_FLG_SHORT_PREAMBLE_MSK __constant_cpu_to_le32(1 << 5)
/* antenna selection */
#define RXON_FLG_DIS_DIV_MSK __constant_cpu_to_le32(1 << 7)
#define RXON_FLG_ANT_SEL_MSK __constant_cpu_to_le32(0x0f00)
#define RXON_FLG_ANT_A_MSK __constant_cpu_to_le32(1 << 8)
#define RXON_FLG_ANT_B_MSK __constant_cpu_to_le32(1 << 9)
/* radar detection enable */
#define RXON_FLG_RADAR_DETECT_MSK __constant_cpu_to_le32(1 << 12)
#define RXON_FLG_TGJ_NARROW_BAND_MSK __constant_cpu_to_le32(1 << 13)
/* rx response to host with 8-byte TSF
* (according to ON_AIR deassertion) */
#define RXON_FLG_TSF2HOST_MSK __constant_cpu_to_le32(1 << 15)
/* rx_config filter flags */
/* accept all data frames */
#define RXON_FILTER_PROMISC_MSK __constant_cpu_to_le32(1 << 0)
/* pass control & management to host */
#define RXON_FILTER_CTL2HOST_MSK __constant_cpu_to_le32(1 << 1)
/* accept multi-cast */
#define RXON_FILTER_ACCEPT_GRP_MSK __constant_cpu_to_le32(1 << 2)
/* don't decrypt uni-cast frames */
#define RXON_FILTER_DIS_DECRYPT_MSK __constant_cpu_to_le32(1 << 3)
/* don't decrypt multi-cast frames */
#define RXON_FILTER_DIS_GRP_DECRYPT_MSK __constant_cpu_to_le32(1 << 4)
/* STA is associated */
#define RXON_FILTER_ASSOC_MSK __constant_cpu_to_le32(1 << 5)
/* transfer to host non bssid beacons in associated state */
#define RXON_FILTER_BCON_AWARE_MSK __constant_cpu_to_le32(1 << 6)
/*
* REPLY_RXON = 0x10 (command, has simple generic response)
*/
struct iwl_rxon_cmd {
u8 node_addr[6];
__le16 reserved1;
u8 bssid_addr[6];
__le16 reserved2;
u8 wlap_bssid_addr[6];
__le16 reserved3;
u8 dev_type;
u8 air_propagation;
#if IWL == 3945
__le16 reserved4;
#elif IWL == 4965
__le16 rx_chain;
#endif
u8 ofdm_basic_rates;
u8 cck_basic_rates;
__le16 assoc_id;
__le32 flags;
__le32 filter_flags;
__le16 channel;
#if IWL == 3945
__le16 reserved5;
#elif IWL == 4965
u8 ofdm_ht_single_stream_basic_rates;
u8 ofdm_ht_dual_stream_basic_rates;
#endif
} __attribute__ ((packed));
/*
* REPLY_RXON_ASSOC = 0x11 (command, has simple generic response)
*/
struct iwl_rxon_assoc_cmd {
__le32 flags;
__le32 filter_flags;
u8 ofdm_basic_rates;
u8 cck_basic_rates;
#if IWL == 4965
u8 ofdm_ht_single_stream_basic_rates;
u8 ofdm_ht_dual_stream_basic_rates;
__le16 rx_chain_select_flags;
#endif
__le16 reserved;
} __attribute__ ((packed));
/*
* REPLY_RXON_TIMING = 0x14 (command, has simple generic response)
*/
struct iwl_rxon_time_cmd {
union tsf timestamp;
__le16 beacon_interval;
__le16 atim_window;
__le32 beacon_init_val;
__le16 listen_interval;
__le16 reserved;
} __attribute__ ((packed));
struct iwl_tx_power {
u8 tx_gain; /* gain for analog radio */
u8 dsp_atten; /* gain for DSP */
} __attribute__ ((packed));
#if IWL == 3945
struct iwl_power_per_rate {
u8 rate; /* plcp */
struct iwl_tx_power tpc;
u8 reserved;
} __attribute__ ((packed));
#elif IWL == 4965
#define POWER_TABLE_NUM_ENTRIES 33
#define POWER_TABLE_NUM_HT_OFDM_ENTRIES 32
#define POWER_TABLE_CCK_ENTRY 32
struct tx_power_dual_stream {
__le32 dw;
} __attribute__ ((packed));
struct iwl_tx_power_db {
struct tx_power_dual_stream power_tbl[POWER_TABLE_NUM_ENTRIES];
} __attribute__ ((packed));
#endif
/*
* REPLY_CHANNEL_SWITCH = 0x72 (command, has simple generic response)
*/
struct iwl_channel_switch_cmd {
u8 band;
u8 expect_beacon;
__le16 channel;
__le32 rxon_flags;
__le32 rxon_filter_flags;
__le32 switch_time;
#if IWL == 3945
struct iwl_power_per_rate power[IWL_MAX_RATES];
#elif IWL == 4965
struct iwl_tx_power_db tx_power;
#endif
} __attribute__ ((packed));
/*
* CHANNEL_SWITCH_NOTIFICATION = 0x73 (notification only, not a command)
*/
struct iwl_csa_notification {
__le16 band;
__le16 channel;
__le32 status; /* 0 - OK, 1 - fail */
} __attribute__ ((packed));
/******************************************************************************
* (2)
* Quality-of-Service (QOS) Commands & Responses:
*
*****************************************************************************/
struct iwl_ac_qos {
__le16 cw_min;
__le16 cw_max;
u8 aifsn;
u8 reserved1;
__le16 edca_txop;
} __attribute__ ((packed));
/* QoS flags defines */
#define QOS_PARAM_FLG_UPDATE_EDCA_MSK __constant_cpu_to_le32(0x01)
#define QOS_PARAM_FLG_TGN_MSK __constant_cpu_to_le32(0x02)
#define QOS_PARAM_FLG_TXOP_TYPE_MSK __constant_cpu_to_le32(0x10)
/*
* TXFIFO Queue number defines
*/
/* number of Access categories (AC) (EDCA), queues 0..3 */
#define AC_NUM 4
/*
* REPLY_QOS_PARAM = 0x13 (command, has simple generic response)
*/
struct iwl_qosparam_cmd {
__le32 qos_flags;
struct iwl_ac_qos ac[AC_NUM];
} __attribute__ ((packed));
/******************************************************************************
* (3)
* Add/Modify Stations Commands & Responses:
*
*****************************************************************************/
/*
* Multi station support
*/
#define IWL_AP_ID 0
#define IWL_MULTICAST_ID 1
#define IWL_STA_ID 2
#define IWL3945_BROADCAST_ID 24
#define IWL3945_STATION_COUNT 25
#define IWL4965_BROADCAST_ID 31
#define IWL4965_STATION_COUNT 32
#define IWL_STATION_COUNT 32 /* MAX(3945,4965)*/
#define IWL_INVALID_STATION 255
#if IWL == 3945
#define STA_FLG_TX_RATE_MSK __constant_cpu_to_le32(1<<2);
#endif
#define STA_FLG_PWR_SAVE_MSK __constant_cpu_to_le32(1<<8);
#define STA_CONTROL_MODIFY_MSK 0x01
/* key flags __le16*/
#define STA_KEY_FLG_ENCRYPT_MSK __constant_cpu_to_le16(0x7)
#define STA_KEY_FLG_NO_ENC __constant_cpu_to_le16(0x0)
#define STA_KEY_FLG_WEP __constant_cpu_to_le16(0x1)
#define STA_KEY_FLG_CCMP __constant_cpu_to_le16(0x2)
#define STA_KEY_FLG_TKIP __constant_cpu_to_le16(0x3)
#define STA_KEY_FLG_KEYID_POS 8
#define STA_KEY_FLG_INVALID __constant_cpu_to_le16(0x0800)
/* modify flags */
#define STA_MODIFY_KEY_MASK 0x01
#define STA_MODIFY_TID_DISABLE_TX 0x02
#define STA_MODIFY_TX_RATE_MSK 0x04
#define STA_MODIFY_ADDBA_TID_MSK 0x08
#define STA_MODIFY_DELBA_TID_MSK 0x10
#define BUILD_RAxTID(sta_id, tid) (((sta_id) << 4) + (tid))
/*
* Antenna masks:
* bit14:15 01 B inactive, A active
* 10 B active, A inactive
* 11 Both active
*/
#define RATE_MCS_ANT_A_POS 14
#define RATE_MCS_ANT_B_POS 15
#define RATE_MCS_ANT_A_MSK 0x4000
#define RATE_MCS_ANT_B_MSK 0x8000
#define RATE_MCS_ANT_AB_MSK 0xc000
struct iwl_keyinfo {
__le16 key_flags;
u8 tkip_rx_tsc_byte2; /* TSC[2] for key mix ph1 detection */
u8 reserved1;
__le16 tkip_rx_ttak[5]; /* 10-byte unicast TKIP TTAK */
__le16 reserved2;
u8 key[16]; /* 16-byte unicast decryption key */
} __attribute__ ((packed));
struct sta_id_modify {
u8 addr[ETH_ALEN];
__le16 reserved1;
u8 sta_id;
u8 modify_mask;
__le16 reserved2;
} __attribute__ ((packed));
/*
* REPLY_ADD_STA = 0x18 (command)
*/
struct iwl_addsta_cmd {
u8 mode;
u8 reserved[3];
struct sta_id_modify sta;
struct iwl_keyinfo key;
__le32 station_flags;
__le32 station_flags_msk;
__le16 tid_disable_tx;
#if IWL == 3945
__le16 rate_n_flags;
#else
__le16 reserved1;
#endif
u8 add_immediate_ba_tid;
u8 remove_immediate_ba_tid;
__le16 add_immediate_ba_ssn;
#if IWL == 4965
__le32 reserved2;
#endif
} __attribute__ ((packed));
/*
* REPLY_ADD_STA = 0x18 (response)
*/
struct iwl_add_sta_resp {
u8 status;
} __attribute__ ((packed));
#define ADD_STA_SUCCESS_MSK 0x1
/******************************************************************************
* (4)
* Rx Responses:
*
*****************************************************************************/
struct iwl_rx_frame_stats {
u8 phy_count;
u8 id;
u8 rssi;
u8 agc;
__le16 sig_avg;
__le16 noise_diff;
u8 payload[0];
} __attribute__ ((packed));
struct iwl_rx_frame_hdr {
__le16 channel;
__le16 phy_flags;
u8 reserved1;
u8 rate;
__le16 len;
u8 payload[0];
} __attribute__ ((packed));
#define RX_RES_STATUS_NO_CRC32_ERROR __constant_cpu_to_le32(1 << 0)
#define RX_RES_STATUS_NO_RXE_OVERFLOW __constant_cpu_to_le32(1 << 1)
#define RX_RES_PHY_FLAGS_BAND_24_MSK __constant_cpu_to_le16(1 << 0)
#define RX_RES_PHY_FLAGS_MOD_CCK_MSK __constant_cpu_to_le16(1 << 1)
#define RX_RES_PHY_FLAGS_SHORT_PREAMBLE_MSK __constant_cpu_to_le16(1 << 2)
#define RX_RES_PHY_FLAGS_NARROW_BAND_MSK __constant_cpu_to_le16(1 << 3)
#define RX_RES_PHY_FLAGS_ANTENNA_MSK __constant_cpu_to_le16(0xf0)
#define RX_RES_STATUS_SEC_TYPE_MSK (0x7 << 8)
#define RX_RES_STATUS_SEC_TYPE_NONE (0x0 << 8)
#define RX_RES_STATUS_SEC_TYPE_WEP (0x1 << 8)
#define RX_RES_STATUS_SEC_TYPE_CCMP (0x2 << 8)
#define RX_RES_STATUS_SEC_TYPE_TKIP (0x3 << 8)
#define RX_RES_STATUS_DECRYPT_TYPE_MSK (0x3 << 11)
#define RX_RES_STATUS_NOT_DECRYPT (0x0 << 11)
#define RX_RES_STATUS_DECRYPT_OK (0x3 << 11)
#define RX_RES_STATUS_BAD_ICV_MIC (0x1 << 11)
#define RX_RES_STATUS_BAD_KEY_TTAK (0x2 << 11)
struct iwl_rx_frame_end {
__le32 status;
__le64 timestamp;
__le32 beacon_timestamp;
} __attribute__ ((packed));
/*
* REPLY_3945_RX = 0x1b (response only, not a command)
*
* NOTE: DO NOT dereference from casts to this structure
* It is provided only for calculating minimum data set size.
* The actual offsets of the hdr and end are dynamic based on
* stats.phy_count
*/
struct iwl_rx_frame {
struct iwl_rx_frame_stats stats;
struct iwl_rx_frame_hdr hdr;
struct iwl_rx_frame_end end;
} __attribute__ ((packed));
/* Fixed (non-configurable) rx data from phy */
#define RX_PHY_FLAGS_ANTENNAE_OFFSET (4)
#define RX_PHY_FLAGS_ANTENNAE_MASK (0x70)
#define IWL_AGC_DB_MASK (0x3f80) /* MASK(7,13) */
#define IWL_AGC_DB_POS (7)
struct iwl4965_rx_non_cfg_phy {
__le16 ant_selection; /* ant A bit 4, ant B bit 5, ant C bit 6 */
__le16 agc_info; /* agc code 0:6, agc dB 7:13, reserved 14:15 */
u8 rssi_info[6]; /* we use even entries, 0/2/4 for A/B/C rssi */
u8 pad[0];
} __attribute__ ((packed));
/*
* REPLY_4965_RX = 0xc3 (response only, not a command)
* Used only for legacy (non 11n) frames.
*/
#define RX_RES_PHY_CNT 14
struct iwl4965_rx_phy_res {
u8 non_cfg_phy_cnt; /* non configurable DSP phy data byte count */
u8 cfg_phy_cnt; /* configurable DSP phy data byte count */
u8 stat_id; /* configurable DSP phy data set ID */
u8 reserved1;
__le64 timestamp; /* TSF at on air rise */
__le32 beacon_time_stamp; /* beacon at on-air rise */
__le16 phy_flags; /* general phy flags: band, modulation, ... */
__le16 channel; /* channel number */
__le16 non_cfg_phy[RX_RES_PHY_CNT]; /* upto 14 phy entries */
__le32 reserved2;
__le32 rate_n_flags;
__le16 byte_count; /* frame's byte-count */
__le16 reserved3;
} __attribute__ ((packed));
struct iwl4965_rx_mpdu_res_start {
__le16 byte_count;
__le16 reserved;
} __attribute__ ((packed));
/******************************************************************************
* (5)
* Tx Commands & Responses:
*
*****************************************************************************/
/* Tx flags */
#define TX_CMD_FLG_RTS_MSK __constant_cpu_to_le32(1 << 1)
#define TX_CMD_FLG_CTS_MSK __constant_cpu_to_le32(1 << 2)
#define TX_CMD_FLG_ACK_MSK __constant_cpu_to_le32(1 << 3)
#define TX_CMD_FLG_STA_RATE_MSK __constant_cpu_to_le32(1 << 4)
#define TX_CMD_FLG_IMM_BA_RSP_MASK __constant_cpu_to_le32(1 << 6)
#define TX_CMD_FLG_FULL_TXOP_PROT_MSK __constant_cpu_to_le32(1 << 7)
#define TX_CMD_FLG_ANT_SEL_MSK __constant_cpu_to_le32(0xf00)
#define TX_CMD_FLG_ANT_A_MSK __constant_cpu_to_le32(1 << 8)
#define TX_CMD_FLG_ANT_B_MSK __constant_cpu_to_le32(1 << 9)
/* ucode ignores BT priority for this frame */
#define TX_CMD_FLG_BT_DIS_MSK __constant_cpu_to_le32(1 << 12)
/* ucode overrides sequence control */
#define TX_CMD_FLG_SEQ_CTL_MSK __constant_cpu_to_le32(1 << 13)
/* signal that this frame is non-last MPDU */
#define TX_CMD_FLG_MORE_FRAG_MSK __constant_cpu_to_le32(1 << 14)
/* calculate TSF in outgoing frame */
#define TX_CMD_FLG_TSF_MSK __constant_cpu_to_le32(1 << 16)
/* activate TX calibration. */
#define TX_CMD_FLG_CALIB_MSK __constant_cpu_to_le32(1 << 17)
/* signals that 2 bytes pad was inserted
after the MAC header */
#define TX_CMD_FLG_MH_PAD_MSK __constant_cpu_to_le32(1 << 20)
/* HCCA-AP - disable duration overwriting. */
#define TX_CMD_FLG_DUR_MSK __constant_cpu_to_le32(1 << 25)
/*
* TX command security control
*/
#define TX_CMD_SEC_WEP 0x01
#define TX_CMD_SEC_CCM 0x02
#define TX_CMD_SEC_TKIP 0x03
#define TX_CMD_SEC_MSK 0x03
#define TX_CMD_SEC_SHIFT 6
#define TX_CMD_SEC_KEY128 0x08
/*
* TX command Frame life time
*/
struct iwl_dram_scratch {
u8 try_cnt;
u8 bt_kill_cnt;
__le16 reserved;
} __attribute__ ((packed));
/*
* REPLY_TX = 0x1c (command)
*/
struct iwl_tx_cmd {
__le16 len;
__le16 next_frame_len;
__le32 tx_flags;
#if IWL == 3945
u8 rate;
u8 sta_id;
u8 tid_tspec;
#elif IWL == 4965
struct iwl_dram_scratch scratch;
__le32 rate_n_flags;
u8 sta_id;
#endif
u8 sec_ctl;
#if IWL == 4965
u8 initial_rate_index;
u8 reserved;
#endif
u8 key[16];
#if IWL == 3945
union {
u8 byte[8];
__le16 word[4];
__le32 dw[2];
} tkip_mic;
__le32 next_frame_info;
#elif IWL == 4965
__le16 next_frame_flags;
__le16 reserved2;
#endif
union {
__le32 life_time;
__le32 attempt;
} stop_time;
#if IWL == 3945
u8 supp_rates[2];
#elif IWL == 4965
__le32 dram_lsb_ptr;
u8 dram_msb_ptr;
#endif
u8 rts_retry_limit; /*byte 50 */
u8 data_retry_limit; /*byte 51 */
#if IWL == 4965
u8 tid_tspec;
#endif
union {
__le16 pm_frame_timeout;
__le16 attempt_duration;
} timeout;
__le16 driver_txop;
u8 payload[0];
struct ieee80211_hdr hdr[0];
} __attribute__ ((packed));
/* TX command response is sent after *all* transmission attempts.
*
* NOTES:
*
* TX_STATUS_FAIL_NEXT_FRAG
*
* If the fragment flag in the MAC header for the frame being transmitted
* is set and there is insufficient time to transmit the next frame, the
* TX status will be returned with 'TX_STATUS_FAIL_NEXT_FRAG'.
*
* TX_STATUS_FIFO_UNDERRUN
*
* Indicates the host did not provide bytes to the FIFO fast enough while
* a TX was in progress.
*
* TX_STATUS_FAIL_MGMNT_ABORT
*
* This status is only possible if the ABORT ON MGMT RX parameter was
* set to true with the TX command.
*
* If the MSB of the status parameter is set then an abort sequence is
* required. This sequence consists of the host activating the TX Abort
* control line, and then waiting for the TX Abort command response. This
* indicates that a the device is no longer in a transmit state, and that the
* command FIFO has been cleared. The host must then deactivate the TX Abort
* control line. Receiving is still allowed in this case.
*/
enum {
TX_STATUS_SUCCESS = 0x01,
TX_STATUS_DIRECT_DONE = 0x02,
TX_STATUS_FAIL_SHORT_LIMIT = 0x82,
TX_STATUS_FAIL_LONG_LIMIT = 0x83,
TX_STATUS_FAIL_FIFO_UNDERRUN = 0x84,
TX_STATUS_FAIL_MGMNT_ABORT = 0x85,
TX_STATUS_FAIL_NEXT_FRAG = 0x86,
TX_STATUS_FAIL_LIFE_EXPIRE = 0x87,
TX_STATUS_FAIL_DEST_PS = 0x88,
TX_STATUS_FAIL_ABORTED = 0x89,
TX_STATUS_FAIL_BT_RETRY = 0x8a,
TX_STATUS_FAIL_STA_INVALID = 0x8b,
TX_STATUS_FAIL_FRAG_DROPPED = 0x8c,
TX_STATUS_FAIL_TID_DISABLE = 0x8d,
TX_STATUS_FAIL_FRAME_FLUSHED = 0x8e,
TX_STATUS_FAIL_INSUFFICIENT_CF_POLL = 0x8f,
TX_STATUS_FAIL_TX_LOCKED = 0x90,
TX_STATUS_FAIL_NO_BEACON_ON_RADAR = 0x91,
};
#define TX_PACKET_MODE_REGULAR 0x0000
#define TX_PACKET_MODE_BURST_SEQ 0x0100
#define TX_PACKET_MODE_BURST_FIRST 0x0200
enum {
TX_POWER_PA_NOT_ACTIVE = 0x0,
};
enum {
TX_STATUS_MSK = 0x000000ff, /* bits 0:7 */
TX_STATUS_DELAY_MSK = 0x00000040,
TX_STATUS_ABORT_MSK = 0x00000080,
TX_PACKET_MODE_MSK = 0x0000ff00, /* bits 8:15 */
TX_FIFO_NUMBER_MSK = 0x00070000, /* bits 16:18 */
TX_RESERVED = 0x00780000, /* bits 19:22 */
TX_POWER_PA_DETECT_MSK = 0x7f800000, /* bits 23:30 */
TX_ABORT_REQUIRED_MSK = 0x80000000, /* bits 31:31 */
};
/* *******************************
* TX aggregation state
******************************* */
enum {
AGG_TX_STATE_TRANSMITTED = 0x00,
AGG_TX_STATE_UNDERRUN_MSK = 0x01,
AGG_TX_STATE_BT_PRIO_MSK = 0x02,
AGG_TX_STATE_FEW_BYTES_MSK = 0x04,
AGG_TX_STATE_ABORT_MSK = 0x08,
AGG_TX_STATE_LAST_SENT_TTL_MSK = 0x10,
AGG_TX_STATE_LAST_SENT_TRY_CNT_MSK = 0x20,
AGG_TX_STATE_LAST_SENT_BT_KILL_MSK = 0x40,
AGG_TX_STATE_SCD_QUERY_MSK = 0x80,
AGG_TX_STATE_TEST_BAD_CRC32_MSK = 0x100,
AGG_TX_STATE_RESPONSE_MSK = 0x1ff,
AGG_TX_STATE_DUMP_TX_MSK = 0x200,
AGG_TX_STATE_DELAY_TX_MSK = 0x400
};
#define AGG_TX_STATE_LAST_SENT_MSK \
(AGG_TX_STATE_LAST_SENT_TTL_MSK | \
AGG_TX_STATE_LAST_SENT_TRY_CNT_MSK | \
AGG_TX_STATE_LAST_SENT_BT_KILL_MSK)
#define AGG_TX_STATE_TRY_CNT_POS 12
#define AGG_TX_STATE_TRY_CNT_MSK 0xf000
#define AGG_TX_STATE_SEQ_NUM_POS 16
#define AGG_TX_STATE_SEQ_NUM_MSK 0xffff0000
/*
* REPLY_TX = 0x1c (response)
*/
#if IWL == 4965
struct iwl_tx_resp {
u8 frame_count; /* 1 no aggregation, >1 aggregation */
u8 bt_kill_count;
u8 failure_rts;
u8 failure_frame;
__le32 rate_n_flags;
__le16 wireless_media_time;
__le16 reserved;
__le32 pa_power1;
__le32 pa_power2;
__le32 status; /* TX status (for aggregation status of 1st frame) */
} __attribute__ ((packed));
#elif IWL == 3945
struct iwl_tx_resp {
u8 failure_rts;
u8 failure_frame;
u8 bt_kill_count;
u8 rate;
__le32 wireless_media_time;
__le32 status; /* TX status (for aggregation status of 1st frame) */
} __attribute__ ((packed));
#endif
/*
* REPLY_COMPRESSED_BA = 0xc5 (response only, not a command)
*/
struct iwl_compressed_ba_resp {
__le32 sta_addr_lo32;
__le16 sta_addr_hi16;
__le16 reserved;
u8 sta_id;
u8 tid;
__le16 ba_seq_ctl;
__le32 ba_bitmap0;
__le32 ba_bitmap1;
__le16 scd_flow;
__le16 scd_ssn;
} __attribute__ ((packed));
/*
* REPLY_TX_PWR_TABLE_CMD = 0x97 (command, has simple generic response)
*/
struct iwl_txpowertable_cmd {
u8 band; /* 0: 5 GHz, 1: 2.4 GHz */
u8 reserved;
__le16 channel;
#if IWL == 3945
struct iwl_power_per_rate power[IWL_MAX_RATES];
#elif IWL == 4965
struct iwl_tx_power_db tx_power;
#endif
} __attribute__ ((packed));
#if IWL == 3945
struct iwl_rate_scaling_info {
__le16 rate_n_flags;
u8 try_cnt;
u8 next_rate_index;
} __attribute__ ((packed));
/**
* struct iwl_rate_scaling_cmd - Rate Scaling Command & Response
*
* REPLY_RATE_SCALE = 0x47 (command, has simple generic response)
*
* NOTE: The table of rates passed to the uCode via the
* RATE_SCALE command sets up the corresponding order of
* rates used for all related commands, including rate
* masks, etc.
*
* For example, if you set 9MB (PLCP 0x0f) as the first
* rate in the rate table, the bit mask for that rate
* when passed through ofdm_basic_rates on the REPLY_RXON
* command would be bit 0 (1<<0)
*/
struct iwl_rate_scaling_cmd {
u8 table_id;
u8 reserved[3];
struct iwl_rate_scaling_info table[IWL_MAX_RATES];
} __attribute__ ((packed));
#elif IWL == 4965
/*RS_NEW_API: only TLC_RTS remains and moved to bit 0 */
#define LINK_QUAL_FLAGS_SET_STA_TLC_RTS_MSK (1<<0)
#define LINK_QUAL_AC_NUM AC_NUM
#define LINK_QUAL_MAX_RETRY_NUM 16
#define LINK_QUAL_ANT_A_MSK (1<<0)
#define LINK_QUAL_ANT_B_MSK (1<<1)
#define LINK_QUAL_ANT_MSK (LINK_QUAL_ANT_A_MSK|LINK_QUAL_ANT_B_MSK)
struct iwl_link_qual_general_params {
u8 flags;
u8 mimo_delimiter;
u8 single_stream_ant_msk;
u8 dual_stream_ant_msk;
u8 start_rate_index[LINK_QUAL_AC_NUM];
} __attribute__ ((packed));
struct iwl_link_qual_agg_params {
__le16 agg_time_limit;
u8 agg_dis_start_th;
u8 agg_frame_cnt_limit;
__le32 reserved;
} __attribute__ ((packed));
/*
* REPLY_TX_LINK_QUALITY_CMD = 0x4e (command, has simple generic response)
*/
struct iwl_link_quality_cmd {
u8 sta_id;
u8 reserved1;
__le16 control;
struct iwl_link_qual_general_params general_params;
struct iwl_link_qual_agg_params agg_params;
struct {
__le32 rate_n_flags;
} rs_table[LINK_QUAL_MAX_RETRY_NUM];
__le32 reserved2;
} __attribute__ ((packed));
#endif
/*
* REPLY_BT_CONFIG = 0x9b (command, has simple generic response)
*/
struct iwl_bt_cmd {
u8 flags;
u8 lead_time;
u8 max_kill;
u8 reserved;
__le32 kill_ack_mask;
__le32 kill_cts_mask;
} __attribute__ ((packed));
/******************************************************************************
* (6)
* Spectrum Management (802.11h) Commands, Responses, Notifications:
*
*****************************************************************************/
/*
* Spectrum Management
*/
#define MEASUREMENT_FILTER_FLAG (RXON_FILTER_PROMISC_MSK | \
RXON_FILTER_CTL2HOST_MSK | \
RXON_FILTER_ACCEPT_GRP_MSK | \
RXON_FILTER_DIS_DECRYPT_MSK | \
RXON_FILTER_DIS_GRP_DECRYPT_MSK | \
RXON_FILTER_ASSOC_MSK | \
RXON_FILTER_BCON_AWARE_MSK)
struct iwl_measure_channel {
__le32 duration; /* measurement duration in extended beacon
* format */
u8 channel; /* channel to measure */
u8 type; /* see enum iwl_measure_type */
__le16 reserved;
} __attribute__ ((packed));
/*
* REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74 (command)
*/
struct iwl_spectrum_cmd {
__le16 len; /* number of bytes starting from token */
u8 token; /* token id */
u8 id; /* measurement id -- 0 or 1 */
u8 origin; /* 0 = TGh, 1 = other, 2 = TGk */
u8 periodic; /* 1 = periodic */
__le16 path_loss_timeout;
__le32 start_time; /* start time in extended beacon format */
__le32 reserved2;
__le32 flags; /* rxon flags */
__le32 filter_flags; /* rxon filter flags */
__le16 channel_count; /* minimum 1, maximum 10 */
__le16 reserved3;
struct iwl_measure_channel channels[10];
} __attribute__ ((packed));
/*
* REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74 (response)
*/
struct iwl_spectrum_resp {
u8 token;
u8 id; /* id of the prior command replaced, or 0xff */
__le16 status; /* 0 - command will be handled
* 1 - cannot handle (conflicts with another
* measurement) */
} __attribute__ ((packed));
enum iwl_measurement_state {
IWL_MEASUREMENT_START = 0,
IWL_MEASUREMENT_STOP = 1,
};
enum iwl_measurement_status {
IWL_MEASUREMENT_OK = 0,
IWL_MEASUREMENT_CONCURRENT = 1,
IWL_MEASUREMENT_CSA_CONFLICT = 2,
IWL_MEASUREMENT_TGH_CONFLICT = 3,
/* 4-5 reserved */
IWL_MEASUREMENT_STOPPED = 6,
IWL_MEASUREMENT_TIMEOUT = 7,
IWL_MEASUREMENT_PERIODIC_FAILED = 8,
};
#define NUM_ELEMENTS_IN_HISTOGRAM 8
struct iwl_measurement_histogram {
__le32 ofdm[NUM_ELEMENTS_IN_HISTOGRAM]; /* in 0.8usec counts */
__le32 cck[NUM_ELEMENTS_IN_HISTOGRAM]; /* in 1usec counts */
} __attribute__ ((packed));
/* clear channel availability counters */
struct iwl_measurement_cca_counters {
__le32 ofdm;
__le32 cck;
} __attribute__ ((packed));
enum iwl_measure_type {
IWL_MEASURE_BASIC = (1 << 0),
IWL_MEASURE_CHANNEL_LOAD = (1 << 1),
IWL_MEASURE_HISTOGRAM_RPI = (1 << 2),
IWL_MEASURE_HISTOGRAM_NOISE = (1 << 3),
IWL_MEASURE_FRAME = (1 << 4),
/* bits 5:6 are reserved */
IWL_MEASURE_IDLE = (1 << 7),
};
/*
* SPECTRUM_MEASURE_NOTIFICATION = 0x75 (notification only, not a command)
*/
struct iwl_spectrum_notification {
u8 id; /* measurement id -- 0 or 1 */
u8 token;
u8 channel_index; /* index in measurement channel list */
u8 state; /* 0 - start, 1 - stop */
__le32 start_time; /* lower 32-bits of TSF */
u8 band; /* 0 - 5.2GHz, 1 - 2.4GHz */
u8 channel;
u8 type; /* see enum iwl_measurement_type */
u8 reserved1;
/* NOTE: cca_ofdm, cca_cck, basic_type, and histogram are only only
* valid if applicable for measurement type requested. */
__le32 cca_ofdm; /* cca fraction time in 40Mhz clock periods */
__le32 cca_cck; /* cca fraction time in 44Mhz clock periods */
__le32 cca_time; /* channel load time in usecs */
u8 basic_type; /* 0 - bss, 1 - ofdm preamble, 2 -
* unidentified */
u8 reserved2[3];
struct iwl_measurement_histogram histogram;
__le32 stop_time; /* lower 32-bits of TSF */
__le32 status; /* see iwl_measurement_status */
} __attribute__ ((packed));
/******************************************************************************
* (7)
* Power Management Commands, Responses, Notifications:
*
*****************************************************************************/
/**
* struct iwl_powertable_cmd - Power Table Command
* @flags: See below:
*
* POWER_TABLE_CMD = 0x77 (command, has simple generic response)
*
* PM allow:
* bit 0 - '0' Driver not allow power management
* '1' Driver allow PM (use rest of parameters)
* uCode send sleep notifications:
* bit 1 - '0' Don't send sleep notification
* '1' send sleep notification (SEND_PM_NOTIFICATION)
* Sleep over DTIM
* bit 2 - '0' PM have to walk up every DTIM
* '1' PM could sleep over DTIM till listen Interval.
* PCI power managed
* bit 3 - '0' (PCI_LINK_CTRL & 0x1)
* '1' !(PCI_LINK_CTRL & 0x1)
* Force sleep Modes
* bit 31/30- '00' use both mac/xtal sleeps
* '01' force Mac sleep
* '10' force xtal sleep
* '11' Illegal set
*
* NOTE: if sleep_interval[SLEEP_INTRVL_TABLE_SIZE-1] > DTIM period then
* ucode assume sleep over DTIM is allowed and we don't need to wakeup
* for every DTIM.
*/
#define IWL_POWER_VEC_SIZE 5
#if IWL == 3945
#define IWL_POWER_DRIVER_ALLOW_SLEEP_MSK __constant_cpu_to_le32(1<<0)
#define IWL_POWER_SLEEP_OVER_DTIM_MSK __constant_cpu_to_le32(1<<2)
#define IWL_POWER_PCI_PM_MSK __constant_cpu_to_le32(1<<3)
struct iwl_powertable_cmd {
__le32 flags;
__le32 rx_data_timeout;
__le32 tx_data_timeout;
__le32 sleep_interval[IWL_POWER_VEC_SIZE];
} __attribute__((packed));
#elif IWL == 4965
#define IWL_POWER_DRIVER_ALLOW_SLEEP_MSK __constant_cpu_to_le16(1<<0)
#define IWL_POWER_SLEEP_OVER_DTIM_MSK __constant_cpu_to_le16(1<<2)
#define IWL_POWER_PCI_PM_MSK __constant_cpu_to_le16(1<<3)
struct iwl_powertable_cmd {
__le16 flags;
u8 keep_alive_seconds;
u8 debug_flags;
__le32 rx_data_timeout;
__le32 tx_data_timeout;
__le32 sleep_interval[IWL_POWER_VEC_SIZE];
__le32 keep_alive_beacons;
} __attribute__ ((packed));
#endif
/*
* PM_SLEEP_NOTIFICATION = 0x7A (notification only, not a command)
* 3945 and 4965 identical.
*/
struct iwl_sleep_notification {
u8 pm_sleep_mode;
u8 pm_wakeup_src;
__le16 reserved;
__le32 sleep_time;
__le32 tsf_low;
__le32 bcon_timer;
} __attribute__ ((packed));
/* Sleep states. 3945 and 4965 identical. */
enum {
IWL_PM_NO_SLEEP = 0,
IWL_PM_SLP_MAC = 1,
IWL_PM_SLP_FULL_MAC_UNASSOCIATE = 2,
IWL_PM_SLP_FULL_MAC_CARD_STATE = 3,
IWL_PM_SLP_PHY = 4,
IWL_PM_SLP_REPENT = 5,
IWL_PM_WAKEUP_BY_TIMER = 6,
IWL_PM_WAKEUP_BY_DRIVER = 7,
IWL_PM_WAKEUP_BY_RFKILL = 8,
/* 3 reserved */
IWL_PM_NUM_OF_MODES = 12,
};
/*
* REPLY_CARD_STATE_CMD = 0xa0 (command, has simple generic response)
*/
#define CARD_STATE_CMD_DISABLE 0x00 /* Put card to sleep */
#define CARD_STATE_CMD_ENABLE 0x01 /* Wake up card */
#define CARD_STATE_CMD_HALT 0x02 /* Power down permanently */
struct iwl_card_state_cmd {
__le32 status; /* CARD_STATE_CMD_* request new power state */
} __attribute__ ((packed));
/*
* CARD_STATE_NOTIFICATION = 0xa1 (notification only, not a command)
*/
struct iwl_card_state_notif {
__le32 flags;
} __attribute__ ((packed));
#define HW_CARD_DISABLED 0x01
#define SW_CARD_DISABLED 0x02
#define RF_CARD_DISABLED 0x04
#define RXON_CARD_DISABLED 0x10
struct iwl_ct_kill_config {
__le32 reserved;
__le32 critical_temperature_M;
__le32 critical_temperature_R;
} __attribute__ ((packed));
/******************************************************************************
* (8)
* Scan Commands, Responses, Notifications:
*
*****************************************************************************/
struct iwl_scan_channel {
/* type is defined as:
* 0:0 active (0 - passive)
* 1:4 SSID direct
* If 1 is set then corresponding SSID IE is transmitted in probe
* 5:7 reserved
*/
u8 type;
u8 channel;
struct iwl_tx_power tpc;
__le16 active_dwell;
__le16 passive_dwell;
} __attribute__ ((packed));
struct iwl_ssid_ie {
u8 id;
u8 len;
u8 ssid[32];
} __attribute__ ((packed));
#define PROBE_OPTION_MAX 0x4
#define TX_CMD_LIFE_TIME_INFINITE __constant_cpu_to_le32(0xFFFFFFFF)
#define IWL_GOOD_CRC_TH __constant_cpu_to_le16(1)
#define IWL_MAX_SCAN_SIZE 1024
/*
* REPLY_SCAN_CMD = 0x80 (command)
*/
struct iwl_scan_cmd {
__le16 len;
u8 reserved0;
u8 channel_count;
__le16 quiet_time; /* dwell only this long on quiet chnl
* (active scan) */
__le16 quiet_plcp_th; /* quiet chnl is < this # pkts (typ. 1) */
__le16 good_CRC_th; /* passive -> active promotion threshold */
#if IWL == 3945
__le16 reserved1;
#elif IWL == 4965
__le16 rx_chain;
#endif
__le32 max_out_time; /* max usec to be out of associated (service)
* chnl */
__le32 suspend_time; /* pause scan this long when returning to svc
* chnl.
* 3945 -- 31:24 # beacons, 19:0 additional usec,
* 4965 -- 31:22 # beacons, 21:0 additional usec.
*/
__le32 flags;
__le32 filter_flags;
struct iwl_tx_cmd tx_cmd;
struct iwl_ssid_ie direct_scan[PROBE_OPTION_MAX];
u8 data[0];
/*
* The channels start after the probe request payload and are of type:
*
* struct iwl_scan_channel channels[0];
*
* NOTE: Only one band of channels can be scanned per pass. You
* can not mix 2.4GHz channels and 5.2GHz channels and must
* request a scan multiple times (not concurrently)
*
*/
} __attribute__ ((packed));
/* Can abort will notify by complete notification with abort status. */
#define CAN_ABORT_STATUS __constant_cpu_to_le32(0x1)
/* complete notification statuses */
#define ABORT_STATUS 0x2
/*
* REPLY_SCAN_CMD = 0x80 (response)
*/
struct iwl_scanreq_notification {
__le32 status; /* 1: okay, 2: cannot fulfill request */
} __attribute__ ((packed));
/*
* SCAN_START_NOTIFICATION = 0x82 (notification only, not a command)
*/
struct iwl_scanstart_notification {
__le32 tsf_low;
__le32 tsf_high;
__le32 beacon_timer;
u8 channel;
u8 band;
u8 reserved[2];
__le32 status;
} __attribute__ ((packed));
#define SCAN_OWNER_STATUS 0x1;
#define MEASURE_OWNER_STATUS 0x2;
#define NUMBER_OF_STATISTICS 1 /* first __le32 is good CRC */
/*
* SCAN_RESULTS_NOTIFICATION = 0x83 (notification only, not a command)
*/
struct iwl_scanresults_notification {
u8 channel;
u8 band;
u8 reserved[2];
__le32 tsf_low;
__le32 tsf_high;
__le32 statistics[NUMBER_OF_STATISTICS];
} __attribute__ ((packed));
/*
* SCAN_COMPLETE_NOTIFICATION = 0x84 (notification only, not a command)
*/
struct iwl_scancomplete_notification {
u8 scanned_channels;
u8 status;
u8 reserved;
u8 last_channel;
__le32 tsf_low;
__le32 tsf_high;
} __attribute__ ((packed));
/******************************************************************************
* (9)
* IBSS/AP Commands and Notifications:
*
*****************************************************************************/
/*
* BEACON_NOTIFICATION = 0x90 (notification only, not a command)
*/
struct iwl_beacon_notif {
struct iwl_tx_resp beacon_notify_hdr;
__le32 low_tsf;
__le32 high_tsf;
__le32 ibss_mgr_status;
} __attribute__ ((packed));
/*
* REPLY_TX_BEACON = 0x91 (command, has simple generic response)
*/
struct iwl_tx_beacon_cmd {
struct iwl_tx_cmd tx;
__le16 tim_idx;
u8 tim_size;
u8 reserved1;
struct ieee80211_hdr frame[0]; /* beacon frame */
} __attribute__ ((packed));
/******************************************************************************
* (10)
* Statistics Commands and Notifications:
*
*****************************************************************************/
#define IWL_TEMP_CONVERT 260
#define SUP_RATE_11A_MAX_NUM_CHANNELS 8
#define SUP_RATE_11B_MAX_NUM_CHANNELS 4
#define SUP_RATE_11G_MAX_NUM_CHANNELS 12
/* Used for passing to driver number of successes and failures per rate */
struct rate_histogram {
union {
__le32 a[SUP_RATE_11A_MAX_NUM_CHANNELS];
__le32 b[SUP_RATE_11B_MAX_NUM_CHANNELS];
__le32 g[SUP_RATE_11G_MAX_NUM_CHANNELS];
} success;
union {
__le32 a[SUP_RATE_11A_MAX_NUM_CHANNELS];
__le32 b[SUP_RATE_11B_MAX_NUM_CHANNELS];
__le32 g[SUP_RATE_11G_MAX_NUM_CHANNELS];
} failed;
} __attribute__ ((packed));
/* statistics command response */
struct statistics_rx_phy {
__le32 ina_cnt;
__le32 fina_cnt;
__le32 plcp_err;
__le32 crc32_err;
__le32 overrun_err;
__le32 early_overrun_err;
__le32 crc32_good;
__le32 false_alarm_cnt;
__le32 fina_sync_err_cnt;
__le32 sfd_timeout;
__le32 fina_timeout;
__le32 unresponded_rts;
__le32 rxe_frame_limit_overrun;
__le32 sent_ack_cnt;
__le32 sent_cts_cnt;
#if IWL == 4965
__le32 sent_ba_rsp_cnt;
__le32 dsp_self_kill;
__le32 mh_format_err;
__le32 re_acq_main_rssi_sum;
__le32 reserved3;
#endif
} __attribute__ ((packed));
#if IWL == 4965
struct statistics_rx_ht_phy {
__le32 plcp_err;
__le32 overrun_err;
__le32 early_overrun_err;
__le32 crc32_good;
__le32 crc32_err;
__le32 mh_format_err;
__le32 agg_crc32_good;
__le32 agg_mpdu_cnt;
__le32 agg_cnt;
__le32 reserved2;
} __attribute__ ((packed));
#endif
struct statistics_rx_non_phy {
__le32 bogus_cts; /* CTS received when not expecting CTS */
__le32 bogus_ack; /* ACK received when not expecting ACK */
__le32 non_bssid_frames; /* number of frames with BSSID that
* doesn't belong to the STA BSSID */
__le32 filtered_frames; /* count frames that were dumped in the
* filtering process */
__le32 non_channel_beacons; /* beacons with our bss id but not on
* our serving channel */
#if IWL == 4965
__le32 channel_beacons; /* beacons with our bss id and in our
* serving channel */
__le32 num_missed_bcon; /* number of missed beacons */
__le32 adc_rx_saturation_time; /* count in 0.8us units the time the
* ADC was in saturation */
__le32 ina_detection_search_time;/* total time (in 0.8us) searched
* for INA */
__le32 beacon_silence_rssi_a; /* RSSI silence after beacon frame */
__le32 beacon_silence_rssi_b; /* RSSI silence after beacon frame */
__le32 beacon_silence_rssi_c; /* RSSI silence after beacon frame */
__le32 interference_data_flag; /* flag for interference data
* availability. 1 when data is
* available. */
__le32 channel_load; /* counts RX Enable time */
__le32 dsp_false_alarms; /* DSP false alarm (both OFDM
* and CCK) counter */
__le32 beacon_rssi_a;
__le32 beacon_rssi_b;
__le32 beacon_rssi_c;
__le32 beacon_energy_a;
__le32 beacon_energy_b;
__le32 beacon_energy_c;
#endif
} __attribute__ ((packed));
struct statistics_rx {
struct statistics_rx_phy ofdm;
struct statistics_rx_phy cck;
struct statistics_rx_non_phy general;
#if IWL == 4965
struct statistics_rx_ht_phy ofdm_ht;
#endif
} __attribute__ ((packed));
#if IWL == 4965
struct statistics_tx_non_phy_agg {
__le32 ba_timeout;
__le32 ba_reschedule_frames;
__le32 scd_query_agg_frame_cnt;
__le32 scd_query_no_agg;
__le32 scd_query_agg;
__le32 scd_query_mismatch;
__le32 frame_not_ready;
__le32 underrun;
__le32 bt_prio_kill;
__le32 rx_ba_rsp_cnt;
__le32 reserved2;
__le32 reserved3;
} __attribute__ ((packed));
#endif
struct statistics_tx {
__le32 preamble_cnt;
__le32 rx_detected_cnt;
__le32 bt_prio_defer_cnt;
__le32 bt_prio_kill_cnt;
__le32 few_bytes_cnt;
__le32 cts_timeout;
__le32 ack_timeout;
__le32 expected_ack_cnt;
__le32 actual_ack_cnt;
#if IWL == 4965
__le32 dump_msdu_cnt;
__le32 burst_abort_next_frame_mismatch_cnt;
__le32 burst_abort_missing_next_frame_cnt;
__le32 cts_timeout_collision;
__le32 ack_or_ba_timeout_collision;
struct statistics_tx_non_phy_agg agg;
#endif
} __attribute__ ((packed));
struct statistics_dbg {
__le32 burst_check;
__le32 burst_count;
__le32 reserved[4];
} __attribute__ ((packed));
struct statistics_div {
__le32 tx_on_a;
__le32 tx_on_b;
__le32 exec_time;
__le32 probe_time;
#if IWL == 4965
__le32 reserved1;
__le32 reserved2;
#endif
} __attribute__ ((packed));
struct statistics_general {
__le32 temperature;
#if IWL == 4965
__le32 temperature_m;
#endif
struct statistics_dbg dbg;
__le32 sleep_time;
__le32 slots_out;
__le32 slots_idle;
__le32 ttl_timestamp;
struct statistics_div div;
#if IWL == 4965
__le32 rx_enable_counter;
__le32 reserved1;
__le32 reserved2;
__le32 reserved3;
#endif
} __attribute__ ((packed));
/*
* REPLY_STATISTICS_CMD = 0x9c,
* 3945 and 4965 identical.
*
* This command triggers an immediate response containing uCode statistics.
* The response is in the same format as STATISTICS_NOTIFICATION 0x9d, below.
*
* If the CLEAR_STATS configuration flag is set, uCode will clear its
* internal copy of the statistics (counters) after issuing the response.
* This flag does not affect STATISTICS_NOTIFICATIONs after beacons (see below).
*
* If the DISABLE_NOTIF configuration flag is set, uCode will not issue
* STATISTICS_NOTIFICATIONs after received beacons (see below). This flag
* does not affect the response to the REPLY_STATISTICS_CMD 0x9c itself.
*/
#define IWL_STATS_CONF_CLEAR_STATS __constant_cpu_to_le32(0x1) /* see above */
#define IWL_STATS_CONF_DISABLE_NOTIF __constant_cpu_to_le32(0x2)/* see above */
struct iwl_statistics_cmd {
__le32 configuration_flags; /* IWL_STATS_CONF_* */
} __attribute__ ((packed));
/*
* STATISTICS_NOTIFICATION = 0x9d (notification only, not a command)
*
* By default, uCode issues this notification after receiving a beacon
* while associated. To disable this behavior, set DISABLE_NOTIF flag in the
* REPLY_STATISTICS_CMD 0x9c, above.
*
* Statistics counters continue to increment beacon after beacon, but are
* cleared when changing channels or when driver issues REPLY_STATISTICS_CMD
* 0x9c with CLEAR_STATS bit set (see above).
*
* uCode also issues this notification during scans. uCode clears statistics
* appropriately so that each notification contains statistics for only the
* one channel that has just been scanned.
*/
#define STATISTICS_REPLY_FLG_BAND_24G_MSK __constant_cpu_to_le32(0x2)
#define STATISTICS_REPLY_FLG_FAT_MODE_MSK __constant_cpu_to_le32(0x8)
struct iwl_notif_statistics {
__le32 flag;
struct statistics_rx rx;
struct statistics_tx tx;
struct statistics_general general;
} __attribute__ ((packed));
/*
* MISSED_BEACONS_NOTIFICATION = 0xa2 (notification only, not a command)
*/
/* if ucode missed CONSECUTIVE_MISSED_BCONS_TH beacons in a row,
* then this notification will be sent. */
#define CONSECUTIVE_MISSED_BCONS_TH 20
struct iwl_missed_beacon_notif {
__le32 consequtive_missed_beacons;
__le32 total_missed_becons;
__le32 num_expected_beacons;
__le32 num_recvd_beacons;
} __attribute__ ((packed));
/******************************************************************************
* (11)
* Rx Calibration Commands:
*
*****************************************************************************/
#define PHY_CALIBRATE_DIFF_GAIN_CMD (7)
#define HD_TABLE_SIZE (11)
struct iwl_sensitivity_cmd {
__le16 control;
__le16 table[HD_TABLE_SIZE];
} __attribute__ ((packed));
struct iwl_calibration_cmd {
u8 opCode;
u8 flags;
__le16 reserved;
s8 diff_gain_a;
s8 diff_gain_b;
s8 diff_gain_c;
u8 reserved1;
} __attribute__ ((packed));
/******************************************************************************
* (12)
* Miscellaneous Commands:
*
*****************************************************************************/
/*
* LEDs Command & Response
* REPLY_LEDS_CMD = 0x48 (command, has simple generic response)
*
* For each of 3 possible LEDs (Activity/Link/Tech, selected by "id" field),
* this command turns it on or off, or sets up a periodic blinking cycle.
*/
struct iwl_led_cmd {
__le32 interval; /* "interval" in uSec */
u8 id; /* 1: Activity, 2: Link, 3: Tech */
u8 off; /* # intervals off while blinking;
* "0", with >0 "on" value, turns LED on */
u8 on; /* # intervals on while blinking;
* "0", regardless of "off", turns LED off */
u8 reserved;
} __attribute__ ((packed));
/******************************************************************************
* (13)
* Union of all expected notifications/responses:
*
*****************************************************************************/
struct iwl_rx_packet {
__le32 len;
struct iwl_cmd_header hdr;
union {
struct iwl_alive_resp alive_frame;
struct iwl_rx_frame rx_frame;
struct iwl_tx_resp tx_resp;
struct iwl_spectrum_notification spectrum_notif;
struct iwl_csa_notification csa_notif;
struct iwl_error_resp err_resp;
struct iwl_card_state_notif card_state_notif;
struct iwl_beacon_notif beacon_status;
struct iwl_add_sta_resp add_sta;
struct iwl_sleep_notification sleep_notif;
struct iwl_spectrum_resp spectrum;
struct iwl_notif_statistics stats;
#if IWL == 4965
struct iwl_compressed_ba_resp compressed_ba;
struct iwl_missed_beacon_notif missed_beacon;
#endif
__le32 status;
u8 raw[0];
} u;
} __attribute__ ((packed));
#define IWL_RX_FRAME_SIZE (4 + sizeof(struct iwl_rx_frame))
#endif /* __iwl_commands_h__ */
/******************************************************************************
*
* Copyright(c) 2003 - 2007 Intel Corporation. All rights reserved.
*
* Portions of this file are derived from the ipw3945 project.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
*
* The full GNU General Public License is included in this distribution in the
* file called LICENSE.
*
* Contact Information:
* James P. Ketrenos <ipw2100-admin@linux.intel.com>
* Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*
*****************************************************************************/
#ifndef __iwl_debug_h__
#define __iwl_debug_h__
#ifdef CONFIG_IWLWIFI_DEBUG
extern u32 iwl_debug_level;
#define IWL_DEBUG(level, fmt, args...) \
do { if (iwl_debug_level & (level)) \
printk(KERN_ERR DRV_NAME": %c %s " fmt, \
in_interrupt() ? 'I' : 'U', __FUNCTION__ , ## args); } while (0)
#define IWL_DEBUG_LIMIT(level, fmt, args...) \
do { if ((iwl_debug_level & (level)) && net_ratelimit()) \
printk(KERN_ERR DRV_NAME": %c %s " fmt, \
in_interrupt() ? 'I' : 'U', __FUNCTION__ , ## args); } while (0)
#else
static inline void IWL_DEBUG(int level, const char *fmt, ...)
{
}
static inline void IWL_DEBUG_LIMIT(int level, const char *fmt, ...)
{
}
#endif /* CONFIG_IWLWIFI_DEBUG */
/*
* To use the debug system;
*
* If you are defining a new debug classification, simply add it to the #define
* list here in the form of:
*
* #define IWL_DL_xxxx VALUE
*
* shifting value to the left one bit from the previous entry. xxxx should be
* the name of the classification (for example, WEP)
*
* You then need to either add a IWL_xxxx_DEBUG() macro definition for your
* classification, or use IWL_DEBUG(IWL_DL_xxxx, ...) whenever you want
* to send output to that classification.
*
* To add your debug level to the list of levels seen when you perform
*
* % cat /proc/net/iwl/debug_level
*
* you simply need to add your entry to the iwl_debug_levels array.
*
* If you do not see debug_level in /proc/net/iwl then you do not have
* CONFIG_IWLWIFI_DEBUG defined in your kernel configuration
*
*/
#define IWL_DL_INFO (1<<0)
#define IWL_DL_MAC80211 (1<<1)
#define IWL_DL_HOST_COMMAND (1<<2)
#define IWL_DL_STATE (1<<3)
#define IWL_DL_RADIO (1<<7)
#define IWL_DL_POWER (1<<8)
#define IWL_DL_TEMP (1<<9)
#define IWL_DL_NOTIF (1<<10)
#define IWL_DL_SCAN (1<<11)
#define IWL_DL_ASSOC (1<<12)
#define IWL_DL_DROP (1<<13)
#define IWL_DL_TXPOWER (1<<14)
#define IWL_DL_AP (1<<15)
#define IWL_DL_FW (1<<16)
#define IWL_DL_RF_KILL (1<<17)
#define IWL_DL_FW_ERRORS (1<<18)
#define IWL_DL_LED (1<<19)
#define IWL_DL_RATE (1<<20)
#define IWL_DL_CALIB (1<<21)
#define IWL_DL_WEP (1<<22)
#define IWL_DL_TX (1<<23)
#define IWL_DL_RX (1<<24)
#define IWL_DL_ISR (1<<25)
#define IWL_DL_HT (1<<26)
#define IWL_DL_IO (1<<27)
#define IWL_DL_11H (1<<28)
#define IWL_DL_STATS (1<<29)
#define IWL_DL_TX_REPLY (1<<30)
#define IWL_DL_QOS (1<<31)
#define IWL_ERROR(f, a...) printk(KERN_ERR DRV_NAME ": " f, ## a)
#define IWL_WARNING(f, a...) printk(KERN_WARNING DRV_NAME ": " f, ## a)
#define IWL_DEBUG_INFO(f, a...) IWL_DEBUG(IWL_DL_INFO, f, ## a)
#define IWL_DEBUG_MAC80211(f, a...) IWL_DEBUG(IWL_DL_MAC80211, f, ## a)
#define IWL_DEBUG_TEMP(f, a...) IWL_DEBUG(IWL_DL_TEMP, f, ## a)
#define IWL_DEBUG_SCAN(f, a...) IWL_DEBUG(IWL_DL_SCAN, f, ## a)
#define IWL_DEBUG_RX(f, a...) IWL_DEBUG(IWL_DL_RX, f, ## a)
#define IWL_DEBUG_TX(f, a...) IWL_DEBUG(IWL_DL_TX, f, ## a)
#define IWL_DEBUG_ISR(f, a...) IWL_DEBUG(IWL_DL_ISR, f, ## a)
#define IWL_DEBUG_LED(f, a...) IWL_DEBUG(IWL_DL_LED, f, ## a)
#define IWL_DEBUG_WEP(f, a...) IWL_DEBUG(IWL_DL_WEP, f, ## a)
#define IWL_DEBUG_HC(f, a...) IWL_DEBUG(IWL_DL_HOST_COMMAND, f, ## a)
#define IWL_DEBUG_CALIB(f, a...) IWL_DEBUG(IWL_DL_CALIB, f, ## a)
#define IWL_DEBUG_FW(f, a...) IWL_DEBUG(IWL_DL_FW, f, ## a)
#define IWL_DEBUG_RF_KILL(f, a...) IWL_DEBUG(IWL_DL_RF_KILL, f, ## a)
#define IWL_DEBUG_DROP(f, a...) IWL_DEBUG(IWL_DL_DROP, f, ## a)
#define IWL_DEBUG_DROP_LIMIT(f, a...) IWL_DEBUG_LIMIT(IWL_DL_DROP, f, ## a)
#define IWL_DEBUG_AP(f, a...) IWL_DEBUG(IWL_DL_AP, f, ## a)
#define IWL_DEBUG_TXPOWER(f, a...) IWL_DEBUG(IWL_DL_TXPOWER, f, ## a)
#define IWL_DEBUG_IO(f, a...) IWL_DEBUG(IWL_DL_IO, f, ## a)
#define IWL_DEBUG_RATE(f, a...) IWL_DEBUG(IWL_DL_RATE, f, ## a)
#define IWL_DEBUG_NOTIF(f, a...) IWL_DEBUG(IWL_DL_NOTIF, f, ## a)
#define IWL_DEBUG_ASSOC(f, a...) IWL_DEBUG(IWL_DL_ASSOC | IWL_DL_INFO, f, ## a)
#define IWL_DEBUG_HT(f, a...) IWL_DEBUG(IWL_DL_HT, f, ## a)
#define IWL_DEBUG_STATS(f, a...) IWL_DEBUG(IWL_DL_STATS, f, ## a)
#define IWL_DEBUG_TX_REPLY(f, a...) IWL_DEBUG(IWL_DL_TX_REPLY, f, ## a)
#define IWL_DEBUG_QOS(f, a...) IWL_DEBUG(IWL_DL_QOS, f, ## a)
#define IWL_DEBUG_RADIO(f, a...) IWL_DEBUG(IWL_DL_RADIO, f, ## a)
#define IWL_DEBUG_POWER(f, a...) IWL_DEBUG(IWL_DL_POWER, f, ## a)
#define IWL_DEBUG_11H(f, a...) IWL_DEBUG(IWL_DL_11H, f, ## a)
#endif
/******************************************************************************
*
* This file is provided under a dual BSD/GPLv2 license. When using or
* redistributing this file, you may do so under either license.
*
* GPL LICENSE SUMMARY
*
* Copyright(c) 2005 - 2007 Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU Geeral Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
* USA
*
* The full GNU General Public License is included in this distribution
* in the file called LICENSE.GPL.
*
* Contact Information:
* James P. Ketrenos <ipw2100-admin@linux.intel.com>
* Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*
* BSD LICENSE
*
* Copyright(c) 2005 - 2007 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*****************************************************************************/
#ifndef __iwl_eeprom_h__
#define __iwl_eeprom_h__
/*
* This file defines EEPROM related constants, enums, and inline functions.
*
*/
#define IWL_EEPROM_ACCESS_TIMEOUT 5000 /* uSec */
#define IWL_EEPROM_ACCESS_DELAY 10 /* uSec */
/* EEPROM field values */
#define ANTENNA_SWITCH_NORMAL 0
#define ANTENNA_SWITCH_INVERSE 1
enum {
EEPROM_CHANNEL_VALID = (1 << 0), /* usable for this SKU/geo */
EEPROM_CHANNEL_IBSS = (1 << 1), /* usable as an IBSS channel */
/* Bit 2 Reserved */
EEPROM_CHANNEL_ACTIVE = (1 << 3), /* active scanning allowed */
EEPROM_CHANNEL_RADAR = (1 << 4), /* radar detection required */
EEPROM_CHANNEL_WIDE = (1 << 5),
EEPROM_CHANNEL_NARROW = (1 << 6),
EEPROM_CHANNEL_DFS = (1 << 7), /* dynamic freq selection candidate */
};
/* EEPROM field lengths */
#define EEPROM_BOARD_PBA_NUMBER_LENGTH 11
/* EEPROM field lengths */
#define EEPROM_BOARD_PBA_NUMBER_LENGTH 11
#define EEPROM_REGULATORY_SKU_ID_LENGTH 4
#define EEPROM_REGULATORY_BAND1_CHANNELS_LENGTH 14
#define EEPROM_REGULATORY_BAND2_CHANNELS_LENGTH 13
#define EEPROM_REGULATORY_BAND3_CHANNELS_LENGTH 12
#define EEPROM_REGULATORY_BAND4_CHANNELS_LENGTH 11
#define EEPROM_REGULATORY_BAND5_CHANNELS_LENGTH 6
#if IWL == 3945
#define EEPROM_REGULATORY_CHANNELS_LENGTH ( \
EEPROM_REGULATORY_BAND1_CHANNELS_LENGTH + \
EEPROM_REGULATORY_BAND2_CHANNELS_LENGTH + \
EEPROM_REGULATORY_BAND3_CHANNELS_LENGTH + \
EEPROM_REGULATORY_BAND4_CHANNELS_LENGTH + \
EEPROM_REGULATORY_BAND5_CHANNELS_LENGTH)
#elif IWL == 4965
#define EEPROM_REGULATORY_BAND_24_FAT_CHANNELS_LENGTH 7
#define EEPROM_REGULATORY_BAND_52_FAT_CHANNELS_LENGTH 11
#define EEPROM_REGULATORY_CHANNELS_LENGTH ( \
EEPROM_REGULATORY_BAND1_CHANNELS_LENGTH + \
EEPROM_REGULATORY_BAND2_CHANNELS_LENGTH + \
EEPROM_REGULATORY_BAND3_CHANNELS_LENGTH + \
EEPROM_REGULATORY_BAND4_CHANNELS_LENGTH + \
EEPROM_REGULATORY_BAND5_CHANNELS_LENGTH + \
EEPROM_REGULATORY_BAND_24_FAT_CHANNELS_LENGTH + \
EEPROM_REGULATORY_BAND_52_FAT_CHANNELS_LENGTH)
#endif
#define EEPROM_REGULATORY_NUMBER_OF_BANDS 5
/* SKU Capabilities */
#define EEPROM_SKU_CAP_SW_RF_KILL_ENABLE (1 << 0)
#define EEPROM_SKU_CAP_HW_RF_KILL_ENABLE (1 << 1)
#define EEPROM_SKU_CAP_OP_MODE_MRC (1 << 7)
/* *regulatory* channel data from eeprom, one for each channel */
struct iwl_eeprom_channel {
u8 flags; /* flags copied from EEPROM */
s8 max_power_avg; /* max power (dBm) on this chnl, limit 31 */
} __attribute__ ((packed));
/*
* Mapping of a Tx power level, at factory calibration temperature,
* to a radio/DSP gain table index.
* One for each of 5 "sample" power levels in each band.
* v_det is measured at the factory, using the 3945's built-in power amplifier
* (PA) output voltage detector. This same detector is used during Tx of
* long packets in normal operation to provide feedback as to proper output
* level.
* Data copied from EEPROM.
*/
struct iwl_eeprom_txpower_sample {
u8 gain_index; /* index into power (gain) setup table ... */
s8 power; /* ... for this pwr level for this chnl group */
u16 v_det; /* PA output voltage */
} __attribute__ ((packed));
/*
* Mappings of Tx power levels -> nominal radio/DSP gain table indexes.
* One for each channel group (a.k.a. "band") (1 for BG, 4 for A).
* Tx power setup code interpolates between the 5 "sample" power levels
* to determine the nominal setup for a requested power level.
* Data copied from EEPROM.
* DO NOT ALTER THIS STRUCTURE!!!
*/
struct iwl_eeprom_txpower_group {
struct iwl_eeprom_txpower_sample samples[5]; /* 5 power levels */
s32 a, b, c, d, e; /* coefficients for voltage->power
* formula (signed) */
s32 Fa, Fb, Fc, Fd, Fe; /* these modify coeffs based on
* frequency (signed) */
s8 saturation_power; /* highest power possible by h/w in this
* band */
u8 group_channel; /* "representative" channel # in this band */
s16 temperature; /* h/w temperature at factory calib this band
* (signed) */
} __attribute__ ((packed));
/*
* Temperature-based Tx-power compensation data, not band-specific.
* These coefficients are use to modify a/b/c/d/e coeffs based on
* difference between current temperature and factory calib temperature.
* Data copied from EEPROM.
*/
struct iwl_eeprom_temperature_corr {
u32 Ta;
u32 Tb;
u32 Tc;
u32 Td;
u32 Te;
} __attribute__ ((packed));
#if IWL == 4965
#define EEPROM_TX_POWER_TX_CHAINS (2)
#define EEPROM_TX_POWER_BANDS (8)
#define EEPROM_TX_POWER_MEASUREMENTS (3)
#define EEPROM_TX_POWER_VERSION (2)
#define EEPROM_TX_POWER_VERSION_NEW (5)
struct iwl_eeprom_calib_measure {
u8 temperature;
u8 gain_idx;
u8 actual_pow;
s8 pa_det;
} __attribute__ ((packed));
struct iwl_eeprom_calib_ch_info {
u8 ch_num;
struct iwl_eeprom_calib_measure measurements[EEPROM_TX_POWER_TX_CHAINS]
[EEPROM_TX_POWER_MEASUREMENTS];
} __attribute__ ((packed));
struct iwl_eeprom_calib_subband_info {
u8 ch_from;
u8 ch_to;
struct iwl_eeprom_calib_ch_info ch1;
struct iwl_eeprom_calib_ch_info ch2;
} __attribute__ ((packed));
struct iwl_eeprom_calib_info {
u8 saturation_power24;
u8 saturation_power52;
s16 voltage; /* signed */
struct iwl_eeprom_calib_subband_info band_info[EEPROM_TX_POWER_BANDS];
} __attribute__ ((packed));
#endif
struct iwl_eeprom {
u8 reserved0[16];
#define EEPROM_DEVICE_ID (2*0x08) /* 2 bytes */
u16 device_id; /* abs.ofs: 16 */
u8 reserved1[2];
#define EEPROM_PMC (2*0x0A) /* 2 bytes */
u16 pmc; /* abs.ofs: 20 */
u8 reserved2[20];
#define EEPROM_MAC_ADDRESS (2*0x15) /* 6 bytes */
u8 mac_address[6]; /* abs.ofs: 42 */
u8 reserved3[58];
#define EEPROM_BOARD_REVISION (2*0x35) /* 2 bytes */
u16 board_revision; /* abs.ofs: 106 */
u8 reserved4[11];
#define EEPROM_BOARD_PBA_NUMBER (2*0x3B+1) /* 9 bytes */
u8 board_pba_number[9]; /* abs.ofs: 119 */
u8 reserved5[8];
#define EEPROM_VERSION (2*0x44) /* 2 bytes */
u16 version; /* abs.ofs: 136 */
#define EEPROM_SKU_CAP (2*0x45) /* 1 bytes */
u8 sku_cap; /* abs.ofs: 138 */
#define EEPROM_LEDS_MODE (2*0x45+1) /* 1 bytes */
u8 leds_mode; /* abs.ofs: 139 */
#define EEPROM_OEM_MODE (2*0x46) /* 2 bytes */
u16 oem_mode;
#define EEPROM_WOWLAN_MODE (2*0x47) /* 2 bytes */
u16 wowlan_mode; /* abs.ofs: 142 */
#define EEPROM_LEDS_TIME_INTERVAL (2*0x48) /* 2 bytes */
u16 leds_time_interval; /* abs.ofs: 144 */
#define EEPROM_LEDS_OFF_TIME (2*0x49) /* 1 bytes */
u8 leds_off_time; /* abs.ofs: 146 */
#define EEPROM_LEDS_ON_TIME (2*0x49+1) /* 1 bytes */
u8 leds_on_time; /* abs.ofs: 147 */
#define EEPROM_ALMGOR_M_VERSION (2*0x4A) /* 1 bytes */
u8 almgor_m_version; /* abs.ofs: 148 */
#define EEPROM_ANTENNA_SWITCH_TYPE (2*0x4A+1) /* 1 bytes */
u8 antenna_switch_type; /* abs.ofs: 149 */
#if IWL == 3945
u8 reserved6[42];
#else
u8 reserved6[8];
#define EEPROM_4965_BOARD_REVISION (2*0x4F) /* 2 bytes */
u16 board_revision_4965; /* abs.ofs: 158 */
u8 reserved7[13];
#define EEPROM_4965_BOARD_PBA (2*0x56+1) /* 9 bytes */
u8 board_pba_number_4965[9]; /* abs.ofs: 173 */
u8 reserved8[10];
#endif
#define EEPROM_REGULATORY_SKU_ID (2*0x60) /* 4 bytes */
u8 sku_id[4]; /* abs.ofs: 192 */
#define EEPROM_REGULATORY_BAND_1 (2*0x62) /* 2 bytes */
u16 band_1_count; /* abs.ofs: 196 */
#define EEPROM_REGULATORY_BAND_1_CHANNELS (2*0x63) /* 28 bytes */
struct iwl_eeprom_channel band_1_channels[14]; /* abs.ofs: 196 */
#define EEPROM_REGULATORY_BAND_2 (2*0x71) /* 2 bytes */
u16 band_2_count; /* abs.ofs: 226 */
#define EEPROM_REGULATORY_BAND_2_CHANNELS (2*0x72) /* 26 bytes */
struct iwl_eeprom_channel band_2_channels[13]; /* abs.ofs: 228 */
#define EEPROM_REGULATORY_BAND_3 (2*0x7F) /* 2 bytes */
u16 band_3_count; /* abs.ofs: 254 */
#define EEPROM_REGULATORY_BAND_3_CHANNELS (2*0x80) /* 24 bytes */
struct iwl_eeprom_channel band_3_channels[12]; /* abs.ofs: 256 */
#define EEPROM_REGULATORY_BAND_4 (2*0x8C) /* 2 bytes */
u16 band_4_count; /* abs.ofs: 280 */
#define EEPROM_REGULATORY_BAND_4_CHANNELS (2*0x8D) /* 22 bytes */
struct iwl_eeprom_channel band_4_channels[11]; /* abs.ofs: 282 */
#define EEPROM_REGULATORY_BAND_5 (2*0x98) /* 2 bytes */
u16 band_5_count; /* abs.ofs: 304 */
#define EEPROM_REGULATORY_BAND_5_CHANNELS (2*0x99) /* 12 bytes */
struct iwl_eeprom_channel band_5_channels[6]; /* abs.ofs: 306 */
/* From here on out the EEPROM diverges between the 4965 and the 3945 */
#if IWL == 3945
u8 reserved9[194];
#define EEPROM_TXPOWER_CALIB_GROUP0 0x200
#define EEPROM_TXPOWER_CALIB_GROUP1 0x240
#define EEPROM_TXPOWER_CALIB_GROUP2 0x280
#define EEPROM_TXPOWER_CALIB_GROUP3 0x2c0
#define EEPROM_TXPOWER_CALIB_GROUP4 0x300
#define IWL_NUM_TX_CALIB_GROUPS 5
struct iwl_eeprom_txpower_group groups[IWL_NUM_TX_CALIB_GROUPS];
/* abs.ofs: 512 */
#define EEPROM_CALIB_TEMPERATURE_CORRECT 0x340
struct iwl_eeprom_temperature_corr corrections; /* abs.ofs: 832 */
u8 reserved16[172]; /* fill out to full 1024 byte block */
/* 4965AGN adds fat channel support */
#elif IWL == 4965
u8 reserved10[2];
#define EEPROM_REGULATORY_BAND_24_FAT_CHANNELS (2*0xA0) /* 14 bytes */
struct iwl_eeprom_channel band_24_channels[7]; /* abs.ofs: 320 */
u8 reserved11[2];
#define EEPROM_REGULATORY_BAND_52_FAT_CHANNELS (2*0xA8) /* 22 bytes */
struct iwl_eeprom_channel band_52_channels[11]; /* abs.ofs: 336 */
u8 reserved12[6];
#define EEPROM_CALIB_VERSION_OFFSET (2*0xB6) /* 2 bytes */
u16 calib_version; /* abs.ofs: 364 */
u8 reserved13[2];
#define EEPROM_SATURATION_POWER_OFFSET (2*0xB8) /* 2 bytes */
u16 satruation_power; /* abs.ofs: 368 */
u8 reserved14[94];
#define EEPROM_IWL_CALIB_TXPOWER_OFFSET (2*0xE8) /* 48 bytes */
struct iwl_eeprom_calib_info calib_info; /* abs.ofs: 464 */
u8 reserved16[140]; /* fill out to full 1024 byte block */
#endif
} __attribute__ ((packed));
#define IWL_EEPROM_IMAGE_SIZE 1024
#endif
/******************************************************************************
*
* Copyright(c) 2003 - 2007 Intel Corporation. All rights reserved.
*
* Portions of this file are derived from the ipw3945 project, as well
* as portions of the ieee80211 subsystem header files.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
*
* The full GNU General Public License is included in this distribution in the
* file called LICENSE.
*
* Contact Information:
* James P. Ketrenos <ipw2100-admin@linux.intel.com>
* Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*
*****************************************************************************/
#ifndef __iwl_helpers_h__
#define __iwl_helpers_h__
#include <linux/ctype.h>
/*
* The structures defined by the hardware/uCode interface
* have bit-wise operations. For each bit-field there is
* a data symbol in the structure, the start bit position
* and the length of the bit-field.
*
* iwl_get_bits and iwl_set_bits will return or set the
* appropriate bits on a 32-bit value.
*
* IWL_GET_BITS and IWL_SET_BITS use symbol expansion to
* expand out to the appropriate call to iwl_get_bits
* and iwl_set_bits without having to reference all of the
* numerical constants and defines provided in the hardware
* definition
*/
/**
* iwl_get_bits - Extract a hardware bit-field value
* @src: source hardware value (__le32)
* @pos: bit-position (0-based) of first bit of value
* @len: length of bit-field
*
* iwl_get_bits will return the bit-field in cpu endian ordering.
*
* NOTE: If used from IWL_GET_BITS then pos and len are compile-constants and
* will collapse to minimal code by the compiler.
*/
static inline u32 iwl_get_bits(__le32 src, u8 pos, u8 len)
{
u32 tmp = le32_to_cpu(src);
tmp >>= pos;
tmp &= (1UL << len) - 1;
return tmp;
}
/**
* iwl_set_bits - Set a hardware bit-field value
* @dst: Address of __le32 hardware value
* @pos: bit-position (0-based) of first bit of value
* @len: length of bit-field
* @val: cpu endian value to encode into the bit-field
*
* iwl_set_bits will encode val into dst, masked to be len bits long at bit
* position pos.
*
* NOTE: If used IWL_SET_BITS pos and len will be compile-constants and
* will collapse to minimal code by the compiler.
*/
static inline void iwl_set_bits(__le32 *dst, u8 pos, u8 len, int val)
{
u32 tmp = le32_to_cpu(*dst);
tmp &= ~(((1UL << len) - 1) << pos);
tmp |= (val & ((1UL << len) - 1)) << pos;
*dst = cpu_to_le32(tmp);
}
static inline void iwl_set_bits16(__le16 *dst, u8 pos, u8 len, int val)
{
u16 tmp = le16_to_cpu(*dst);
tmp &= ~((1UL << (pos + len)) - (1UL << pos));
tmp |= (val & ((1UL << len) - 1)) << pos;
*dst = cpu_to_le16(tmp);
}
/*
* The bit-field definitions in iwl-xxxx-hw.h are in the form of:
*
* struct example {
* __le32 val1;
* #define IWL_name_POS 8
* #define IWL_name_LEN 4
* #define IWL_name_SYM val1
* };
*
* The IWL_SET_BITS and IWL_GET_BITS macros are provided to allow the driver
* to call:
*
* struct example bar;
* u32 val = IWL_GET_BITS(bar, name);
* val = val * 2;
* IWL_SET_BITS(bar, name, val);
*
* All cpu / host ordering, masking, and shifts are performed by the macros
* and iwl_{get,set}_bits.
*
*/
#define IWL_SET_BITS(s, sym, v) \
iwl_set_bits(&(s).IWL_ ## sym ## _SYM, IWL_ ## sym ## _POS, \
IWL_ ## sym ## _LEN, (v))
#define IWL_SET_BITS16(s, sym, v) \
iwl_set_bits16(&(s).IWL_ ## sym ## _SYM, IWL_ ## sym ## _POS, \
IWL_ ## sym ## _LEN, (v))
#define IWL_GET_BITS(s, sym) \
iwl_get_bits((s).IWL_ ## sym ## _SYM, IWL_ ## sym ## _POS, \
IWL_ ## sym ## _LEN)
#define KELVIN_TO_CELSIUS(x) ((x)-273)
#define CELSIUS_TO_KELVIN(x) ((x)+273)
#define IEEE80211_CHAN_W_RADAR_DETECT 0x00000010
static inline struct ieee80211_conf *ieee80211_get_hw_conf(
struct ieee80211_hw *hw)
{
return &hw->conf;
}
#define QOS_CONTROL_LEN 2
#define IEEE80211_STYPE_BACK_REQ 0x0080
#define IEEE80211_STYPE_BACK 0x0090
static inline int ieee80211_is_management(u16 fc)
{
return (fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT;
}
static inline int ieee80211_is_control(u16 fc)
{
return (fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL;
}
static inline int ieee80211_is_data(u16 fc)
{
return (fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA;
}
static inline int ieee80211_is_back_request(u16 fc)
{
return ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL) &&
((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_BACK_REQ);
}
static inline int ieee80211_is_probe_response(u16 fc)
{
return ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT) &&
((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP);
}
static inline int ieee80211_is_probe_request(u16 fc)
{
return ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT) &&
((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_REQ);
}
static inline int ieee80211_is_beacon(u16 fc)
{
return ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT) &&
((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_BEACON);
}
static inline int ieee80211_is_atim(u16 fc)
{
return ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT) &&
((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_ATIM);
}
static inline int ieee80211_is_assoc_request(u16 fc)
{
return ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT) &&
((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_ASSOC_REQ);
}
static inline int ieee80211_is_assoc_response(u16 fc)
{
return ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT) &&
((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_ASSOC_RESP);
}
static inline int ieee80211_is_auth(u16 fc)
{
return ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT) &&
((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_ASSOC_REQ);
}
static inline int ieee80211_is_deauth(u16 fc)
{
return ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT) &&
((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_ASSOC_REQ);
}
static inline int ieee80211_is_disassoc(u16 fc)
{
return ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT) &&
((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_ASSOC_REQ);
}
static inline int ieee80211_is_reassoc_request(u16 fc)
{
return ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT) &&
((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_REASSOC_REQ);
}
static inline int ieee80211_is_reassoc_response(u16 fc)
{
return ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT) &&
((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_REASSOC_RESP);
}
static inline int iwl_check_bits(unsigned long field, unsigned long mask)
{
return ((field & mask) == mask) ? 1 : 0;
}
static inline unsigned long elapsed_jiffies(unsigned long start,
unsigned long end)
{
if (end > start)
return end - start;
return end + (MAX_JIFFY_OFFSET - start);
}
#endif /* __iwl_helpers_h__ */
/******************************************************************************
*
* This file is provided under a dual BSD/GPLv2 license. When using or
* redistributing this file, you may do so under either license.
*
* GPL LICENSE SUMMARY
*
* Copyright(c) 2005 - 2007 Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU Geeral Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
* USA
*
* The full GNU General Public License is included in this distribution
* in the file called LICENSE.GPL.
*
* Contact Information:
* James P. Ketrenos <ipw2100-admin@linux.intel.com>
* Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*
* BSD LICENSE
*
* Copyright(c) 2005 - 2007 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*****************************************************************************/
#ifndef __iwlwifi_hw_h__
#define __iwlwifi_hw_h__
/*
* This file defines hardware constants common to 3945 and 4965.
*
* Device-specific constants are defined in iwl-3945-hw.h and iwl-4965-hw.h,
* although this file contains a few definitions for which the .c
* implementation is the same for 3945 and 4965, except for the value of
* a constant.
*
* uCode API constants are defined in iwl-commands.h.
*
* NOTE: DO NOT PUT OS IMPLEMENTATION-SPECIFIC DECLARATIONS HERE
*
* The iwl-*hw.h (and files they include) files should remain OS/driver
* implementation independent, declaring only the hardware interface.
*/
/* uCode queue management definitions */
#define IWL_CMD_QUEUE_NUM 4
#define IWL_CMD_FIFO_NUM 4
#define IWL_BACK_QUEUE_FIRST_ID 7
/* Tx rates */
#define IWL_CCK_RATES 4
#define IWL_OFDM_RATES 8
#if IWL == 3945
#define IWL_HT_RATES 0
#elif IWL == 4965
#define IWL_HT_RATES 16
#endif
#define IWL_MAX_RATES (IWL_CCK_RATES+IWL_OFDM_RATES+IWL_HT_RATES)
/* Time constants */
#define SHORT_SLOT_TIME 9
#define LONG_SLOT_TIME 20
/* RSSI to dBm */
#if IWL == 3945
#define IWL_RSSI_OFFSET 95
#elif IWL == 4965
#define IWL_RSSI_OFFSET 44
#endif
#include "iwl-eeprom.h"
#include "iwl-commands.h"
#define PCI_LINK_CTRL 0x0F0
#define PCI_POWER_SOURCE 0x0C8
#define PCI_REG_WUM8 0x0E8
#define PCI_CFG_PMC_PME_FROM_D3COLD_SUPPORT (0x80000000)
/*=== CSR (control and status registers) ===*/
#define CSR_BASE (0x000)
#define CSR_SW_VER (CSR_BASE+0x000)
#define CSR_HW_IF_CONFIG_REG (CSR_BASE+0x000) /* hardware interface config */
#define CSR_INT_COALESCING (CSR_BASE+0x004) /* accum ints, 32-usec units */
#define CSR_INT (CSR_BASE+0x008) /* host interrupt status/ack */
#define CSR_INT_MASK (CSR_BASE+0x00c) /* host interrupt enable */
#define CSR_FH_INT_STATUS (CSR_BASE+0x010) /* busmaster int status/ack*/
#define CSR_GPIO_IN (CSR_BASE+0x018) /* read external chip pins */
#define CSR_RESET (CSR_BASE+0x020) /* busmaster enable, NMI, etc*/
#define CSR_GP_CNTRL (CSR_BASE+0x024)
#define CSR_HW_REV (CSR_BASE+0x028)
#define CSR_EEPROM_REG (CSR_BASE+0x02c)
#define CSR_EEPROM_GP (CSR_BASE+0x030)
#define CSR_GP_UCODE (CSR_BASE+0x044)
#define CSR_UCODE_DRV_GP1 (CSR_BASE+0x054)
#define CSR_UCODE_DRV_GP1_SET (CSR_BASE+0x058)
#define CSR_UCODE_DRV_GP1_CLR (CSR_BASE+0x05c)
#define CSR_UCODE_DRV_GP2 (CSR_BASE+0x060)
#define CSR_LED_REG (CSR_BASE+0x094)
#define CSR_DRAM_INT_TBL_CTL (CSR_BASE+0x0A0)
#define CSR_GIO_CHICKEN_BITS (CSR_BASE+0x100)
#define CSR_ANA_PLL_CFG (CSR_BASE+0x20c)
#define CSR_HW_REV_WA_REG (CSR_BASE+0x22C)
/* HW I/F configuration */
#define CSR_HW_IF_CONFIG_REG_BIT_ALMAGOR_MB (0x00000100)
#define CSR_HW_IF_CONFIG_REG_BIT_ALMAGOR_MM (0x00000200)
#define CSR_HW_IF_CONFIG_REG_BIT_SKU_MRC (0x00000400)
#define CSR_HW_IF_CONFIG_REG_BIT_BOARD_TYPE (0x00000800)
#define CSR_HW_IF_CONFIG_REG_BITS_SILICON_TYPE_A (0x00000000)
#define CSR_HW_IF_CONFIG_REG_BITS_SILICON_TYPE_B (0x00001000)
#define CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM (0x00200000)
/* interrupt flags in INTA, set by uCode or hardware (e.g. dma),
* acknowledged (reset) by host writing "1" to flagged bits. */
#define CSR_INT_BIT_FH_RX (1<<31) /* Rx DMA, cmd responses, FH_INT[17:16] */
#define CSR_INT_BIT_HW_ERR (1<<29) /* DMA hardware error FH_INT[31] */
#define CSR_INT_BIT_DNLD (1<<28) /* uCode Download */
#define CSR_INT_BIT_FH_TX (1<<27) /* Tx DMA FH_INT[1:0] */
#define CSR_INT_BIT_MAC_CLK_ACTV (1<<26) /* NIC controller's clock toggled on/off */
#define CSR_INT_BIT_SW_ERR (1<<25) /* uCode error */
#define CSR_INT_BIT_RF_KILL (1<<7) /* HW RFKILL switch GP_CNTRL[27] toggled */
#define CSR_INT_BIT_CT_KILL (1<<6) /* Critical temp (chip too hot) rfkill */
#define CSR_INT_BIT_SW_RX (1<<3) /* Rx, command responses, 3945 */
#define CSR_INT_BIT_WAKEUP (1<<1) /* NIC controller waking up (pwr mgmt) */
#define CSR_INT_BIT_ALIVE (1<<0) /* uCode interrupts once it initializes */
#define CSR_INI_SET_MASK (CSR_INT_BIT_FH_RX | \
CSR_INT_BIT_HW_ERR | \
CSR_INT_BIT_FH_TX | \
CSR_INT_BIT_SW_ERR | \
CSR_INT_BIT_RF_KILL | \
CSR_INT_BIT_SW_RX | \
CSR_INT_BIT_WAKEUP | \
CSR_INT_BIT_ALIVE)
/* interrupt flags in FH (flow handler) (PCI busmaster DMA) */
#define CSR_FH_INT_BIT_ERR (1<<31) /* Error */
#define CSR_FH_INT_BIT_HI_PRIOR (1<<30) /* High priority Rx, bypass coalescing */
#define CSR_FH_INT_BIT_RX_CHNL2 (1<<18) /* Rx channel 2 (3945 only) */
#define CSR_FH_INT_BIT_RX_CHNL1 (1<<17) /* Rx channel 1 */
#define CSR_FH_INT_BIT_RX_CHNL0 (1<<16) /* Rx channel 0 */
#define CSR_FH_INT_BIT_TX_CHNL6 (1<<6) /* Tx channel 6 (3945 only) */
#define CSR_FH_INT_BIT_TX_CHNL1 (1<<1) /* Tx channel 1 */
#define CSR_FH_INT_BIT_TX_CHNL0 (1<<0) /* Tx channel 0 */
#define CSR_FH_INT_RX_MASK (CSR_FH_INT_BIT_HI_PRIOR | \
CSR_FH_INT_BIT_RX_CHNL2 | \
CSR_FH_INT_BIT_RX_CHNL1 | \
CSR_FH_INT_BIT_RX_CHNL0)
#define CSR_FH_INT_TX_MASK (CSR_FH_INT_BIT_TX_CHNL6 | \
CSR_FH_INT_BIT_TX_CHNL1 | \
CSR_FH_INT_BIT_TX_CHNL0 )
/* RESET */
#define CSR_RESET_REG_FLAG_NEVO_RESET (0x00000001)
#define CSR_RESET_REG_FLAG_FORCE_NMI (0x00000002)
#define CSR_RESET_REG_FLAG_SW_RESET (0x00000080)
#define CSR_RESET_REG_FLAG_MASTER_DISABLED (0x00000100)
#define CSR_RESET_REG_FLAG_STOP_MASTER (0x00000200)
/* GP (general purpose) CONTROL */
#define CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY (0x00000001)
#define CSR_GP_CNTRL_REG_FLAG_INIT_DONE (0x00000004)
#define CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ (0x00000008)
#define CSR_GP_CNTRL_REG_FLAG_GOING_TO_SLEEP (0x00000010)
#define CSR_GP_CNTRL_REG_VAL_MAC_ACCESS_EN (0x00000001)
#define CSR_GP_CNTRL_REG_MSK_POWER_SAVE_TYPE (0x07000000)
#define CSR_GP_CNTRL_REG_FLAG_MAC_POWER_SAVE (0x04000000)
#define CSR_GP_CNTRL_REG_FLAG_HW_RF_KILL_SW (0x08000000)
/* EEPROM REG */
#define CSR_EEPROM_REG_READ_VALID_MSK (0x00000001)
#define CSR_EEPROM_REG_BIT_CMD (0x00000002)
/* EEPROM GP */
#define CSR_EEPROM_GP_VALID_MSK (0x00000006)
#define CSR_EEPROM_GP_BAD_SIGNATURE (0x00000000)
#define CSR_EEPROM_GP_IF_OWNER_MSK (0x00000180)
/* UCODE DRV GP */
#define CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP (0x00000001)
#define CSR_UCODE_SW_BIT_RFKILL (0x00000002)
#define CSR_UCODE_DRV_GP1_BIT_CMD_BLOCKED (0x00000004)
#define CSR_UCODE_DRV_GP1_REG_BIT_CT_KILL_EXIT (0x00000008)
/* GPIO */
#define CSR_GPIO_IN_BIT_AUX_POWER (0x00000200)
#define CSR_GPIO_IN_VAL_VAUX_PWR_SRC (0x00000000)
#define CSR_GPIO_IN_VAL_VMAIN_PWR_SRC CSR_GPIO_IN_BIT_AUX_POWER
/* GI Chicken Bits */
#define CSR_GIO_CHICKEN_BITS_REG_BIT_L1A_NO_L0S_RX (0x00800000)
#define CSR_GIO_CHICKEN_BITS_REG_BIT_DIS_L0S_EXIT_TIMER (0x20000000)
/* CSR_ANA_PLL_CFG */
#define CSR_ANA_PLL_CFG_SH (0x00880300)
#define CSR_LED_REG_TRUN_ON (0x00000078)
#define CSR_LED_REG_TRUN_OFF (0x00000038)
#define CSR_LED_BSM_CTRL_MSK (0xFFFFFFDF)
/* DRAM_INT_TBL_CTRL */
#define CSR_DRAM_INT_TBL_CTRL_EN (1<<31)
#define CSR_DRAM_INT_TBL_CTRL_WRAP_CHK (1<<27)
/*=== HBUS (Host-side Bus) ===*/
#define HBUS_BASE (0x400)
#define HBUS_TARG_MEM_RADDR (HBUS_BASE+0x00c)
#define HBUS_TARG_MEM_WADDR (HBUS_BASE+0x010)
#define HBUS_TARG_MEM_WDAT (HBUS_BASE+0x018)
#define HBUS_TARG_MEM_RDAT (HBUS_BASE+0x01c)
#define HBUS_TARG_PRPH_WADDR (HBUS_BASE+0x044)
#define HBUS_TARG_PRPH_RADDR (HBUS_BASE+0x048)
#define HBUS_TARG_PRPH_WDAT (HBUS_BASE+0x04c)
#define HBUS_TARG_PRPH_RDAT (HBUS_BASE+0x050)
#define HBUS_TARG_WRPTR (HBUS_BASE+0x060)
#define HBUS_TARG_MBX_C (HBUS_BASE+0x030)
/* SCD (Scheduler) */
#define SCD_BASE (CSR_BASE + 0x2E00)
#define SCD_MODE_REG (SCD_BASE + 0x000)
#define SCD_ARASTAT_REG (SCD_BASE + 0x004)
#define SCD_TXFACT_REG (SCD_BASE + 0x010)
#define SCD_TXF4MF_REG (SCD_BASE + 0x014)
#define SCD_TXF5MF_REG (SCD_BASE + 0x020)
#define SCD_SBYP_MODE_1_REG (SCD_BASE + 0x02C)
#define SCD_SBYP_MODE_2_REG (SCD_BASE + 0x030)
/*=== FH (data Flow Handler) ===*/
#define FH_BASE (0x800)
#define FH_CBCC_TABLE (FH_BASE+0x140)
#define FH_TFDB_TABLE (FH_BASE+0x180)
#define FH_RCSR_TABLE (FH_BASE+0x400)
#define FH_RSSR_TABLE (FH_BASE+0x4c0)
#define FH_TCSR_TABLE (FH_BASE+0x500)
#define FH_TSSR_TABLE (FH_BASE+0x680)
/* TFDB (Transmit Frame Buffer Descriptor) */
#define FH_TFDB(_channel, buf) \
(FH_TFDB_TABLE+((_channel)*2+(buf))*0x28)
#define ALM_FH_TFDB_CHNL_BUF_CTRL_REG(_channel) \
(FH_TFDB_TABLE + 0x50 * _channel)
/* CBCC _channel is [0,2] */
#define FH_CBCC(_channel) (FH_CBCC_TABLE+(_channel)*0x8)
#define FH_CBCC_CTRL(_channel) (FH_CBCC(_channel)+0x00)
#define FH_CBCC_BASE(_channel) (FH_CBCC(_channel)+0x04)
/* RCSR _channel is [0,2] */
#define FH_RCSR(_channel) (FH_RCSR_TABLE+(_channel)*0x40)
#define FH_RCSR_CONFIG(_channel) (FH_RCSR(_channel)+0x00)
#define FH_RCSR_RBD_BASE(_channel) (FH_RCSR(_channel)+0x04)
#define FH_RCSR_WPTR(_channel) (FH_RCSR(_channel)+0x20)
#define FH_RCSR_RPTR_ADDR(_channel) (FH_RCSR(_channel)+0x24)
#if IWL == 3945
#define FH_RSCSR_CHNL0_WPTR (FH_RCSR_WPTR(0))
#elif IWL == 4965
#define FH_RSCSR_CHNL0_WPTR (FH_RSCSR_CHNL0_RBDCB_WPTR_REG)
#endif
/* RSSR */
#define FH_RSSR_CTRL (FH_RSSR_TABLE+0x000)
#define FH_RSSR_STATUS (FH_RSSR_TABLE+0x004)
/* TCSR */
#define FH_TCSR(_channel) (FH_TCSR_TABLE+(_channel)*0x20)
#define FH_TCSR_CONFIG(_channel) (FH_TCSR(_channel)+0x00)
#define FH_TCSR_CREDIT(_channel) (FH_TCSR(_channel)+0x04)
#define FH_TCSR_BUFF_STTS(_channel) (FH_TCSR(_channel)+0x08)
/* TSSR */
#define FH_TSSR_CBB_BASE (FH_TSSR_TABLE+0x000)
#define FH_TSSR_MSG_CONFIG (FH_TSSR_TABLE+0x008)
#define FH_TSSR_TX_STATUS (FH_TSSR_TABLE+0x010)
/* 18 - reserved */
/* card static random access memory (SRAM) for processor data and instructs */
#define RTC_INST_LOWER_BOUND (0x000000)
#define RTC_DATA_LOWER_BOUND (0x800000)
/* DBM */
#define ALM_FH_SRVC_CHNL (6)
#define ALM_FH_RCSR_RX_CONFIG_REG_POS_RBDC_SIZE (20)
#define ALM_FH_RCSR_RX_CONFIG_REG_POS_IRQ_RBTH (4)
#define ALM_FH_RCSR_RX_CONFIG_REG_BIT_WR_STTS_EN (0x08000000)
#define ALM_FH_RCSR_RX_CONFIG_REG_VAL_DMA_CHNL_EN_ENABLE (0x80000000)
#define ALM_FH_RCSR_RX_CONFIG_REG_VAL_RDRBD_EN_ENABLE (0x20000000)
#define ALM_FH_RCSR_RX_CONFIG_REG_VAL_MAX_FRAG_SIZE_128 (0x01000000)
#define ALM_FH_RCSR_RX_CONFIG_REG_VAL_IRQ_DEST_INT_HOST (0x00001000)
#define ALM_FH_RCSR_RX_CONFIG_REG_VAL_MSG_MODE_FH (0x00000000)
#define ALM_FH_TCSR_TX_CONFIG_REG_VAL_MSG_MODE_TXF (0x00000000)
#define ALM_FH_TCSR_TX_CONFIG_REG_VAL_MSG_MODE_DRIVER (0x00000001)
#define ALM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_DISABLE_VAL (0x00000000)
#define ALM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_ENABLE_VAL (0x00000008)
#define ALM_FH_TCSR_TX_CONFIG_REG_VAL_CIRQ_HOST_IFTFD (0x00200000)
#define ALM_FH_TCSR_TX_CONFIG_REG_VAL_CIRQ_RTC_NOINT (0x00000000)
#define ALM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_PAUSE (0x00000000)
#define ALM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE (0x80000000)
#define ALM_FH_TCSR_CHNL_TX_BUF_STS_REG_VAL_TFDB_VALID (0x00004000)
#define ALM_FH_TCSR_CHNL_TX_BUF_STS_REG_BIT_TFDB_WPTR (0x00000001)
#define ALM_FH_TSSR_TX_MSG_CONFIG_REG_VAL_SNOOP_RD_TXPD_ON (0xFF000000)
#define ALM_FH_TSSR_TX_MSG_CONFIG_REG_VAL_ORDER_RD_TXPD_ON (0x00FF0000)
#define ALM_FH_TSSR_TX_MSG_CONFIG_REG_VAL_MAX_FRAG_SIZE_128B (0x00000400)
#define ALM_FH_TSSR_TX_MSG_CONFIG_REG_VAL_SNOOP_RD_TFD_ON (0x00000100)
#define ALM_FH_TSSR_TX_MSG_CONFIG_REG_VAL_ORDER_RD_CBB_ON (0x00000080)
#define ALM_FH_TSSR_TX_MSG_CONFIG_REG_VAL_ORDER_RSP_WAIT_TH (0x00000020)
#define ALM_FH_TSSR_TX_MSG_CONFIG_REG_VAL_RSP_WAIT_TH (0x00000005)
#define ALM_TB_MAX_BYTES_COUNT (0xFFF0)
#define ALM_FH_TSSR_TX_STATUS_REG_BIT_BUFS_EMPTY(_channel) \
((1LU << _channel) << 24)
#define ALM_FH_TSSR_TX_STATUS_REG_BIT_NO_PEND_REQ(_channel) \
((1LU << _channel) << 16)
#define ALM_FH_TSSR_TX_STATUS_REG_MSK_CHNL_IDLE(_channel) \
(ALM_FH_TSSR_TX_STATUS_REG_BIT_BUFS_EMPTY(_channel) | \
ALM_FH_TSSR_TX_STATUS_REG_BIT_NO_PEND_REQ(_channel))
#define PCI_CFG_REV_ID_BIT_BASIC_SKU (0x40) /* bit 6 */
#define PCI_CFG_REV_ID_BIT_RTP (0x80) /* bit 7 */
#define HBUS_TARG_MBX_C_REG_BIT_CMD_BLOCKED (0x00000004)
#define TFD_QUEUE_MIN 0
#define TFD_QUEUE_MAX 6
#define TFD_QUEUE_SIZE_MAX (256)
/* spectrum and channel data structures */
#define IWL_NUM_SCAN_RATES (2)
#define IWL_SCAN_FLAG_24GHZ (1<<0)
#define IWL_SCAN_FLAG_52GHZ (1<<1)
#define IWL_SCAN_FLAG_ACTIVE (1<<2)
#define IWL_SCAN_FLAG_DIRECT (1<<3)
#define IWL_MAX_CMD_SIZE 1024
#define IWL_DEFAULT_TX_RETRY 15
#define IWL_MAX_TX_RETRY 16
/*********************************************/
#define RFD_SIZE 4
#define NUM_TFD_CHUNKS 4
#define RX_QUEUE_SIZE 256
#define RX_QUEUE_MASK 255
#define RX_QUEUE_SIZE_LOG 8
/* QoS definitions */
#define CW_MIN_OFDM 15
#define CW_MAX_OFDM 1023
#define CW_MIN_CCK 31
#define CW_MAX_CCK 1023
#define QOS_TX0_CW_MIN_OFDM CW_MIN_OFDM
#define QOS_TX1_CW_MIN_OFDM CW_MIN_OFDM
#define QOS_TX2_CW_MIN_OFDM ((CW_MIN_OFDM + 1) / 2 - 1)
#define QOS_TX3_CW_MIN_OFDM ((CW_MIN_OFDM + 1) / 4 - 1)
#define QOS_TX0_CW_MIN_CCK CW_MIN_CCK
#define QOS_TX1_CW_MIN_CCK CW_MIN_CCK
#define QOS_TX2_CW_MIN_CCK ((CW_MIN_CCK + 1) / 2 - 1)
#define QOS_TX3_CW_MIN_CCK ((CW_MIN_CCK + 1) / 4 - 1)
#define QOS_TX0_CW_MAX_OFDM CW_MAX_OFDM
#define QOS_TX1_CW_MAX_OFDM CW_MAX_OFDM
#define QOS_TX2_CW_MAX_OFDM CW_MIN_OFDM
#define QOS_TX3_CW_MAX_OFDM ((CW_MIN_OFDM + 1) / 2 - 1)
#define QOS_TX0_CW_MAX_CCK CW_MAX_CCK
#define QOS_TX1_CW_MAX_CCK CW_MAX_CCK
#define QOS_TX2_CW_MAX_CCK CW_MIN_CCK
#define QOS_TX3_CW_MAX_CCK ((CW_MIN_CCK + 1) / 2 - 1)
#define QOS_TX0_AIFS 3
#define QOS_TX1_AIFS 7
#define QOS_TX2_AIFS 2
#define QOS_TX3_AIFS 2
#define QOS_TX0_ACM 0
#define QOS_TX1_ACM 0
#define QOS_TX2_ACM 0
#define QOS_TX3_ACM 0
#define QOS_TX0_TXOP_LIMIT_CCK 0
#define QOS_TX1_TXOP_LIMIT_CCK 0
#define QOS_TX2_TXOP_LIMIT_CCK 6016
#define QOS_TX3_TXOP_LIMIT_CCK 3264
#define QOS_TX0_TXOP_LIMIT_OFDM 0
#define QOS_TX1_TXOP_LIMIT_OFDM 0
#define QOS_TX2_TXOP_LIMIT_OFDM 3008
#define QOS_TX3_TXOP_LIMIT_OFDM 1504
#define DEF_TX0_CW_MIN_OFDM CW_MIN_OFDM
#define DEF_TX1_CW_MIN_OFDM CW_MIN_OFDM
#define DEF_TX2_CW_MIN_OFDM CW_MIN_OFDM
#define DEF_TX3_CW_MIN_OFDM CW_MIN_OFDM
#define DEF_TX0_CW_MIN_CCK CW_MIN_CCK
#define DEF_TX1_CW_MIN_CCK CW_MIN_CCK
#define DEF_TX2_CW_MIN_CCK CW_MIN_CCK
#define DEF_TX3_CW_MIN_CCK CW_MIN_CCK
#define DEF_TX0_CW_MAX_OFDM CW_MAX_OFDM
#define DEF_TX1_CW_MAX_OFDM CW_MAX_OFDM
#define DEF_TX2_CW_MAX_OFDM CW_MAX_OFDM
#define DEF_TX3_CW_MAX_OFDM CW_MAX_OFDM
#define DEF_TX0_CW_MAX_CCK CW_MAX_CCK
#define DEF_TX1_CW_MAX_CCK CW_MAX_CCK
#define DEF_TX2_CW_MAX_CCK CW_MAX_CCK
#define DEF_TX3_CW_MAX_CCK CW_MAX_CCK
#define DEF_TX0_AIFS (2)
#define DEF_TX1_AIFS (2)
#define DEF_TX2_AIFS (2)
#define DEF_TX3_AIFS (2)
#define DEF_TX0_ACM 0
#define DEF_TX1_ACM 0
#define DEF_TX2_ACM 0
#define DEF_TX3_ACM 0
#define DEF_TX0_TXOP_LIMIT_CCK 0
#define DEF_TX1_TXOP_LIMIT_CCK 0
#define DEF_TX2_TXOP_LIMIT_CCK 0
#define DEF_TX3_TXOP_LIMIT_CCK 0
#define DEF_TX0_TXOP_LIMIT_OFDM 0
#define DEF_TX1_TXOP_LIMIT_OFDM 0
#define DEF_TX2_TXOP_LIMIT_OFDM 0
#define DEF_TX3_TXOP_LIMIT_OFDM 0
#define QOS_QOS_SETS 3
#define QOS_PARAM_SET_ACTIVE 0
#define QOS_PARAM_SET_DEF_CCK 1
#define QOS_PARAM_SET_DEF_OFDM 2
#define CTRL_QOS_NO_ACK (0x0020)
#define DCT_FLAG_EXT_QOS_ENABLED (0x10)
#define U32_PAD(n) ((4-(n))&0x3)
/*
* Generic queue structure
*
* Contains common data for Rx and Tx queues
*/
#define TFD_CTL_COUNT_SET(n) (n<<24)
#define TFD_CTL_COUNT_GET(ctl) ((ctl>>24) & 7)
#define TFD_CTL_PAD_SET(n) (n<<28)
#define TFD_CTL_PAD_GET(ctl) (ctl>>28)
#define TFD_TX_CMD_SLOTS 256
#define TFD_CMD_SLOTS 32
#define TFD_MAX_PAYLOAD_SIZE (sizeof(struct iwl_cmd) - \
sizeof(struct iwl_cmd_meta))
/*
* RX related structures and functions
*/
#define RX_FREE_BUFFERS 64
#define RX_LOW_WATERMARK 8
#endif /* __iwlwifi_hw_h__ */
/******************************************************************************
*
* Copyright(c) 2003 - 2007 Intel Corporation. All rights reserved.
*
* Portions of this file are derived from the ipw3945 project.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
*
* The full GNU General Public License is included in this distribution in the
* file called LICENSE.
*
* Contact Information:
* James P. Ketrenos <ipw2100-admin@linux.intel.com>
* Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*
*****************************************************************************/
#ifndef __iwl_io_h__
#define __iwl_io_h__
#include <linux/io.h>
#include "iwl-debug.h"
/*
* IO, register, and NIC memory access functions
*
* NOTE on naming convention and macro usage for these
*
* A single _ prefix before a an access function means that no state
* check or debug information is printed when that function is called.
*
* A double __ prefix before an access function means that state is checked
* (in the case of *restricted calls) and the current line number is printed
* in addition to any other debug output.
*
* The non-prefixed name is the #define that maps the caller into a
* #define that provides the caller's __LINE__ to the double prefix version.
*
* If you wish to call the function without any debug or state checking,
* you should use the single _ prefix version (as is used by dependent IO
* routines, for example _iwl_read_restricted calls the non-check version of
* _iwl_read32.)
*
* These declarations are *extremely* useful in quickly isolating code deltas
* which result in misconfiguring of the hardware I/O. In combination with
* git-bisect and the IO debug level you can quickly determine the specific
* commit which breaks the IO sequence to the hardware.
*
*/
#define _iwl_write32(iwl, ofs, val) writel((val), (iwl)->hw_base + (ofs))
#ifdef CONFIG_IWLWIFI_DEBUG
static inline void __iwl_write32(const char *f, u32 l, struct iwl_priv *iwl,
u32 ofs, u32 val)
{
IWL_DEBUG_IO("write_direct32(0x%08X, 0x%08X) - %s %d\n",
(u32) (ofs), (u32) (val), f, l);
_iwl_write32(iwl, ofs, val);
}
#define iwl_write32(iwl, ofs, val) \
__iwl_write32(__FILE__, __LINE__, iwl, ofs, val)
#else
#define iwl_write32(iwl, ofs, val) _iwl_write32(iwl, ofs, val)
#endif
#define _iwl_read32(iwl, ofs) readl((iwl)->hw_base + (ofs))
#ifdef CONFIG_IWLWIFI_DEBUG
static inline u32 __iwl_read32(char *f, u32 l, struct iwl_priv *iwl, u32 ofs)
{
IWL_DEBUG_IO("read_direct32(0x%08X) - %s %d\n", ofs, f, l);
return _iwl_read32(iwl, ofs);
}
#define iwl_read32(iwl, ofs) __iwl_read32(__FILE__, __LINE__, iwl, ofs)
#else
#define iwl_read32(p, o) _iwl_read32(p, o)
#endif
static inline int _iwl_poll_bit(struct iwl_priv *priv, u32 addr,
u32 bits, u32 mask, int timeout)
{
int i = 0;
do {
if ((_iwl_read32(priv, addr) & mask) == (bits & mask))
return i;
mdelay(10);
i += 10;
} while (i < timeout);
return -ETIMEDOUT;
}
#ifdef CONFIG_IWLWIFI_DEBUG
static inline int __iwl_poll_bit(const char *f, u32 l,
struct iwl_priv *priv, u32 addr,
u32 bits, u32 mask, int timeout)
{
int rc = _iwl_poll_bit(priv, addr, bits, mask, timeout);
if (unlikely(rc == -ETIMEDOUT))
IWL_DEBUG_IO
("poll_bit(0x%08X, 0x%08X, 0x%08X) - timedout - %s %d\n",
addr, bits, mask, f, l);
else
IWL_DEBUG_IO
("poll_bit(0x%08X, 0x%08X, 0x%08X) = 0x%08X - %s %d\n",
addr, bits, mask, rc, f, l);
return rc;
}
#define iwl_poll_bit(iwl, addr, bits, mask, timeout) \
__iwl_poll_bit(__FILE__, __LINE__, iwl, addr, bits, mask, timeout)
#else
#define iwl_poll_bit(p, a, b, m, t) _iwl_poll_bit(p, a, b, m, t)
#endif
static inline void _iwl_set_bit(struct iwl_priv *priv, u32 reg, u32 mask)
{
_iwl_write32(priv, reg, _iwl_read32(priv, reg) | mask);
}
#ifdef CONFIG_IWLWIFI_DEBUG
static inline void __iwl_set_bit(const char *f, u32 l,
struct iwl_priv *priv, u32 reg, u32 mask)
{
u32 val = _iwl_read32(priv, reg) | mask;
IWL_DEBUG_IO("set_bit(0x%08X, 0x%08X) = 0x%08X\n", reg, mask, val);
_iwl_write32(priv, reg, val);
}
#define iwl_set_bit(p, r, m) __iwl_set_bit(__FILE__, __LINE__, p, r, m)
#else
#define iwl_set_bit(p, r, m) _iwl_set_bit(p, r, m)
#endif
static inline void _iwl_clear_bit(struct iwl_priv *priv, u32 reg, u32 mask)
{
_iwl_write32(priv, reg, _iwl_read32(priv, reg) & ~mask);
}
#ifdef CONFIG_IWLWIFI_DEBUG
static inline void __iwl_clear_bit(const char *f, u32 l,
struct iwl_priv *priv, u32 reg, u32 mask)
{
u32 val = _iwl_read32(priv, reg) & ~mask;
IWL_DEBUG_IO("clear_bit(0x%08X, 0x%08X) = 0x%08X\n", reg, mask, val);
_iwl_write32(priv, reg, val);
}
#define iwl_clear_bit(p, r, m) __iwl_clear_bit(__FILE__, __LINE__, p, r, m)
#else
#define iwl_clear_bit(p, r, m) _iwl_clear_bit(p, r, m)
#endif
static inline int _iwl_grab_restricted_access(struct iwl_priv *priv)
{
int rc;
u32 gp_ctl;
#ifdef CONFIG_IWLWIFI_DEBUG
if (atomic_read(&priv->restrict_refcnt))
return 0;
#endif
if (test_bit(STATUS_RF_KILL_HW, &priv->status) ||
test_bit(STATUS_RF_KILL_SW, &priv->status)) {
IWL_WARNING("WARNING: Requesting MAC access during RFKILL "
"wakes up NIC\n");
/* 10 msec allows time for NIC to complete its data save */
gp_ctl = _iwl_read32(priv, CSR_GP_CNTRL);
if (gp_ctl & CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY) {
IWL_DEBUG_RF_KILL("Wait for complete power-down, "
"gpctl = 0x%08x\n", gp_ctl);
mdelay(10);
} else
IWL_DEBUG_RF_KILL("power-down complete, "
"gpctl = 0x%08x\n", gp_ctl);
}
/* this bit wakes up the NIC */
_iwl_set_bit(priv, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
rc = _iwl_poll_bit(priv, CSR_GP_CNTRL,
CSR_GP_CNTRL_REG_VAL_MAC_ACCESS_EN,
(CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY |
CSR_GP_CNTRL_REG_FLAG_GOING_TO_SLEEP), 50);
if (rc < 0) {
IWL_ERROR("MAC is in deep sleep!\n");
return -EIO;
}
#ifdef CONFIG_IWLWIFI_DEBUG
atomic_inc(&priv->restrict_refcnt);
#endif
return 0;
}
#ifdef CONFIG_IWLWIFI_DEBUG
static inline int __iwl_grab_restricted_access(const char *f, u32 l,
struct iwl_priv *priv)
{
if (atomic_read(&priv->restrict_refcnt))
IWL_DEBUG_INFO("Grabbing access while already held at "
"line %d.\n", l);
IWL_DEBUG_IO("grabbing restricted access - %s %d\n", f, l);
return _iwl_grab_restricted_access(priv);
}
#define iwl_grab_restricted_access(priv) \
__iwl_grab_restricted_access(__FILE__, __LINE__, priv)
#else
#define iwl_grab_restricted_access(priv) \
_iwl_grab_restricted_access(priv)
#endif
static inline void _iwl_release_restricted_access(struct iwl_priv *priv)
{
#ifdef CONFIG_IWLWIFI_DEBUG
if (atomic_dec_and_test(&priv->restrict_refcnt))
#endif
_iwl_clear_bit(priv, CSR_GP_CNTRL,
CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
}
#ifdef CONFIG_IWLWIFI_DEBUG
static inline void __iwl_release_restricted_access(const char *f, u32 l,
struct iwl_priv *priv)
{
if (atomic_read(&priv->restrict_refcnt) <= 0)
IWL_ERROR("Release unheld restricted access at line %d.\n", l);
IWL_DEBUG_IO("releasing restricted access - %s %d\n", f, l);
_iwl_release_restricted_access(priv);
}
#define iwl_release_restricted_access(priv) \
__iwl_release_restricted_access(__FILE__, __LINE__, priv)
#else
#define iwl_release_restricted_access(priv) \
_iwl_release_restricted_access(priv)
#endif
static inline u32 _iwl_read_restricted(struct iwl_priv *priv, u32 reg)
{
return _iwl_read32(priv, reg);
}
#ifdef CONFIG_IWLWIFI_DEBUG
static inline u32 __iwl_read_restricted(const char *f, u32 l,
struct iwl_priv *priv, u32 reg)
{
u32 value = _iwl_read_restricted(priv, reg);
if (!atomic_read(&priv->restrict_refcnt))
IWL_ERROR("Unrestricted access from %s %d\n", f, l);
IWL_DEBUG_IO("read_restricted(0x%4X) = 0x%08x - %s %d \n", reg, value,
f, l);
return value;
}
#define iwl_read_restricted(priv, reg) \
__iwl_read_restricted(__FILE__, __LINE__, priv, reg)
#else
#define iwl_read_restricted _iwl_read_restricted
#endif
static inline void _iwl_write_restricted(struct iwl_priv *priv,
u32 reg, u32 value)
{
_iwl_write32(priv, reg, value);
}
#ifdef CONFIG_IWLWIFI_DEBUG
static void __iwl_write_restricted(u32 line,
struct iwl_priv *priv, u32 reg, u32 value)
{
if (!atomic_read(&priv->restrict_refcnt))
IWL_ERROR("Unrestricted access from line %d\n", line);
_iwl_write_restricted(priv, reg, value);
}
#define iwl_write_restricted(priv, reg, value) \
__iwl_write_restricted(__LINE__, priv, reg, value)
#else
#define iwl_write_restricted _iwl_write_restricted
#endif
static inline void iwl_write_buffer_restricted(struct iwl_priv *priv,
u32 reg, u32 len, u32 *values)
{
u32 count = sizeof(u32);
if ((priv != NULL) && (values != NULL)) {
for (; 0 < len; len -= count, reg += count, values++)
_iwl_write_restricted(priv, reg, *values);
}
}
static inline int _iwl_poll_restricted_bit(struct iwl_priv *priv,
u32 addr, u32 mask, int timeout)
{
int i = 0;
do {
if ((_iwl_read_restricted(priv, addr) & mask) == mask)
return i;
mdelay(10);
i += 10;
} while (i < timeout);
return -ETIMEDOUT;
}
#ifdef CONFIG_IWLWIFI_DEBUG
static inline int __iwl_poll_restricted_bit(const char *f, u32 l,
struct iwl_priv *priv,
u32 addr, u32 mask, int timeout)
{
int rc = _iwl_poll_restricted_bit(priv, addr, mask, timeout);
if (unlikely(rc == -ETIMEDOUT))
IWL_DEBUG_IO("poll_restricted_bit(0x%08X, 0x%08X) - "
"timedout - %s %d\n", addr, mask, f, l);
else
IWL_DEBUG_IO("poll_restricted_bit(0x%08X, 0x%08X) = 0x%08X "
"- %s %d\n", addr, mask, rc, f, l);
return rc;
}
#define iwl_poll_restricted_bit(iwl, addr, mask, timeout) \
__iwl_poll_restricted_bit(__FILE__, __LINE__, iwl, addr, mask, timeout)
#else
#define iwl_poll_restricted_bit _iwl_poll_restricted_bit
#endif
static inline u32 _iwl_read_restricted_reg(struct iwl_priv *priv, u32 reg)
{
_iwl_write_restricted(priv, HBUS_TARG_PRPH_RADDR, reg | (3 << 24));
return _iwl_read_restricted(priv, HBUS_TARG_PRPH_RDAT);
}
#ifdef CONFIG_IWLWIFI_DEBUG
static inline u32 __iwl_read_restricted_reg(u32 line,
struct iwl_priv *priv, u32 reg)
{
if (!atomic_read(&priv->restrict_refcnt))
IWL_ERROR("Unrestricted access from line %d\n", line);
return _iwl_read_restricted_reg(priv, reg);
}
#define iwl_read_restricted_reg(priv, reg) \
__iwl_read_restricted_reg(__LINE__, priv, reg)
#else
#define iwl_read_restricted_reg _iwl_read_restricted_reg
#endif
static inline void _iwl_write_restricted_reg(struct iwl_priv *priv,
u32 addr, u32 val)
{
_iwl_write_restricted(priv, HBUS_TARG_PRPH_WADDR,
((addr & 0x0000FFFF) | (3 << 24)));
_iwl_write_restricted(priv, HBUS_TARG_PRPH_WDAT, val);
}
#ifdef CONFIG_IWLWIFI_DEBUG
static inline void __iwl_write_restricted_reg(u32 line,
struct iwl_priv *priv,
u32 addr, u32 val)
{
if (!atomic_read(&priv->restrict_refcnt))
IWL_ERROR("Unrestricted access from line %d\n", line);
_iwl_write_restricted_reg(priv, addr, val);
}
#define iwl_write_restricted_reg(priv, addr, val) \
__iwl_write_restricted_reg(__LINE__, priv, addr, val);
#else
#define iwl_write_restricted_reg _iwl_write_restricted_reg
#endif
#define _iwl_set_bits_restricted_reg(priv, reg, mask) \
_iwl_write_restricted_reg(priv, reg, \
(_iwl_read_restricted_reg(priv, reg) | mask))
#ifdef CONFIG_IWLWIFI_DEBUG
static inline void __iwl_set_bits_restricted_reg(u32 line, struct iwl_priv
*priv, u32 reg, u32 mask)
{
if (!atomic_read(&priv->restrict_refcnt))
IWL_ERROR("Unrestricted access from line %d\n", line);
_iwl_set_bits_restricted_reg(priv, reg, mask);
}
#define iwl_set_bits_restricted_reg(priv, reg, mask) \
__iwl_set_bits_restricted_reg(__LINE__, priv, reg, mask)
#else
#define iwl_set_bits_restricted_reg _iwl_set_bits_restricted_reg
#endif
#define _iwl_set_bits_mask_restricted_reg(priv, reg, bits, mask) \
_iwl_write_restricted_reg( \
priv, reg, ((_iwl_read_restricted_reg(priv, reg) & mask) | bits))
#ifdef CONFIG_IWLWIFI_DEBUG
static inline void __iwl_set_bits_mask_restricted_reg(u32 line,
struct iwl_priv *priv, u32 reg, u32 bits, u32 mask)
{
if (!atomic_read(&priv->restrict_refcnt))
IWL_ERROR("Unrestricted access from line %d\n", line);
_iwl_set_bits_mask_restricted_reg(priv, reg, bits, mask);
}
#define iwl_set_bits_mask_restricted_reg(priv, reg, bits, mask) \
__iwl_set_bits_mask_restricted_reg(__LINE__, priv, reg, bits, mask)
#else
#define iwl_set_bits_mask_restricted_reg _iwl_set_bits_mask_restricted_reg
#endif
static inline void iwl_clear_bits_restricted_reg(struct iwl_priv
*priv, u32 reg, u32 mask)
{
u32 val = _iwl_read_restricted_reg(priv, reg);
_iwl_write_restricted_reg(priv, reg, (val & ~mask));
}
static inline u32 iwl_read_restricted_mem(struct iwl_priv *priv, u32 addr)
{
iwl_write_restricted(priv, HBUS_TARG_MEM_RADDR, addr);
return iwl_read_restricted(priv, HBUS_TARG_MEM_RDAT);
}
static inline void iwl_write_restricted_mem(struct iwl_priv *priv, u32 addr,
u32 val)
{
iwl_write_restricted(priv, HBUS_TARG_MEM_WADDR, addr);
iwl_write_restricted(priv, HBUS_TARG_MEM_WDAT, val);
}
static inline void iwl_write_restricted_mems(struct iwl_priv *priv, u32 addr,
u32 len, u32 *values)
{
iwl_write_restricted(priv, HBUS_TARG_MEM_WADDR, addr);
for (; 0 < len; len -= sizeof(u32), values++)
iwl_write_restricted(priv, HBUS_TARG_MEM_WDAT, *values);
}
static inline void iwl_write_restricted_regs(struct iwl_priv *priv, u32 reg,
u32 len, u8 *values)
{
u32 reg_offset = reg;
u32 aligment = reg & 0x3;
/* write any non-dword-aligned stuff at the beginning */
if (len < sizeof(u32)) {
if ((aligment + len) <= sizeof(u32)) {
u8 size;
u32 value = 0;
size = len - 1;
memcpy(&value, values, len);
reg_offset = (reg_offset & 0x0000FFFF);
_iwl_write_restricted(priv,
HBUS_TARG_PRPH_WADDR,
(reg_offset | (size << 24)));
_iwl_write_restricted(priv, HBUS_TARG_PRPH_WDAT,
value);
}
return;
}
/* now write all the dword-aligned stuff */
for (; reg_offset < (reg + len);
reg_offset += sizeof(u32), values += sizeof(u32))
_iwl_write_restricted_reg(priv, reg_offset, *((u32 *) values));
}
#endif
/******************************************************************************
*
* Copyright(c) 2003 - 2007 Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
*
* The full GNU General Public License is included in this distribution in the
* file called LICENSE.
*
* Contact Information:
* James P. Ketrenos <ipw2100-admin@linux.intel.com>
* Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*
*****************************************************************************/
#ifndef __iwl_priv_h__
#define __iwl_priv_h__
#include <linux/workqueue.h>
#ifdef CONFIG_IWLWIFI_SPECTRUM_MEASUREMENT
enum {
MEASUREMENT_READY = (1 << 0),
MEASUREMENT_ACTIVE = (1 << 1),
};
#endif
struct iwl_priv {
/* ieee device used by generic ieee processing code */
struct ieee80211_hw *hw;
struct ieee80211_channel *ieee_channels;
struct ieee80211_rate *ieee_rates;
/* temporary frame storage list */
struct list_head free_frames;
int frames_count;
u8 phymode;
int alloc_rxb_skb;
void (*rx_handlers[REPLY_MAX])(struct iwl_priv *priv,
struct iwl_rx_mem_buffer *rxb);
const struct ieee80211_hw_mode *modes;
#ifdef CONFIG_IWLWIFI_SPECTRUM_MEASUREMENT
/* spectrum measurement report caching */
struct iwl_spectrum_notification measure_report;
u8 measurement_status;
#endif
/* ucode beacon time */
u32 ucode_beacon_time;
/* we allocate array of iwl_channel_info for NIC's valid channels.
* Access via channel # using indirect index array */
struct iwl_channel_info *channel_info; /* channel info array */
u8 channel_count; /* # of channels */
/* each calibration channel group in the EEPROM has a derived
* clip setting for each rate. */
const struct iwl_clip_group clip_groups[5];
/* thermal calibration */
s32 temperature; /* degrees Kelvin */
s32 last_temperature;
/* Scan related variables */
unsigned long last_scan_jiffies;
unsigned long scan_start;
unsigned long scan_pass_start;
unsigned long scan_start_tsf;
int scan_bands;
int one_direct_scan;
u8 direct_ssid_len;
u8 direct_ssid[IW_ESSID_MAX_SIZE];
struct iwl_scan_cmd *scan;
u8 only_active_channel;
/* spinlock */
spinlock_t lock; /* protect general shared data */
spinlock_t hcmd_lock; /* protect hcmd */
struct mutex mutex;
/* basic pci-network driver stuff */
struct pci_dev *pci_dev;
/* pci hardware address support */
void __iomem *hw_base;
/* uCode images, save to reload in case of failure */
struct fw_image_desc ucode_code; /* runtime inst */
struct fw_image_desc ucode_data; /* runtime data original */
struct fw_image_desc ucode_data_backup; /* runtime data save/restore */
struct fw_image_desc ucode_init; /* initialization inst */
struct fw_image_desc ucode_init_data; /* initialization data */
struct fw_image_desc ucode_boot; /* bootstrap inst */
struct iwl_rxon_time_cmd rxon_timing;
/* We declare this const so it can only be
* changed via explicit cast within the
* routines that actually update the physical
* hardware */
const struct iwl_rxon_cmd active_rxon;
struct iwl_rxon_cmd staging_rxon;
int error_recovering;
struct iwl_rxon_cmd recovery_rxon;
/* 1st responses from initialize and runtime uCode images.
* 4965's initialize alive response contains some calibration data. */
struct iwl_init_alive_resp card_alive_init;
struct iwl_alive_resp card_alive;
#ifdef LED
/* LED related variables */
struct iwl_activity_blink activity;
unsigned long led_packets;
int led_state;
#endif
u16 active_rate;
u16 active_rate_basic;
u8 call_post_assoc_from_beacon;
u8 assoc_station_added;
#if IWL == 4965
u8 use_ant_b_for_management_frame; /* Tx antenna selection */
/* HT variables */
u8 is_dup;
u8 is_ht_enabled;
u8 channel_width; /* 0=20MHZ, 1=40MHZ */
u8 current_channel_width;
u8 valid_antenna; /* Bit mask of antennas actually connected */
#ifdef CONFIG_IWLWIFI_SENSITIVITY
struct iwl_sensitivity_data sensitivity_data;
struct iwl_chain_noise_data chain_noise_data;
u8 start_calib;
__le16 sensitivity_tbl[HD_TABLE_SIZE];
#endif /*CONFIG_IWLWIFI_SENSITIVITY*/
#ifdef CONFIG_IWLWIFI_HT
struct sta_ht_info current_assoc_ht;
#endif
u8 active_rate_ht[2];
u8 last_phy_res[100];
/* Rate scaling data */
struct iwl_lq_mngr lq_mngr;
#endif
/* Rate scaling data */
s8 data_retry_limit;
u8 retry_rate;
wait_queue_head_t wait_command_queue;
int activity_timer_active;
/* Rx and Tx DMA processing queues */
struct iwl_rx_queue rxq;
struct iwl_tx_queue txq[IWL_MAX_NUM_QUEUES];
#if IWL == 4965
unsigned long txq_ctx_active_msk;
struct iwl_kw kw; /* keep warm address */
u32 scd_base_addr; /* scheduler sram base address */
#endif
unsigned long status;
u32 config;
int last_rx_rssi; /* From Rx packet statisitics */
int last_rx_noise; /* From beacon statistics */
struct iwl_power_mgr power_data;
struct iwl_notif_statistics statistics;
unsigned long last_statistics_time;
/* context information */
u8 essid[IW_ESSID_MAX_SIZE];
u8 essid_len;
u16 rates_mask;
u32 power_mode;
u32 antenna;
u8 bssid[ETH_ALEN];
u16 rts_threshold;
u8 mac_addr[ETH_ALEN];
/*station table variables */
spinlock_t sta_lock;
int num_stations;
struct iwl_station_entry stations[IWL_STATION_COUNT];
/* Indication if ieee80211_ops->open has been called */
int is_open;
u8 mac80211_registered;
int is_abg;
u32 notif_missed_beacons;
/* Rx'd packet timing information */
u32 last_beacon_time;
u64 last_tsf;
/* Duplicate packet detection */
u16 last_seq_num;
u16 last_frag_num;
unsigned long last_packet_time;
struct list_head ibss_mac_hash[IWL_IBSS_MAC_HASH_SIZE];
/* eeprom */
struct iwl_eeprom eeprom;
int iw_mode;
struct sk_buff *ibss_beacon;
/* Last Rx'd beacon timestamp */
u32 timestamp0;
u32 timestamp1;
u16 beacon_int;
struct iwl_driver_hw_info hw_setting;
int interface_id;
/* Current association information needed to configure the
* hardware */
u16 assoc_id;
u16 assoc_capability;
u8 ps_mode;
#ifdef CONFIG_IWLWIFI_QOS
struct iwl_qos_info qos_data;
#endif /*CONFIG_IWLWIFI_QOS */
struct workqueue_struct *workqueue;
struct work_struct up;
struct work_struct restart;
struct work_struct calibrated_work;
struct work_struct scan_completed;
struct work_struct rx_replenish;
struct work_struct rf_kill;
struct work_struct abort_scan;
struct work_struct update_link_led;
struct work_struct auth_work;
struct work_struct report_work;
struct work_struct request_scan;
struct work_struct beacon_update;
struct tasklet_struct irq_tasklet;
struct delayed_work init_alive_start;
struct delayed_work alive_start;
struct delayed_work activity_timer;
struct delayed_work thermal_periodic;
struct delayed_work gather_stats;
struct delayed_work scan_check;
struct delayed_work post_associate;
#define IWL_DEFAULT_TX_POWER 0x0F
s8 user_txpower_limit;
s8 max_channel_txpower_limit;
u32 cck_power_index_compensation;
#ifdef CONFIG_PM
u32 pm_state[16];
#endif
#ifdef CONFIG_IWLWIFI_DEBUG
/* debugging info */
u32 framecnt_to_us;
atomic_t restrict_refcnt;
#endif
#if IWL == 4965
struct work_struct txpower_work;
#ifdef CONFIG_IWLWIFI_SENSITIVITY
struct work_struct sensitivity_work;
#endif
struct work_struct statistics_work;
struct timer_list statistics_periodic;
#ifdef CONFIG_IWLWIFI_HT_AGG
struct work_struct agg_work;
#endif
#endif /* 4965 */
}; /*iwl_priv */
#endif /* __iwl_priv_h__ */
/******************************************************************************
*
* This file is provided under a dual BSD/GPLv2 license. When using or
* redistributing this file, you may do so under either license.
*
* GPL LICENSE SUMMARY
*
* Copyright(c) 2005 - 2007 Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU Geeral Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
* USA
*
* The full GNU General Public License is included in this distribution
* in the file called LICENSE.GPL.
*
* Contact Information:
* James P. Ketrenos <ipw2100-admin@linux.intel.com>
* Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*
* BSD LICENSE
*
* Copyright(c) 2005 - 2007 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*****************************************************************************/
#ifndef __iwl_prph_h__
#define __iwl_prph_h__
#define PRPH_BASE (0x00000)
#define PRPH_END (0xFFFFF)
/* APMG (power management) constants */
#define APMG_BASE (PRPH_BASE + 0x3000)
#define APMG_CLK_CTRL_REG (APMG_BASE + 0x0000)
#define APMG_CLK_EN_REG (APMG_BASE + 0x0004)
#define APMG_CLK_DIS_REG (APMG_BASE + 0x0008)
#define APMG_PS_CTRL_REG (APMG_BASE + 0x000c)
#define APMG_PCIDEV_STT_REG (APMG_BASE + 0x0010)
#define APMG_RFKILL_REG (APMG_BASE + 0x0014)
#define APMG_RTC_INT_STT_REG (APMG_BASE + 0x001c)
#define APMG_RTC_INT_MSK_REG (APMG_BASE + 0x0020)
#define APMG_CLK_VAL_DMA_CLK_RQT (0x00000200)
#define APMG_CLK_VAL_BSM_CLK_RQT (0x00000800)
#define APMG_PS_CTRL_VAL_RESET_REQ (0x04000000)
#define APMG_PCIDEV_STT_VAL_L1_ACT_DIS (0x00000800)
#define APMG_PS_CTRL_MSK_PWR_SRC (0x03000000)
#define APMG_PS_CTRL_VAL_PWR_SRC_VMAIN (0x00000000)
#define APMG_PS_CTRL_VAL_PWR_SRC_VAUX (0x01000000)
/**
* BSM (Bootstrap State Machine)
*
* The Bootstrap State Machine (BSM) stores a short bootstrap uCode program
* in special SRAM that does not power down when the embedded control
* processor is sleeping (e.g. for periodic power-saving shutdowns of radio).
*
* When powering back up after sleeps (or during initial uCode load), the BSM
* internally loads the short bootstrap program from the special SRAM into the
* embedded processor's instruction SRAM, and starts the processor so it runs
* the bootstrap program.
*
* This bootstrap program loads (via PCI busmaster DMA) instructions and data
* images for a uCode program from host DRAM locations. The host driver
* indicates DRAM locations and sizes for instruction and data images via the
* four BSM_DRAM_* registers. Once the bootstrap program loads the new program,
* the new program starts automatically.
*
* The uCode used for open-source drivers includes two programs:
*
* 1) Initialization -- performs hardware calibration and sets up some
* internal data, then notifies host via "initialize alive" notification
* (struct iwl_init_alive_resp) that it has completed all of its work.
* After signal from host, it then loads and starts the runtime program.
* The initialization program must be used when initially setting up the
* NIC after loading the driver.
*
* 2) Runtime/Protocol -- performs all normal runtime operations. This
* notifies host via "alive" notification (struct iwl_alive_resp) that it
* is ready to be used.
*
* When initializing the NIC, the host driver does the following procedure:
*
* 1) Load bootstrap program (instructions only, no data image for bootstrap)
* into bootstrap memory. Use dword writes starting at BSM_SRAM_LOWER_BOUND
*
* 2) Point (via BSM_DRAM_*) to the "initialize" uCode data and instruction
* images in host DRAM.
*
* 3) Set up BSM to copy from BSM SRAM into uCode instruction SRAM when asked:
* BSM_WR_MEM_SRC_REG = 0
* BSM_WR_MEM_DST_REG = RTC_INST_LOWER_BOUND
* BSM_WR_MEM_DWCOUNT_REG = # dwords in bootstrap instruction image
*
* 4) Load bootstrap into instruction SRAM:
* BSM_WR_CTRL_REG = BSM_WR_CTRL_REG_BIT_START
*
* 5) Wait for load completion:
* Poll BSM_WR_CTRL_REG for BSM_WR_CTRL_REG_BIT_START = 0
*
* 6) Enable future boot loads whenever NIC's power management triggers it:
* BSM_WR_CTRL_REG = BSM_WR_CTRL_REG_BIT_START_EN
*
* 7) Start the NIC by removing all reset bits:
* CSR_RESET = 0
*
* The bootstrap uCode (already in instruction SRAM) loads initialization
* uCode. Initialization uCode performs data initialization, sends
* "initialize alive" notification to host, and waits for a signal from
* host to load runtime code.
*
* 4) Point (via BSM_DRAM_*) to the "runtime" uCode data and instruction
* images in host DRAM. The last register loaded must be the instruction
* bytecount register ("1" in MSbit tells initialization uCode to load
* the runtime uCode):
* BSM_DRAM_INST_BYTECOUNT_REG = bytecount | BSM_DRAM_INST_LOAD
*
* 5) Wait for "alive" notification, then issue normal runtime commands.
*
* Data caching during power-downs:
*
* Just before the embedded controller powers down (e.g for automatic
* power-saving modes, or for RFKILL), uCode stores (via PCI busmaster DMA)
* a current snapshot of the embedded processor's data SRAM into host DRAM.
* This caches the data while the embedded processor's memory is powered down.
* Location and size are controlled by BSM_DRAM_DATA_* registers.
*
* NOTE: Instruction SRAM does not need to be saved, since that doesn't
* change during operation; the original image (from uCode distribution
* file) can be used for reload.
*
* When powering back up, the BSM loads the bootstrap program. Bootstrap looks
* at the BSM_DRAM_* registers, which now point to the runtime instruction
* image and the cached (modified) runtime data (*not* the initialization
* uCode). Bootstrap reloads these runtime images into SRAM, and restarts the
* uCode from where it left off before the power-down.
*
* NOTE: Initialization uCode does *not* run as part of the save/restore
* procedure.
*
* This save/restore method is mostly for autonomous power management during
* normal operation (result of POWER_TABLE_CMD). Platform suspend/resume and
* RFKILL should use complete restarts (with total re-initialization) of uCode,
* allowing total shutdown (including BSM memory).
*
* Note that, during normal operation, the host DRAM that held the initial
* startup data for the runtime code is now being used as a backup data cache
* for modified data! If you need to completely re-initialize the NIC, make
* sure that you use the runtime data image from the uCode distribution file,
* not the modified/saved runtime data. You may want to store a separate
* "clean" runtime data image in DRAM to avoid disk reads of distribution file.
*/
/* BSM bit fields */
#define BSM_WR_CTRL_REG_BIT_START (0x80000000) /* start boot load now */
#define BSM_WR_CTRL_REG_BIT_START_EN (0x40000000) /* enable boot after pwrup*/
#define BSM_DRAM_INST_LOAD (0x80000000) /* start program load now */
/* BSM addresses */
#define BSM_BASE (PRPH_BASE + 0x3400)
#define BSM_END (PRPH_BASE + 0x3800)
#define BSM_WR_CTRL_REG (BSM_BASE + 0x000) /* ctl and status */
#define BSM_WR_MEM_SRC_REG (BSM_BASE + 0x004) /* source in BSM mem */
#define BSM_WR_MEM_DST_REG (BSM_BASE + 0x008) /* dest in SRAM mem */
#define BSM_WR_DWCOUNT_REG (BSM_BASE + 0x00C) /* bytes */
#define BSM_WR_STATUS_REG (BSM_BASE + 0x010) /* bit 0: 1 == done */
/*
* Pointers and size regs for bootstrap load and data SRAM save/restore.
* NOTE: 3945 pointers use bits 31:0 of DRAM address.
* 4965 pointers use bits 35:4 of DRAM address.
*/
#define BSM_DRAM_INST_PTR_REG (BSM_BASE + 0x090)
#define BSM_DRAM_INST_BYTECOUNT_REG (BSM_BASE + 0x094)
#define BSM_DRAM_DATA_PTR_REG (BSM_BASE + 0x098)
#define BSM_DRAM_DATA_BYTECOUNT_REG (BSM_BASE + 0x09C)
/*
* BSM special memory, stays powered on during power-save sleeps.
* Read/write, address range from LOWER_BOUND to (LOWER_BOUND + SIZE -1)
*/
#define BSM_SRAM_LOWER_BOUND (PRPH_BASE + 0x3800)
#define BSM_SRAM_SIZE (1024) /* bytes */
#endif /* __iwl_prph_h__ */
/******************************************************************************
*
* Copyright(c) 2003 - 2007 Intel Corporation. All rights reserved.
*
* Portions of this file are derived from the ieee80211 subsystem header files.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
*
* The full GNU General Public License is included in this distribution in the
* file called LICENSE.
*
* Contact Information:
* James P. Ketrenos <ipw2100-admin@linux.intel.com>
* Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*
*****************************************************************************/
#ifndef __iwl_spectrum_h__
#define __iwl_spectrum_h__
enum { /* ieee80211_basic_report.map */
IEEE80211_BASIC_MAP_BSS = (1 << 0),
IEEE80211_BASIC_MAP_OFDM = (1 << 1),
IEEE80211_BASIC_MAP_UNIDENTIFIED = (1 << 2),
IEEE80211_BASIC_MAP_RADAR = (1 << 3),
IEEE80211_BASIC_MAP_UNMEASURED = (1 << 4),
/* Bits 5-7 are reserved */
};
struct ieee80211_basic_report {
u8 channel;
__le64 start_time;
__le16 duration;
u8 map;
} __attribute__ ((packed));
enum { /* ieee80211_measurement_request.mode */
/* Bit 0 is reserved */
IEEE80211_MEASUREMENT_ENABLE = (1 << 1),
IEEE80211_MEASUREMENT_REQUEST = (1 << 2),
IEEE80211_MEASUREMENT_REPORT = (1 << 3),
/* Bits 4-7 are reserved */
};
enum {
IEEE80211_REPORT_BASIC = 0, /* required */
IEEE80211_REPORT_CCA = 1, /* optional */
IEEE80211_REPORT_RPI = 2, /* optional */
/* 3-255 reserved */
};
struct ieee80211_measurement_params {
u8 channel;
__le64 start_time;
__le16 duration;
} __attribute__ ((packed));
struct ieee80211_info_element {
u8 id;
u8 len;
u8 data[0];
} __attribute__ ((packed));
struct ieee80211_measurement_request {
struct ieee80211_info_element ie;
u8 token;
u8 mode;
u8 type;
struct ieee80211_measurement_params params[0];
} __attribute__ ((packed));
struct ieee80211_measurement_report {
struct ieee80211_info_element ie;
u8 token;
u8 mode;
u8 type;
union {
struct ieee80211_basic_report basic[0];
} u;
} __attribute__ ((packed));
#endif
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
/******************************************************************************
*
* Copyright(c) 2003 - 2007 Intel Corporation. All rights reserved.
*
* Portions of this file are derived from the ipw3945 project, as well
* as portions of the ieee80211 subsystem header files.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
*
* The full GNU General Public License is included in this distribution in the
* file called LICENSE.
*
* Contact Information:
* James P. Ketrenos <ipw2100-admin@linux.intel.com>
* Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*
*****************************************************************************/
#ifndef __iwlwifi_h__
#define __iwlwifi_h__
#include <linux/pci.h> /* for struct pci_device_id */
#include <linux/kernel.h>
#include <net/ieee80211_radiotap.h>
struct iwl_priv;
/* Hardware specific file defines the PCI IDs table for that hardware module */
extern struct pci_device_id iwl_hw_card_ids[];
#if IWL == 3945
#define DRV_NAME "iwl3945"
#include "iwl-hw.h"
#include "iwl-3945-hw.h"
#elif IWL == 4965
#define DRV_NAME "iwl4965"
#include "iwl-hw.h"
#include "iwl-4965-hw.h"
#endif
#include "iwl-prph.h"
/*
* Driver implementation data structures, constants, inline
* functions
*
* NOTE: DO NOT PUT HARDWARE/UCODE SPECIFIC DECLRATIONS HERE
*
* Hardware specific declrations go into iwl-*hw.h
*
*/
#include "iwl-debug.h"
/* Default noise level to report when noise measurement is not available.
* This may be because we're:
* 1) Not associated (4965, no beacon statistics being sent to driver)
* 2) Scanning (noise measurement does not apply to associated channel)
* 3) Receiving CCK (3945 delivers noise info only for OFDM frames)
* Use default noise value of -127 ... this is below the range of measurable
* Rx dBm for either 3945 or 4965, so it can indicate "unmeasurable" to user.
* Also, -127 works better than 0 when averaging frames with/without
* noise info (e.g. averaging might be done in app); measured dBm values are
* always negative ... using a negative value as the default keeps all
* averages within an s8's (used in some apps) range of negative values. */
#define IWL_NOISE_MEAS_NOT_AVAILABLE (-127)
/* Module parameters accessible from iwl-*.c */
extern int iwl_param_disable_hw_scan;
extern int iwl_param_debug;
extern int iwl_param_mode;
extern int iwl_param_disable;
extern int iwl_param_antenna;
extern int iwl_param_hwcrypto;
extern int iwl_param_qos_enable;
extern int iwl_param_queues_num;
enum iwl_antenna {
IWL_ANTENNA_DIVERSITY,
IWL_ANTENNA_MAIN,
IWL_ANTENNA_AUX
};
/*
* RTS threshold here is total size [2347] minus 4 FCS bytes
* Per spec:
* a value of 0 means RTS on all data/management packets
* a value > max MSDU size means no RTS
* else RTS for data/management frames where MPDU is larger
* than RTS value.
*/
#define DEFAULT_RTS_THRESHOLD 2347U
#define MIN_RTS_THRESHOLD 0U
#define MAX_RTS_THRESHOLD 2347U
#define MAX_MSDU_SIZE 2304U
#define MAX_MPDU_SIZE 2346U
#define DEFAULT_BEACON_INTERVAL 100U
#define DEFAULT_SHORT_RETRY_LIMIT 7U
#define DEFAULT_LONG_RETRY_LIMIT 4U
struct iwl_rx_mem_buffer {
dma_addr_t dma_addr;
struct sk_buff *skb;
struct list_head list;
};
struct iwl_rt_rx_hdr {
struct ieee80211_radiotap_header rt_hdr;
__le64 rt_tsf; /* TSF */
u8 rt_flags; /* radiotap packet flags */
u8 rt_rate; /* rate in 500kb/s */
__le16 rt_channelMHz; /* channel in MHz */
__le16 rt_chbitmask; /* channel bitfield */
s8 rt_dbmsignal; /* signal in dBm, kluged to signed */
s8 rt_dbmnoise;
u8 rt_antenna; /* antenna number */
u8 payload[0]; /* payload... */
} __attribute__ ((packed));
struct iwl_rt_tx_hdr {
struct ieee80211_radiotap_header rt_hdr;
u8 rt_rate; /* rate in 500kb/s */
__le16 rt_channel; /* channel in mHz */
__le16 rt_chbitmask; /* channel bitfield */
s8 rt_dbmsignal; /* signal in dBm, kluged to signed */
u8 rt_antenna; /* antenna number */
u8 payload[0]; /* payload... */
} __attribute__ ((packed));
/*
* Generic queue structure
*
* Contains common data for Rx and Tx queues
*/
struct iwl_queue {
int n_bd; /* number of BDs in this queue */
int first_empty; /* 1-st empty entry (index) host_w*/
int last_used; /* last used entry (index) host_r*/
dma_addr_t dma_addr; /* physical addr for BD's */
int n_window; /* safe queue window */
u32 id;
int low_mark; /* low watermark, resume queue if free
* space more than this */
int high_mark; /* high watermark, stop queue if free
* space less than this */
} __attribute__ ((packed));
#define MAX_NUM_OF_TBS (20)
struct iwl_tx_info {
struct ieee80211_tx_status status;
struct sk_buff *skb[MAX_NUM_OF_TBS];
};
/**
* struct iwl_tx_queue - Tx Queue for DMA
* @need_update: need to update read/write index
* @shed_retry: queue is HT AGG enabled
*
* Queue consists of circular buffer of BD's and required locking structures.
*/
struct iwl_tx_queue {
struct iwl_queue q;
struct iwl_tfd_frame *bd;
struct iwl_cmd *cmd;
dma_addr_t dma_addr_cmd;
struct iwl_tx_info *txb;
int need_update;
int sched_retry;
int active;
};
#include "iwl-channel.h"
#if IWL == 3945
#include "iwl-3945-rs.h"
#else
#include "iwl-4965-rs.h"
#endif
#define IWL_TX_FIFO_AC0 0
#define IWL_TX_FIFO_AC1 1
#define IWL_TX_FIFO_AC2 2
#define IWL_TX_FIFO_AC3 3
#define IWL_TX_FIFO_HCCA_1 5
#define IWL_TX_FIFO_HCCA_2 6
#define IWL_TX_FIFO_NONE 7
/* Minimum number of queues. MAX_NUM is defined in hw specific files */
#define IWL_MIN_NUM_QUEUES 4
/* Power management (not Tx power) structures */
struct iwl_power_vec_entry {
struct iwl_powertable_cmd cmd;
u8 no_dtim;
};
#define IWL_POWER_RANGE_0 (0)
#define IWL_POWER_RANGE_1 (1)
#define IWL_POWER_MODE_CAM 0x00 /* Continuously Aware Mode, always on */
#define IWL_POWER_INDEX_3 0x03
#define IWL_POWER_INDEX_5 0x05
#define IWL_POWER_AC 0x06
#define IWL_POWER_BATTERY 0x07
#define IWL_POWER_LIMIT 0x07
#define IWL_POWER_MASK 0x0F
#define IWL_POWER_ENABLED 0x10
#define IWL_POWER_LEVEL(x) ((x) & IWL_POWER_MASK)
struct iwl_power_mgr {
spinlock_t lock;
struct iwl_power_vec_entry pwr_range_0[IWL_POWER_AC];
struct iwl_power_vec_entry pwr_range_1[IWL_POWER_AC];
u8 active_index;
u32 dtim_val;
};
#define IEEE80211_DATA_LEN 2304
#define IEEE80211_4ADDR_LEN 30
#define IEEE80211_HLEN (IEEE80211_4ADDR_LEN)
#define IEEE80211_FRAME_LEN (IEEE80211_DATA_LEN + IEEE80211_HLEN)
struct iwl_frame {
union {
struct ieee80211_hdr frame;
struct iwl_tx_beacon_cmd beacon;
u8 raw[IEEE80211_FRAME_LEN];
u8 cmd[360];
} u;
struct list_head list;
};
#define SEQ_TO_QUEUE(x) ((x >> 8) & 0xbf)
#define QUEUE_TO_SEQ(x) ((x & 0xbf) << 8)
#define SEQ_TO_INDEX(x) (x & 0xff)
#define INDEX_TO_SEQ(x) (x & 0xff)
#define SEQ_HUGE_FRAME (0x4000)
#define SEQ_RX_FRAME __constant_cpu_to_le16(0x8000)
#define SEQ_TO_SN(seq) (((seq) & IEEE80211_SCTL_SEQ) >> 4)
#define SN_TO_SEQ(ssn) (((ssn) << 4) & IEEE80211_SCTL_SEQ)
#define MAX_SN ((IEEE80211_SCTL_SEQ) >> 4)
enum {
/* CMD_SIZE_NORMAL = 0, */
CMD_SIZE_HUGE = (1 << 0),
/* CMD_SYNC = 0, */
CMD_ASYNC = (1 << 1),
/* CMD_NO_SKB = 0, */
CMD_WANT_SKB = (1 << 2),
};
struct iwl_cmd;
struct iwl_priv;
struct iwl_cmd_meta {
struct iwl_cmd_meta *source;
union {
struct sk_buff *skb;
int (*callback)(struct iwl_priv *priv,
struct iwl_cmd *cmd, struct sk_buff *skb);
} __attribute__ ((packed)) u;
/* The CMD_SIZE_HUGE flag bit indicates that the command
* structure is stored at the end of the shared queue memory. */
u32 flags;
} __attribute__ ((packed));
struct iwl_cmd {
struct iwl_cmd_meta meta;
struct iwl_cmd_header hdr;
union {
struct iwl_addsta_cmd addsta;
struct iwl_led_cmd led;
u32 flags;
u8 val8;
u16 val16;
u32 val32;
struct iwl_bt_cmd bt;
struct iwl_rxon_time_cmd rxon_time;
struct iwl_powertable_cmd powertable;
struct iwl_qosparam_cmd qosparam;
struct iwl_tx_cmd tx;
struct iwl_tx_beacon_cmd tx_beacon;
struct iwl_rxon_assoc_cmd rxon_assoc;
u8 *indirect;
u8 payload[360];
} __attribute__ ((packed)) cmd;
} __attribute__ ((packed));
struct iwl_host_cmd {
u8 id;
u16 len;
struct iwl_cmd_meta meta;
const void *data;
};
#define TFD_MAX_PAYLOAD_SIZE (sizeof(struct iwl_cmd) - \
sizeof(struct iwl_cmd_meta))
/*
* RX related structures and functions
*/
#define RX_FREE_BUFFERS 64
#define RX_LOW_WATERMARK 8
#define SUP_RATE_11A_MAX_NUM_CHANNELS 8
#define SUP_RATE_11B_MAX_NUM_CHANNELS 4
#define SUP_RATE_11G_MAX_NUM_CHANNELS 12
/**
* struct iwl_rx_queue - Rx queue
* @processed: Internal index to last handled Rx packet
* @read: Shared index to newest available Rx buffer
* @write: Shared index to oldest written Rx packet
* @free_count: Number of pre-allocated buffers in rx_free
* @rx_free: list of free SKBs for use
* @rx_used: List of Rx buffers with no SKB
* @need_update: flag to indicate we need to update read/write index
*
* NOTE: rx_free and rx_used are used as a FIFO for iwl_rx_mem_buffers
*/
struct iwl_rx_queue {
__le32 *bd;
dma_addr_t dma_addr;
struct iwl_rx_mem_buffer pool[RX_QUEUE_SIZE + RX_FREE_BUFFERS];
struct iwl_rx_mem_buffer *queue[RX_QUEUE_SIZE];
u32 processed;
u32 read;
u32 write;
u32 free_count;
struct list_head rx_free;
struct list_head rx_used;
int need_update;
spinlock_t lock;
};
#define IWL_SUPPORTED_RATES_IE_LEN 8
#define SCAN_INTERVAL 100
#define MAX_A_CHANNELS 252
#define MIN_A_CHANNELS 7
#define MAX_B_CHANNELS 14
#define MIN_B_CHANNELS 1
#define STATUS_HCMD_ACTIVE 0 /* host command in progress */
#define STATUS_INT_ENABLED 1
#define STATUS_RF_KILL_HW 2
#define STATUS_RF_KILL_SW 3
#define STATUS_INIT 4
#define STATUS_ALIVE 5
#define STATUS_READY 6
#define STATUS_TEMPERATURE 7
#define STATUS_GEO_CONFIGURED 8
#define STATUS_EXIT_PENDING 9
#define STATUS_IN_SUSPEND 10
#define STATUS_STATISTICS 11
#define STATUS_SCANNING 12
#define STATUS_SCAN_ABORTING 13
#define STATUS_SCAN_HW 14
#define STATUS_POWER_PMI 15
#define STATUS_FW_ERROR 16
#define MAX_TID_COUNT 9
#define IWL_INVALID_RATE 0xFF
#define IWL_INVALID_VALUE -1
#if IWL == 4965
#ifdef CONFIG_IWLWIFI_HT
#ifdef CONFIG_IWLWIFI_HT_AGG
struct iwl_ht_agg {
u16 txq_id;
u16 frame_count;
u16 wait_for_ba;
u16 start_idx;
u32 bitmap0;
u32 bitmap1;
u32 rate_n_flags;
};
#endif /* CONFIG_IWLWIFI_HT_AGG */
#endif /* CONFIG_IWLWIFI_HT */
#endif
struct iwl_tid_data {
u16 seq_number;
#if IWL == 4965
#ifdef CONFIG_IWLWIFI_HT
#ifdef CONFIG_IWLWIFI_HT_AGG
struct iwl_ht_agg agg;
#endif /* CONFIG_IWLWIFI_HT_AGG */
#endif /* CONFIG_IWLWIFI_HT */
#endif
};
struct iwl_hw_key {
ieee80211_key_alg alg;
int keylen;
u8 key[32];
};
union iwl_ht_rate_supp {
u16 rates;
struct {
u8 siso_rate;
u8 mimo_rate;
};
};
#ifdef CONFIG_IWLWIFI_HT
#define CFG_HT_RX_AMPDU_FACTOR_DEF (0x3)
#define HT_IE_MAX_AMSDU_SIZE_4K (0)
#define CFG_HT_MPDU_DENSITY_2USEC (0x5)
#define CFG_HT_MPDU_DENSITY_DEF CFG_HT_MPDU_DENSITY_2USEC
struct sta_ht_info {
u8 is_ht;
u16 rx_mimo_ps_mode;
u16 tx_mimo_ps_mode;
u16 control_channel;
u8 max_amsdu_size;
u8 ampdu_factor;
u8 mpdu_density;
u8 operating_mode;
u8 supported_chan_width;
u8 extension_chan_offset;
u8 is_green_field;
u8 sgf;
u8 supp_rates[16];
u8 tx_chan_width;
u8 chan_width_cap;
};
#endif /*CONFIG_IWLWIFI_HT */
#ifdef CONFIG_IWLWIFI_QOS
union iwl_qos_capabity {
struct {
u8 edca_count:4; /* bit 0-3 */
u8 q_ack:1; /* bit 4 */
u8 queue_request:1; /* bit 5 */
u8 txop_request:1; /* bit 6 */
u8 reserved:1; /* bit 7 */
} q_AP;
struct {
u8 acvo_APSD:1; /* bit 0 */
u8 acvi_APSD:1; /* bit 1 */
u8 ac_bk_APSD:1; /* bit 2 */
u8 ac_be_APSD:1; /* bit 3 */
u8 q_ack:1; /* bit 4 */
u8 max_len:2; /* bit 5-6 */
u8 more_data_ack:1; /* bit 7 */
} q_STA;
u8 val;
};
/* QoS sturctures */
struct iwl_qos_info {
int qos_enable;
int qos_active;
union iwl_qos_capabity qos_cap;
struct iwl_qosparam_cmd def_qos_parm;
};
#endif /*CONFIG_IWLWIFI_QOS */
#define STA_PS_STATUS_WAKE 0
#define STA_PS_STATUS_SLEEP 1
struct iwl_station_entry {
struct iwl_addsta_cmd sta;
struct iwl_tid_data tid[MAX_TID_COUNT];
#if IWL == 3945
union {
struct {
u8 rate;
u8 flags;
} s;
u16 rate_n_flags;
} current_rate;
#endif
u8 used;
u8 ps_status;
struct iwl_hw_key keyinfo;
};
/* one for each uCode image (inst/data, boot/init/runtime) */
struct fw_image_desc {
void *v_addr; /* access by driver */
dma_addr_t p_addr; /* access by card's busmaster DMA */
u32 len; /* bytes */
};
/* uCode file layout */
struct iwl_ucode {
__le32 ver; /* major/minor/subminor */
__le32 inst_size; /* bytes of runtime instructions */
__le32 data_size; /* bytes of runtime data */
__le32 init_size; /* bytes of initialization instructions */
__le32 init_data_size; /* bytes of initialization data */
__le32 boot_size; /* bytes of bootstrap instructions */
u8 data[0]; /* data in same order as "size" elements */
};
#define IWL_IBSS_MAC_HASH_SIZE 32
struct iwl_ibss_seq {
u8 mac[ETH_ALEN];
u16 seq_num;
u16 frag_num;
unsigned long packet_time;
struct list_head list;
};
struct iwl_driver_hw_info {
u16 max_txq_num;
u16 ac_queue_count;
u32 rx_buffer_size;
u16 tx_cmd_len;
u16 max_rxq_size;
u16 max_rxq_log;
u32 cck_flag;
u8 max_stations;
u8 bcast_sta_id;
void *shared_virt;
dma_addr_t shared_phys;
};
#define STA_FLG_RTS_MIMO_PROT_MSK __constant_cpu_to_le32(1 << 17)
#define STA_FLG_AGG_MPDU_8US_MSK __constant_cpu_to_le32(1 << 18)
#define STA_FLG_MAX_AGG_SIZE_POS (19)
#define STA_FLG_MAX_AGG_SIZE_MSK __constant_cpu_to_le32(3 << 19)
#define STA_FLG_FAT_EN_MSK __constant_cpu_to_le32(1 << 21)
#define STA_FLG_MIMO_DIS_MSK __constant_cpu_to_le32(1 << 22)
#define STA_FLG_AGG_MPDU_DENSITY_POS (23)
#define STA_FLG_AGG_MPDU_DENSITY_MSK __constant_cpu_to_le32(7 << 23)
#define HT_SHORT_GI_20MHZ_ONLY (1 << 0)
#define HT_SHORT_GI_40MHZ_ONLY (1 << 1)
#include "iwl-priv.h"
/* Requires full declaration of iwl_priv before including */
#include "iwl-io.h"
#define IWL_RX_HDR(x) ((struct iwl_rx_frame_hdr *)(\
x->u.rx_frame.stats.payload + \
x->u.rx_frame.stats.phy_count))
#define IWL_RX_END(x) ((struct iwl_rx_frame_end *)(\
IWL_RX_HDR(x)->payload + \
le16_to_cpu(IWL_RX_HDR(x)->len)))
#define IWL_RX_STATS(x) (&x->u.rx_frame.stats)
#define IWL_RX_DATA(x) (IWL_RX_HDR(x)->payload)
/******************************************************************************
*
* Functions implemented in iwl-base.c which are forward declared here
* for use by iwl-*.c
*
*****************************************************************************/
struct iwl_addsta_cmd;
extern int iwl_send_add_station(struct iwl_priv *priv,
struct iwl_addsta_cmd *sta, u8 flags);
extern const char *iwl_get_tx_fail_reason(u32 status);
extern u8 iwl_add_station(struct iwl_priv *priv, const u8 *bssid,
int is_ap, u8 flags);
extern int iwl_is_network_packet(struct iwl_priv *priv,
struct ieee80211_hdr *header);
extern int iwl_power_init_handle(struct iwl_priv *priv);
extern int iwl_eeprom_init(struct iwl_priv *priv);
#ifdef CONFIG_IWLWIFI_DEBUG
extern void iwl_report_frame(struct iwl_priv *priv,
struct iwl_rx_packet *pkt,
struct ieee80211_hdr *header, int group100);
#else
static inline void iwl_report_frame(struct iwl_priv *priv,
struct iwl_rx_packet *pkt,
struct ieee80211_hdr *header,
int group100) {}
#endif
extern int iwl_tx_queue_update_write_ptr(struct iwl_priv *priv,
struct iwl_tx_queue *txq);
extern void iwl_handle_data_packet_monitor(struct iwl_priv *priv,
struct iwl_rx_mem_buffer *rxb,
void *data, short len,
struct ieee80211_rx_status *stats,
u16 phy_flags);
extern int is_duplicate_packet(struct iwl_priv *priv, struct ieee80211_hdr
*header);
extern void iwl_rx_queue_free(struct iwl_priv *priv, struct iwl_rx_queue *rxq);
extern int iwl_rx_queue_alloc(struct iwl_priv *priv);
extern void iwl_rx_queue_reset(struct iwl_priv *priv,
struct iwl_rx_queue *rxq);
extern int iwl_calc_db_from_ratio(int sig_ratio);
extern int iwl_calc_sig_qual(int rssi_dbm, int noise_dbm);
extern int iwl_tx_queue_init(struct iwl_priv *priv,
struct iwl_tx_queue *txq, int count, u32 id);
extern int iwl_rx_queue_restock(struct iwl_priv *priv);
extern void iwl_rx_replenish(void *data);
extern void iwl_tx_queue_free(struct iwl_priv *priv, struct iwl_tx_queue *txq);
extern int iwl_send_cmd_pdu(struct iwl_priv *priv, u8 id, u16 len,
const void *data);
extern int __must_check iwl_send_cmd_async(struct iwl_priv *priv,
struct iwl_host_cmd *cmd);
extern int __must_check iwl_send_cmd_sync(struct iwl_priv *priv,
struct iwl_host_cmd *cmd);
extern int __must_check iwl_send_cmd(struct iwl_priv *priv,
struct iwl_host_cmd *cmd);
extern unsigned int iwl_fill_beacon_frame(struct iwl_priv *priv,
struct ieee80211_hdr *hdr,
const u8 *dest, int left);
extern int iwl_rx_queue_update_write_ptr(struct iwl_priv *priv,
struct iwl_rx_queue *q);
extern int iwl_send_statistics_request(struct iwl_priv *priv);
extern void iwl_set_decrypted_flag(struct iwl_priv *priv, struct sk_buff *skb,
u32 decrypt_res,
struct ieee80211_rx_status *stats);
extern __le16 *ieee80211_get_qos_ctrl(struct ieee80211_hdr *hdr);
extern const u8 BROADCAST_ADDR[ETH_ALEN];
/*
* Currently used by iwl-3945-rs... look at restructuring so that it doesn't
* call this... todo... fix that.
*/
extern u8 iwl_sync_station(struct iwl_priv *priv, int sta_id,
u16 tx_rate, u8 flags);
static inline int iwl_is_associated(struct iwl_priv *priv)
{
return (priv->active_rxon.filter_flags & RXON_FILTER_ASSOC_MSK) ? 1 : 0;
}
/******************************************************************************
*
* Functions implemented in iwl-[34]*.c which are forward declared here
* for use by iwl-base.c
*
* NOTE: The implementation of these functions are hardware specific
* which is why they are in the hardware specific files (vs. iwl-base.c)
*
* Naming convention --
* iwl_ <-- Its part of iwlwifi (should be changed to iwl_)
* iwl_hw_ <-- Hardware specific (implemented in iwl-XXXX.c by all HW)
* iwlXXXX_ <-- Hardware specific (implemented in iwl-XXXX.c for XXXX)
* iwl_bg_ <-- Called from work queue context
* iwl_mac_ <-- mac80211 callback
*
****************************************************************************/
extern void iwl_hw_rx_handler_setup(struct iwl_priv *priv);
extern void iwl_hw_setup_deferred_work(struct iwl_priv *priv);
extern void iwl_hw_cancel_deferred_work(struct iwl_priv *priv);
extern int iwl_hw_rxq_stop(struct iwl_priv *priv);
extern int iwl_hw_set_hw_setting(struct iwl_priv *priv);
extern int iwl_hw_nic_init(struct iwl_priv *priv);
extern void iwl_hw_card_show_info(struct iwl_priv *priv);
extern int iwl_hw_nic_stop_master(struct iwl_priv *priv);
extern void iwl_hw_txq_ctx_free(struct iwl_priv *priv);
extern void iwl_hw_txq_ctx_stop(struct iwl_priv *priv);
extern int iwl_hw_nic_reset(struct iwl_priv *priv);
extern int iwl_hw_txq_attach_buf_to_tfd(struct iwl_priv *priv, void *tfd,
dma_addr_t addr, u16 len);
extern int iwl_hw_txq_free_tfd(struct iwl_priv *priv, struct iwl_tx_queue *txq);
extern int iwl_hw_get_temperature(struct iwl_priv *priv);
extern int iwl_hw_tx_queue_init(struct iwl_priv *priv,
struct iwl_tx_queue *txq);
extern unsigned int iwl_hw_get_beacon_cmd(struct iwl_priv *priv,
struct iwl_frame *frame, u8 rate);
extern int iwl_hw_get_rx_read(struct iwl_priv *priv);
extern void iwl_hw_build_tx_cmd_rate(struct iwl_priv *priv,
struct iwl_cmd *cmd,
struct ieee80211_tx_control *ctrl,
struct ieee80211_hdr *hdr,
int sta_id, int tx_id);
extern int iwl_hw_reg_send_txpower(struct iwl_priv *priv);
extern int iwl_hw_reg_set_txpower(struct iwl_priv *priv, s8 power);
extern void iwl_hw_rx_statistics(struct iwl_priv *priv,
struct iwl_rx_mem_buffer *rxb);
extern void iwl_disable_events(struct iwl_priv *priv);
extern int iwl4965_get_temperature(const struct iwl_priv *priv);
/**
* iwl_hw_find_station - Find station id for a given BSSID
* @bssid: MAC address of station ID to find
*
* NOTE: This should not be hardware specific but the code has
* not yet been merged into a single common layer for managing the
* station tables.
*/
extern u8 iwl_hw_find_station(struct iwl_priv *priv, const u8 *bssid);
extern int iwl_hw_channel_switch(struct iwl_priv *priv, u16 channel);
extern int iwl_tx_queue_reclaim(struct iwl_priv *priv, int txq_id, int index);
#endif
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment