Commit c82be9d2 authored by Linus Torvalds's avatar Linus Torvalds

Merge tag 'pm-turbostat-4.11-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm

Pull turbostat utility updates from Rafael Wysocki:
 "Power management turbostat utility updates.

  These update turbostat significantly and in particular:

   - default output is now verbose, --debug is no longer required to get
     all counters. As a result, some options have been added to specify
     exactly what output is wanted.

   - added --quiet to skip system configuration output

   - added --list, --show and --hide parameters

   - added --cpu parameter

   - enhanced Baytrail SoC support

   - added Gemini Lake SoC support

   - added sysfs C-state columns

  Also the symbol definitions in arch/x86/include/asm/intel-family.h and
  arch/x86/include/asm/msr-index.h are updated and the intel_idle and
  intel_pstate drivers are modified to use the updated symbols.

  Credits to Len Brown for all of these changes"

* tag 'pm-turbostat-4.11-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (44 commits)
  tools/power turbostat: version 17.02.24
  tools/power turbostat: bugfix: --add u32 was printed as u64
  tools/power turbostat: show error on exec
  tools/power turbostat: dump p-state software config
  tools/power turbostat: show package number, even without --debug
  tools/power turbostat: support "--hide C1" etc.
  tools/power turbostat: move --Package and --processor into the --cpu option
  tools/power turbostat: turbostat.8 update
  tools/power turbostat: update --list feature
  tools/power turbostat: use wide columns to display large numbers
  tools/power turbostat: Add --list option to show available header names
  tools/power turbostat: fix zero IRQ count shown in one-shot command mode
  tools/power turbostat: add --cpu parameter
  tools/power turbostat: print sysfs C-state stats
  tools/power turbostat: extend --add option to accept /sys path
  tools/power turbostat: skip unused counters on BDX
  tools/power turbostat: fix decoding for GLM, DNV, SKX turbo-ratio limits
  tools/power turbostat: skip unused counters on SKX
  tools/power turbostat: Denverton: use HW CC1 counter, skip C3, C7
  tools/power turbostat: initial Gemini Lake SOC support
  ...
parents 3f80dd67 6bff9c60
...@@ -59,6 +59,7 @@ ...@@ -59,6 +59,7 @@
#define INTEL_FAM6_ATOM_MERRIFIELD 0x4A /* Tangier */ #define INTEL_FAM6_ATOM_MERRIFIELD 0x4A /* Tangier */
#define INTEL_FAM6_ATOM_MOOREFIELD 0x5A /* Anniedale */ #define INTEL_FAM6_ATOM_MOOREFIELD 0x5A /* Anniedale */
#define INTEL_FAM6_ATOM_GOLDMONT 0x5C #define INTEL_FAM6_ATOM_GOLDMONT 0x5C
#define INTEL_FAM6_ATOM_GEMINI_LAKE 0x7A
#define INTEL_FAM6_ATOM_DENVERTON 0x5F /* Goldmont Microserver */ #define INTEL_FAM6_ATOM_DENVERTON 0x5F /* Goldmont Microserver */
/* Xeon Phi */ /* Xeon Phi */
......
...@@ -46,7 +46,7 @@ ...@@ -46,7 +46,7 @@
#define MSR_FSB_FREQ 0x000000cd #define MSR_FSB_FREQ 0x000000cd
#define MSR_PLATFORM_INFO 0x000000ce #define MSR_PLATFORM_INFO 0x000000ce
#define MSR_NHM_SNB_PKG_CST_CFG_CTL 0x000000e2 #define MSR_PKG_CST_CONFIG_CONTROL 0x000000e2
#define NHM_C3_AUTO_DEMOTE (1UL << 25) #define NHM_C3_AUTO_DEMOTE (1UL << 25)
#define NHM_C1_AUTO_DEMOTE (1UL << 26) #define NHM_C1_AUTO_DEMOTE (1UL << 26)
#define ATM_LNC_C6_AUTO_DEMOTE (1UL << 25) #define ATM_LNC_C6_AUTO_DEMOTE (1UL << 25)
...@@ -147,6 +147,7 @@ ...@@ -147,6 +147,7 @@
/* C-state Residency Counters */ /* C-state Residency Counters */
#define MSR_PKG_C3_RESIDENCY 0x000003f8 #define MSR_PKG_C3_RESIDENCY 0x000003f8
#define MSR_PKG_C6_RESIDENCY 0x000003f9 #define MSR_PKG_C6_RESIDENCY 0x000003f9
#define MSR_ATOM_PKG_C6_RESIDENCY 0x000003fa
#define MSR_PKG_C7_RESIDENCY 0x000003fa #define MSR_PKG_C7_RESIDENCY 0x000003fa
#define MSR_CORE_C3_RESIDENCY 0x000003fc #define MSR_CORE_C3_RESIDENCY 0x000003fc
#define MSR_CORE_C6_RESIDENCY 0x000003fd #define MSR_CORE_C6_RESIDENCY 0x000003fd
...@@ -203,10 +204,17 @@ ...@@ -203,10 +204,17 @@
#define MSR_PKG_BOTH_CORE_GFXE_C0_RES 0x0000065B #define MSR_PKG_BOTH_CORE_GFXE_C0_RES 0x0000065B
#define MSR_CORE_C1_RES 0x00000660 #define MSR_CORE_C1_RES 0x00000660
#define MSR_MODULE_C6_RES_MS 0x00000664
#define MSR_CC6_DEMOTION_POLICY_CONFIG 0x00000668 #define MSR_CC6_DEMOTION_POLICY_CONFIG 0x00000668
#define MSR_MC6_DEMOTION_POLICY_CONFIG 0x00000669 #define MSR_MC6_DEMOTION_POLICY_CONFIG 0x00000669
#define MSR_ATOM_CORE_RATIOS 0x0000066a
#define MSR_ATOM_CORE_VIDS 0x0000066b
#define MSR_ATOM_CORE_TURBO_RATIOS 0x0000066c
#define MSR_ATOM_CORE_TURBO_VIDS 0x0000066d
#define MSR_CORE_PERF_LIMIT_REASONS 0x00000690 #define MSR_CORE_PERF_LIMIT_REASONS 0x00000690
#define MSR_GFX_PERF_LIMIT_REASONS 0x000006B0 #define MSR_GFX_PERF_LIMIT_REASONS 0x000006B0
#define MSR_RING_PERF_LIMIT_REASONS 0x000006B1 #define MSR_RING_PERF_LIMIT_REASONS 0x000006B1
...@@ -459,6 +467,7 @@ ...@@ -459,6 +467,7 @@
#define MSR_IA32_TEMPERATURE_TARGET 0x000001a2 #define MSR_IA32_TEMPERATURE_TARGET 0x000001a2
#define MSR_MISC_FEATURE_CONTROL 0x000001a4
#define MSR_MISC_PWR_MGMT 0x000001aa #define MSR_MISC_PWR_MGMT 0x000001aa
#define MSR_IA32_ENERGY_PERF_BIAS 0x000001b0 #define MSR_IA32_ENERGY_PERF_BIAS 0x000001b0
......
...@@ -39,11 +39,6 @@ ...@@ -39,11 +39,6 @@
#define INTEL_CPUFREQ_TRANSITION_LATENCY 20000 #define INTEL_CPUFREQ_TRANSITION_LATENCY 20000
#define ATOM_RATIOS 0x66a
#define ATOM_VIDS 0x66b
#define ATOM_TURBO_RATIOS 0x66c
#define ATOM_TURBO_VIDS 0x66d
#ifdef CONFIG_ACPI #ifdef CONFIG_ACPI
#include <acpi/processor.h> #include <acpi/processor.h>
#include <acpi/cppc_acpi.h> #include <acpi/cppc_acpi.h>
...@@ -1355,7 +1350,7 @@ static int atom_get_min_pstate(void) ...@@ -1355,7 +1350,7 @@ static int atom_get_min_pstate(void)
{ {
u64 value; u64 value;
rdmsrl(ATOM_RATIOS, value); rdmsrl(MSR_ATOM_CORE_RATIOS, value);
return (value >> 8) & 0x7F; return (value >> 8) & 0x7F;
} }
...@@ -1363,7 +1358,7 @@ static int atom_get_max_pstate(void) ...@@ -1363,7 +1358,7 @@ static int atom_get_max_pstate(void)
{ {
u64 value; u64 value;
rdmsrl(ATOM_RATIOS, value); rdmsrl(MSR_ATOM_CORE_RATIOS, value);
return (value >> 16) & 0x7F; return (value >> 16) & 0x7F;
} }
...@@ -1371,7 +1366,7 @@ static int atom_get_turbo_pstate(void) ...@@ -1371,7 +1366,7 @@ static int atom_get_turbo_pstate(void)
{ {
u64 value; u64 value;
rdmsrl(ATOM_TURBO_RATIOS, value); rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
return value & 0x7F; return value & 0x7F;
} }
...@@ -1433,7 +1428,7 @@ static void atom_get_vid(struct cpudata *cpudata) ...@@ -1433,7 +1428,7 @@ static void atom_get_vid(struct cpudata *cpudata)
{ {
u64 value; u64 value;
rdmsrl(ATOM_VIDS, value); rdmsrl(MSR_ATOM_CORE_VIDS, value);
cpudata->vid.min = int_tofp((value >> 8) & 0x7f); cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
cpudata->vid.max = int_tofp((value >> 16) & 0x7f); cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
cpudata->vid.ratio = div_fp( cpudata->vid.ratio = div_fp(
...@@ -1441,7 +1436,7 @@ static void atom_get_vid(struct cpudata *cpudata) ...@@ -1441,7 +1436,7 @@ static void atom_get_vid(struct cpudata *cpudata)
int_tofp(cpudata->pstate.max_pstate - int_tofp(cpudata->pstate.max_pstate -
cpudata->pstate.min_pstate)); cpudata->pstate.min_pstate));
rdmsrl(ATOM_TURBO_VIDS, value); rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
cpudata->vid.turbo = value & 0x7f; cpudata->vid.turbo = value & 0x7f;
} }
......
...@@ -961,9 +961,9 @@ static void auto_demotion_disable(void) ...@@ -961,9 +961,9 @@ static void auto_demotion_disable(void)
{ {
unsigned long long msr_bits; unsigned long long msr_bits;
rdmsrl(MSR_NHM_SNB_PKG_CST_CFG_CTL, msr_bits); rdmsrl(MSR_PKG_CST_CONFIG_CONTROL, msr_bits);
msr_bits &= ~(icpu->auto_demotion_disable_flags); msr_bits &= ~(icpu->auto_demotion_disable_flags);
wrmsrl(MSR_NHM_SNB_PKG_CST_CFG_CTL, msr_bits); wrmsrl(MSR_PKG_CST_CONFIG_CONTROL, msr_bits);
} }
static void c1e_promotion_disable(void) static void c1e_promotion_disable(void)
{ {
...@@ -1273,7 +1273,7 @@ static void sklh_idle_state_table_update(void) ...@@ -1273,7 +1273,7 @@ static void sklh_idle_state_table_update(void)
if ((mwait_substates & (0xF << 28)) == 0) if ((mwait_substates & (0xF << 28)) == 0)
return; return;
rdmsrl(MSR_NHM_SNB_PKG_CST_CFG_CTL, msr); rdmsrl(MSR_PKG_CST_CONFIG_CONTROL, msr);
/* PC10 is not enabled in PKG C-state limit */ /* PC10 is not enabled in PKG C-state limit */
if ((msr & 0xF) != 8) if ((msr & 0xF) != 8)
......
...@@ -16,9 +16,9 @@ idle power-state statistics, temperature and power on X86 processors. ...@@ -16,9 +16,9 @@ idle power-state statistics, temperature and power on X86 processors.
There are two ways to invoke turbostat. There are two ways to invoke turbostat.
The first method is to supply a The first method is to supply a
\fBcommand\fP, which is forked and statistics are printed \fBcommand\fP, which is forked and statistics are printed
upon its completion. in one-shot upon its completion.
The second method is to omit the command, The second method is to omit the command,
and turbostat displays statistics every 5 seconds. and turbostat displays statistics every 5 seconds interval.
The 5-second interval can be changed using the --interval option. The 5-second interval can be changed using the --interval option.
.PP .PP
Some information is not available on older processors. Some information is not available on older processors.
...@@ -28,9 +28,10 @@ name as necessary to disambiguate it from others is necessary. Note that option ...@@ -28,9 +28,10 @@ name as necessary to disambiguate it from others is necessary. Note that option
.PP .PP
\fB--add attributes\fP add column with counter having specified 'attributes'. The 'location' attribute is required, all others are optional. \fB--add attributes\fP add column with counter having specified 'attributes'. The 'location' attribute is required, all others are optional.
.nf .nf
location: {\fBmsrDDD\fP | \fBmsr0xXXX\fP} location: {\fBmsrDDD\fP | \fBmsr0xXXX\fP | \fB/sys/path...\fP}
msrDDD is a decimal offset, eg. msr16 msrDDD is a decimal offset, eg. msr16
msr0xXXX is a hex offset, eg. msr0x10 msr0xXXX is a hex offset, eg. msr0x10
/sys/path... is an absolute path to a sysfs attribute
scope: {\fBcpu\fP | \fBcore\fP | \fBpackage\fP} scope: {\fBcpu\fP | \fBcore\fP | \fBpackage\fP}
sample and print the counter for every cpu, core, or package. sample and print the counter for every cpu, core, or package.
...@@ -45,12 +46,21 @@ name as necessary to disambiguate it from others is necessary. Note that option ...@@ -45,12 +46,21 @@ name as necessary to disambiguate it from others is necessary. Note that option
'delta' shows the difference in values during the measurement interval. 'delta' shows the difference in values during the measurement interval.
'percent' shows the delta as a percentage of the cycles elapsed. 'percent' shows the delta as a percentage of the cycles elapsed.
default: delta default: delta
name: "name_string"
Any string that does not match a key-word above is used
as the column header.
.fi .fi
.PP .PP
\fB--cpu cpu-set\fP limit output to system summary plus the specified cpu-set. If cpu-set is the string "core", then the system summary plus the first CPU in each core are printed -- eg. subsequent HT siblings are not printed. Or if cpu-set is the string "package", then the system summary plus the first CPU in each package is printed. Otherwise, the system summary plus the specified set of CPUs are printed. The cpu-set is ordered from low to high, comma delimited with ".." and "-" permitted to denote a range. eg. 1,2,8,14..17,21-44
.PP
\fB--hide column\fP do not show the specified columns. May be invoked multiple times, or with a comma-separated list of column names. Use "--hide sysfs" to hide the sysfs statistics columns as a group.
.PP
\fB--show column\fP show only the specified columns. May be invoked multiple times, or with a comma-separated list of column names. Use "--show sysfs" to show the sysfs statistics columns as a group.
.PP
\fB--Dump\fP displays the raw counter values. \fB--Dump\fP displays the raw counter values.
.PP .PP
\fB--debug\fP displays additional system configuration information. Invoking this parameter \fB--quiet\fP Do not decode and print the system configuration header information.
more than once may also enable internal turbostat debug information.
.PP .PP
\fB--interval seconds\fP overrides the default 5.0 second measurement interval. \fB--interval seconds\fP overrides the default 5.0 second measurement interval.
.PP .PP
...@@ -61,9 +71,7 @@ The file is truncated if it already exists, and it is created if it does not exi ...@@ -61,9 +71,7 @@ The file is truncated if it already exists, and it is created if it does not exi
.PP .PP
\fB--Joules\fP displays energy in Joules, rather than dividing Joules by time to print power in Watts. \fB--Joules\fP displays energy in Joules, rather than dividing Joules by time to print power in Watts.
.PP .PP
\fB--Package\fP limits output to the system summary plus the 1st thread in each Package. \fB--list\fP display column header names available for use by --show and --hide, then exit.
.PP
\fB--processor\fP limits output to the system summary plus the 1st thread in each processor of each package. Ie. it skips hyper-threaded siblings.
.PP .PP
\fB--Summary\fP limits output to a 1-line System Summary for each interval. \fB--Summary\fP limits output to a 1-line System Summary for each interval.
.PP .PP
...@@ -74,24 +82,25 @@ The file is truncated if it already exists, and it is created if it does not exi ...@@ -74,24 +82,25 @@ The file is truncated if it already exists, and it is created if it does not exi
The \fBcommand\fP parameter forks \fBcommand\fP, and upon its exit, The \fBcommand\fP parameter forks \fBcommand\fP, and upon its exit,
displays the statistics gathered since it was forked. displays the statistics gathered since it was forked.
.PP .PP
.SH DEFAULT FIELD DESCRIPTIONS .SH ROW DESCRIPTIONS
The system configuration dump (if --quiet is not used) is followed by statistics. The first row of the statistics labels the content of each column (below). The second row of statistics is the system summary line. The system summary line has a '-' in the columns for the Package, Core, and CPU. The contents of the system summary line depends on the type of column. Columns that count items (eg. IRQ) show the sum across all CPUs in the system. Columns that show a percentage show the average across all CPUs in the system. Columns that dump raw MSR values simply show 0 in the summary. After the system summary row, each row describes a specific Package/Core/CPU. Note that if the --cpu parameter is used to limit which specific CPUs are displayed, turbostat will still collect statistics for all CPUs in the system and will still show the system summary for all CPUs in the system.
.SH COLUMN DESCRIPTIONS
.nf .nf
\fBCore\fP processor core number. Note that multiple CPUs per core indicate support for Intel(R) Hyper-Threading Technology (HT).
\fBCPU\fP Linux CPU (logical processor) number. Yes, it is okay that on many systems the CPUs are not listed in numerical order -- for efficiency reasons, turbostat runs in topology order, so HT siblings appear together. \fBCPU\fP Linux CPU (logical processor) number. Yes, it is okay that on many systems the CPUs are not listed in numerical order -- for efficiency reasons, turbostat runs in topology order, so HT siblings appear together.
\fBAVG_MHz\fP number of cycles executed divided by time elapsed. \fBPackage\fP processor package number -- not present on systems with a single processor package.
\fBBusy%\fP percent of the interval that the CPU retired instructions, aka. % of time in "C0" state. \fBAvg_MHz\fP number of cycles executed divided by time elapsed. Note that this includes idle-time when 0 instructions are executed.
\fBBzy_MHz\fP average clock rate while the CPU was busy (in "c0" state). \fBBusy%\fP percent of the measurement interval that the CPU executes instructions, aka. % of time in "C0" state.
\fBBzy_MHz\fP average clock rate while the CPU was not idle (ie. in "c0" state).
\fBTSC_MHz\fP average MHz that the TSC ran during the entire interval. \fBTSC_MHz\fP average MHz that the TSC ran during the entire interval.
.fi \fBIRQ\fP The number of interrupts serviced by that CPU during the measurement interval. The system total line is the sum of interrupts serviced across all CPUs. turbostat parses /proc/interrupts to generate this summary.
.PP \fBSMI\fP The number of System Management Interrupts serviced CPU during the measurement interval. While this counter is actually per-CPU, SMI are triggered on all processors, so the number should be the same for all CPUs.
.SH DEBUG FIELD DESCRIPTIONS \fBC1, C2, C3...\fP The number times Linux requested the C1, C2, C3 idle state during the measurement interval. The system summary line shows the sum for all CPUs. These are C-state names as exported in /sys/devices/system/cpu/cpu*/cpuidle/state*/name. While their names are generic, their attributes are processor specific. They the system description section of output shows what MWAIT sub-states they are mapped to on each system.
.nf \fBC1%, C2%, C3%\fP The residency percentage that Linux requested C1, C2, C3.... The system summary is the average of all CPUs in the system. Note that these are software, reflecting what was requested. The hardware counters reflect what was actually achieved.
\fBPackage\fP processor package number. \fBCPU%c1, CPU%c3, CPU%c6, CPU%c7\fP show the percentage residency in hardware core idle states. These numbers are from hardware residency counters.
\fBCore\fP processor core number.
Note that multiple CPUs per core indicate support for Intel(R) Hyper-Threading Technology (HT).
\fBCPU%c1, CPU%c3, CPU%c6, CPU%c7\fP show the percentage residency in hardware core idle states.
\fBCoreTmp\fP Degrees Celsius reported by the per-core Digital Thermal Sensor. \fBCoreTmp\fP Degrees Celsius reported by the per-core Digital Thermal Sensor.
\fBPkgTtmp\fP Degrees Celsius reported by the per-package Package Thermal Monitor. \fBPkgTtmp\fP Degrees Celsius reported by the per-package Package Thermal Monitor.
\fBPkg%pc2, Pkg%pc3, Pkg%pc6, Pkg%pc7\fP percentage residency in hardware package idle states. \fBPkg%pc2, Pkg%pc3, Pkg%pc6, Pkg%pc7\fP percentage residency in hardware package idle states. These numbers are from hardware residency counters.
\fBPkgWatt\fP Watts consumed by the whole package. \fBPkgWatt\fP Watts consumed by the whole package.
\fBCorWatt\fP Watts consumed by the core part of the package. \fBCorWatt\fP Watts consumed by the core part of the package.
\fBGFXWatt\fP Watts consumed by the Graphics part of the package -- available only on client processors. \fBGFXWatt\fP Watts consumed by the Graphics part of the package -- available only on client processors.
...@@ -99,51 +108,110 @@ Note that multiple CPUs per core indicate support for Intel(R) Hyper-Threading T ...@@ -99,51 +108,110 @@ Note that multiple CPUs per core indicate support for Intel(R) Hyper-Threading T
\fBPKG_%\fP percent of the interval that RAPL throttling was active on the Package. \fBPKG_%\fP percent of the interval that RAPL throttling was active on the Package.
\fBRAM_%\fP percent of the interval that RAPL throttling was active on DRAM. \fBRAM_%\fP percent of the interval that RAPL throttling was active on DRAM.
.fi .fi
.SH TOO MUCH INFORMATION EXAMPLE
By default, turbostat dumps all possible information -- a system configuration header, followed by columns for all counters.
This is ideal for remote debugging, use the "--out" option to save everything to a text file, and get that file to the expert helping you debug.
.PP .PP
.SH PERIODIC EXAMPLE When you are not interested in all that information, and there are several ways to see only what you want. First the "--quiet" option will skip the configuration information, and turbostat will show only the counter columns. Second, you can reduce the columns with the "--hide" and "--show" options. If you use the "--show" option, then turbostat will show only the columns you list. If you use the "--hide" option, turbostat will show all columns, except the ones you list.
Without any parameters, turbostat displays statistics ever 5 seconds. .PP
Periodic output goes to stdout, by default, unless --out is used to specify an output file. To find out what columns are available for --show and --hide, the "--list" option is available. For convenience, the special strings "sysfs" can be used to refer to all of the sysfs C-state counters at once:
The 5-second interval can be changed with th "-i sec" option. .nf
Or a command may be specified as in "FORK EXAMPLE" below. sudo ./turbostat --show sysfs --quiet sleep 10
10.003837 sec
C1 C1E C3 C6 C7s C1% C1E% C3% C6% C7s%
4 21 2 2 459 0.14 0.82 0.00 0.00 98.93
1 17 2 2 130 0.00 0.02 0.00 0.00 99.80
0 0 0 0 31 0.00 0.00 0.00 0.00 99.95
2 1 0 0 52 1.14 6.49 0.00 0.00 92.21
1 2 0 0 52 0.00 0.08 0.00 0.00 99.86
0 0 0 0 71 0.00 0.00 0.00 0.00 99.89
0 0 0 0 25 0.00 0.00 0.00 0.00 99.96
0 0 0 0 74 0.00 0.00 0.00 0.00 99.94
0 1 0 0 24 0.00 0.00 0.00 0.00 99.84
.fi
.PP
.SH ONE SHOT COMMAND EXAMPLE
If turbostat is invoked with a command, it will fork that command
and output the statistics gathered after the command exits.
In this case, turbostat output goes to stderr, by default.
Output can instead be saved to a file using the --out option.
In this example, the "sleep 10" command is forked, and turbostat waits for it to complete before saving all statistics into "ts.out". Note that "sleep 10" is not part of turbostat, but is simply an example of a command that turbostat can fork. The "ts.out" file is what you want to edit in a very wide window, paste into a spreadsheet, or attach to a bugzilla entry.
.nf .nf
[root@hsw]# ./turbostat [root@hsw]# ./turbostat -o ts.out sleep 10
CPU Avg_MHz Busy% Bzy_MHz TSC_MHz [root@hsw]#
- 488 12.51 3898 3498 .fi
0 0 0.01 3885 3498
4 3897 99.99 3898 3498
1 0 0.00 3861 3498
5 0 0.00 3882 3498
2 1 0.02 3894 3498
6 2 0.06 3898 3498
3 0 0.00 3849 3498
7 0 0.00 3877 3498
.SH PERIODIC INTERVAL EXAMPLE
Without a command to fork, turbostat displays statistics ever 5 seconds.
Periodic output goes to stdout, by default, unless --out is used to specify an output file.
The 5-second interval can be changed with the "-i sec" option.
.nf
sudo ./turbostat --quiet --hide sysfs,IRQ,SMI,CoreTmp,PkgTmp,GFX%rc6,GFXMHz,PkgWatt,CorWatt,GFXWatt
Core CPU Avg_MHz Busy% Bzy_MHz TSC_MHz CPU%c1 CPU%c3 CPU%c6 CPU%c7
- - 488 12.52 3900 3498 12.50 0.00 0.00 74.98
0 0 5 0.13 3900 3498 99.87 0.00 0.00 0.00
0 4 3897 99.99 3900 3498 0.01
1 1 0 0.00 3856 3498 0.01 0.00 0.00 99.98
1 5 0 0.00 3861 3498 0.01
2 2 1 0.02 3889 3498 0.03 0.00 0.00 99.95
2 6 0 0.00 3863 3498 0.05
3 3 0 0.01 3869 3498 0.02 0.00 0.00 99.97
3 7 0 0.00 3878 3498 0.03
Core CPU Avg_MHz Busy% Bzy_MHz TSC_MHz CPU%c1 CPU%c3 CPU%c6 CPU%c7
- - 491 12.59 3900 3498 12.42 0.00 0.00 74.99
0 0 27 0.69 3900 3498 99.31 0.00 0.00 0.00
0 4 3898 99.99 3900 3498 0.01
1 1 0 0.00 3883 3498 0.01 0.00 0.00 99.99
1 5 0 0.00 3898 3498 0.01
2 2 0 0.01 3889 3498 0.02 0.00 0.00 99.98
2 6 0 0.00 3889 3498 0.02
3 3 0 0.00 3856 3498 0.01 0.00 0.00 99.99
3 7 0 0.00 3897 3498 0.01
.fi .fi
.SH DEBUG EXAMPLE This example also shows the use of the --hide option to skip columns that are not wanted.
The "--debug" option prints additional system information before measurements: Note that cpu4 in this example is 99.99% busy, while the other CPUs are all under 1% busy.
Notice that cpu4's HT sibling is cpu0, which is under 1% busy, but can get into CPU%c1 only,
because its cpu4's activity on shared hardware keeps it from entering a deeper C-state.
The first row of statistics is a summary for the entire system. .SH SYSTEM CONFIGURATION INFORMATION EXAMPLE
For residency % columns, the summary is a weighted average.
For Temperature columns, the summary is the column maximum. By default, turbostat always dumps system configuration information
For Watts columns, the summary is a system total. before taking measurements. In the example above, "--quiet" is used
Subsequent rows show per-CPU statistics. to suppress that output. Here is an example of the configuration information:
.nf .nf
turbostat version 4.1 10-Feb, 2015 - Len Brown <lenb@kernel.org> turbostat version 2017.02.15 - Len Brown <lenb@kernel.org>
CPUID(0): GenuineIntel 13 CPUID levels; family:model:stepping 0x6:3c:3 (6:60:3) CPUID(0): GenuineIntel 13 CPUID levels; family:model:stepping 0x6:3c:3 (6:60:3)
CPUID(6): APERF, DTS, PTM, EPB CPUID(1): SSE3 MONITOR - EIST TM2 TSC MSR ACPI-TM TM
CPUID(6): APERF, TURBO, DTS, PTM, No-HWP, No-HWPnotify, No-HWPwindow, No-HWPepp, No-HWPpkg, EPB
cpu4: MSR_IA32_MISC_ENABLE: 0x00850089 (TCC EIST No-MWAIT PREFETCH TURBO)
CPUID(7): No-SGX
cpu4: MSR_MISC_PWR_MGMT: 0x00400000 (ENable-EIST_Coordination DISable-EPB DISable-OOB)
RAPL: 3121 sec. Joule Counter Range, at 84 Watts RAPL: 3121 sec. Joule Counter Range, at 84 Watts
cpu0: MSR_NHM_PLATFORM_INFO: 0x80838f3012300 cpu4: MSR_PLATFORM_INFO: 0x80838f3012300
8 * 100 = 800 MHz max efficiency 8 * 100.0 = 800.0 MHz max efficiency frequency
35 * 100 = 3500 MHz TSC frequency 35 * 100.0 = 3500.0 MHz base frequency
cpu0: MSR_IA32_POWER_CTL: 0x0004005d (C1E auto-promotion: DISabled) cpu4: MSR_IA32_POWER_CTL: 0x0004005d (C1E auto-promotion: DISabled)
cpu0: MSR_NHM_SNB_PKG_CST_CFG_CTL: 0x1e000400 (UNdemote-C3, UNdemote-C1, demote-C3, demote-C1, UNlocked: pkg-cstate-limit=0: pc0) cpu4: MSR_TURBO_RATIO_LIMIT: 0x25262727
cpu0: MSR_TURBO_RATIO_LIMIT: 0x25262727 37 * 100.0 = 3700.0 MHz max turbo 4 active cores
37 * 100 = 3700 MHz max turbo 4 active cores 38 * 100.0 = 3800.0 MHz max turbo 3 active cores
38 * 100 = 3800 MHz max turbo 3 active cores 39 * 100.0 = 3900.0 MHz max turbo 2 active cores
39 * 100 = 3900 MHz max turbo 2 active cores 39 * 100.0 = 3900.0 MHz max turbo 1 active cores
39 * 100 = 3900 MHz max turbo 1 active cores cpu4: MSR_CONFIG_TDP_NOMINAL: 0x00000023 (base_ratio=35)
cpu4: MSR_CONFIG_TDP_LEVEL_1: 0x00000000 ()
cpu4: MSR_CONFIG_TDP_LEVEL_2: 0x00000000 ()
cpu4: MSR_CONFIG_TDP_CONTROL: 0x80000000 ( lock=1)
cpu4: MSR_TURBO_ACTIVATION_RATIO: 0x00000000 (MAX_NON_TURBO_RATIO=0 lock=0)
cpu4: MSR_PKG_CST_CONFIG_CONTROL: 0x1e000400 (UNdemote-C3, UNdemote-C1, demote-C3, demote-C1, UNlocked: pkg-cstate-limit=0: pc0)
cpu4: POLL: CPUIDLE CORE POLL IDLE
cpu4: C1: MWAIT 0x00
cpu4: C1E: MWAIT 0x01
cpu4: C3: MWAIT 0x10
cpu4: C6: MWAIT 0x20
cpu4: C7s: MWAIT 0x32
cpu4: MSR_MISC_FEATURE_CONTROL: 0x00000000 (L2-Prefetch L2-Prefetch-pair L1-Prefetch L1-IP-Prefetch)
cpu0: MSR_IA32_ENERGY_PERF_BIAS: 0x00000006 (balanced) cpu0: MSR_IA32_ENERGY_PERF_BIAS: 0x00000006 (balanced)
cpu0: MSR_CORE_PERF_LIMIT_REASONS, 0x31200000 (Active: ) (Logged: Auto-HWP, Amps, MultiCoreTurbo, Transitions, ) cpu0: MSR_CORE_PERF_LIMIT_REASONS, 0x31200000 (Active: ) (Logged: Transitions, MultiCoreTurbo, Amps, Auto-HWP, )
cpu0: MSR_GFX_PERF_LIMIT_REASONS, 0x00000000 (Active: ) (Logged: ) cpu0: MSR_GFX_PERF_LIMIT_REASONS, 0x00000000 (Active: ) (Logged: )
cpu0: MSR_RING_PERF_LIMIT_REASONS, 0x0d000000 (Active: ) (Logged: Amps, PkgPwrL1, PkgPwrL2, ) cpu0: MSR_RING_PERF_LIMIT_REASONS, 0x0d000000 (Active: ) (Logged: Amps, PkgPwrL1, PkgPwrL2, )
cpu0: MSR_RAPL_POWER_UNIT: 0x000a0e03 (0.125000 Watts, 0.000061 Joules, 0.000977 sec.) cpu0: MSR_RAPL_POWER_UNIT: 0x000a0e03 (0.125000 Watts, 0.000061 Joules, 0.000977 sec.)
...@@ -158,23 +226,14 @@ cpu0: MSR_PP1_POLICY: 0 ...@@ -158,23 +226,14 @@ cpu0: MSR_PP1_POLICY: 0
cpu0: MSR_PP1_POWER_LIMIT: 0x00000000 (UNlocked) cpu0: MSR_PP1_POWER_LIMIT: 0x00000000 (UNlocked)
cpu0: GFX Limit: DISabled (0.000000 Watts, 0.000977 sec, clamp DISabled) cpu0: GFX Limit: DISabled (0.000000 Watts, 0.000977 sec, clamp DISabled)
cpu0: MSR_IA32_TEMPERATURE_TARGET: 0x00641400 (100 C) cpu0: MSR_IA32_TEMPERATURE_TARGET: 0x00641400 (100 C)
cpu0: MSR_IA32_PACKAGE_THERM_STATUS: 0x88340800 (48 C) cpu0: MSR_IA32_PACKAGE_THERM_STATUS: 0x884c0800 (24 C)
cpu0: MSR_IA32_THERM_STATUS: 0x88340000 (48 C +/- 1) cpu0: MSR_IA32_THERM_STATUS: 0x884c0000 (24 C +/- 1)
cpu1: MSR_IA32_THERM_STATUS: 0x88440000 (32 C +/- 1) cpu1: MSR_IA32_THERM_STATUS: 0x88510000 (19 C +/- 1)
cpu2: MSR_IA32_THERM_STATUS: 0x88450000 (31 C +/- 1) cpu2: MSR_IA32_THERM_STATUS: 0x884e0000 (22 C +/- 1)
cpu3: MSR_IA32_THERM_STATUS: 0x88490000 (27 C +/- 1) cpu3: MSR_IA32_THERM_STATUS: 0x88510000 (19 C +/- 1)
Core CPU Avg_MHz Busy% Bzy_MHz TSC_MHz SMI CPU%c1 CPU%c3 CPU%c6 CPU%c7 CoreTmp PkgTmp PkgWatt CorWatt GFXWatt cpu4: MSR_PKGC3_IRTL: 0x00008842 (valid, 67584 ns)
- - 493 12.64 3898 3498 0 12.64 0.00 0.00 74.72 47 47 21.62 13.74 0.00 cpu4: MSR_PKGC6_IRTL: 0x00008873 (valid, 117760 ns)
0 0 4 0.11 3894 3498 0 99.89 0.00 0.00 0.00 47 47 21.62 13.74 0.00 cpu4: MSR_PKGC7_IRTL: 0x00008891 (valid, 148480 ns)
0 4 3897 99.98 3898 3498 0 0.02
1 1 7 0.17 3887 3498 0 0.04 0.00 0.00 99.79 32
1 5 0 0.00 3885 3498 0 0.21
2 2 29 0.76 3895 3498 0 0.10 0.01 0.01 99.13 32
2 6 2 0.06 3896 3498 0 0.80
3 3 1 0.02 3832 3498 0 0.03 0.00 0.00 99.95 28
3 7 0 0.00 3879 3498 0 0.04
^C
.fi .fi
The \fBmax efficiency\fP frequency, a.k.a. Low Frequency Mode, is the frequency The \fBmax efficiency\fP frequency, a.k.a. Low Frequency Mode, is the frequency
available at the minimum package voltage. The \fBTSC frequency\fP is the base available at the minimum package voltage. The \fBTSC frequency\fP is the base
...@@ -184,42 +243,22 @@ should be sustainable on all CPUs indefinitely, given nominal power and cooling. ...@@ -184,42 +243,22 @@ should be sustainable on all CPUs indefinitely, given nominal power and cooling.
The remaining rows show what maximum turbo frequency is possible The remaining rows show what maximum turbo frequency is possible
depending on the number of idle cores. Note that not all information is depending on the number of idle cores. Note that not all information is
available on all processors. available on all processors.
.PP .SH ADD COUNTER EXAMPLE
The --debug option adds additional columns to the measurement ouput, including CPU idle power-state residency processor temperature sensor readinds. Here we limit turbostat to showing just the CPU number for cpu0 - cpu3.
See the field definitions above. We add a counter showing the 32-bit raw value of MSR 0x199 (MSR_IA32_PERF_CTL),
.SH FORK EXAMPLE labeling it with the column header, "PRF_CTRL", and display it only once,
If turbostat is invoked with a command, it will fork that command afte the conclusion of a 0.1 second sleep.
and output the statistics gathered after the command exits.
In this case, turbostat output goes to stderr, by default.
Output can instead be saved to a file using the --out option.
eg. Here a cycle soaker is run on 1 CPU (see %c0) for a few seconds
until ^C while the other CPUs are mostly idle:
.nf .nf
root@hsw: turbostat cat /dev/zero > /dev/null sudo ./turbostat --quiet --cpu 0-3 --show CPU --add msr0x199,u32,raw,PRF_CTRL sleep .1
^C 0.101604 sec
CPU Avg_MHz Busy% Bzy_MHz TSC_MHz CPU PRF_CTRL
- 482 12.51 3854 3498 - 0x00000000
0 0 0.01 1960 3498 0 0x00000c00
4 0 0.00 2128 3498 1 0x00000800
1 0 0.00 3003 3498 2 0x00000a00
5 3854 99.98 3855 3498 3 0x00000800
2 0 0.01 3504 3498
6 3 0.08 3884 3498
3 0 0.00 2553 3498
7 0 0.00 2126 3498
10.783983 sec
.fi .fi
Above the cycle soaker drives cpu5 up its 3.9 GHz turbo limit.
The first row shows the average MHz and Busy% across all the processors in the system.
Note that the Avg_MHz column reflects the total number of cycles executed
divided by the measurement interval. If the Busy% column is 100%,
then the processor was running at that speed the entire interval.
The Avg_MHz multiplied by the Busy% results in the Bzy_MHz --
which is the average frequency while the processor was executing --
not including any non-busy idle time.
.SH NOTES .SH NOTES
......
...@@ -49,17 +49,14 @@ FILE *outf; ...@@ -49,17 +49,14 @@ FILE *outf;
int *fd_percpu; int *fd_percpu;
struct timespec interval_ts = {5, 0}; struct timespec interval_ts = {5, 0};
unsigned int debug; unsigned int debug;
unsigned int quiet;
unsigned int sums_need_wide_columns;
unsigned int rapl_joules; unsigned int rapl_joules;
unsigned int summary_only; unsigned int summary_only;
unsigned int list_header_only;
unsigned int dump_only; unsigned int dump_only;
unsigned int do_nhm_cstates;
unsigned int do_snb_cstates; unsigned int do_snb_cstates;
unsigned int do_knl_cstates; unsigned int do_knl_cstates;
unsigned int do_pc2;
unsigned int do_pc3;
unsigned int do_pc6;
unsigned int do_pc7;
unsigned int do_c8_c9_c10;
unsigned int do_skl_residency; unsigned int do_skl_residency;
unsigned int do_slm_cstates; unsigned int do_slm_cstates;
unsigned int use_c1_residency_msr; unsigned int use_c1_residency_msr;
...@@ -71,25 +68,19 @@ unsigned int units = 1000000; /* MHz etc */ ...@@ -71,25 +68,19 @@ unsigned int units = 1000000; /* MHz etc */
unsigned int genuine_intel; unsigned int genuine_intel;
unsigned int has_invariant_tsc; unsigned int has_invariant_tsc;
unsigned int do_nhm_platform_info; unsigned int do_nhm_platform_info;
unsigned int no_MSR_MISC_PWR_MGMT;
unsigned int aperf_mperf_multiplier = 1; unsigned int aperf_mperf_multiplier = 1;
int do_irq = 1;
int do_smi;
double bclk; double bclk;
double base_hz; double base_hz;
unsigned int has_base_hz; unsigned int has_base_hz;
double tsc_tweak = 1.0; double tsc_tweak = 1.0;
unsigned int show_pkg;
unsigned int show_core;
unsigned int show_cpu;
unsigned int show_pkg_only; unsigned int show_pkg_only;
unsigned int show_core_only; unsigned int show_core_only;
char *output_buffer, *outp; char *output_buffer, *outp;
unsigned int do_rapl; unsigned int do_rapl;
unsigned int do_dts; unsigned int do_dts;
unsigned int do_ptm; unsigned int do_ptm;
unsigned int do_gfx_rc6_ms;
unsigned long long gfx_cur_rc6_ms; unsigned long long gfx_cur_rc6_ms;
unsigned int do_gfx_mhz;
unsigned int gfx_cur_mhz; unsigned int gfx_cur_mhz;
unsigned int tcc_activation_temp; unsigned int tcc_activation_temp;
unsigned int tcc_activation_temp_override; unsigned int tcc_activation_temp_override;
...@@ -109,6 +100,7 @@ unsigned int has_hwp_notify; /* IA32_HWP_INTERRUPT */ ...@@ -109,6 +100,7 @@ unsigned int has_hwp_notify; /* IA32_HWP_INTERRUPT */
unsigned int has_hwp_activity_window; /* IA32_HWP_REQUEST[bits 41:32] */ unsigned int has_hwp_activity_window; /* IA32_HWP_REQUEST[bits 41:32] */
unsigned int has_hwp_epp; /* IA32_HWP_REQUEST[bits 31:24] */ unsigned int has_hwp_epp; /* IA32_HWP_REQUEST[bits 31:24] */
unsigned int has_hwp_pkg; /* IA32_HWP_REQUEST_PKG */ unsigned int has_hwp_pkg; /* IA32_HWP_REQUEST_PKG */
unsigned int has_misc_feature_control;
#define RAPL_PKG (1 << 0) #define RAPL_PKG (1 << 0)
/* 0x610 MSR_PKG_POWER_LIMIT */ /* 0x610 MSR_PKG_POWER_LIMIT */
...@@ -148,34 +140,38 @@ unsigned int has_hwp_pkg; /* IA32_HWP_REQUEST_PKG */ ...@@ -148,34 +140,38 @@ unsigned int has_hwp_pkg; /* IA32_HWP_REQUEST_PKG */
* Usually truncated to 7 characters, but also handles 18 columns for raw 64-bit counters * Usually truncated to 7 characters, but also handles 18 columns for raw 64-bit counters
*/ */
#define NAME_BYTES 20 #define NAME_BYTES 20
#define PATH_BYTES 128
int backwards_count; int backwards_count;
char *progname; char *progname;
cpu_set_t *cpu_present_set, *cpu_affinity_set; #define CPU_SUBSET_MAXCPUS 1024 /* need to use before probe... */
size_t cpu_present_setsize, cpu_affinity_setsize; cpu_set_t *cpu_present_set, *cpu_affinity_set, *cpu_subset;
size_t cpu_present_setsize, cpu_affinity_setsize, cpu_subset_size;
#define MAX_ADDED_COUNTERS 16
struct thread_data { struct thread_data {
unsigned long long tsc; unsigned long long tsc;
unsigned long long aperf; unsigned long long aperf;
unsigned long long mperf; unsigned long long mperf;
unsigned long long c1; unsigned long long c1;
unsigned int irq_count; unsigned long long irq_count;
unsigned int smi_count; unsigned int smi_count;
unsigned int cpu_id; unsigned int cpu_id;
unsigned int flags; unsigned int flags;
#define CPU_IS_FIRST_THREAD_IN_CORE 0x2 #define CPU_IS_FIRST_THREAD_IN_CORE 0x2
#define CPU_IS_FIRST_CORE_IN_PACKAGE 0x4 #define CPU_IS_FIRST_CORE_IN_PACKAGE 0x4
unsigned long long counter[1]; unsigned long long counter[MAX_ADDED_COUNTERS];
} *thread_even, *thread_odd; } *thread_even, *thread_odd;
struct core_data { struct core_data {
unsigned long long c3; unsigned long long c3;
unsigned long long c6; unsigned long long c6;
unsigned long long c7; unsigned long long c7;
unsigned long long mc6_us; /* duplicate as per-core for now, even though per module */
unsigned int core_temp_c; unsigned int core_temp_c;
unsigned int core_id; unsigned int core_id;
unsigned long long counter[1]; unsigned long long counter[MAX_ADDED_COUNTERS];
} *core_even, *core_odd; } *core_even, *core_odd;
struct pkg_data { struct pkg_data {
...@@ -200,7 +196,7 @@ struct pkg_data { ...@@ -200,7 +196,7 @@ struct pkg_data {
unsigned int rapl_pkg_perf_status; /* MSR_PKG_PERF_STATUS */ unsigned int rapl_pkg_perf_status; /* MSR_PKG_PERF_STATUS */
unsigned int rapl_dram_perf_status; /* MSR_DRAM_PERF_STATUS */ unsigned int rapl_dram_perf_status; /* MSR_DRAM_PERF_STATUS */
unsigned int pkg_temp_c; unsigned int pkg_temp_c;
unsigned long long counter[1]; unsigned long long counter[MAX_ADDED_COUNTERS];
} *package_even, *package_odd; } *package_even, *package_odd;
#define ODD_COUNTERS thread_odd, core_odd, package_odd #define ODD_COUNTERS thread_odd, core_odd, package_odd
...@@ -215,22 +211,27 @@ struct pkg_data { ...@@ -215,22 +211,27 @@ struct pkg_data {
#define GET_PKG(pkg_base, pkg_no) (pkg_base + pkg_no) #define GET_PKG(pkg_base, pkg_no) (pkg_base + pkg_no)
enum counter_scope {SCOPE_CPU, SCOPE_CORE, SCOPE_PACKAGE}; enum counter_scope {SCOPE_CPU, SCOPE_CORE, SCOPE_PACKAGE};
enum counter_type {COUNTER_CYCLES, COUNTER_SECONDS}; enum counter_type {COUNTER_ITEMS, COUNTER_CYCLES, COUNTER_SECONDS, COUNTER_USEC};
enum counter_format {FORMAT_RAW, FORMAT_DELTA, FORMAT_PERCENT}; enum counter_format {FORMAT_RAW, FORMAT_DELTA, FORMAT_PERCENT};
struct msr_counter { struct msr_counter {
unsigned int msr_num; unsigned int msr_num;
char name[NAME_BYTES]; char name[NAME_BYTES];
char path[PATH_BYTES];
unsigned int width; unsigned int width;
enum counter_type type; enum counter_type type;
enum counter_format format; enum counter_format format;
struct msr_counter *next; struct msr_counter *next;
unsigned int flags;
#define FLAGS_HIDE (1 << 0)
#define FLAGS_SHOW (1 << 1)
#define SYSFS_PERCPU (1 << 1)
}; };
struct sys_counters { struct sys_counters {
unsigned int thread_counter_bytes; unsigned int added_thread_counters;
unsigned int core_counter_bytes; unsigned int added_core_counters;
unsigned int package_counter_bytes; unsigned int added_package_counters;
struct msr_counter *tp; struct msr_counter *tp;
struct msr_counter *cp; struct msr_counter *cp;
struct msr_counter *pp; struct msr_counter *pp;
...@@ -334,147 +335,333 @@ int get_msr(int cpu, off_t offset, unsigned long long *msr) ...@@ -334,147 +335,333 @@ int get_msr(int cpu, off_t offset, unsigned long long *msr)
retval = pread(get_msr_fd(cpu), msr, sizeof(*msr), offset); retval = pread(get_msr_fd(cpu), msr, sizeof(*msr), offset);
if (retval != sizeof *msr) if (retval != sizeof *msr)
err(-1, "msr %d offset 0x%llx read failed", cpu, (unsigned long long)offset); err(-1, "cpu%d: msr offset 0x%llx read failed", cpu, (unsigned long long)offset);
return 0; return 0;
} }
/* /*
* Example Format w/ field column widths: * Each string in this array is compared in --show and --hide cmdline.
* * Thus, strings that are proper sub-sets must follow their more specific peers.
* Package Core CPU Avg_MHz Bzy_MHz TSC_MHz IRQ SMI Busy% CPU_%c1 CPU_%c3 CPU_%c6 CPU_%c7 ThreadC CoreTmp CoreCnt PkgTmp GFXMHz Pkg%pc2 Pkg%pc3 Pkg%pc6 Pkg%pc7 PkgWatt CorWatt GFXWatt PkgCnt */
* 12345678123456781234567812345678123456781234567812345678123456781234567812345678123456781234567812345678123456781234567812345678123456781234567812345678123456781234567812345678 struct msr_counter bic[] = {
{ 0x0, "Package" },
{ 0x0, "Avg_MHz" },
{ 0x0, "Bzy_MHz" },
{ 0x0, "TSC_MHz" },
{ 0x0, "IRQ" },
{ 0x0, "SMI", "", 32, 0, FORMAT_DELTA, NULL},
{ 0x0, "Busy%" },
{ 0x0, "CPU%c1" },
{ 0x0, "CPU%c3" },
{ 0x0, "CPU%c6" },
{ 0x0, "CPU%c7" },
{ 0x0, "ThreadC" },
{ 0x0, "CoreTmp" },
{ 0x0, "CoreCnt" },
{ 0x0, "PkgTmp" },
{ 0x0, "GFX%rc6" },
{ 0x0, "GFXMHz" },
{ 0x0, "Pkg%pc2" },
{ 0x0, "Pkg%pc3" },
{ 0x0, "Pkg%pc6" },
{ 0x0, "Pkg%pc7" },
{ 0x0, "Pkg%pc8" },
{ 0x0, "Pkg%pc9" },
{ 0x0, "Pkg%pc10" },
{ 0x0, "PkgWatt" },
{ 0x0, "CorWatt" },
{ 0x0, "GFXWatt" },
{ 0x0, "PkgCnt" },
{ 0x0, "RAMWatt" },
{ 0x0, "PKG_%" },
{ 0x0, "RAM_%" },
{ 0x0, "Pkg_J" },
{ 0x0, "Cor_J" },
{ 0x0, "GFX_J" },
{ 0x0, "RAM_J" },
{ 0x0, "Core" },
{ 0x0, "CPU" },
{ 0x0, "Mod%c6" },
{ 0x0, "sysfs" },
};
#define MAX_BIC (sizeof(bic) / sizeof(struct msr_counter))
#define BIC_Package (1ULL << 0)
#define BIC_Avg_MHz (1ULL << 1)
#define BIC_Bzy_MHz (1ULL << 2)
#define BIC_TSC_MHz (1ULL << 3)
#define BIC_IRQ (1ULL << 4)
#define BIC_SMI (1ULL << 5)
#define BIC_Busy (1ULL << 6)
#define BIC_CPU_c1 (1ULL << 7)
#define BIC_CPU_c3 (1ULL << 8)
#define BIC_CPU_c6 (1ULL << 9)
#define BIC_CPU_c7 (1ULL << 10)
#define BIC_ThreadC (1ULL << 11)
#define BIC_CoreTmp (1ULL << 12)
#define BIC_CoreCnt (1ULL << 13)
#define BIC_PkgTmp (1ULL << 14)
#define BIC_GFX_rc6 (1ULL << 15)
#define BIC_GFXMHz (1ULL << 16)
#define BIC_Pkgpc2 (1ULL << 17)
#define BIC_Pkgpc3 (1ULL << 18)
#define BIC_Pkgpc6 (1ULL << 19)
#define BIC_Pkgpc7 (1ULL << 20)
#define BIC_Pkgpc8 (1ULL << 21)
#define BIC_Pkgpc9 (1ULL << 22)
#define BIC_Pkgpc10 (1ULL << 23)
#define BIC_PkgWatt (1ULL << 24)
#define BIC_CorWatt (1ULL << 25)
#define BIC_GFXWatt (1ULL << 26)
#define BIC_PkgCnt (1ULL << 27)
#define BIC_RAMWatt (1ULL << 28)
#define BIC_PKG__ (1ULL << 29)
#define BIC_RAM__ (1ULL << 30)
#define BIC_Pkg_J (1ULL << 31)
#define BIC_Cor_J (1ULL << 32)
#define BIC_GFX_J (1ULL << 33)
#define BIC_RAM_J (1ULL << 34)
#define BIC_Core (1ULL << 35)
#define BIC_CPU (1ULL << 36)
#define BIC_Mod_c6 (1ULL << 37)
#define BIC_sysfs (1ULL << 38)
unsigned long long bic_enabled = 0xFFFFFFFFFFFFFFFFULL;
unsigned long long bic_present = BIC_sysfs;
#define DO_BIC(COUNTER_NAME) (bic_enabled & bic_present & COUNTER_NAME)
#define BIC_PRESENT(COUNTER_BIT) (bic_present |= COUNTER_BIT)
#define BIC_NOT_PRESENT(COUNTER_BIT) (bic_present &= ~COUNTER_BIT)
#define MAX_DEFERRED 16
char *deferred_skip_names[MAX_DEFERRED];
int deferred_skip_index;
/*
* HIDE_LIST - hide this list of counters, show the rest [default]
* SHOW_LIST - show this list of counters, hide the rest
*/ */
enum show_hide_mode { SHOW_LIST, HIDE_LIST } global_show_hide_mode = HIDE_LIST;
void print_header(void) void help(void)
{ {
struct msr_counter *mp; fprintf(outf,
"Usage: turbostat [OPTIONS][(--interval seconds) | COMMAND ...]\n"
"\n"
"Turbostat forks the specified COMMAND and prints statistics\n"
"when COMMAND completes.\n"
"If no COMMAND is specified, turbostat wakes every 5-seconds\n"
"to print statistics, until interrupted.\n"
"--add add a counter\n"
" eg. --add msr0x10,u64,cpu,delta,MY_TSC\n"
"--cpu cpu-set limit output to summary plus cpu-set:\n"
" {core | package | j,k,l..m,n-p }\n"
"--quiet skip decoding system configuration header\n"
"--interval sec Override default 5-second measurement interval\n"
"--help print this help message\n"
"--list list column headers only\n"
"--out file create or truncate \"file\" for all output\n"
"--version print version information\n"
"\n"
"For more help, run \"man turbostat\"\n");
}
if (show_pkg) /*
outp += sprintf(outp, "\tPackage"); * bic_lookup
if (show_core) * for all the strings in comma separate name_list,
outp += sprintf(outp, "\tCore"); * set the approprate bit in return value.
if (show_cpu) */
outp += sprintf(outp, "\tCPU"); unsigned long long bic_lookup(char *name_list, enum show_hide_mode mode)
if (has_aperf) {
outp += sprintf(outp, "\tAvg_MHz"); int i;
if (has_aperf) unsigned long long retval = 0;
outp += sprintf(outp, "\tBusy%%");
if (has_aperf)
outp += sprintf(outp, "\tBzy_MHz");
outp += sprintf(outp, "\tTSC_MHz");
if (!debug) while (name_list) {
goto done; char *comma;
if (do_irq) comma = strchr(name_list, ',');
outp += sprintf(outp, "\tIRQ");
if (do_smi) if (comma)
outp += sprintf(outp, "\tSMI"); *comma = '\0';
if (do_nhm_cstates) for (i = 0; i < MAX_BIC; ++i) {
outp += sprintf(outp, "\tCPU%%c1"); if (!strcmp(name_list, bic[i].name)) {
if (do_nhm_cstates && !do_slm_cstates && !do_knl_cstates) retval |= (1ULL << i);
outp += sprintf(outp, "\tCPU%%c3"); break;
if (do_nhm_cstates) }
outp += sprintf(outp, "\tCPU%%c6"); }
if (do_snb_cstates) if (i == MAX_BIC) {
outp += sprintf(outp, "\tCPU%%c7"); if (mode == SHOW_LIST) {
fprintf(stderr, "Invalid counter name: %s\n", name_list);
exit(-1);
}
deferred_skip_names[deferred_skip_index++] = name_list;
if (debug)
fprintf(stderr, "deferred \"%s\"\n", name_list);
if (deferred_skip_index >= MAX_DEFERRED) {
fprintf(stderr, "More than max %d un-recognized --skip options '%s'\n",
MAX_DEFERRED, name_list);
help();
exit(1);
}
}
name_list = comma;
if (name_list)
name_list++;
}
return retval;
}
void print_header(char *delim)
{
struct msr_counter *mp;
int printed = 0;
if (DO_BIC(BIC_Package))
outp += sprintf(outp, "%sPackage", (printed++ ? delim : ""));
if (DO_BIC(BIC_Core))
outp += sprintf(outp, "%sCore", (printed++ ? delim : ""));
if (DO_BIC(BIC_CPU))
outp += sprintf(outp, "%sCPU", (printed++ ? delim : ""));
if (DO_BIC(BIC_Avg_MHz))
outp += sprintf(outp, "%sAvg_MHz", (printed++ ? delim : ""));
if (DO_BIC(BIC_Busy))
outp += sprintf(outp, "%sBusy%%", (printed++ ? delim : ""));
if (DO_BIC(BIC_Bzy_MHz))
outp += sprintf(outp, "%sBzy_MHz", (printed++ ? delim : ""));
if (DO_BIC(BIC_TSC_MHz))
outp += sprintf(outp, "%sTSC_MHz", (printed++ ? delim : ""));
if (DO_BIC(BIC_IRQ)) {
if (sums_need_wide_columns)
outp += sprintf(outp, "%s IRQ", (printed++ ? delim : ""));
else
outp += sprintf(outp, "%sIRQ", (printed++ ? delim : ""));
}
if (DO_BIC(BIC_SMI))
outp += sprintf(outp, "%sSMI", (printed++ ? delim : ""));
for (mp = sys.tp; mp; mp = mp->next) { for (mp = sys.tp; mp; mp = mp->next) {
if (mp->format == FORMAT_RAW) { if (mp->format == FORMAT_RAW) {
if (mp->width == 64) if (mp->width == 64)
outp += sprintf(outp, "\t%18.18s", mp->name); outp += sprintf(outp, "%s%18.18s", (printed++ ? delim : ""), mp->name);
else else
outp += sprintf(outp, "\t%10.10s", mp->name); outp += sprintf(outp, "%s%10.10s", (printed++ ? delim : ""), mp->name);
} else { } else {
outp += sprintf(outp, "\t%-7.7s", mp->name); if ((mp->type == COUNTER_ITEMS) && sums_need_wide_columns)
outp += sprintf(outp, "%s%8s", (printed++ ? delim : ""), mp->name);
else
outp += sprintf(outp, "%s%s", (printed++ ? delim : ""), mp->name);
} }
} }
if (do_dts) if (DO_BIC(BIC_CPU_c1))
outp += sprintf(outp, "\tCoreTmp"); outp += sprintf(outp, "%sCPU%%c1", (printed++ ? delim : ""));
if (DO_BIC(BIC_CPU_c3) && !do_slm_cstates && !do_knl_cstates)
outp += sprintf(outp, "%sCPU%%c3", (printed++ ? delim : ""));
if (DO_BIC(BIC_CPU_c6))
outp += sprintf(outp, "%sCPU%%c6", (printed++ ? delim : ""));
if (DO_BIC(BIC_CPU_c7))
outp += sprintf(outp, "%sCPU%%c7", (printed++ ? delim : ""));
if (DO_BIC(BIC_Mod_c6))
outp += sprintf(outp, "%sMod%%c6", (printed++ ? delim : ""));
if (DO_BIC(BIC_CoreTmp))
outp += sprintf(outp, "%sCoreTmp", (printed++ ? delim : ""));
for (mp = sys.cp; mp; mp = mp->next) { for (mp = sys.cp; mp; mp = mp->next) {
if (mp->format == FORMAT_RAW) { if (mp->format == FORMAT_RAW) {
if (mp->width == 64) if (mp->width == 64)
outp += sprintf(outp, "\t%18.18s", mp->name); outp += sprintf(outp, "%s%18.18s", delim, mp->name);
else else
outp += sprintf(outp, "\t%10.10s", mp->name); outp += sprintf(outp, "%s%10.10s", delim, mp->name);
} else { } else {
outp += sprintf(outp, "\t%-7.7s", mp->name); if ((mp->type == COUNTER_ITEMS) && sums_need_wide_columns)
outp += sprintf(outp, "%s%8s", delim, mp->name);
else
outp += sprintf(outp, "%s%s", delim, mp->name);
} }
} }
if (do_ptm) if (DO_BIC(BIC_PkgTmp))
outp += sprintf(outp, "\tPkgTmp"); outp += sprintf(outp, "%sPkgTmp", (printed++ ? delim : ""));
if (do_gfx_rc6_ms) if (DO_BIC(BIC_GFX_rc6))
outp += sprintf(outp, "\tGFX%%rc6"); outp += sprintf(outp, "%sGFX%%rc6", (printed++ ? delim : ""));
if (do_gfx_mhz) if (DO_BIC(BIC_GFXMHz))
outp += sprintf(outp, "\tGFXMHz"); outp += sprintf(outp, "%sGFXMHz", (printed++ ? delim : ""));
if (do_skl_residency) { if (do_skl_residency) {
outp += sprintf(outp, "\tTotl%%C0"); outp += sprintf(outp, "%sTotl%%C0", (printed++ ? delim : ""));
outp += sprintf(outp, "\tAny%%C0"); outp += sprintf(outp, "%sAny%%C0", (printed++ ? delim : ""));
outp += sprintf(outp, "\tGFX%%C0"); outp += sprintf(outp, "%sGFX%%C0", (printed++ ? delim : ""));
outp += sprintf(outp, "\tCPUGFX%%"); outp += sprintf(outp, "%sCPUGFX%%", (printed++ ? delim : ""));
} }
if (do_pc2) if (DO_BIC(BIC_Pkgpc2))
outp += sprintf(outp, "\tPkg%%pc2"); outp += sprintf(outp, "%sPkg%%pc2", (printed++ ? delim : ""));
if (do_pc3) if (DO_BIC(BIC_Pkgpc3))
outp += sprintf(outp, "\tPkg%%pc3"); outp += sprintf(outp, "%sPkg%%pc3", (printed++ ? delim : ""));
if (do_pc6) if (DO_BIC(BIC_Pkgpc6))
outp += sprintf(outp, "\tPkg%%pc6"); outp += sprintf(outp, "%sPkg%%pc6", (printed++ ? delim : ""));
if (do_pc7) if (DO_BIC(BIC_Pkgpc7))
outp += sprintf(outp, "\tPkg%%pc7"); outp += sprintf(outp, "%sPkg%%pc7", (printed++ ? delim : ""));
if (do_c8_c9_c10) { if (DO_BIC(BIC_Pkgpc8))
outp += sprintf(outp, "\tPkg%%pc8"); outp += sprintf(outp, "%sPkg%%pc8", (printed++ ? delim : ""));
outp += sprintf(outp, "\tPkg%%pc9"); if (DO_BIC(BIC_Pkgpc9))
outp += sprintf(outp, "\tPk%%pc10"); outp += sprintf(outp, "%sPkg%%pc9", (printed++ ? delim : ""));
} if (DO_BIC(BIC_Pkgpc10))
outp += sprintf(outp, "%sPk%%pc10", (printed++ ? delim : ""));
if (do_rapl && !rapl_joules) { if (do_rapl && !rapl_joules) {
if (do_rapl & RAPL_PKG) if (DO_BIC(BIC_PkgWatt))
outp += sprintf(outp, "\tPkgWatt"); outp += sprintf(outp, "%sPkgWatt", (printed++ ? delim : ""));
if (do_rapl & RAPL_CORES_ENERGY_STATUS) if (DO_BIC(BIC_CorWatt))
outp += sprintf(outp, "\tCorWatt"); outp += sprintf(outp, "%sCorWatt", (printed++ ? delim : ""));
if (do_rapl & RAPL_GFX) if (DO_BIC(BIC_GFXWatt))
outp += sprintf(outp, "\tGFXWatt"); outp += sprintf(outp, "%sGFXWatt", (printed++ ? delim : ""));
if (do_rapl & RAPL_DRAM) if (DO_BIC(BIC_RAMWatt))
outp += sprintf(outp, "\tRAMWatt"); outp += sprintf(outp, "%sRAMWatt", (printed++ ? delim : ""));
if (do_rapl & RAPL_PKG_PERF_STATUS) if (DO_BIC(BIC_PKG__))
outp += sprintf(outp, "\tPKG_%%"); outp += sprintf(outp, "%sPKG_%%", (printed++ ? delim : ""));
if (do_rapl & RAPL_DRAM_PERF_STATUS) if (DO_BIC(BIC_RAM__))
outp += sprintf(outp, "\tRAM_%%"); outp += sprintf(outp, "%sRAM_%%", (printed++ ? delim : ""));
} else if (do_rapl && rapl_joules) { } else if (do_rapl && rapl_joules) {
if (do_rapl & RAPL_PKG) if (DO_BIC(BIC_Pkg_J))
outp += sprintf(outp, "\tPkg_J"); outp += sprintf(outp, "%sPkg_J", (printed++ ? delim : ""));
if (do_rapl & RAPL_CORES_ENERGY_STATUS) if (DO_BIC(BIC_Cor_J))
outp += sprintf(outp, "\tCor_J"); outp += sprintf(outp, "%sCor_J", (printed++ ? delim : ""));
if (do_rapl & RAPL_GFX) if (DO_BIC(BIC_GFX_J))
outp += sprintf(outp, "\tGFX_J"); outp += sprintf(outp, "%sGFX_J", (printed++ ? delim : ""));
if (do_rapl & RAPL_DRAM) if (DO_BIC(BIC_RAM_J))
outp += sprintf(outp, "\tRAM_J"); outp += sprintf(outp, "%sRAM_J", (printed++ ? delim : ""));
if (do_rapl & RAPL_PKG_PERF_STATUS) if (DO_BIC(BIC_PKG__))
outp += sprintf(outp, "\tPKG_%%"); outp += sprintf(outp, "%sPKG_%%", (printed++ ? delim : ""));
if (do_rapl & RAPL_DRAM_PERF_STATUS) if (DO_BIC(BIC_RAM__))
outp += sprintf(outp, "\tRAM_%%"); outp += sprintf(outp, "%sRAM_%%", (printed++ ? delim : ""));
} }
for (mp = sys.pp; mp; mp = mp->next) { for (mp = sys.pp; mp; mp = mp->next) {
if (mp->format == FORMAT_RAW) { if (mp->format == FORMAT_RAW) {
if (mp->width == 64) if (mp->width == 64)
outp += sprintf(outp, "\t%18.18s", mp->name); outp += sprintf(outp, "%s%18.18s", delim, mp->name);
else else
outp += sprintf(outp, "\t%10.10s", mp->name); outp += sprintf(outp, "%s%10.10s", delim, mp->name);
} else { } else {
outp += sprintf(outp, "\t%-7.7s", mp->name); if ((mp->type == COUNTER_ITEMS) && sums_need_wide_columns)
outp += sprintf(outp, "%s%8s", delim, mp->name);
else
outp += sprintf(outp, "%s%s", delim, mp->name);
} }
} }
done:
outp += sprintf(outp, "\n"); outp += sprintf(outp, "\n");
} }
...@@ -494,10 +681,10 @@ int dump_counters(struct thread_data *t, struct core_data *c, ...@@ -494,10 +681,10 @@ int dump_counters(struct thread_data *t, struct core_data *c,
outp += sprintf(outp, "mperf: %016llX\n", t->mperf); outp += sprintf(outp, "mperf: %016llX\n", t->mperf);
outp += sprintf(outp, "c1: %016llX\n", t->c1); outp += sprintf(outp, "c1: %016llX\n", t->c1);
if (do_irq) if (DO_BIC(BIC_IRQ))
outp += sprintf(outp, "IRQ: %08X\n", t->irq_count); outp += sprintf(outp, "IRQ: %lld\n", t->irq_count);
if (do_smi) if (DO_BIC(BIC_SMI))
outp += sprintf(outp, "SMI: %08X\n", t->smi_count); outp += sprintf(outp, "SMI: %d\n", t->smi_count);
for (i = 0, mp = sys.tp; mp; i++, mp = mp->next) { for (i = 0, mp = sys.tp; mp; i++, mp = mp->next) {
outp += sprintf(outp, "tADDED [%d] msr0x%x: %08llX\n", outp += sprintf(outp, "tADDED [%d] msr0x%x: %08llX\n",
...@@ -516,6 +703,7 @@ int dump_counters(struct thread_data *t, struct core_data *c, ...@@ -516,6 +703,7 @@ int dump_counters(struct thread_data *t, struct core_data *c,
outp += sprintf(outp, "cADDED [%d] msr0x%x: %08llX\n", outp += sprintf(outp, "cADDED [%d] msr0x%x: %08llX\n",
i, mp->msr_num, c->counter[i]); i, mp->msr_num, c->counter[i]);
} }
outp += sprintf(outp, "mc6_us: %016llX\n", c->mc6_us);
} }
if (p) { if (p) {
...@@ -527,11 +715,11 @@ int dump_counters(struct thread_data *t, struct core_data *c, ...@@ -527,11 +715,11 @@ int dump_counters(struct thread_data *t, struct core_data *c,
outp += sprintf(outp, "CPU + GFX: %016llX\n", p->pkg_both_core_gfxe_c0); outp += sprintf(outp, "CPU + GFX: %016llX\n", p->pkg_both_core_gfxe_c0);
outp += sprintf(outp, "pc2: %016llX\n", p->pc2); outp += sprintf(outp, "pc2: %016llX\n", p->pc2);
if (do_pc3) if (DO_BIC(BIC_Pkgpc3))
outp += sprintf(outp, "pc3: %016llX\n", p->pc3); outp += sprintf(outp, "pc3: %016llX\n", p->pc3);
if (do_pc6) if (DO_BIC(BIC_Pkgpc6))
outp += sprintf(outp, "pc6: %016llX\n", p->pc6); outp += sprintf(outp, "pc6: %016llX\n", p->pc6);
if (do_pc7) if (DO_BIC(BIC_Pkgpc7))
outp += sprintf(outp, "pc7: %016llX\n", p->pc7); outp += sprintf(outp, "pc7: %016llX\n", p->pc7);
outp += sprintf(outp, "pc8: %016llX\n", p->pc8); outp += sprintf(outp, "pc8: %016llX\n", p->pc8);
outp += sprintf(outp, "pc9: %016llX\n", p->pc9); outp += sprintf(outp, "pc9: %016llX\n", p->pc9);
...@@ -563,10 +751,12 @@ int dump_counters(struct thread_data *t, struct core_data *c, ...@@ -563,10 +751,12 @@ int dump_counters(struct thread_data *t, struct core_data *c,
int format_counters(struct thread_data *t, struct core_data *c, int format_counters(struct thread_data *t, struct core_data *c,
struct pkg_data *p) struct pkg_data *p)
{ {
double interval_float; double interval_float, tsc;
char *fmt8; char *fmt8;
int i; int i;
struct msr_counter *mp; struct msr_counter *mp;
char *delim = "\t";
int printed = 0;
/* if showing only 1st thread in core and this isn't one, bail out */ /* if showing only 1st thread in core and this isn't one, bail out */
if (show_core_only && !(t->flags & CPU_IS_FIRST_THREAD_IN_CORE)) if (show_core_only && !(t->flags & CPU_IS_FIRST_THREAD_IN_CORE))
...@@ -576,106 +766,126 @@ int format_counters(struct thread_data *t, struct core_data *c, ...@@ -576,106 +766,126 @@ int format_counters(struct thread_data *t, struct core_data *c,
if (show_pkg_only && !(t->flags & CPU_IS_FIRST_CORE_IN_PACKAGE)) if (show_pkg_only && !(t->flags & CPU_IS_FIRST_CORE_IN_PACKAGE))
return 0; return 0;
/*if not summary line and --cpu is used */
if ((t != &average.threads) &&
(cpu_subset && !CPU_ISSET_S(t->cpu_id, cpu_subset_size, cpu_subset)))
return 0;
interval_float = tv_delta.tv_sec + tv_delta.tv_usec/1000000.0; interval_float = tv_delta.tv_sec + tv_delta.tv_usec/1000000.0;
tsc = t->tsc * tsc_tweak;
/* topo columns, print blanks on 1st (average) line */ /* topo columns, print blanks on 1st (average) line */
if (t == &average.threads) { if (t == &average.threads) {
if (show_pkg) if (DO_BIC(BIC_Package))
outp += sprintf(outp, "\t-"); outp += sprintf(outp, "%s-", (printed++ ? delim : ""));
if (show_core) if (DO_BIC(BIC_Core))
outp += sprintf(outp, "\t-"); outp += sprintf(outp, "%s-", (printed++ ? delim : ""));
if (show_cpu) if (DO_BIC(BIC_CPU))
outp += sprintf(outp, "\t-"); outp += sprintf(outp, "%s-", (printed++ ? delim : ""));
} else { } else {
if (show_pkg) { if (DO_BIC(BIC_Package)) {
if (p) if (p)
outp += sprintf(outp, "\t%d", p->package_id); outp += sprintf(outp, "%s%d", (printed++ ? delim : ""), p->package_id);
else else
outp += sprintf(outp, "\t-"); outp += sprintf(outp, "%s-", (printed++ ? delim : ""));
} }
if (show_core) { if (DO_BIC(BIC_Core)) {
if (c) if (c)
outp += sprintf(outp, "\t%d", c->core_id); outp += sprintf(outp, "%s%d", (printed++ ? delim : ""), c->core_id);
else else
outp += sprintf(outp, "\t-"); outp += sprintf(outp, "%s-", (printed++ ? delim : ""));
} }
if (show_cpu) if (DO_BIC(BIC_CPU))
outp += sprintf(outp, "\t%d", t->cpu_id); outp += sprintf(outp, "%s%d", (printed++ ? delim : ""), t->cpu_id);
} }
/* Avg_MHz */ if (DO_BIC(BIC_Avg_MHz))
if (has_aperf) outp += sprintf(outp, "%s%.0f", (printed++ ? delim : ""),
outp += sprintf(outp, "\t%.0f",
1.0 / units * t->aperf / interval_float); 1.0 / units * t->aperf / interval_float);
/* Busy% */ if (DO_BIC(BIC_Busy))
if (has_aperf) outp += sprintf(outp, "%s%.2f", (printed++ ? delim : ""), 100.0 * t->mperf/tsc);
outp += sprintf(outp, "\t%.2f", 100.0 * t->mperf/t->tsc/tsc_tweak);
/* Bzy_MHz */ if (DO_BIC(BIC_Bzy_MHz)) {
if (has_aperf) {
if (has_base_hz) if (has_base_hz)
outp += sprintf(outp, "\t%.0f", base_hz / units * t->aperf / t->mperf); outp += sprintf(outp, "%s%.0f", (printed++ ? delim : ""), base_hz / units * t->aperf / t->mperf);
else else
outp += sprintf(outp, "\t%.0f", outp += sprintf(outp, "%s%.0f", (printed++ ? delim : ""),
1.0 * t->tsc / units * t->aperf / t->mperf / interval_float); tsc / units * t->aperf / t->mperf / interval_float);
} }
/* TSC_MHz */ if (DO_BIC(BIC_TSC_MHz))
outp += sprintf(outp, "\t%.0f", 1.0 * t->tsc/units/interval_float); outp += sprintf(outp, "%s%.0f", (printed++ ? delim : ""), 1.0 * t->tsc/units/interval_float);
if (!debug)
goto done;
/* IRQ */ /* IRQ */
if (do_irq) if (DO_BIC(BIC_IRQ)) {
outp += sprintf(outp, "\t%d", t->irq_count); if (sums_need_wide_columns)
outp += sprintf(outp, "%s%8lld", (printed++ ? delim : ""), t->irq_count);
else
outp += sprintf(outp, "%s%lld", (printed++ ? delim : ""), t->irq_count);
}
/* SMI */ /* SMI */
if (do_smi) if (DO_BIC(BIC_SMI))
outp += sprintf(outp, "\t%d", t->smi_count); outp += sprintf(outp, "%s%d", (printed++ ? delim : ""), t->smi_count);
if (do_nhm_cstates)
outp += sprintf(outp, "\t%.2f", 100.0 * t->c1/t->tsc);
/* print per-core data only for 1st thread in core */
if (!(t->flags & CPU_IS_FIRST_THREAD_IN_CORE))
goto done;
if (do_nhm_cstates && !do_slm_cstates && !do_knl_cstates)
outp += sprintf(outp, "\t%.2f", 100.0 * c->c3/t->tsc);
if (do_nhm_cstates)
outp += sprintf(outp, "\t%.2f", 100.0 * c->c6/t->tsc);
if (do_snb_cstates)
outp += sprintf(outp, "\t%.2f", 100.0 * c->c7/t->tsc);
/* Added counters */
for (i = 0, mp = sys.tp; mp; i++, mp = mp->next) { for (i = 0, mp = sys.tp; mp; i++, mp = mp->next) {
if (mp->format == FORMAT_RAW) { if (mp->format == FORMAT_RAW) {
if (mp->width == 32) if (mp->width == 32)
outp += sprintf(outp, "\t0x%08lx", (unsigned long) t->counter[i]); outp += sprintf(outp, "%s0x%08x", (printed++ ? delim : ""), (unsigned int) t->counter[i]);
else else
outp += sprintf(outp, "\t0x%016llx", t->counter[i]); outp += sprintf(outp, "%s0x%016llx", (printed++ ? delim : ""), t->counter[i]);
} else if (mp->format == FORMAT_DELTA) { } else if (mp->format == FORMAT_DELTA) {
outp += sprintf(outp, "\t%8lld", t->counter[i]); if ((mp->type == COUNTER_ITEMS) && sums_need_wide_columns)
outp += sprintf(outp, "%s%8lld", (printed++ ? delim : ""), t->counter[i]);
else
outp += sprintf(outp, "%s%lld", (printed++ ? delim : ""), t->counter[i]);
} else if (mp->format == FORMAT_PERCENT) { } else if (mp->format == FORMAT_PERCENT) {
outp += sprintf(outp, "\t%.2f", 100.0 * t->counter[i]/t->tsc); if (mp->type == COUNTER_USEC)
outp += sprintf(outp, "%s%.2f", (printed++ ? delim : ""), t->counter[i]/interval_float/10000);
else
outp += sprintf(outp, "%s%.2f", (printed++ ? delim : ""), 100.0 * t->counter[i]/tsc);
} }
} }
/* C1 */
if (DO_BIC(BIC_CPU_c1))
outp += sprintf(outp, "%s%.2f", (printed++ ? delim : ""), 100.0 * t->c1/tsc);
if (do_dts)
outp += sprintf(outp, "\t%d", c->core_temp_c); /* print per-core data only for 1st thread in core */
if (!(t->flags & CPU_IS_FIRST_THREAD_IN_CORE))
goto done;
if (DO_BIC(BIC_CPU_c3) && !do_slm_cstates && !do_knl_cstates)
outp += sprintf(outp, "%s%.2f", (printed++ ? delim : ""), 100.0 * c->c3/tsc);
if (DO_BIC(BIC_CPU_c6))
outp += sprintf(outp, "%s%.2f", (printed++ ? delim : ""), 100.0 * c->c6/tsc);
if (DO_BIC(BIC_CPU_c7))
outp += sprintf(outp, "%s%.2f", (printed++ ? delim : ""), 100.0 * c->c7/tsc);
/* Mod%c6 */
if (DO_BIC(BIC_Mod_c6))
outp += sprintf(outp, "%s%.2f", (printed++ ? delim : ""), 100.0 * c->mc6_us / tsc);
if (DO_BIC(BIC_CoreTmp))
outp += sprintf(outp, "%s%d", (printed++ ? delim : ""), c->core_temp_c);
for (i = 0, mp = sys.cp; mp; i++, mp = mp->next) { for (i = 0, mp = sys.cp; mp; i++, mp = mp->next) {
if (mp->format == FORMAT_RAW) { if (mp->format == FORMAT_RAW) {
if (mp->width == 32) if (mp->width == 32)
outp += sprintf(outp, "\t0x%08lx", (unsigned long) c->counter[i]); outp += sprintf(outp, "%s0x%08x", (printed++ ? delim : ""), (unsigned int) c->counter[i]);
else else
outp += sprintf(outp, "\t0x%016llx", c->counter[i]); outp += sprintf(outp, "%s0x%016llx", (printed++ ? delim : ""), c->counter[i]);
} else if (mp->format == FORMAT_DELTA) { } else if (mp->format == FORMAT_DELTA) {
outp += sprintf(outp, "\t%8lld", c->counter[i]); if ((mp->type == COUNTER_ITEMS) && sums_need_wide_columns)
outp += sprintf(outp, "%s%8lld", (printed++ ? delim : ""), c->counter[i]);
else
outp += sprintf(outp, "%s%lld", (printed++ ? delim : ""), c->counter[i]);
} else if (mp->format == FORMAT_PERCENT) { } else if (mp->format == FORMAT_PERCENT) {
outp += sprintf(outp, "\t%.2f", 100.0 * c->counter[i]/t->tsc); outp += sprintf(outp, "%s%.2f", (printed++ ? delim : ""), 100.0 * c->counter[i]/tsc);
} }
} }
...@@ -684,95 +894,89 @@ int format_counters(struct thread_data *t, struct core_data *c, ...@@ -684,95 +894,89 @@ int format_counters(struct thread_data *t, struct core_data *c,
goto done; goto done;
/* PkgTmp */ /* PkgTmp */
if (do_ptm) if (DO_BIC(BIC_PkgTmp))
outp += sprintf(outp, "\t%d", p->pkg_temp_c); outp += sprintf(outp, "%s%d", (printed++ ? delim : ""), p->pkg_temp_c);
/* GFXrc6 */ /* GFXrc6 */
if (do_gfx_rc6_ms) { if (DO_BIC(BIC_GFX_rc6)) {
if (p->gfx_rc6_ms == -1) { /* detect GFX counter reset */ if (p->gfx_rc6_ms == -1) { /* detect GFX counter reset */
outp += sprintf(outp, "\t**.**"); outp += sprintf(outp, "%s**.**", (printed++ ? delim : ""));
} else { } else {
outp += sprintf(outp, "\t%.2f", outp += sprintf(outp, "%s%.2f", (printed++ ? delim : ""),
p->gfx_rc6_ms / 10.0 / interval_float); p->gfx_rc6_ms / 10.0 / interval_float);
} }
} }
/* GFXMHz */ /* GFXMHz */
if (do_gfx_mhz) if (DO_BIC(BIC_GFXMHz))
outp += sprintf(outp, "\t%d", p->gfx_mhz); outp += sprintf(outp, "%s%d", (printed++ ? delim : ""), p->gfx_mhz);
/* Totl%C0, Any%C0 GFX%C0 CPUGFX% */ /* Totl%C0, Any%C0 GFX%C0 CPUGFX% */
if (do_skl_residency) { if (do_skl_residency) {
outp += sprintf(outp, "\t%.2f", 100.0 * p->pkg_wtd_core_c0/t->tsc); outp += sprintf(outp, "%s%.2f", (printed++ ? delim : ""), 100.0 * p->pkg_wtd_core_c0/tsc);
outp += sprintf(outp, "\t%.2f", 100.0 * p->pkg_any_core_c0/t->tsc); outp += sprintf(outp, "%s%.2f", (printed++ ? delim : ""), 100.0 * p->pkg_any_core_c0/tsc);
outp += sprintf(outp, "\t%.2f", 100.0 * p->pkg_any_gfxe_c0/t->tsc); outp += sprintf(outp, "%s%.2f", (printed++ ? delim : ""), 100.0 * p->pkg_any_gfxe_c0/tsc);
outp += sprintf(outp, "\t%.2f", 100.0 * p->pkg_both_core_gfxe_c0/t->tsc); outp += sprintf(outp, "%s%.2f", (printed++ ? delim : ""), 100.0 * p->pkg_both_core_gfxe_c0/tsc);
} }
if (do_pc2) if (DO_BIC(BIC_Pkgpc2))
outp += sprintf(outp, "\t%.2f", 100.0 * p->pc2/t->tsc); outp += sprintf(outp, "%s%.2f", (printed++ ? delim : ""), 100.0 * p->pc2/tsc);
if (do_pc3) if (DO_BIC(BIC_Pkgpc3))
outp += sprintf(outp, "\t%.2f", 100.0 * p->pc3/t->tsc); outp += sprintf(outp, "%s%.2f", (printed++ ? delim : ""), 100.0 * p->pc3/tsc);
if (do_pc6) if (DO_BIC(BIC_Pkgpc6))
outp += sprintf(outp, "\t%.2f", 100.0 * p->pc6/t->tsc); outp += sprintf(outp, "%s%.2f", (printed++ ? delim : ""), 100.0 * p->pc6/tsc);
if (do_pc7) if (DO_BIC(BIC_Pkgpc7))
outp += sprintf(outp, "\t%.2f", 100.0 * p->pc7/t->tsc); outp += sprintf(outp, "%s%.2f", (printed++ ? delim : ""), 100.0 * p->pc7/tsc);
if (do_c8_c9_c10) { if (DO_BIC(BIC_Pkgpc8))
outp += sprintf(outp, "\t%.2f", 100.0 * p->pc8/t->tsc); outp += sprintf(outp, "%s%.2f", (printed++ ? delim : ""), 100.0 * p->pc8/tsc);
outp += sprintf(outp, "\t%.2f", 100.0 * p->pc9/t->tsc); if (DO_BIC(BIC_Pkgpc9))
outp += sprintf(outp, "\t%.2f", 100.0 * p->pc10/t->tsc); outp += sprintf(outp, "%s%.2f", (printed++ ? delim : ""), 100.0 * p->pc9/tsc);
} if (DO_BIC(BIC_Pkgpc10))
outp += sprintf(outp, "%s%.2f", (printed++ ? delim : ""), 100.0 * p->pc10/tsc);
/* /*
* If measurement interval exceeds minimum RAPL Joule Counter range, * If measurement interval exceeds minimum RAPL Joule Counter range,
* indicate that results are suspect by printing "**" in fraction place. * indicate that results are suspect by printing "**" in fraction place.
*/ */
if (interval_float < rapl_joule_counter_range) if (interval_float < rapl_joule_counter_range)
fmt8 = "\t%.2f"; fmt8 = "%s%.2f";
else else
fmt8 = "%6.0f**"; fmt8 = "%6.0f**";
if (do_rapl && !rapl_joules) { if (DO_BIC(BIC_PkgWatt))
if (do_rapl & RAPL_PKG) outp += sprintf(outp, fmt8, (printed++ ? delim : ""), p->energy_pkg * rapl_energy_units / interval_float);
outp += sprintf(outp, fmt8, p->energy_pkg * rapl_energy_units / interval_float); if (DO_BIC(BIC_CorWatt))
if (do_rapl & RAPL_CORES_ENERGY_STATUS) outp += sprintf(outp, fmt8, (printed++ ? delim : ""), p->energy_cores * rapl_energy_units / interval_float);
outp += sprintf(outp, fmt8, p->energy_cores * rapl_energy_units / interval_float); if (DO_BIC(BIC_GFXWatt))
if (do_rapl & RAPL_GFX) outp += sprintf(outp, fmt8, (printed++ ? delim : ""), p->energy_gfx * rapl_energy_units / interval_float);
outp += sprintf(outp, fmt8, p->energy_gfx * rapl_energy_units / interval_float); if (DO_BIC(BIC_RAMWatt))
if (do_rapl & RAPL_DRAM) outp += sprintf(outp, fmt8, (printed++ ? delim : ""), p->energy_dram * rapl_dram_energy_units / interval_float);
outp += sprintf(outp, fmt8, p->energy_dram * rapl_dram_energy_units / interval_float); if (DO_BIC(BIC_Pkg_J))
if (do_rapl & RAPL_PKG_PERF_STATUS) outp += sprintf(outp, fmt8, (printed++ ? delim : ""), p->energy_pkg * rapl_energy_units);
outp += sprintf(outp, fmt8, 100.0 * p->rapl_pkg_perf_status * rapl_time_units / interval_float); if (DO_BIC(BIC_Cor_J))
if (do_rapl & RAPL_DRAM_PERF_STATUS) outp += sprintf(outp, fmt8, (printed++ ? delim : ""), p->energy_cores * rapl_energy_units);
outp += sprintf(outp, fmt8, 100.0 * p->rapl_dram_perf_status * rapl_time_units / interval_float); if (DO_BIC(BIC_GFX_J))
} else if (do_rapl && rapl_joules) { outp += sprintf(outp, fmt8, (printed++ ? delim : ""), p->energy_gfx * rapl_energy_units);
if (do_rapl & RAPL_PKG) if (DO_BIC(BIC_RAM_J))
outp += sprintf(outp, fmt8, outp += sprintf(outp, fmt8, (printed++ ? delim : ""), p->energy_dram * rapl_dram_energy_units);
p->energy_pkg * rapl_energy_units); if (DO_BIC(BIC_PKG__))
if (do_rapl & RAPL_CORES) outp += sprintf(outp, fmt8, (printed++ ? delim : ""), 100.0 * p->rapl_pkg_perf_status * rapl_time_units / interval_float);
outp += sprintf(outp, fmt8, if (DO_BIC(BIC_RAM__))
p->energy_cores * rapl_energy_units); outp += sprintf(outp, fmt8, (printed++ ? delim : ""), 100.0 * p->rapl_dram_perf_status * rapl_time_units / interval_float);
if (do_rapl & RAPL_GFX)
outp += sprintf(outp, fmt8,
p->energy_gfx * rapl_energy_units);
if (do_rapl & RAPL_DRAM)
outp += sprintf(outp, fmt8,
p->energy_dram * rapl_dram_energy_units);
if (do_rapl & RAPL_PKG_PERF_STATUS)
outp += sprintf(outp, fmt8, 100.0 * p->rapl_pkg_perf_status * rapl_time_units / interval_float);
if (do_rapl & RAPL_DRAM_PERF_STATUS)
outp += sprintf(outp, fmt8, 100.0 * p->rapl_dram_perf_status * rapl_time_units / interval_float);
}
for (i = 0, mp = sys.pp; mp; i++, mp = mp->next) { for (i = 0, mp = sys.pp; mp; i++, mp = mp->next) {
if (mp->format == FORMAT_RAW) { if (mp->format == FORMAT_RAW) {
if (mp->width == 32) if (mp->width == 32)
outp += sprintf(outp, "\t0x%08lx", (unsigned long) p->counter[i]); outp += sprintf(outp, "%s0x%08x", (printed++ ? delim : ""), (unsigned int) p->counter[i]);
else else
outp += sprintf(outp, "\t0x%016llx", p->counter[i]); outp += sprintf(outp, "%s0x%016llx", (printed++ ? delim : ""), p->counter[i]);
} else if (mp->format == FORMAT_DELTA) { } else if (mp->format == FORMAT_DELTA) {
outp += sprintf(outp, "\t%8lld", p->counter[i]); if ((mp->type == COUNTER_ITEMS) && sums_need_wide_columns)
outp += sprintf(outp, "%s%8lld", (printed++ ? delim : ""), p->counter[i]);
else
outp += sprintf(outp, "%s%lld", (printed++ ? delim : ""), p->counter[i]);
} else if (mp->format == FORMAT_PERCENT) { } else if (mp->format == FORMAT_PERCENT) {
outp += sprintf(outp, "\t%.2f", 100.0 * p->counter[i]/t->tsc); outp += sprintf(outp, "%s%.2f", (printed++ ? delim : ""), 100.0 * p->counter[i]/tsc);
} }
} }
...@@ -807,7 +1011,7 @@ void format_all_counters(struct thread_data *t, struct core_data *c, struct pkg_ ...@@ -807,7 +1011,7 @@ void format_all_counters(struct thread_data *t, struct core_data *c, struct pkg_
static int printed; static int printed;
if (!printed || !summary_only) if (!printed || !summary_only)
print_header(); print_header("\t");
if (topo.num_cpus > 1) if (topo.num_cpus > 1)
format_counters(&average.threads, &average.cores, format_counters(&average.threads, &average.cores,
...@@ -841,11 +1045,11 @@ delta_package(struct pkg_data *new, struct pkg_data *old) ...@@ -841,11 +1045,11 @@ delta_package(struct pkg_data *new, struct pkg_data *old)
old->pkg_both_core_gfxe_c0 = new->pkg_both_core_gfxe_c0 - old->pkg_both_core_gfxe_c0; old->pkg_both_core_gfxe_c0 = new->pkg_both_core_gfxe_c0 - old->pkg_both_core_gfxe_c0;
} }
old->pc2 = new->pc2 - old->pc2; old->pc2 = new->pc2 - old->pc2;
if (do_pc3) if (DO_BIC(BIC_Pkgpc3))
old->pc3 = new->pc3 - old->pc3; old->pc3 = new->pc3 - old->pc3;
if (do_pc6) if (DO_BIC(BIC_Pkgpc6))
old->pc6 = new->pc6 - old->pc6; old->pc6 = new->pc6 - old->pc6;
if (do_pc7) if (DO_BIC(BIC_Pkgpc7))
old->pc7 = new->pc7 - old->pc7; old->pc7 = new->pc7 - old->pc7;
old->pc8 = new->pc8 - old->pc8; old->pc8 = new->pc8 - old->pc8;
old->pc9 = new->pc9 - old->pc9; old->pc9 = new->pc9 - old->pc9;
...@@ -887,6 +1091,7 @@ delta_core(struct core_data *new, struct core_data *old) ...@@ -887,6 +1091,7 @@ delta_core(struct core_data *new, struct core_data *old)
old->c6 = new->c6 - old->c6; old->c6 = new->c6 - old->c6;
old->c7 = new->c7 - old->c7; old->c7 = new->c7 - old->c7;
old->core_temp_c = new->core_temp_c; old->core_temp_c = new->core_temp_c;
old->mc6_us = new->mc6_us - old->mc6_us;
for (i = 0, mp = sys.cp; mp; i++, mp = mp->next) { for (i = 0, mp = sys.cp; mp; i++, mp = mp->next) {
if (mp->format == FORMAT_RAW) if (mp->format == FORMAT_RAW)
...@@ -916,7 +1121,7 @@ delta_thread(struct thread_data *new, struct thread_data *old, ...@@ -916,7 +1121,7 @@ delta_thread(struct thread_data *new, struct thread_data *old,
old->c1 = new->c1 - old->c1; old->c1 = new->c1 - old->c1;
if (has_aperf) { if (DO_BIC(BIC_Avg_MHz) || DO_BIC(BIC_Busy) || DO_BIC(BIC_Bzy_MHz)) {
if ((new->aperf > old->aperf) && (new->mperf > old->mperf)) { if ((new->aperf > old->aperf) && (new->mperf > old->mperf)) {
old->aperf = new->aperf - old->aperf; old->aperf = new->aperf - old->aperf;
old->mperf = new->mperf - old->mperf; old->mperf = new->mperf - old->mperf;
...@@ -941,7 +1146,7 @@ delta_thread(struct thread_data *new, struct thread_data *old, ...@@ -941,7 +1146,7 @@ delta_thread(struct thread_data *new, struct thread_data *old,
old->c1 = 0; old->c1 = 0;
else { else {
/* normal case, derive c1 */ /* normal case, derive c1 */
old->c1 = old->tsc - old->mperf - core_delta->c3 old->c1 = (old->tsc * tsc_tweak) - old->mperf - core_delta->c3
- core_delta->c6 - core_delta->c7; - core_delta->c6 - core_delta->c7;
} }
} }
...@@ -952,10 +1157,10 @@ delta_thread(struct thread_data *new, struct thread_data *old, ...@@ -952,10 +1157,10 @@ delta_thread(struct thread_data *new, struct thread_data *old,
old->mperf = 1; /* divide by 0 protection */ old->mperf = 1; /* divide by 0 protection */
} }
if (do_irq) if (DO_BIC(BIC_IRQ))
old->irq_count = new->irq_count - old->irq_count; old->irq_count = new->irq_count - old->irq_count;
if (do_smi) if (DO_BIC(BIC_SMI))
old->smi_count = new->smi_count - old->smi_count; old->smi_count = new->smi_count - old->smi_count;
for (i = 0, mp = sys.tp; mp; i++, mp = mp->next) { for (i = 0, mp = sys.tp; mp; i++, mp = mp->next) {
...@@ -1008,6 +1213,7 @@ void clear_counters(struct thread_data *t, struct core_data *c, struct pkg_data ...@@ -1008,6 +1213,7 @@ void clear_counters(struct thread_data *t, struct core_data *c, struct pkg_data
c->c3 = 0; c->c3 = 0;
c->c6 = 0; c->c6 = 0;
c->c7 = 0; c->c7 = 0;
c->mc6_us = 0;
c->core_temp_c = 0; c->core_temp_c = 0;
p->pkg_wtd_core_c0 = 0; p->pkg_wtd_core_c0 = 0;
...@@ -1016,11 +1222,11 @@ void clear_counters(struct thread_data *t, struct core_data *c, struct pkg_data ...@@ -1016,11 +1222,11 @@ void clear_counters(struct thread_data *t, struct core_data *c, struct pkg_data
p->pkg_both_core_gfxe_c0 = 0; p->pkg_both_core_gfxe_c0 = 0;
p->pc2 = 0; p->pc2 = 0;
if (do_pc3) if (DO_BIC(BIC_Pkgpc3))
p->pc3 = 0; p->pc3 = 0;
if (do_pc6) if (DO_BIC(BIC_Pkgpc6))
p->pc6 = 0; p->pc6 = 0;
if (do_pc7) if (DO_BIC(BIC_Pkgpc7))
p->pc7 = 0; p->pc7 = 0;
p->pc8 = 0; p->pc8 = 0;
p->pc9 = 0; p->pc9 = 0;
...@@ -1036,7 +1242,6 @@ void clear_counters(struct thread_data *t, struct core_data *c, struct pkg_data ...@@ -1036,7 +1242,6 @@ void clear_counters(struct thread_data *t, struct core_data *c, struct pkg_data
p->gfx_rc6_ms = 0; p->gfx_rc6_ms = 0;
p->gfx_mhz = 0; p->gfx_mhz = 0;
for (i = 0, mp = sys.tp; mp; i++, mp = mp->next) for (i = 0, mp = sys.tp; mp; i++, mp = mp->next)
t->counter[i] = 0; t->counter[i] = 0;
...@@ -1073,6 +1278,7 @@ int sum_counters(struct thread_data *t, struct core_data *c, ...@@ -1073,6 +1278,7 @@ int sum_counters(struct thread_data *t, struct core_data *c,
average.cores.c3 += c->c3; average.cores.c3 += c->c3;
average.cores.c6 += c->c6; average.cores.c6 += c->c6;
average.cores.c7 += c->c7; average.cores.c7 += c->c7;
average.cores.mc6_us += c->mc6_us;
average.cores.core_temp_c = MAX(average.cores.core_temp_c, c->core_temp_c); average.cores.core_temp_c = MAX(average.cores.core_temp_c, c->core_temp_c);
...@@ -1094,11 +1300,11 @@ int sum_counters(struct thread_data *t, struct core_data *c, ...@@ -1094,11 +1300,11 @@ int sum_counters(struct thread_data *t, struct core_data *c,
} }
average.packages.pc2 += p->pc2; average.packages.pc2 += p->pc2;
if (do_pc3) if (DO_BIC(BIC_Pkgpc3))
average.packages.pc3 += p->pc3; average.packages.pc3 += p->pc3;
if (do_pc6) if (DO_BIC(BIC_Pkgpc6))
average.packages.pc6 += p->pc6; average.packages.pc6 += p->pc6;
if (do_pc7) if (DO_BIC(BIC_Pkgpc7))
average.packages.pc7 += p->pc7; average.packages.pc7 += p->pc7;
average.packages.pc8 += p->pc8; average.packages.pc8 += p->pc8;
average.packages.pc9 += p->pc9; average.packages.pc9 += p->pc9;
...@@ -1143,9 +1349,13 @@ void compute_average(struct thread_data *t, struct core_data *c, ...@@ -1143,9 +1349,13 @@ void compute_average(struct thread_data *t, struct core_data *c,
average.threads.mperf /= topo.num_cpus; average.threads.mperf /= topo.num_cpus;
average.threads.c1 /= topo.num_cpus; average.threads.c1 /= topo.num_cpus;
if (average.threads.irq_count > 9999999)
sums_need_wide_columns = 1;
average.cores.c3 /= topo.num_cores; average.cores.c3 /= topo.num_cores;
average.cores.c6 /= topo.num_cores; average.cores.c6 /= topo.num_cores;
average.cores.c7 /= topo.num_cores; average.cores.c7 /= topo.num_cores;
average.cores.mc6_us /= topo.num_cores;
if (do_skl_residency) { if (do_skl_residency) {
average.packages.pkg_wtd_core_c0 /= topo.num_packages; average.packages.pkg_wtd_core_c0 /= topo.num_packages;
...@@ -1155,11 +1365,11 @@ void compute_average(struct thread_data *t, struct core_data *c, ...@@ -1155,11 +1365,11 @@ void compute_average(struct thread_data *t, struct core_data *c,
} }
average.packages.pc2 /= topo.num_packages; average.packages.pc2 /= topo.num_packages;
if (do_pc3) if (DO_BIC(BIC_Pkgpc3))
average.packages.pc3 /= topo.num_packages; average.packages.pc3 /= topo.num_packages;
if (do_pc6) if (DO_BIC(BIC_Pkgpc6))
average.packages.pc6 /= topo.num_packages; average.packages.pc6 /= topo.num_packages;
if (do_pc7) if (DO_BIC(BIC_Pkgpc7))
average.packages.pc7 /= topo.num_packages; average.packages.pc7 /= topo.num_packages;
average.packages.pc8 /= topo.num_packages; average.packages.pc8 /= topo.num_packages;
...@@ -1169,16 +1379,29 @@ void compute_average(struct thread_data *t, struct core_data *c, ...@@ -1169,16 +1379,29 @@ void compute_average(struct thread_data *t, struct core_data *c,
for (i = 0, mp = sys.tp; mp; i++, mp = mp->next) { for (i = 0, mp = sys.tp; mp; i++, mp = mp->next) {
if (mp->format == FORMAT_RAW) if (mp->format == FORMAT_RAW)
continue; continue;
if (mp->type == COUNTER_ITEMS) {
if (average.threads.counter[i] > 9999999)
sums_need_wide_columns = 1;
continue;
}
average.threads.counter[i] /= topo.num_cpus; average.threads.counter[i] /= topo.num_cpus;
} }
for (i = 0, mp = sys.cp; mp; i++, mp = mp->next) { for (i = 0, mp = sys.cp; mp; i++, mp = mp->next) {
if (mp->format == FORMAT_RAW) if (mp->format == FORMAT_RAW)
continue; continue;
if (mp->type == COUNTER_ITEMS) {
if (average.cores.counter[i] > 9999999)
sums_need_wide_columns = 1;
}
average.cores.counter[i] /= topo.num_cores; average.cores.counter[i] /= topo.num_cores;
} }
for (i = 0, mp = sys.pp; mp; i++, mp = mp->next) { for (i = 0, mp = sys.pp; mp; i++, mp = mp->next) {
if (mp->format == FORMAT_RAW) if (mp->format == FORMAT_RAW)
continue; continue;
if (mp->type == COUNTER_ITEMS) {
if (average.packages.counter[i] > 9999999)
sums_need_wide_columns = 1;
}
average.packages.counter[i] /= topo.num_packages; average.packages.counter[i] /= topo.num_packages;
} }
} }
...@@ -1192,6 +1415,60 @@ static unsigned long long rdtsc(void) ...@@ -1192,6 +1415,60 @@ static unsigned long long rdtsc(void)
return low | ((unsigned long long)high) << 32; return low | ((unsigned long long)high) << 32;
} }
/*
* Open a file, and exit on failure
*/
FILE *fopen_or_die(const char *path, const char *mode)
{
FILE *filep = fopen(path, mode);
if (!filep)
err(1, "%s: open failed", path);
return filep;
}
/*
* snapshot_sysfs_counter()
*
* return snapshot of given counter
*/
unsigned long long snapshot_sysfs_counter(char *path)
{
FILE *fp;
int retval;
unsigned long long counter;
fp = fopen_or_die(path, "r");
retval = fscanf(fp, "%lld", &counter);
if (retval != 1)
err(1, "snapshot_sysfs_counter(%s)", path);
fclose(fp);
return counter;
}
int get_mp(int cpu, struct msr_counter *mp, unsigned long long *counterp)
{
if (mp->msr_num != 0) {
if (get_msr(cpu, mp->msr_num, counterp))
return -1;
} else {
char path[128];
if (mp->flags & SYSFS_PERCPU) {
sprintf(path, "/sys/devices/system/cpu/cpu%d/%s",
cpu, mp->path);
*counterp = snapshot_sysfs_counter(path);
} else {
*counterp = snapshot_sysfs_counter(mp->path);
}
}
return 0;
}
/* /*
* get_counters(...) * get_counters(...)
* migrate to cpu * migrate to cpu
...@@ -1213,7 +1490,7 @@ int get_counters(struct thread_data *t, struct core_data *c, struct pkg_data *p) ...@@ -1213,7 +1490,7 @@ int get_counters(struct thread_data *t, struct core_data *c, struct pkg_data *p)
retry: retry:
t->tsc = rdtsc(); /* we are running on local CPU of interest */ t->tsc = rdtsc(); /* we are running on local CPU of interest */
if (has_aperf) { if (DO_BIC(BIC_Avg_MHz) || DO_BIC(BIC_Busy) || DO_BIC(BIC_Bzy_MHz)) {
unsigned long long tsc_before, tsc_between, tsc_after, aperf_time, mperf_time; unsigned long long tsc_before, tsc_between, tsc_after, aperf_time, mperf_time;
/* /*
...@@ -1269,35 +1546,33 @@ int get_counters(struct thread_data *t, struct core_data *c, struct pkg_data *p) ...@@ -1269,35 +1546,33 @@ int get_counters(struct thread_data *t, struct core_data *c, struct pkg_data *p)
t->mperf = t->mperf * aperf_mperf_multiplier; t->mperf = t->mperf * aperf_mperf_multiplier;
} }
if (do_irq) if (DO_BIC(BIC_IRQ))
t->irq_count = irqs_per_cpu[cpu]; t->irq_count = irqs_per_cpu[cpu];
if (do_smi) { if (DO_BIC(BIC_SMI)) {
if (get_msr(cpu, MSR_SMI_COUNT, &msr)) if (get_msr(cpu, MSR_SMI_COUNT, &msr))
return -5; return -5;
t->smi_count = msr & 0xFFFFFFFF; t->smi_count = msr & 0xFFFFFFFF;
} }
if (DO_BIC(BIC_CPU_c1) && use_c1_residency_msr) {
if (use_c1_residency_msr) {
if (get_msr(cpu, MSR_CORE_C1_RES, &t->c1)) if (get_msr(cpu, MSR_CORE_C1_RES, &t->c1))
return -6; return -6;
} }
for (i = 0, mp = sys.tp; mp; i++, mp = mp->next) { for (i = 0, mp = sys.tp; mp; i++, mp = mp->next) {
if (get_msr(cpu, mp->msr_num, &t->counter[i])) if (get_mp(cpu, mp, &t->counter[i]))
return -10; return -10;
} }
/* collect core counters only for 1st thread in core */ /* collect core counters only for 1st thread in core */
if (!(t->flags & CPU_IS_FIRST_THREAD_IN_CORE)) if (!(t->flags & CPU_IS_FIRST_THREAD_IN_CORE))
return 0; return 0;
if (do_nhm_cstates && !do_slm_cstates && !do_knl_cstates) { if (DO_BIC(BIC_CPU_c3) && !do_slm_cstates && !do_knl_cstates) {
if (get_msr(cpu, MSR_CORE_C3_RESIDENCY, &c->c3)) if (get_msr(cpu, MSR_CORE_C3_RESIDENCY, &c->c3))
return -6; return -6;
} }
if (do_nhm_cstates && !do_knl_cstates) { if (DO_BIC(BIC_CPU_c6) && !do_knl_cstates) {
if (get_msr(cpu, MSR_CORE_C6_RESIDENCY, &c->c6)) if (get_msr(cpu, MSR_CORE_C6_RESIDENCY, &c->c6))
return -7; return -7;
} else if (do_knl_cstates) { } else if (do_knl_cstates) {
...@@ -1305,18 +1580,22 @@ int get_counters(struct thread_data *t, struct core_data *c, struct pkg_data *p) ...@@ -1305,18 +1580,22 @@ int get_counters(struct thread_data *t, struct core_data *c, struct pkg_data *p)
return -7; return -7;
} }
if (do_snb_cstates) if (DO_BIC(BIC_CPU_c7))
if (get_msr(cpu, MSR_CORE_C7_RESIDENCY, &c->c7)) if (get_msr(cpu, MSR_CORE_C7_RESIDENCY, &c->c7))
return -8; return -8;
if (do_dts) { if (DO_BIC(BIC_Mod_c6))
if (get_msr(cpu, MSR_MODULE_C6_RES_MS, &c->mc6_us))
return -8;
if (DO_BIC(BIC_CoreTmp)) {
if (get_msr(cpu, MSR_IA32_THERM_STATUS, &msr)) if (get_msr(cpu, MSR_IA32_THERM_STATUS, &msr))
return -9; return -9;
c->core_temp_c = tcc_activation_temp - ((msr >> 16) & 0x7F); c->core_temp_c = tcc_activation_temp - ((msr >> 16) & 0x7F);
} }
for (i = 0, mp = sys.cp; mp; i++, mp = mp->next) { for (i = 0, mp = sys.cp; mp; i++, mp = mp->next) {
if (get_msr(cpu, mp->msr_num, &c->counter[i])) if (get_mp(cpu, mp, &c->counter[i]))
return -10; return -10;
} }
...@@ -1334,26 +1613,35 @@ int get_counters(struct thread_data *t, struct core_data *c, struct pkg_data *p) ...@@ -1334,26 +1613,35 @@ int get_counters(struct thread_data *t, struct core_data *c, struct pkg_data *p)
if (get_msr(cpu, MSR_PKG_BOTH_CORE_GFXE_C0_RES, &p->pkg_both_core_gfxe_c0)) if (get_msr(cpu, MSR_PKG_BOTH_CORE_GFXE_C0_RES, &p->pkg_both_core_gfxe_c0))
return -13; return -13;
} }
if (do_pc3) if (DO_BIC(BIC_Pkgpc3))
if (get_msr(cpu, MSR_PKG_C3_RESIDENCY, &p->pc3)) if (get_msr(cpu, MSR_PKG_C3_RESIDENCY, &p->pc3))
return -9; return -9;
if (do_pc6) if (DO_BIC(BIC_Pkgpc6)) {
if (do_slm_cstates) {
if (get_msr(cpu, MSR_ATOM_PKG_C6_RESIDENCY, &p->pc6))
return -10;
} else {
if (get_msr(cpu, MSR_PKG_C6_RESIDENCY, &p->pc6)) if (get_msr(cpu, MSR_PKG_C6_RESIDENCY, &p->pc6))
return -10; return -10;
if (do_pc2) }
}
if (DO_BIC(BIC_Pkgpc2))
if (get_msr(cpu, MSR_PKG_C2_RESIDENCY, &p->pc2)) if (get_msr(cpu, MSR_PKG_C2_RESIDENCY, &p->pc2))
return -11; return -11;
if (do_pc7) if (DO_BIC(BIC_Pkgpc7))
if (get_msr(cpu, MSR_PKG_C7_RESIDENCY, &p->pc7)) if (get_msr(cpu, MSR_PKG_C7_RESIDENCY, &p->pc7))
return -12; return -12;
if (do_c8_c9_c10) { if (DO_BIC(BIC_Pkgpc8))
if (get_msr(cpu, MSR_PKG_C8_RESIDENCY, &p->pc8)) if (get_msr(cpu, MSR_PKG_C8_RESIDENCY, &p->pc8))
return -13; return -13;
if (DO_BIC(BIC_Pkgpc9))
if (get_msr(cpu, MSR_PKG_C9_RESIDENCY, &p->pc9)) if (get_msr(cpu, MSR_PKG_C9_RESIDENCY, &p->pc9))
return -13; return -13;
if (DO_BIC(BIC_Pkgpc10))
if (get_msr(cpu, MSR_PKG_C10_RESIDENCY, &p->pc10)) if (get_msr(cpu, MSR_PKG_C10_RESIDENCY, &p->pc10))
return -13; return -13;
}
if (do_rapl & RAPL_PKG) { if (do_rapl & RAPL_PKG) {
if (get_msr(cpu, MSR_PKG_ENERGY_STATUS, &msr)) if (get_msr(cpu, MSR_PKG_ENERGY_STATUS, &msr))
return -13; return -13;
...@@ -1384,20 +1672,20 @@ int get_counters(struct thread_data *t, struct core_data *c, struct pkg_data *p) ...@@ -1384,20 +1672,20 @@ int get_counters(struct thread_data *t, struct core_data *c, struct pkg_data *p)
return -16; return -16;
p->rapl_dram_perf_status = msr & 0xFFFFFFFF; p->rapl_dram_perf_status = msr & 0xFFFFFFFF;
} }
if (do_ptm) { if (DO_BIC(BIC_PkgTmp)) {
if (get_msr(cpu, MSR_IA32_PACKAGE_THERM_STATUS, &msr)) if (get_msr(cpu, MSR_IA32_PACKAGE_THERM_STATUS, &msr))
return -17; return -17;
p->pkg_temp_c = tcc_activation_temp - ((msr >> 16) & 0x7F); p->pkg_temp_c = tcc_activation_temp - ((msr >> 16) & 0x7F);
} }
if (do_gfx_rc6_ms) if (DO_BIC(BIC_GFX_rc6))
p->gfx_rc6_ms = gfx_cur_rc6_ms; p->gfx_rc6_ms = gfx_cur_rc6_ms;
if (do_gfx_mhz) if (DO_BIC(BIC_GFXMHz))
p->gfx_mhz = gfx_cur_mhz; p->gfx_mhz = gfx_cur_mhz;
for (i = 0, mp = sys.pp; mp; i++, mp = mp->next) { for (i = 0, mp = sys.pp; mp; i++, mp = mp->next) {
if (get_msr(cpu, mp->msr_num, &p->counter[i])) if (get_mp(cpu, mp, &p->counter[i]))
return -10; return -10;
} }
...@@ -1433,8 +1721,8 @@ char *pkg_cstate_limit_strings[] = { "reserved", "unknown", "pc0", "pc1", "pc2", ...@@ -1433,8 +1721,8 @@ char *pkg_cstate_limit_strings[] = { "reserved", "unknown", "pc0", "pc1", "pc2",
int nhm_pkg_cstate_limits[16] = {PCL__0, PCL__1, PCL__3, PCL__6, PCL__7, PCLRSV, PCLRSV, PCLUNL, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV}; int nhm_pkg_cstate_limits[16] = {PCL__0, PCL__1, PCL__3, PCL__6, PCL__7, PCLRSV, PCLRSV, PCLUNL, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV};
int snb_pkg_cstate_limits[16] = {PCL__0, PCL__2, PCL_6N, PCL_6R, PCL__7, PCL_7S, PCLRSV, PCLUNL, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV}; int snb_pkg_cstate_limits[16] = {PCL__0, PCL__2, PCL_6N, PCL_6R, PCL__7, PCL_7S, PCLRSV, PCLUNL, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV};
int hsw_pkg_cstate_limits[16] = {PCL__0, PCL__2, PCL__3, PCL__6, PCL__7, PCL_7S, PCL__8, PCL__9, PCLUNL, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV}; int hsw_pkg_cstate_limits[16] = {PCL__0, PCL__2, PCL__3, PCL__6, PCL__7, PCL_7S, PCL__8, PCL__9, PCLUNL, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV};
int slv_pkg_cstate_limits[16] = {PCL__0, PCL__1, PCLRSV, PCLRSV, PCL__4, PCLRSV, PCL__6, PCL__7, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV}; int slv_pkg_cstate_limits[16] = {PCL__0, PCL__1, PCLRSV, PCLRSV, PCL__4, PCLRSV, PCL__6, PCL__7, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCL__6, PCL__7};
int amt_pkg_cstate_limits[16] = {PCL__0, PCL__1, PCL__2, PCLRSV, PCLRSV, PCLRSV, PCL__6, PCL__7, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV}; int amt_pkg_cstate_limits[16] = {PCLUNL, PCL__1, PCL__2, PCLRSV, PCLRSV, PCLRSV, PCL__6, PCL__7, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV};
int phi_pkg_cstate_limits[16] = {PCL__0, PCL__2, PCL_6N, PCL_6R, PCLRSV, PCLRSV, PCLRSV, PCLUNL, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV}; int phi_pkg_cstate_limits[16] = {PCL__0, PCL__2, PCL_6N, PCL_6R, PCLRSV, PCLRSV, PCLRSV, PCLUNL, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV};
int bxt_pkg_cstate_limits[16] = {PCL__0, PCL__2, PCLUNL, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV}; int bxt_pkg_cstate_limits[16] = {PCL__0, PCL__2, PCLUNL, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV};
int skx_pkg_cstate_limits[16] = {PCL__0, PCL__2, PCL_6N, PCL_6R, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLUNL, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV}; int skx_pkg_cstate_limits[16] = {PCL__0, PCL__2, PCL_6N, PCL_6R, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLUNL, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV};
...@@ -1457,11 +1745,11 @@ dump_nhm_platform_info(void) ...@@ -1457,11 +1745,11 @@ dump_nhm_platform_info(void)
fprintf(outf, "cpu%d: MSR_PLATFORM_INFO: 0x%08llx\n", base_cpu, msr); fprintf(outf, "cpu%d: MSR_PLATFORM_INFO: 0x%08llx\n", base_cpu, msr);
ratio = (msr >> 40) & 0xFF; ratio = (msr >> 40) & 0xFF;
fprintf(outf, "%d * %.0f = %.0f MHz max efficiency frequency\n", fprintf(outf, "%d * %.1f = %.1f MHz max efficiency frequency\n",
ratio, bclk, ratio * bclk); ratio, bclk, ratio * bclk);
ratio = (msr >> 8) & 0xFF; ratio = (msr >> 8) & 0xFF;
fprintf(outf, "%d * %.0f = %.0f MHz base frequency\n", fprintf(outf, "%d * %.1f = %.1f MHz base frequency\n",
ratio, bclk, ratio * bclk); ratio, bclk, ratio * bclk);
get_msr(base_cpu, MSR_IA32_POWER_CTL, &msr); get_msr(base_cpu, MSR_IA32_POWER_CTL, &msr);
...@@ -1483,12 +1771,12 @@ dump_hsw_turbo_ratio_limits(void) ...@@ -1483,12 +1771,12 @@ dump_hsw_turbo_ratio_limits(void)
ratio = (msr >> 8) & 0xFF; ratio = (msr >> 8) & 0xFF;
if (ratio) if (ratio)
fprintf(outf, "%d * %.0f = %.0f MHz max turbo 18 active cores\n", fprintf(outf, "%d * %.1f = %.1f MHz max turbo 18 active cores\n",
ratio, bclk, ratio * bclk); ratio, bclk, ratio * bclk);
ratio = (msr >> 0) & 0xFF; ratio = (msr >> 0) & 0xFF;
if (ratio) if (ratio)
fprintf(outf, "%d * %.0f = %.0f MHz max turbo 17 active cores\n", fprintf(outf, "%d * %.1f = %.1f MHz max turbo 17 active cores\n",
ratio, bclk, ratio * bclk); ratio, bclk, ratio * bclk);
return; return;
} }
...@@ -1505,98 +1793,174 @@ dump_ivt_turbo_ratio_limits(void) ...@@ -1505,98 +1793,174 @@ dump_ivt_turbo_ratio_limits(void)
ratio = (msr >> 56) & 0xFF; ratio = (msr >> 56) & 0xFF;
if (ratio) if (ratio)
fprintf(outf, "%d * %.0f = %.0f MHz max turbo 16 active cores\n", fprintf(outf, "%d * %.1f = %.1f MHz max turbo 16 active cores\n",
ratio, bclk, ratio * bclk); ratio, bclk, ratio * bclk);
ratio = (msr >> 48) & 0xFF; ratio = (msr >> 48) & 0xFF;
if (ratio) if (ratio)
fprintf(outf, "%d * %.0f = %.0f MHz max turbo 15 active cores\n", fprintf(outf, "%d * %.1f = %.1f MHz max turbo 15 active cores\n",
ratio, bclk, ratio * bclk); ratio, bclk, ratio * bclk);
ratio = (msr >> 40) & 0xFF; ratio = (msr >> 40) & 0xFF;
if (ratio) if (ratio)
fprintf(outf, "%d * %.0f = %.0f MHz max turbo 14 active cores\n", fprintf(outf, "%d * %.1f = %.1f MHz max turbo 14 active cores\n",
ratio, bclk, ratio * bclk); ratio, bclk, ratio * bclk);
ratio = (msr >> 32) & 0xFF; ratio = (msr >> 32) & 0xFF;
if (ratio) if (ratio)
fprintf(outf, "%d * %.0f = %.0f MHz max turbo 13 active cores\n", fprintf(outf, "%d * %.1f = %.1f MHz max turbo 13 active cores\n",
ratio, bclk, ratio * bclk); ratio, bclk, ratio * bclk);
ratio = (msr >> 24) & 0xFF; ratio = (msr >> 24) & 0xFF;
if (ratio) if (ratio)
fprintf(outf, "%d * %.0f = %.0f MHz max turbo 12 active cores\n", fprintf(outf, "%d * %.1f = %.1f MHz max turbo 12 active cores\n",
ratio, bclk, ratio * bclk); ratio, bclk, ratio * bclk);
ratio = (msr >> 16) & 0xFF; ratio = (msr >> 16) & 0xFF;
if (ratio) if (ratio)
fprintf(outf, "%d * %.0f = %.0f MHz max turbo 11 active cores\n", fprintf(outf, "%d * %.1f = %.1f MHz max turbo 11 active cores\n",
ratio, bclk, ratio * bclk); ratio, bclk, ratio * bclk);
ratio = (msr >> 8) & 0xFF; ratio = (msr >> 8) & 0xFF;
if (ratio) if (ratio)
fprintf(outf, "%d * %.0f = %.0f MHz max turbo 10 active cores\n", fprintf(outf, "%d * %.1f = %.1f MHz max turbo 10 active cores\n",
ratio, bclk, ratio * bclk); ratio, bclk, ratio * bclk);
ratio = (msr >> 0) & 0xFF; ratio = (msr >> 0) & 0xFF;
if (ratio) if (ratio)
fprintf(outf, "%d * %.0f = %.0f MHz max turbo 9 active cores\n", fprintf(outf, "%d * %.1f = %.1f MHz max turbo 9 active cores\n",
ratio, bclk, ratio * bclk); ratio, bclk, ratio * bclk);
return; return;
} }
int has_turbo_ratio_group_limits(int family, int model)
{
if (!genuine_intel)
return 0;
switch (model) {
case INTEL_FAM6_ATOM_GOLDMONT:
case INTEL_FAM6_SKYLAKE_X:
case INTEL_FAM6_ATOM_DENVERTON:
return 1;
}
return 0;
}
static void static void
dump_nhm_turbo_ratio_limits(void) dump_turbo_ratio_limits(int family, int model)
{ {
unsigned long long msr; unsigned long long msr, core_counts;
unsigned int ratio; unsigned int ratio, group_size;
get_msr(base_cpu, MSR_TURBO_RATIO_LIMIT, &msr); get_msr(base_cpu, MSR_TURBO_RATIO_LIMIT, &msr);
fprintf(outf, "cpu%d: MSR_TURBO_RATIO_LIMIT: 0x%08llx\n", base_cpu, msr); fprintf(outf, "cpu%d: MSR_TURBO_RATIO_LIMIT: 0x%08llx\n", base_cpu, msr);
if (has_turbo_ratio_group_limits(family, model)) {
get_msr(base_cpu, MSR_TURBO_RATIO_LIMIT1, &core_counts);
fprintf(outf, "cpu%d: MSR_TURBO_RATIO_LIMIT1: 0x%08llx\n", base_cpu, core_counts);
} else {
core_counts = 0x0807060504030201;
}
ratio = (msr >> 56) & 0xFF; ratio = (msr >> 56) & 0xFF;
group_size = (core_counts >> 56) & 0xFF;
if (ratio) if (ratio)
fprintf(outf, "%d * %.0f = %.0f MHz max turbo 8 active cores\n", fprintf(outf, "%d * %.1f = %.1f MHz max turbo %d active cores\n",
ratio, bclk, ratio * bclk); ratio, bclk, ratio * bclk, group_size);
ratio = (msr >> 48) & 0xFF; ratio = (msr >> 48) & 0xFF;
group_size = (core_counts >> 48) & 0xFF;
if (ratio) if (ratio)
fprintf(outf, "%d * %.0f = %.0f MHz max turbo 7 active cores\n", fprintf(outf, "%d * %.1f = %.1f MHz max turbo %d active cores\n",
ratio, bclk, ratio * bclk); ratio, bclk, ratio * bclk, group_size);
ratio = (msr >> 40) & 0xFF; ratio = (msr >> 40) & 0xFF;
group_size = (core_counts >> 40) & 0xFF;
if (ratio) if (ratio)
fprintf(outf, "%d * %.0f = %.0f MHz max turbo 6 active cores\n", fprintf(outf, "%d * %.1f = %.1f MHz max turbo %d active cores\n",
ratio, bclk, ratio * bclk); ratio, bclk, ratio * bclk, group_size);
ratio = (msr >> 32) & 0xFF; ratio = (msr >> 32) & 0xFF;
group_size = (core_counts >> 32) & 0xFF;
if (ratio) if (ratio)
fprintf(outf, "%d * %.0f = %.0f MHz max turbo 5 active cores\n", fprintf(outf, "%d * %.1f = %.1f MHz max turbo %d active cores\n",
ratio, bclk, ratio * bclk); ratio, bclk, ratio * bclk, group_size);
ratio = (msr >> 24) & 0xFF; ratio = (msr >> 24) & 0xFF;
group_size = (core_counts >> 24) & 0xFF;
if (ratio) if (ratio)
fprintf(outf, "%d * %.0f = %.0f MHz max turbo 4 active cores\n", fprintf(outf, "%d * %.1f = %.1f MHz max turbo %d active cores\n",
ratio, bclk, ratio * bclk); ratio, bclk, ratio * bclk, group_size);
ratio = (msr >> 16) & 0xFF; ratio = (msr >> 16) & 0xFF;
group_size = (core_counts >> 16) & 0xFF;
if (ratio) if (ratio)
fprintf(outf, "%d * %.0f = %.0f MHz max turbo 3 active cores\n", fprintf(outf, "%d * %.1f = %.1f MHz max turbo %d active cores\n",
ratio, bclk, ratio * bclk); ratio, bclk, ratio * bclk, group_size);
ratio = (msr >> 8) & 0xFF; ratio = (msr >> 8) & 0xFF;
group_size = (core_counts >> 8) & 0xFF;
if (ratio) if (ratio)
fprintf(outf, "%d * %.0f = %.0f MHz max turbo 2 active cores\n", fprintf(outf, "%d * %.1f = %.1f MHz max turbo %d active cores\n",
ratio, bclk, ratio * bclk); ratio, bclk, ratio * bclk, group_size);
ratio = (msr >> 0) & 0xFF; ratio = (msr >> 0) & 0xFF;
group_size = (core_counts >> 0) & 0xFF;
if (ratio) if (ratio)
fprintf(outf, "%d * %.0f = %.0f MHz max turbo 1 active cores\n", fprintf(outf, "%d * %.1f = %.1f MHz max turbo %d active cores\n",
ratio, bclk, ratio * bclk); ratio, bclk, ratio * bclk, group_size);
return; return;
} }
static void
dump_atom_turbo_ratio_limits(void)
{
unsigned long long msr;
unsigned int ratio;
get_msr(base_cpu, MSR_ATOM_CORE_RATIOS, &msr);
fprintf(outf, "cpu%d: MSR_ATOM_CORE_RATIOS: 0x%08llx\n", base_cpu, msr & 0xFFFFFFFF);
ratio = (msr >> 0) & 0x3F;
if (ratio)
fprintf(outf, "%d * %.1f = %.1f MHz minimum operating frequency\n",
ratio, bclk, ratio * bclk);
ratio = (msr >> 8) & 0x3F;
if (ratio)
fprintf(outf, "%d * %.1f = %.1f MHz low frequency mode (LFM)\n",
ratio, bclk, ratio * bclk);
ratio = (msr >> 16) & 0x3F;
if (ratio)
fprintf(outf, "%d * %.1f = %.1f MHz base frequency\n",
ratio, bclk, ratio * bclk);
get_msr(base_cpu, MSR_ATOM_CORE_TURBO_RATIOS, &msr);
fprintf(outf, "cpu%d: MSR_ATOM_CORE_TURBO_RATIOS: 0x%08llx\n", base_cpu, msr & 0xFFFFFFFF);
ratio = (msr >> 24) & 0x3F;
if (ratio)
fprintf(outf, "%d * %.1f = %.1f MHz max turbo 4 active cores\n",
ratio, bclk, ratio * bclk);
ratio = (msr >> 16) & 0x3F;
if (ratio)
fprintf(outf, "%d * %.1f = %.1f MHz max turbo 3 active cores\n",
ratio, bclk, ratio * bclk);
ratio = (msr >> 8) & 0x3F;
if (ratio)
fprintf(outf, "%d * %.1f = %.1f MHz max turbo 2 active cores\n",
ratio, bclk, ratio * bclk);
ratio = (msr >> 0) & 0x3F;
if (ratio)
fprintf(outf, "%d * %.1f = %.1f MHz max turbo 1 active core\n",
ratio, bclk, ratio * bclk);
}
static void static void
dump_knl_turbo_ratio_limits(void) dump_knl_turbo_ratio_limits(void)
{ {
...@@ -1652,7 +2016,7 @@ dump_knl_turbo_ratio_limits(void) ...@@ -1652,7 +2016,7 @@ dump_knl_turbo_ratio_limits(void)
for (i = buckets_no - 1; i >= 0; i--) for (i = buckets_no - 1; i >= 0; i--)
if (i > 0 ? ratio[i] != ratio[i - 1] : 1) if (i > 0 ? ratio[i] != ratio[i - 1] : 1)
fprintf(outf, fprintf(outf,
"%d * %.0f = %.0f MHz max turbo %d active cores\n", "%d * %.1f = %.1f MHz max turbo %d active cores\n",
ratio[i], bclk, ratio[i] * bclk, cores[i]); ratio[i], bclk, ratio[i] * bclk, cores[i]);
} }
...@@ -1661,12 +2025,12 @@ dump_nhm_cst_cfg(void) ...@@ -1661,12 +2025,12 @@ dump_nhm_cst_cfg(void)
{ {
unsigned long long msr; unsigned long long msr;
get_msr(base_cpu, MSR_NHM_SNB_PKG_CST_CFG_CTL, &msr); get_msr(base_cpu, MSR_PKG_CST_CONFIG_CONTROL, &msr);
#define SNB_C1_AUTO_UNDEMOTE (1UL << 27) #define SNB_C1_AUTO_UNDEMOTE (1UL << 27)
#define SNB_C3_AUTO_UNDEMOTE (1UL << 28) #define SNB_C3_AUTO_UNDEMOTE (1UL << 28)
fprintf(outf, "cpu%d: MSR_NHM_SNB_PKG_CST_CFG_CTL: 0x%08llx", base_cpu, msr); fprintf(outf, "cpu%d: MSR_PKG_CST_CONFIG_CONTROL: 0x%08llx", base_cpu, msr);
fprintf(outf, " (%s%s%s%s%slocked: pkg-cstate-limit=%d: %s)\n", fprintf(outf, " (%s%s%s%s%slocked: pkg-cstate-limit=%d: %s)\n",
(msr & SNB_C3_AUTO_UNDEMOTE) ? "UNdemote-C3, " : "", (msr & SNB_C3_AUTO_UNDEMOTE) ? "UNdemote-C3, " : "",
...@@ -1810,16 +2174,6 @@ void free_all_buffers(void) ...@@ -1810,16 +2174,6 @@ void free_all_buffers(void)
free(irqs_per_cpu); free(irqs_per_cpu);
} }
/*
* Open a file, and exit on failure
*/
FILE *fopen_or_die(const char *path, const char *mode)
{
FILE *filep = fopen(path, mode);
if (!filep)
err(1, "%s: open failed", path);
return filep;
}
/* /*
* Parse a file containing a single int. * Parse a file containing a single int.
...@@ -2148,13 +2502,14 @@ int snapshot_gfx_mhz(void) ...@@ -2148,13 +2502,14 @@ int snapshot_gfx_mhz(void)
*/ */
int snapshot_proc_sysfs_files(void) int snapshot_proc_sysfs_files(void)
{ {
if (DO_BIC(BIC_IRQ))
if (snapshot_proc_interrupts()) if (snapshot_proc_interrupts())
return 1; return 1;
if (do_gfx_rc6_ms) if (DO_BIC(BIC_GFX_rc6))
snapshot_gfx_rc6_ms(); snapshot_gfx_rc6_ms();
if (do_gfx_mhz) if (DO_BIC(BIC_GFXMHz))
snapshot_gfx_mhz(); snapshot_gfx_mhz();
return 0; return 0;
...@@ -2283,7 +2638,9 @@ void check_permissions() ...@@ -2283,7 +2638,9 @@ void check_permissions()
* MSR_SMI_COUNT 0x00000034 * MSR_SMI_COUNT 0x00000034
* *
* MSR_PLATFORM_INFO 0x000000ce * MSR_PLATFORM_INFO 0x000000ce
* MSR_NHM_SNB_PKG_CST_CFG_CTL 0x000000e2 * MSR_PKG_CST_CONFIG_CONTROL 0x000000e2
*
* MSR_MISC_PWR_MGMT 0x000001aa
* *
* MSR_PKG_C3_RESIDENCY 0x000003f8 * MSR_PKG_C3_RESIDENCY 0x000003f8
* MSR_PKG_C6_RESIDENCY 0x000003f9 * MSR_PKG_C6_RESIDENCY 0x000003f9
...@@ -2291,7 +2648,8 @@ void check_permissions() ...@@ -2291,7 +2648,8 @@ void check_permissions()
* MSR_CORE_C6_RESIDENCY 0x000003fd * MSR_CORE_C6_RESIDENCY 0x000003fd
* *
* Side effect: * Side effect:
* sets global pkg_cstate_limit to decode MSR_NHM_SNB_PKG_CST_CFG_CTL * sets global pkg_cstate_limit to decode MSR_PKG_CST_CONFIG_CONTROL
* sets has_misc_feature_control
*/ */
int probe_nhm_msrs(unsigned int family, unsigned int model) int probe_nhm_msrs(unsigned int family, unsigned int model)
{ {
...@@ -2322,6 +2680,7 @@ int probe_nhm_msrs(unsigned int family, unsigned int model) ...@@ -2322,6 +2680,7 @@ int probe_nhm_msrs(unsigned int family, unsigned int model)
case INTEL_FAM6_IVYBRIDGE: /* IVB */ case INTEL_FAM6_IVYBRIDGE: /* IVB */
case INTEL_FAM6_IVYBRIDGE_X: /* IVB Xeon */ case INTEL_FAM6_IVYBRIDGE_X: /* IVB Xeon */
pkg_cstate_limits = snb_pkg_cstate_limits; pkg_cstate_limits = snb_pkg_cstate_limits;
has_misc_feature_control = 1;
break; break;
case INTEL_FAM6_HASWELL_CORE: /* HSW */ case INTEL_FAM6_HASWELL_CORE: /* HSW */
case INTEL_FAM6_HASWELL_X: /* HSX */ case INTEL_FAM6_HASWELL_X: /* HSX */
...@@ -2336,29 +2695,34 @@ int probe_nhm_msrs(unsigned int family, unsigned int model) ...@@ -2336,29 +2695,34 @@ int probe_nhm_msrs(unsigned int family, unsigned int model)
case INTEL_FAM6_KABYLAKE_MOBILE: /* KBL */ case INTEL_FAM6_KABYLAKE_MOBILE: /* KBL */
case INTEL_FAM6_KABYLAKE_DESKTOP: /* KBL */ case INTEL_FAM6_KABYLAKE_DESKTOP: /* KBL */
pkg_cstate_limits = hsw_pkg_cstate_limits; pkg_cstate_limits = hsw_pkg_cstate_limits;
has_misc_feature_control = 1;
break; break;
case INTEL_FAM6_SKYLAKE_X: /* SKX */ case INTEL_FAM6_SKYLAKE_X: /* SKX */
pkg_cstate_limits = skx_pkg_cstate_limits; pkg_cstate_limits = skx_pkg_cstate_limits;
has_misc_feature_control = 1;
break; break;
case INTEL_FAM6_ATOM_SILVERMONT1: /* BYT */ case INTEL_FAM6_ATOM_SILVERMONT1: /* BYT */
no_MSR_MISC_PWR_MGMT = 1;
case INTEL_FAM6_ATOM_SILVERMONT2: /* AVN */ case INTEL_FAM6_ATOM_SILVERMONT2: /* AVN */
pkg_cstate_limits = slv_pkg_cstate_limits; pkg_cstate_limits = slv_pkg_cstate_limits;
break; break;
case INTEL_FAM6_ATOM_AIRMONT: /* AMT */ case INTEL_FAM6_ATOM_AIRMONT: /* AMT */
pkg_cstate_limits = amt_pkg_cstate_limits; pkg_cstate_limits = amt_pkg_cstate_limits;
no_MSR_MISC_PWR_MGMT = 1;
break; break;
case INTEL_FAM6_XEON_PHI_KNL: /* PHI */ case INTEL_FAM6_XEON_PHI_KNL: /* PHI */
case INTEL_FAM6_XEON_PHI_KNM: case INTEL_FAM6_XEON_PHI_KNM:
pkg_cstate_limits = phi_pkg_cstate_limits; pkg_cstate_limits = phi_pkg_cstate_limits;
break; break;
case INTEL_FAM6_ATOM_GOLDMONT: /* BXT */ case INTEL_FAM6_ATOM_GOLDMONT: /* BXT */
case INTEL_FAM6_ATOM_GEMINI_LAKE:
case INTEL_FAM6_ATOM_DENVERTON: /* DNV */ case INTEL_FAM6_ATOM_DENVERTON: /* DNV */
pkg_cstate_limits = bxt_pkg_cstate_limits; pkg_cstate_limits = bxt_pkg_cstate_limits;
break; break;
default: default:
return 0; return 0;
} }
get_msr(base_cpu, MSR_NHM_SNB_PKG_CST_CFG_CTL, &msr); get_msr(base_cpu, MSR_PKG_CST_CONFIG_CONTROL, &msr);
pkg_cstate_limit = pkg_cstate_limits[msr & 0xF]; pkg_cstate_limit = pkg_cstate_limits[msr & 0xF];
get_msr(base_cpu, MSR_PLATFORM_INFO, &msr); get_msr(base_cpu, MSR_PLATFORM_INFO, &msr);
...@@ -2368,45 +2732,113 @@ int probe_nhm_msrs(unsigned int family, unsigned int model) ...@@ -2368,45 +2732,113 @@ int probe_nhm_msrs(unsigned int family, unsigned int model)
has_base_hz = 1; has_base_hz = 1;
return 1; return 1;
} }
int has_nhm_turbo_ratio_limit(unsigned int family, unsigned int model) /*
* SLV client has support for unique MSRs:
*
* MSR_CC6_DEMOTION_POLICY_CONFIG
* MSR_MC6_DEMOTION_POLICY_CONFIG
*/
int has_slv_msrs(unsigned int family, unsigned int model)
{ {
switch (model) { if (!genuine_intel)
/* Nehalem compatible, but do not include turbo-ratio limit support */
case INTEL_FAM6_NEHALEM_EX: /* Nehalem-EX Xeon - Beckton */
case INTEL_FAM6_WESTMERE_EX: /* Westmere-EX Xeon - Eagleton */
case INTEL_FAM6_XEON_PHI_KNL: /* PHI - Knights Landing (different MSR definition) */
case INTEL_FAM6_XEON_PHI_KNM:
return 0; return 0;
default:
switch (model) {
case INTEL_FAM6_ATOM_SILVERMONT1:
case INTEL_FAM6_ATOM_MERRIFIELD:
case INTEL_FAM6_ATOM_MOOREFIELD:
return 1; return 1;
} }
return 0;
} }
int has_ivt_turbo_ratio_limit(unsigned int family, unsigned int model) int is_dnv(unsigned int family, unsigned int model)
{ {
if (!genuine_intel)
return 0;
if (family != 6) if (!genuine_intel)
return 0; return 0;
switch (model) { switch (model) {
case INTEL_FAM6_IVYBRIDGE_X: /* IVB Xeon */ case INTEL_FAM6_ATOM_DENVERTON:
case INTEL_FAM6_HASWELL_X: /* HSW Xeon */
return 1; return 1;
default:
return 0;
} }
return 0;
} }
int has_hsw_turbo_ratio_limit(unsigned int family, unsigned int model) int is_bdx(unsigned int family, unsigned int model)
{ {
if (!genuine_intel)
return 0;
if (family != 6) if (!genuine_intel)
return 0; return 0;
switch (model) { switch (model) {
case INTEL_FAM6_HASWELL_X: /* HSW Xeon */ case INTEL_FAM6_BROADWELL_X:
case INTEL_FAM6_BROADWELL_XEON_D:
return 1;
}
return 0;
}
int is_skx(unsigned int family, unsigned int model)
{
if (!genuine_intel)
return 0;
switch (model) {
case INTEL_FAM6_SKYLAKE_X:
return 1;
}
return 0;
}
int has_turbo_ratio_limit(unsigned int family, unsigned int model)
{
if (has_slv_msrs(family, model))
return 0;
switch (model) {
/* Nehalem compatible, but do not include turbo-ratio limit support */
case INTEL_FAM6_NEHALEM_EX: /* Nehalem-EX Xeon - Beckton */
case INTEL_FAM6_WESTMERE_EX: /* Westmere-EX Xeon - Eagleton */
case INTEL_FAM6_XEON_PHI_KNL: /* PHI - Knights Landing (different MSR definition) */
case INTEL_FAM6_XEON_PHI_KNM:
return 0;
default:
return 1;
}
}
int has_atom_turbo_ratio_limit(unsigned int family, unsigned int model)
{
if (has_slv_msrs(family, model))
return 1;
return 0;
}
int has_ivt_turbo_ratio_limit(unsigned int family, unsigned int model)
{
if (!genuine_intel)
return 0;
if (family != 6)
return 0;
switch (model) {
case INTEL_FAM6_IVYBRIDGE_X: /* IVB Xeon */
case INTEL_FAM6_HASWELL_X: /* HSW Xeon */
return 1;
default:
return 0;
}
}
int has_hsw_turbo_ratio_limit(unsigned int family, unsigned int model)
{
if (!genuine_intel)
return 0;
if (family != 6)
return 0;
switch (model) {
case INTEL_FAM6_HASWELL_X: /* HSW Xeon */
return 1; return 1;
default: default:
return 0; return 0;
...@@ -2429,6 +2861,22 @@ int has_knl_turbo_ratio_limit(unsigned int family, unsigned int model) ...@@ -2429,6 +2861,22 @@ int has_knl_turbo_ratio_limit(unsigned int family, unsigned int model)
return 0; return 0;
} }
} }
int has_glm_turbo_ratio_limit(unsigned int family, unsigned int model)
{
if (!genuine_intel)
return 0;
if (family != 6)
return 0;
switch (model) {
case INTEL_FAM6_ATOM_GOLDMONT:
case INTEL_FAM6_SKYLAKE_X:
return 1;
default:
return 0;
}
}
int has_config_tdp(unsigned int family, unsigned int model) int has_config_tdp(unsigned int family, unsigned int model)
{ {
if (!genuine_intel) if (!genuine_intel)
...@@ -2475,8 +2923,11 @@ dump_cstate_pstate_config_info(unsigned int family, unsigned int model) ...@@ -2475,8 +2923,11 @@ dump_cstate_pstate_config_info(unsigned int family, unsigned int model)
if (has_ivt_turbo_ratio_limit(family, model)) if (has_ivt_turbo_ratio_limit(family, model))
dump_ivt_turbo_ratio_limits(); dump_ivt_turbo_ratio_limits();
if (has_nhm_turbo_ratio_limit(family, model)) if (has_turbo_ratio_limit(family, model))
dump_nhm_turbo_ratio_limits(); dump_turbo_ratio_limits(family, model);
if (has_atom_turbo_ratio_limit(family, model))
dump_atom_turbo_ratio_limits();
if (has_knl_turbo_ratio_limit(family, model)) if (has_knl_turbo_ratio_limit(family, model))
dump_knl_turbo_ratio_limits(); dump_knl_turbo_ratio_limits();
...@@ -2487,6 +2938,96 @@ dump_cstate_pstate_config_info(unsigned int family, unsigned int model) ...@@ -2487,6 +2938,96 @@ dump_cstate_pstate_config_info(unsigned int family, unsigned int model)
dump_nhm_cst_cfg(); dump_nhm_cst_cfg();
} }
static void
dump_sysfs_cstate_config(void)
{
char path[64];
char name_buf[16];
char desc[64];
FILE *input;
int state;
char *sp;
if (!DO_BIC(BIC_sysfs))
return;
for (state = 0; state < 10; ++state) {
sprintf(path, "/sys/devices/system/cpu/cpu%d/cpuidle/state%d/name",
base_cpu, state);
input = fopen(path, "r");
if (input == NULL)
continue;
fgets(name_buf, sizeof(name_buf), input);
/* truncate "C1-HSW\n" to "C1", or truncate "C1\n" to "C1" */
sp = strchr(name_buf, '-');
if (!sp)
sp = strchrnul(name_buf, '\n');
*sp = '\0';
fclose(input);
sprintf(path, "/sys/devices/system/cpu/cpu%d/cpuidle/state%d/desc",
base_cpu, state);
input = fopen(path, "r");
if (input == NULL)
continue;
fgets(desc, sizeof(desc), input);
fprintf(outf, "cpu%d: %s: %s", base_cpu, name_buf, desc);
fclose(input);
}
}
static void
dump_sysfs_pstate_config(void)
{
char path[64];
char driver_buf[64];
char governor_buf[64];
FILE *input;
int turbo;
sprintf(path, "/sys/devices/system/cpu/cpu%d/cpufreq/scaling_driver",
base_cpu);
input = fopen(path, "r");
if (input == NULL) {
fprintf(stderr, "NSFOD %s\n", path);
return;
}
fgets(driver_buf, sizeof(driver_buf), input);
fclose(input);
sprintf(path, "/sys/devices/system/cpu/cpu%d/cpufreq/scaling_governor",
base_cpu);
input = fopen(path, "r");
if (input == NULL) {
fprintf(stderr, "NSFOD %s\n", path);
return;
}
fgets(governor_buf, sizeof(governor_buf), input);
fclose(input);
fprintf(outf, "cpu%d: cpufreq driver: %s", base_cpu, driver_buf);
fprintf(outf, "cpu%d: cpufreq governor: %s", base_cpu, governor_buf);
sprintf(path, "/sys/devices/system/cpu/cpufreq/boost");
input = fopen(path, "r");
if (input != NULL) {
fscanf(input, "%d", &turbo);
fprintf(outf, "cpufreq boost: %d\n", turbo);
fclose(input);
}
sprintf(path, "/sys/devices/system/cpu/intel_pstate/no_turbo");
input = fopen(path, "r");
if (input != NULL) {
fscanf(input, "%d", &turbo);
fprintf(outf, "cpufreq intel_pstate no_turbo: %d\n", turbo);
fclose(input);
}
}
/* /*
* print_epb() * print_epb()
...@@ -2790,15 +3331,40 @@ void rapl_probe(unsigned int family, unsigned int model) ...@@ -2790,15 +3331,40 @@ void rapl_probe(unsigned int family, unsigned int model)
case INTEL_FAM6_BROADWELL_CORE: /* BDW */ case INTEL_FAM6_BROADWELL_CORE: /* BDW */
case INTEL_FAM6_BROADWELL_GT3E: /* BDW */ case INTEL_FAM6_BROADWELL_GT3E: /* BDW */
do_rapl = RAPL_PKG | RAPL_CORES | RAPL_CORE_POLICY | RAPL_GFX | RAPL_PKG_POWER_INFO; do_rapl = RAPL_PKG | RAPL_CORES | RAPL_CORE_POLICY | RAPL_GFX | RAPL_PKG_POWER_INFO;
if (rapl_joules) {
BIC_PRESENT(BIC_Pkg_J);
BIC_PRESENT(BIC_Cor_J);
BIC_PRESENT(BIC_GFX_J);
} else {
BIC_PRESENT(BIC_PkgWatt);
BIC_PRESENT(BIC_CorWatt);
BIC_PRESENT(BIC_GFXWatt);
}
break; break;
case INTEL_FAM6_ATOM_GOLDMONT: /* BXT */ case INTEL_FAM6_ATOM_GOLDMONT: /* BXT */
case INTEL_FAM6_ATOM_GEMINI_LAKE:
do_rapl = RAPL_PKG | RAPL_PKG_POWER_INFO; do_rapl = RAPL_PKG | RAPL_PKG_POWER_INFO;
if (rapl_joules)
BIC_PRESENT(BIC_Pkg_J);
else
BIC_PRESENT(BIC_PkgWatt);
break; break;
case INTEL_FAM6_SKYLAKE_MOBILE: /* SKL */ case INTEL_FAM6_SKYLAKE_MOBILE: /* SKL */
case INTEL_FAM6_SKYLAKE_DESKTOP: /* SKL */ case INTEL_FAM6_SKYLAKE_DESKTOP: /* SKL */
case INTEL_FAM6_KABYLAKE_MOBILE: /* KBL */ case INTEL_FAM6_KABYLAKE_MOBILE: /* KBL */
case INTEL_FAM6_KABYLAKE_DESKTOP: /* KBL */ case INTEL_FAM6_KABYLAKE_DESKTOP: /* KBL */
do_rapl = RAPL_PKG | RAPL_DRAM | RAPL_DRAM_PERF_STATUS | RAPL_PKG_PERF_STATUS | RAPL_PKG_POWER_INFO; do_rapl = RAPL_PKG | RAPL_DRAM | RAPL_DRAM_PERF_STATUS | RAPL_PKG_PERF_STATUS | RAPL_PKG_POWER_INFO;
BIC_PRESENT(BIC_PKG__);
BIC_PRESENT(BIC_RAM__);
if (rapl_joules) {
BIC_PRESENT(BIC_Pkg_J);
BIC_PRESENT(BIC_Cor_J);
BIC_PRESENT(BIC_RAM_J);
} else {
BIC_PRESENT(BIC_PkgWatt);
BIC_PRESENT(BIC_CorWatt);
BIC_PRESENT(BIC_RAMWatt);
}
break; break;
case INTEL_FAM6_HASWELL_X: /* HSX */ case INTEL_FAM6_HASWELL_X: /* HSX */
case INTEL_FAM6_BROADWELL_X: /* BDX */ case INTEL_FAM6_BROADWELL_X: /* BDX */
...@@ -2807,17 +3373,55 @@ void rapl_probe(unsigned int family, unsigned int model) ...@@ -2807,17 +3373,55 @@ void rapl_probe(unsigned int family, unsigned int model)
case INTEL_FAM6_XEON_PHI_KNL: /* KNL */ case INTEL_FAM6_XEON_PHI_KNL: /* KNL */
case INTEL_FAM6_XEON_PHI_KNM: case INTEL_FAM6_XEON_PHI_KNM:
do_rapl = RAPL_PKG | RAPL_DRAM | RAPL_DRAM_POWER_INFO | RAPL_DRAM_PERF_STATUS | RAPL_PKG_PERF_STATUS | RAPL_PKG_POWER_INFO; do_rapl = RAPL_PKG | RAPL_DRAM | RAPL_DRAM_POWER_INFO | RAPL_DRAM_PERF_STATUS | RAPL_PKG_PERF_STATUS | RAPL_PKG_POWER_INFO;
BIC_PRESENT(BIC_PKG__);
BIC_PRESENT(BIC_RAM__);
if (rapl_joules) {
BIC_PRESENT(BIC_Pkg_J);
BIC_PRESENT(BIC_RAM_J);
} else {
BIC_PRESENT(BIC_PkgWatt);
BIC_PRESENT(BIC_RAMWatt);
}
break; break;
case INTEL_FAM6_SANDYBRIDGE_X: case INTEL_FAM6_SANDYBRIDGE_X:
case INTEL_FAM6_IVYBRIDGE_X: case INTEL_FAM6_IVYBRIDGE_X:
do_rapl = RAPL_PKG | RAPL_CORES | RAPL_CORE_POLICY | RAPL_DRAM | RAPL_DRAM_POWER_INFO | RAPL_PKG_PERF_STATUS | RAPL_DRAM_PERF_STATUS | RAPL_PKG_POWER_INFO; do_rapl = RAPL_PKG | RAPL_CORES | RAPL_CORE_POLICY | RAPL_DRAM | RAPL_DRAM_POWER_INFO | RAPL_PKG_PERF_STATUS | RAPL_DRAM_PERF_STATUS | RAPL_PKG_POWER_INFO;
BIC_PRESENT(BIC_PKG__);
BIC_PRESENT(BIC_RAM__);
if (rapl_joules) {
BIC_PRESENT(BIC_Pkg_J);
BIC_PRESENT(BIC_Cor_J);
BIC_PRESENT(BIC_RAM_J);
} else {
BIC_PRESENT(BIC_PkgWatt);
BIC_PRESENT(BIC_CorWatt);
BIC_PRESENT(BIC_RAMWatt);
}
break; break;
case INTEL_FAM6_ATOM_SILVERMONT1: /* BYT */ case INTEL_FAM6_ATOM_SILVERMONT1: /* BYT */
case INTEL_FAM6_ATOM_SILVERMONT2: /* AVN */ case INTEL_FAM6_ATOM_SILVERMONT2: /* AVN */
do_rapl = RAPL_PKG | RAPL_CORES; do_rapl = RAPL_PKG | RAPL_CORES;
if (rapl_joules) {
BIC_PRESENT(BIC_Pkg_J);
BIC_PRESENT(BIC_Cor_J);
} else {
BIC_PRESENT(BIC_PkgWatt);
BIC_PRESENT(BIC_CorWatt);
}
break; break;
case INTEL_FAM6_ATOM_DENVERTON: /* DNV */ case INTEL_FAM6_ATOM_DENVERTON: /* DNV */
do_rapl = RAPL_PKG | RAPL_DRAM | RAPL_DRAM_POWER_INFO | RAPL_DRAM_PERF_STATUS | RAPL_PKG_PERF_STATUS | RAPL_PKG_POWER_INFO | RAPL_CORES_ENERGY_STATUS; do_rapl = RAPL_PKG | RAPL_DRAM | RAPL_DRAM_POWER_INFO | RAPL_DRAM_PERF_STATUS | RAPL_PKG_PERF_STATUS | RAPL_PKG_POWER_INFO | RAPL_CORES_ENERGY_STATUS;
BIC_PRESENT(BIC_PKG__);
BIC_PRESENT(BIC_RAM__);
if (rapl_joules) {
BIC_PRESENT(BIC_Pkg_J);
BIC_PRESENT(BIC_Cor_J);
BIC_PRESENT(BIC_RAM_J);
} else {
BIC_PRESENT(BIC_PkgWatt);
BIC_PRESENT(BIC_CorWatt);
BIC_PRESENT(BIC_RAMWatt);
}
break; break;
default: default:
return; return;
...@@ -2844,7 +3448,7 @@ void rapl_probe(unsigned int family, unsigned int model) ...@@ -2844,7 +3448,7 @@ void rapl_probe(unsigned int family, unsigned int model)
tdp = get_tdp(model); tdp = get_tdp(model);
rapl_joule_counter_range = 0xFFFFFFFF * rapl_energy_units / tdp; rapl_joule_counter_range = 0xFFFFFFFF * rapl_energy_units / tdp;
if (debug) if (!quiet)
fprintf(outf, "RAPL: %.0f sec. Joule Counter Range, at %.0f Watts\n", rapl_joule_counter_range, tdp); fprintf(outf, "RAPL: %.0f sec. Joule Counter Range, at %.0f Watts\n", rapl_joule_counter_range, tdp);
return; return;
...@@ -2969,11 +3573,9 @@ int print_rapl(struct thread_data *t, struct core_data *c, struct pkg_data *p) ...@@ -2969,11 +3573,9 @@ int print_rapl(struct thread_data *t, struct core_data *c, struct pkg_data *p)
if (get_msr(cpu, MSR_RAPL_POWER_UNIT, &msr)) if (get_msr(cpu, MSR_RAPL_POWER_UNIT, &msr))
return -1; return -1;
if (debug) { fprintf(outf, "cpu%d: MSR_RAPL_POWER_UNIT: 0x%08llx (%f Watts, %f Joules, %f sec.)\n", cpu, msr,
fprintf(outf, "cpu%d: MSR_RAPL_POWER_UNIT: 0x%08llx "
"(%f Watts, %f Joules, %f sec.)\n", cpu, msr,
rapl_power_units, rapl_energy_units, rapl_time_units); rapl_power_units, rapl_energy_units, rapl_time_units);
}
if (do_rapl & RAPL_PKG_POWER_INFO) { if (do_rapl & RAPL_PKG_POWER_INFO) {
if (get_msr(cpu, MSR_PKG_POWER_INFO, &msr)) if (get_msr(cpu, MSR_PKG_POWER_INFO, &msr))
...@@ -2994,7 +3596,7 @@ int print_rapl(struct thread_data *t, struct core_data *c, struct pkg_data *p) ...@@ -2994,7 +3596,7 @@ int print_rapl(struct thread_data *t, struct core_data *c, struct pkg_data *p)
return -9; return -9;
fprintf(outf, "cpu%d: MSR_PKG_POWER_LIMIT: 0x%08llx (%slocked)\n", fprintf(outf, "cpu%d: MSR_PKG_POWER_LIMIT: 0x%08llx (%slocked)\n",
cpu, msr, (msr >> 63) & 1 ? "": "UN"); cpu, msr, (msr >> 63) & 1 ? "" : "UN");
print_power_limit_msr(cpu, msr, "PKG Limit #1"); print_power_limit_msr(cpu, msr, "PKG Limit #1");
fprintf(outf, "cpu%d: PKG Limit #2: %sabled (%f Watts, %f* sec, clamp %sabled)\n", fprintf(outf, "cpu%d: PKG Limit #2: %sabled (%f Watts, %f* sec, clamp %sabled)\n",
...@@ -3020,29 +3622,24 @@ int print_rapl(struct thread_data *t, struct core_data *c, struct pkg_data *p) ...@@ -3020,29 +3622,24 @@ int print_rapl(struct thread_data *t, struct core_data *c, struct pkg_data *p)
if (get_msr(cpu, MSR_DRAM_POWER_LIMIT, &msr)) if (get_msr(cpu, MSR_DRAM_POWER_LIMIT, &msr))
return -9; return -9;
fprintf(outf, "cpu%d: MSR_DRAM_POWER_LIMIT: 0x%08llx (%slocked)\n", fprintf(outf, "cpu%d: MSR_DRAM_POWER_LIMIT: 0x%08llx (%slocked)\n",
cpu, msr, (msr >> 31) & 1 ? "": "UN"); cpu, msr, (msr >> 31) & 1 ? "" : "UN");
print_power_limit_msr(cpu, msr, "DRAM Limit"); print_power_limit_msr(cpu, msr, "DRAM Limit");
} }
if (do_rapl & RAPL_CORE_POLICY) { if (do_rapl & RAPL_CORE_POLICY) {
if (debug) {
if (get_msr(cpu, MSR_PP0_POLICY, &msr)) if (get_msr(cpu, MSR_PP0_POLICY, &msr))
return -7; return -7;
fprintf(outf, "cpu%d: MSR_PP0_POLICY: %lld\n", cpu, msr & 0xF); fprintf(outf, "cpu%d: MSR_PP0_POLICY: %lld\n", cpu, msr & 0xF);
} }
}
if (do_rapl & RAPL_CORES_POWER_LIMIT) { if (do_rapl & RAPL_CORES_POWER_LIMIT) {
if (debug) {
if (get_msr(cpu, MSR_PP0_POWER_LIMIT, &msr)) if (get_msr(cpu, MSR_PP0_POWER_LIMIT, &msr))
return -9; return -9;
fprintf(outf, "cpu%d: MSR_PP0_POWER_LIMIT: 0x%08llx (%slocked)\n", fprintf(outf, "cpu%d: MSR_PP0_POWER_LIMIT: 0x%08llx (%slocked)\n",
cpu, msr, (msr >> 31) & 1 ? "": "UN"); cpu, msr, (msr >> 31) & 1 ? "" : "UN");
print_power_limit_msr(cpu, msr, "Cores Limit"); print_power_limit_msr(cpu, msr, "Cores Limit");
} }
}
if (do_rapl & RAPL_GFX) { if (do_rapl & RAPL_GFX) {
if (debug) {
if (get_msr(cpu, MSR_PP1_POLICY, &msr)) if (get_msr(cpu, MSR_PP1_POLICY, &msr))
return -8; return -8;
...@@ -3051,10 +3648,9 @@ int print_rapl(struct thread_data *t, struct core_data *c, struct pkg_data *p) ...@@ -3051,10 +3648,9 @@ int print_rapl(struct thread_data *t, struct core_data *c, struct pkg_data *p)
if (get_msr(cpu, MSR_PP1_POWER_LIMIT, &msr)) if (get_msr(cpu, MSR_PP1_POWER_LIMIT, &msr))
return -9; return -9;
fprintf(outf, "cpu%d: MSR_PP1_POWER_LIMIT: 0x%08llx (%slocked)\n", fprintf(outf, "cpu%d: MSR_PP1_POWER_LIMIT: 0x%08llx (%slocked)\n",
cpu, msr, (msr >> 31) & 1 ? "": "UN"); cpu, msr, (msr >> 31) & 1 ? "" : "UN");
print_power_limit_msr(cpu, msr, "GFX Limit"); print_power_limit_msr(cpu, msr, "GFX Limit");
} }
}
return 0; return 0;
} }
...@@ -3090,6 +3686,7 @@ int has_snb_msrs(unsigned int family, unsigned int model) ...@@ -3090,6 +3686,7 @@ int has_snb_msrs(unsigned int family, unsigned int model)
case INTEL_FAM6_KABYLAKE_DESKTOP: /* KBL */ case INTEL_FAM6_KABYLAKE_DESKTOP: /* KBL */
case INTEL_FAM6_SKYLAKE_X: /* SKX */ case INTEL_FAM6_SKYLAKE_X: /* SKX */
case INTEL_FAM6_ATOM_GOLDMONT: /* BXT */ case INTEL_FAM6_ATOM_GOLDMONT: /* BXT */
case INTEL_FAM6_ATOM_GEMINI_LAKE:
case INTEL_FAM6_ATOM_DENVERTON: /* DNV */ case INTEL_FAM6_ATOM_DENVERTON: /* DNV */
return 1; return 1;
} }
...@@ -3121,6 +3718,7 @@ int has_hsw_msrs(unsigned int family, unsigned int model) ...@@ -3121,6 +3718,7 @@ int has_hsw_msrs(unsigned int family, unsigned int model)
case INTEL_FAM6_KABYLAKE_MOBILE: /* KBL */ case INTEL_FAM6_KABYLAKE_MOBILE: /* KBL */
case INTEL_FAM6_KABYLAKE_DESKTOP: /* KBL */ case INTEL_FAM6_KABYLAKE_DESKTOP: /* KBL */
case INTEL_FAM6_ATOM_GOLDMONT: /* BXT */ case INTEL_FAM6_ATOM_GOLDMONT: /* BXT */
case INTEL_FAM6_ATOM_GEMINI_LAKE:
return 1; return 1;
} }
return 0; return 0;
...@@ -3149,8 +3747,6 @@ int has_skl_msrs(unsigned int family, unsigned int model) ...@@ -3149,8 +3747,6 @@ int has_skl_msrs(unsigned int family, unsigned int model)
return 0; return 0;
} }
int is_slm(unsigned int family, unsigned int model) int is_slm(unsigned int family, unsigned int model)
{ {
if (!genuine_intel) if (!genuine_intel)
...@@ -3201,6 +3797,7 @@ double slm_bclk(void) ...@@ -3201,6 +3797,7 @@ double slm_bclk(void)
} }
freq = slm_freq_table[i]; freq = slm_freq_table[i];
if (!quiet)
fprintf(outf, "SLM BCLK: %.1f Mhz\n", freq); fprintf(outf, "SLM BCLK: %.1f Mhz\n", freq);
return freq; return freq;
...@@ -3264,7 +3861,7 @@ int set_temperature_target(struct thread_data *t, struct core_data *c, struct pk ...@@ -3264,7 +3861,7 @@ int set_temperature_target(struct thread_data *t, struct core_data *c, struct pk
target_c_local = (msr >> 16) & 0xFF; target_c_local = (msr >> 16) & 0xFF;
if (debug) if (!quiet)
fprintf(outf, "cpu%d: MSR_IA32_TEMPERATURE_TARGET: 0x%08llx (%d C)\n", fprintf(outf, "cpu%d: MSR_IA32_TEMPERATURE_TARGET: 0x%08llx (%d C)\n",
cpu, msr, target_c_local); cpu, msr, target_c_local);
...@@ -3299,13 +3896,30 @@ void decode_misc_enable_msr(void) ...@@ -3299,13 +3896,30 @@ void decode_misc_enable_msr(void)
unsigned long long msr; unsigned long long msr;
if (!get_msr(base_cpu, MSR_IA32_MISC_ENABLE, &msr)) if (!get_msr(base_cpu, MSR_IA32_MISC_ENABLE, &msr))
fprintf(outf, "cpu%d: MSR_IA32_MISC_ENABLE: 0x%08llx (%s %s %s)\n", fprintf(outf, "cpu%d: MSR_IA32_MISC_ENABLE: 0x%08llx (%sTCC %sEIST %sMWAIT %sPREFETCH %sTURBO)\n",
base_cpu, msr, base_cpu, msr,
msr & (1 << 3) ? "TCC" : "", msr & MSR_IA32_MISC_ENABLE_TM1 ? "" : "No-",
msr & (1 << 16) ? "EIST" : "", msr & MSR_IA32_MISC_ENABLE_ENHANCED_SPEEDSTEP ? "" : "No-",
msr & (1 << 18) ? "MONITOR" : ""); msr & MSR_IA32_MISC_ENABLE_MWAIT ? "No-" : "",
msr & MSR_IA32_MISC_ENABLE_PREFETCH_DISABLE ? "No-" : "",
msr & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ? "No-" : "");
} }
void decode_misc_feature_control(void)
{
unsigned long long msr;
if (!has_misc_feature_control)
return;
if (!get_msr(base_cpu, MSR_MISC_FEATURE_CONTROL, &msr))
fprintf(outf, "cpu%d: MSR_MISC_FEATURE_CONTROL: 0x%08llx (%sL2-Prefetch %sL2-Prefetch-pair %sL1-Prefetch %sL1-IP-Prefetch)\n",
base_cpu, msr,
msr & (0 << 0) ? "No-" : "",
msr & (1 << 0) ? "No-" : "",
msr & (2 << 0) ? "No-" : "",
msr & (3 << 0) ? "No-" : "");
}
/* /*
* Decode MSR_MISC_PWR_MGMT * Decode MSR_MISC_PWR_MGMT
* *
...@@ -3320,6 +3934,9 @@ void decode_misc_pwr_mgmt_msr(void) ...@@ -3320,6 +3934,9 @@ void decode_misc_pwr_mgmt_msr(void)
if (!do_nhm_platform_info) if (!do_nhm_platform_info)
return; return;
if (no_MSR_MISC_PWR_MGMT)
return;
if (!get_msr(base_cpu, MSR_MISC_PWR_MGMT, &msr)) if (!get_msr(base_cpu, MSR_MISC_PWR_MGMT, &msr))
fprintf(outf, "cpu%d: MSR_MISC_PWR_MGMT: 0x%08llx (%sable-EIST_Coordination %sable-EPB %sable-OOB)\n", fprintf(outf, "cpu%d: MSR_MISC_PWR_MGMT: 0x%08llx (%sable-EIST_Coordination %sable-EPB %sable-OOB)\n",
base_cpu, msr, base_cpu, msr,
...@@ -3327,11 +3944,30 @@ void decode_misc_pwr_mgmt_msr(void) ...@@ -3327,11 +3944,30 @@ void decode_misc_pwr_mgmt_msr(void)
msr & (1 << 1) ? "EN" : "DIS", msr & (1 << 1) ? "EN" : "DIS",
msr & (1 << 8) ? "EN" : "DIS"); msr & (1 << 8) ? "EN" : "DIS");
} }
/*
* Decode MSR_CC6_DEMOTION_POLICY_CONFIG, MSR_MC6_DEMOTION_POLICY_CONFIG
*
* This MSRs are present on Silvermont processors,
* Intel Atom processor E3000 series (Baytrail), and friends.
*/
void decode_c6_demotion_policy_msr(void)
{
unsigned long long msr;
if (!get_msr(base_cpu, MSR_CC6_DEMOTION_POLICY_CONFIG, &msr))
fprintf(outf, "cpu%d: MSR_CC6_DEMOTION_POLICY_CONFIG: 0x%08llx (%sable-CC6-Demotion)\n",
base_cpu, msr, msr & (1 << 0) ? "EN" : "DIS");
if (!get_msr(base_cpu, MSR_MC6_DEMOTION_POLICY_CONFIG, &msr))
fprintf(outf, "cpu%d: MSR_MC6_DEMOTION_POLICY_CONFIG: 0x%08llx (%sable-MC6-Demotion)\n",
base_cpu, msr, msr & (1 << 0) ? "EN" : "DIS");
}
void process_cpuid() void process_cpuid()
{ {
unsigned int eax, ebx, ecx, edx, max_level, max_extended_level; unsigned int eax, ebx, ecx, edx, max_level, max_extended_level;
unsigned int fms, family, model, stepping; unsigned int fms, family, model, stepping;
unsigned int has_turbo;
eax = ebx = ecx = edx = 0; eax = ebx = ecx = edx = 0;
...@@ -3340,7 +3976,7 @@ void process_cpuid() ...@@ -3340,7 +3976,7 @@ void process_cpuid()
if (ebx == 0x756e6547 && edx == 0x49656e69 && ecx == 0x6c65746e) if (ebx == 0x756e6547 && edx == 0x49656e69 && ecx == 0x6c65746e)
genuine_intel = 1; genuine_intel = 1;
if (debug) if (!quiet)
fprintf(outf, "CPUID(0): %.4s%.4s%.4s ", fprintf(outf, "CPUID(0): %.4s%.4s%.4s ",
(char *)&ebx, (char *)&edx, (char *)&ecx); (char *)&ebx, (char *)&edx, (char *)&ecx);
...@@ -3351,7 +3987,7 @@ void process_cpuid() ...@@ -3351,7 +3987,7 @@ void process_cpuid()
if (family == 6 || family == 0xf) if (family == 6 || family == 0xf)
model += ((fms >> 16) & 0xf) << 4; model += ((fms >> 16) & 0xf) << 4;
if (debug) { if (!quiet) {
fprintf(outf, "%d CPUID levels; family:model:stepping 0x%x:%x:%x (%d:%d:%d)\n", fprintf(outf, "%d CPUID levels; family:model:stepping 0x%x:%x:%x (%d:%d:%d)\n",
max_level, family, model, stepping, family, model, stepping); max_level, family, model, stepping, family, model, stepping);
fprintf(outf, "CPUID(1): %s %s %s %s %s %s %s %s %s\n", fprintf(outf, "CPUID(1): %s %s %s %s %s %s %s %s %s\n",
...@@ -3394,8 +4030,18 @@ void process_cpuid() ...@@ -3394,8 +4030,18 @@ void process_cpuid()
__cpuid(0x6, eax, ebx, ecx, edx); __cpuid(0x6, eax, ebx, ecx, edx);
has_aperf = ecx & (1 << 0); has_aperf = ecx & (1 << 0);
if (has_aperf) {
BIC_PRESENT(BIC_Avg_MHz);
BIC_PRESENT(BIC_Busy);
BIC_PRESENT(BIC_Bzy_MHz);
}
do_dts = eax & (1 << 0); do_dts = eax & (1 << 0);
if (do_dts)
BIC_PRESENT(BIC_CoreTmp);
has_turbo = eax & (1 << 1);
do_ptm = eax & (1 << 6); do_ptm = eax & (1 << 6);
if (do_ptm)
BIC_PRESENT(BIC_PkgTmp);
has_hwp = eax & (1 << 7); has_hwp = eax & (1 << 7);
has_hwp_notify = eax & (1 << 8); has_hwp_notify = eax & (1 << 8);
has_hwp_activity_window = eax & (1 << 9); has_hwp_activity_window = eax & (1 << 9);
...@@ -3403,10 +4049,11 @@ void process_cpuid() ...@@ -3403,10 +4049,11 @@ void process_cpuid()
has_hwp_pkg = eax & (1 << 11); has_hwp_pkg = eax & (1 << 11);
has_epb = ecx & (1 << 3); has_epb = ecx & (1 << 3);
if (debug) if (!quiet)
fprintf(outf, "CPUID(6): %sAPERF, %sDTS, %sPTM, %sHWP, " fprintf(outf, "CPUID(6): %sAPERF, %sTURBO, %sDTS, %sPTM, %sHWP, "
"%sHWPnotify, %sHWPwindow, %sHWPepp, %sHWPpkg, %sEPB\n", "%sHWPnotify, %sHWPwindow, %sHWPepp, %sHWPpkg, %sEPB\n",
has_aperf ? "" : "No-", has_aperf ? "" : "No-",
has_turbo ? "" : "No-",
do_dts ? "" : "No-", do_dts ? "" : "No-",
do_ptm ? "" : "No-", do_ptm ? "" : "No-",
has_hwp ? "" : "No-", has_hwp ? "" : "No-",
...@@ -3416,10 +4063,11 @@ void process_cpuid() ...@@ -3416,10 +4063,11 @@ void process_cpuid()
has_hwp_pkg ? "" : "No-", has_hwp_pkg ? "" : "No-",
has_epb ? "" : "No-"); has_epb ? "" : "No-");
if (debug) if (!quiet)
decode_misc_enable_msr(); decode_misc_enable_msr();
if (max_level >= 0x7 && debug) {
if (max_level >= 0x7 && !quiet) {
int has_sgx; int has_sgx;
ecx = 0; ecx = 0;
...@@ -3445,7 +4093,7 @@ void process_cpuid() ...@@ -3445,7 +4093,7 @@ void process_cpuid()
if (ebx_tsc != 0) { if (ebx_tsc != 0) {
if (debug && (ebx != 0)) if (!quiet && (ebx != 0))
fprintf(outf, "CPUID(0x15): eax_crystal: %d ebx_tsc: %d ecx_crystal_hz: %d\n", fprintf(outf, "CPUID(0x15): eax_crystal: %d ebx_tsc: %d ecx_crystal_hz: %d\n",
eax_crystal, ebx_tsc, crystal_hz); eax_crystal, ebx_tsc, crystal_hz);
...@@ -3462,6 +4110,7 @@ void process_cpuid() ...@@ -3462,6 +4110,7 @@ void process_cpuid()
crystal_hz = 25000000; /* 25.0 MHz */ crystal_hz = 25000000; /* 25.0 MHz */
break; break;
case INTEL_FAM6_ATOM_GOLDMONT: /* BXT */ case INTEL_FAM6_ATOM_GOLDMONT: /* BXT */
case INTEL_FAM6_ATOM_GEMINI_LAKE:
crystal_hz = 19200000; /* 19.2 MHz */ crystal_hz = 19200000; /* 19.2 MHz */
break; break;
default: default:
...@@ -3470,7 +4119,7 @@ void process_cpuid() ...@@ -3470,7 +4119,7 @@ void process_cpuid()
if (crystal_hz) { if (crystal_hz) {
tsc_hz = (unsigned long long) crystal_hz * ebx_tsc / eax_crystal; tsc_hz = (unsigned long long) crystal_hz * ebx_tsc / eax_crystal;
if (debug) if (!quiet)
fprintf(outf, "TSC: %lld MHz (%d Hz * %d / %d / 1000000)\n", fprintf(outf, "TSC: %lld MHz (%d Hz * %d / %d / 1000000)\n",
tsc_hz / 1000000, crystal_hz, ebx_tsc, eax_crystal); tsc_hz / 1000000, crystal_hz, ebx_tsc, eax_crystal);
} }
...@@ -3485,7 +4134,7 @@ void process_cpuid() ...@@ -3485,7 +4134,7 @@ void process_cpuid()
base_mhz = max_mhz = bus_mhz = edx = 0; base_mhz = max_mhz = bus_mhz = edx = 0;
__cpuid(0x16, base_mhz, max_mhz, bus_mhz, edx); __cpuid(0x16, base_mhz, max_mhz, bus_mhz, edx);
if (debug) if (!quiet)
fprintf(outf, "CPUID(0x16): base_mhz: %d max_mhz: %d bus_mhz: %d\n", fprintf(outf, "CPUID(0x16): base_mhz: %d max_mhz: %d bus_mhz: %d\n",
base_mhz, max_mhz, bus_mhz); base_mhz, max_mhz, bus_mhz);
} }
...@@ -3493,56 +4142,96 @@ void process_cpuid() ...@@ -3493,56 +4142,96 @@ void process_cpuid()
if (has_aperf) if (has_aperf)
aperf_mperf_multiplier = get_aperf_mperf_multiplier(family, model); aperf_mperf_multiplier = get_aperf_mperf_multiplier(family, model);
do_nhm_platform_info = do_nhm_cstates = do_smi = probe_nhm_msrs(family, model); BIC_PRESENT(BIC_IRQ);
BIC_PRESENT(BIC_TSC_MHz);
if (probe_nhm_msrs(family, model)) {
do_nhm_platform_info = 1;
BIC_PRESENT(BIC_CPU_c1);
BIC_PRESENT(BIC_CPU_c3);
BIC_PRESENT(BIC_CPU_c6);
BIC_PRESENT(BIC_SMI);
}
do_snb_cstates = has_snb_msrs(family, model); do_snb_cstates = has_snb_msrs(family, model);
if (do_snb_cstates)
BIC_PRESENT(BIC_CPU_c7);
do_irtl_snb = has_snb_msrs(family, model); do_irtl_snb = has_snb_msrs(family, model);
do_pc2 = do_snb_cstates && (pkg_cstate_limit >= PCL__2); if (do_snb_cstates && (pkg_cstate_limit >= PCL__2))
do_pc3 = (pkg_cstate_limit >= PCL__3); BIC_PRESENT(BIC_Pkgpc2);
do_pc6 = (pkg_cstate_limit >= PCL__6); if (pkg_cstate_limit >= PCL__3)
do_pc7 = do_snb_cstates && (pkg_cstate_limit >= PCL__7); BIC_PRESENT(BIC_Pkgpc3);
do_c8_c9_c10 = has_hsw_msrs(family, model); if (pkg_cstate_limit >= PCL__6)
BIC_PRESENT(BIC_Pkgpc6);
if (do_snb_cstates && (pkg_cstate_limit >= PCL__7))
BIC_PRESENT(BIC_Pkgpc7);
if (has_slv_msrs(family, model)) {
BIC_NOT_PRESENT(BIC_Pkgpc2);
BIC_NOT_PRESENT(BIC_Pkgpc3);
BIC_PRESENT(BIC_Pkgpc6);
BIC_NOT_PRESENT(BIC_Pkgpc7);
BIC_PRESENT(BIC_Mod_c6);
use_c1_residency_msr = 1;
}
if (is_dnv(family, model)) {
BIC_PRESENT(BIC_CPU_c1);
BIC_NOT_PRESENT(BIC_CPU_c3);
BIC_NOT_PRESENT(BIC_Pkgpc3);
BIC_NOT_PRESENT(BIC_CPU_c7);
BIC_NOT_PRESENT(BIC_Pkgpc7);
use_c1_residency_msr = 1;
}
if (is_skx(family, model)) {
BIC_NOT_PRESENT(BIC_CPU_c3);
BIC_NOT_PRESENT(BIC_Pkgpc3);
BIC_NOT_PRESENT(BIC_CPU_c7);
BIC_NOT_PRESENT(BIC_Pkgpc7);
}
if (is_bdx(family, model)) {
BIC_NOT_PRESENT(BIC_CPU_c7);
BIC_NOT_PRESENT(BIC_Pkgpc7);
}
if (has_hsw_msrs(family, model)) {
BIC_PRESENT(BIC_Pkgpc8);
BIC_PRESENT(BIC_Pkgpc9);
BIC_PRESENT(BIC_Pkgpc10);
}
do_irtl_hsw = has_hsw_msrs(family, model); do_irtl_hsw = has_hsw_msrs(family, model);
do_skl_residency = has_skl_msrs(family, model); do_skl_residency = has_skl_msrs(family, model);
do_slm_cstates = is_slm(family, model); do_slm_cstates = is_slm(family, model);
do_knl_cstates = is_knl(family, model); do_knl_cstates = is_knl(family, model);
if (debug) if (!quiet)
decode_misc_pwr_mgmt_msr(); decode_misc_pwr_mgmt_msr();
if (!quiet && has_slv_msrs(family, model))
decode_c6_demotion_policy_msr();
rapl_probe(family, model); rapl_probe(family, model);
perf_limit_reasons_probe(family, model); perf_limit_reasons_probe(family, model);
if (debug) if (!quiet)
dump_cstate_pstate_config_info(family, model); dump_cstate_pstate_config_info(family, model);
if (!quiet)
dump_sysfs_cstate_config();
if (!quiet)
dump_sysfs_pstate_config();
if (has_skl_msrs(family, model)) if (has_skl_msrs(family, model))
calculate_tsc_tweak(); calculate_tsc_tweak();
do_gfx_rc6_ms = !access("/sys/class/drm/card0/power/rc6_residency_ms", R_OK); if (!access("/sys/class/drm/card0/power/rc6_residency_ms", R_OK))
BIC_PRESENT(BIC_GFX_rc6);
do_gfx_mhz = !access("/sys/class/graphics/fb0/device/drm/card0/gt_cur_freq_mhz", R_OK); if (!access("/sys/class/graphics/fb0/device/drm/card0/gt_cur_freq_mhz", R_OK))
BIC_PRESENT(BIC_GFXMHz);
return; if (!quiet)
} decode_misc_feature_control();
void help() return;
{
fprintf(outf,
"Usage: turbostat [OPTIONS][(--interval seconds) | COMMAND ...]\n"
"\n"
"Turbostat forks the specified COMMAND and prints statistics\n"
"when COMMAND completes.\n"
"If no COMMAND is specified, turbostat wakes every 5-seconds\n"
"to print statistics, until interrupted.\n"
"--add add a counter\n"
" eg. --add msr0x10,u64,cpu,delta,MY_TSC\n"
"--debug run in \"debug\" mode\n"
"--interval sec Override default 5-second measurement interval\n"
"--help print this help message\n"
"--out file create or truncate \"file\" for all output\n"
"--version print version information\n"
"\n"
"For more help, run \"man turbostat\"\n");
} }
...@@ -3579,7 +4268,7 @@ void topology_probe() ...@@ -3579,7 +4268,7 @@ void topology_probe()
topo.max_cpu_num = 0; topo.max_cpu_num = 0;
for_all_proc_cpus(count_cpus); for_all_proc_cpus(count_cpus);
if (!summary_only && topo.num_cpus > 1) if (!summary_only && topo.num_cpus > 1)
show_cpu = 1; BIC_PRESENT(BIC_CPU);
if (debug > 1) if (debug > 1)
fprintf(outf, "num_cpus %d max_cpu_num %d\n", topo.num_cpus, topo.max_cpu_num); fprintf(outf, "num_cpus %d max_cpu_num %d\n", topo.num_cpus, topo.max_cpu_num);
...@@ -3598,6 +4287,15 @@ void topology_probe() ...@@ -3598,6 +4287,15 @@ void topology_probe()
CPU_ZERO_S(cpu_present_setsize, cpu_present_set); CPU_ZERO_S(cpu_present_setsize, cpu_present_set);
for_all_proc_cpus(mark_cpu_present); for_all_proc_cpus(mark_cpu_present);
/*
* Validate that all cpus in cpu_subset are also in cpu_present_set
*/
for (i = 0; i < CPU_SUBSET_MAXCPUS; ++i) {
if (CPU_ISSET_S(i, cpu_subset_size, cpu_subset))
if (!CPU_ISSET_S(i, cpu_present_setsize, cpu_present_set))
err(1, "cpu%d not present", i);
}
/* /*
* Allocate and initialize cpu_affinity_set * Allocate and initialize cpu_affinity_set
*/ */
...@@ -3639,15 +4337,15 @@ void topology_probe() ...@@ -3639,15 +4337,15 @@ void topology_probe()
if (debug > 1) if (debug > 1)
fprintf(outf, "max_core_id %d, sizing for %d cores per package\n", fprintf(outf, "max_core_id %d, sizing for %d cores per package\n",
max_core_id, topo.num_cores_per_pkg); max_core_id, topo.num_cores_per_pkg);
if (debug && !summary_only && topo.num_cores_per_pkg > 1) if (!summary_only && topo.num_cores_per_pkg > 1)
show_core = 1; BIC_PRESENT(BIC_Core);
topo.num_packages = max_package_id + 1; topo.num_packages = max_package_id + 1;
if (debug > 1) if (debug > 1)
fprintf(outf, "max_package_id %d, sizing for %d packages\n", fprintf(outf, "max_package_id %d, sizing for %d packages\n",
max_package_id, topo.num_packages); max_package_id, topo.num_packages);
if (debug && !summary_only && topo.num_packages > 1) if (!summary_only && topo.num_packages > 1)
show_pkg = 1; BIC_PRESENT(BIC_Package);
topo.num_threads_per_core = max_siblings; topo.num_threads_per_core = max_siblings;
if (debug > 1) if (debug > 1)
...@@ -3662,7 +4360,7 @@ allocate_counters(struct thread_data **t, struct core_data **c, struct pkg_data ...@@ -3662,7 +4360,7 @@ allocate_counters(struct thread_data **t, struct core_data **c, struct pkg_data
int i; int i;
*t = calloc(topo.num_threads_per_core * topo.num_cores_per_pkg * *t = calloc(topo.num_threads_per_core * topo.num_cores_per_pkg *
topo.num_packages, sizeof(struct thread_data) + sys.thread_counter_bytes); topo.num_packages, sizeof(struct thread_data));
if (*t == NULL) if (*t == NULL)
goto error; goto error;
...@@ -3671,14 +4369,14 @@ allocate_counters(struct thread_data **t, struct core_data **c, struct pkg_data ...@@ -3671,14 +4369,14 @@ allocate_counters(struct thread_data **t, struct core_data **c, struct pkg_data
(*t)[i].cpu_id = -1; (*t)[i].cpu_id = -1;
*c = calloc(topo.num_cores_per_pkg * topo.num_packages, *c = calloc(topo.num_cores_per_pkg * topo.num_packages,
sizeof(struct core_data) + sys.core_counter_bytes); sizeof(struct core_data));
if (*c == NULL) if (*c == NULL)
goto error; goto error;
for (i = 0; i < topo.num_cores_per_pkg * topo.num_packages; i++) for (i = 0; i < topo.num_cores_per_pkg * topo.num_packages; i++)
(*c)[i].core_id = -1; (*c)[i].core_id = -1;
*p = calloc(topo.num_packages, sizeof(struct pkg_data) + sys.package_counter_bytes); *p = calloc(topo.num_packages, sizeof(struct pkg_data));
if (*p == NULL) if (*p == NULL)
goto error; goto error;
...@@ -3789,24 +4487,24 @@ void turbostat_init() ...@@ -3789,24 +4487,24 @@ void turbostat_init()
process_cpuid(); process_cpuid();
if (debug) if (!quiet)
for_all_cpus(print_hwp, ODD_COUNTERS); for_all_cpus(print_hwp, ODD_COUNTERS);
if (debug) if (!quiet)
for_all_cpus(print_epb, ODD_COUNTERS); for_all_cpus(print_epb, ODD_COUNTERS);
if (debug) if (!quiet)
for_all_cpus(print_perf_limit, ODD_COUNTERS); for_all_cpus(print_perf_limit, ODD_COUNTERS);
if (debug) if (!quiet)
for_all_cpus(print_rapl, ODD_COUNTERS); for_all_cpus(print_rapl, ODD_COUNTERS);
for_all_cpus(set_temperature_target, ODD_COUNTERS); for_all_cpus(set_temperature_target, ODD_COUNTERS);
if (debug) if (!quiet)
for_all_cpus(print_thermal, ODD_COUNTERS); for_all_cpus(print_thermal, ODD_COUNTERS);
if (debug && do_irtl_snb) if (!quiet && do_irtl_snb)
print_irtl(); print_irtl();
} }
...@@ -3815,6 +4513,7 @@ int fork_it(char **argv) ...@@ -3815,6 +4513,7 @@ int fork_it(char **argv)
pid_t child_pid; pid_t child_pid;
int status; int status;
snapshot_proc_sysfs_files();
status = for_all_cpus(get_counters, EVEN_COUNTERS); status = for_all_cpus(get_counters, EVEN_COUNTERS);
if (status) if (status)
exit(status); exit(status);
...@@ -3826,6 +4525,7 @@ int fork_it(char **argv) ...@@ -3826,6 +4525,7 @@ int fork_it(char **argv)
if (!child_pid) { if (!child_pid) {
/* child */ /* child */
execvp(argv[0], argv); execvp(argv[0], argv);
err(errno, "exec %s", argv[0]);
} else { } else {
/* parent */ /* parent */
...@@ -3841,6 +4541,7 @@ int fork_it(char **argv) ...@@ -3841,6 +4541,7 @@ int fork_it(char **argv)
* n.b. fork_it() does not check for errors from for_all_cpus() * n.b. fork_it() does not check for errors from for_all_cpus()
* because re-starting is problematic when forking * because re-starting is problematic when forking
*/ */
snapshot_proc_sysfs_files();
for_all_cpus(get_counters, ODD_COUNTERS); for_all_cpus(get_counters, ODD_COUNTERS);
gettimeofday(&tv_odd, (struct timezone *)NULL); gettimeofday(&tv_odd, (struct timezone *)NULL);
timersub(&tv_odd, &tv_even, &tv_delta); timersub(&tv_odd, &tv_even, &tv_delta);
...@@ -3862,6 +4563,7 @@ int get_and_dump_counters(void) ...@@ -3862,6 +4563,7 @@ int get_and_dump_counters(void)
{ {
int status; int status;
snapshot_proc_sysfs_files();
status = for_all_cpus(get_counters, ODD_COUNTERS); status = for_all_cpus(get_counters, ODD_COUNTERS);
if (status) if (status)
return status; return status;
...@@ -3876,13 +4578,13 @@ int get_and_dump_counters(void) ...@@ -3876,13 +4578,13 @@ int get_and_dump_counters(void)
} }
void print_version() { void print_version() {
fprintf(outf, "turbostat version 4.16 24 Dec 2016" fprintf(outf, "turbostat version 17.02.24"
" - Len Brown <lenb@kernel.org>\n"); " - Len Brown <lenb@kernel.org>\n");
} }
int add_counter(unsigned int msr_num, char *name, unsigned int width, int add_counter(unsigned int msr_num, char *path, char *name,
enum counter_scope scope, enum counter_type type, unsigned int width, enum counter_scope scope,
enum counter_format format) enum counter_type type, enum counter_format format, int flags)
{ {
struct msr_counter *msrp; struct msr_counter *msrp;
...@@ -3894,31 +4596,46 @@ int add_counter(unsigned int msr_num, char *name, unsigned int width, ...@@ -3894,31 +4596,46 @@ int add_counter(unsigned int msr_num, char *name, unsigned int width,
msrp->msr_num = msr_num; msrp->msr_num = msr_num;
strncpy(msrp->name, name, NAME_BYTES); strncpy(msrp->name, name, NAME_BYTES);
if (path)
strncpy(msrp->path, path, PATH_BYTES);
msrp->width = width; msrp->width = width;
msrp->type = type; msrp->type = type;
msrp->format = format; msrp->format = format;
msrp->flags = flags;
switch (scope) { switch (scope) {
case SCOPE_CPU: case SCOPE_CPU:
sys.thread_counter_bytes += 64;
msrp->next = sys.tp; msrp->next = sys.tp;
sys.tp = msrp; sys.tp = msrp;
sys.thread_counter_bytes += sizeof(unsigned long long); sys.added_thread_counters++;
if (sys.added_thread_counters > MAX_ADDED_COUNTERS) {
fprintf(stderr, "exceeded max %d added thread counters\n",
MAX_ADDED_COUNTERS);
exit(-1);
}
break; break;
case SCOPE_CORE: case SCOPE_CORE:
sys.core_counter_bytes += 64;
msrp->next = sys.cp; msrp->next = sys.cp;
sys.cp = msrp; sys.cp = msrp;
sys.core_counter_bytes += sizeof(unsigned long long); sys.added_core_counters++;
if (sys.added_core_counters > MAX_ADDED_COUNTERS) {
fprintf(stderr, "exceeded max %d added core counters\n",
MAX_ADDED_COUNTERS);
exit(-1);
}
break; break;
case SCOPE_PACKAGE: case SCOPE_PACKAGE:
sys.package_counter_bytes += 64;
msrp->next = sys.pp; msrp->next = sys.pp;
sys.pp = msrp; sys.pp = msrp;
sys.package_counter_bytes += sizeof(unsigned long long); sys.added_package_counters++;
if (sys.added_package_counters > MAX_ADDED_COUNTERS) {
fprintf(stderr, "exceeded max %d added package counters\n",
MAX_ADDED_COUNTERS);
exit(-1);
}
break; break;
} }
...@@ -3928,7 +4645,8 @@ int add_counter(unsigned int msr_num, char *name, unsigned int width, ...@@ -3928,7 +4645,8 @@ int add_counter(unsigned int msr_num, char *name, unsigned int width,
void parse_add_command(char *add_command) void parse_add_command(char *add_command)
{ {
int msr_num = 0; int msr_num = 0;
char name_buffer[NAME_BYTES]; char *path = NULL;
char name_buffer[NAME_BYTES] = "";
int width = 64; int width = 64;
int fail = 0; int fail = 0;
enum counter_scope scope = SCOPE_CPU; enum counter_scope scope = SCOPE_CPU;
...@@ -3943,6 +4661,11 @@ void parse_add_command(char *add_command) ...@@ -3943,6 +4661,11 @@ void parse_add_command(char *add_command)
if (sscanf(add_command, "msr%d", &msr_num) == 1) if (sscanf(add_command, "msr%d", &msr_num) == 1)
goto next; goto next;
if (*add_command == '/') {
path = add_command;
goto next;
}
if (sscanf(add_command, "u%d", &width) == 1) { if (sscanf(add_command, "u%d", &width) == 1) {
if ((width == 32) || (width == 64)) if ((width == 32) || (width == 64))
goto next; goto next;
...@@ -3968,6 +4691,10 @@ void parse_add_command(char *add_command) ...@@ -3968,6 +4691,10 @@ void parse_add_command(char *add_command)
type = COUNTER_SECONDS; type = COUNTER_SECONDS;
goto next; goto next;
} }
if (!strncmp(add_command, "usec", strlen("usec"))) {
type = COUNTER_USEC;
goto next;
}
if (!strncmp(add_command, "raw", strlen("raw"))) { if (!strncmp(add_command, "raw", strlen("raw"))) {
format = FORMAT_RAW; format = FORMAT_RAW;
goto next; goto next;
...@@ -3992,36 +4719,26 @@ void parse_add_command(char *add_command) ...@@ -3992,36 +4719,26 @@ void parse_add_command(char *add_command)
next: next:
add_command = strchr(add_command, ','); add_command = strchr(add_command, ',');
if (add_command) if (add_command) {
*add_command = '\0';
add_command++; add_command++;
}
} }
if (msr_num == 0) { if ((msr_num == 0) && (path == NULL)) {
fprintf(stderr, "--add: (msrDDD | msr0xXXX) required\n"); fprintf(stderr, "--add: (msrDDD | msr0xXXX | /path_to_counter ) required\n");
fail++; fail++;
} }
/* generate default column header */ /* generate default column header */
if (*name_buffer == '\0') { if (*name_buffer == '\0') {
if (format == FORMAT_RAW) {
if (width == 32) if (width == 32)
sprintf(name_buffer, "msr%d", msr_num); sprintf(name_buffer, "M0x%x%s", msr_num, format == FORMAT_PERCENT ? "%" : "");
else else
sprintf(name_buffer, "MSR%d", msr_num); sprintf(name_buffer, "M0X%x%s", msr_num, format == FORMAT_PERCENT ? "%" : "");
} else if (format == FORMAT_DELTA) {
if (width == 32)
sprintf(name_buffer, "cnt%d", msr_num);
else
sprintf(name_buffer, "CNT%d", msr_num);
} else if (format == FORMAT_PERCENT) {
if (width == 32)
sprintf(name_buffer, "msr%d%%", msr_num);
else
sprintf(name_buffer, "MSR%d%%", msr_num);
}
} }
if (add_counter(msr_num, name_buffer, width, scope, type, format)) if (add_counter(msr_num, path, name_buffer, width, scope, type, format, 0))
fail++; fail++;
if (fail) { if (fail) {
...@@ -4029,20 +4746,214 @@ void parse_add_command(char *add_command) ...@@ -4029,20 +4746,214 @@ void parse_add_command(char *add_command)
exit(1); exit(1);
} }
} }
int is_deferred_skip(char *name)
{
int i;
for (i = 0; i < deferred_skip_index; ++i)
if (!strcmp(name, deferred_skip_names[i]))
return 1;
return 0;
}
void probe_sysfs(void)
{
char path[64];
char name_buf[16];
FILE *input;
int state;
char *sp;
if (!DO_BIC(BIC_sysfs))
return;
for (state = 10; state > 0; --state) {
sprintf(path, "/sys/devices/system/cpu/cpu%d/cpuidle/state%d/name",
base_cpu, state);
input = fopen(path, "r");
if (input == NULL)
continue;
fgets(name_buf, sizeof(name_buf), input);
/* truncate "C1-HSW\n" to "C1", or truncate "C1\n" to "C1" */
sp = strchr(name_buf, '-');
if (!sp)
sp = strchrnul(name_buf, '\n');
*sp = '%';
*(sp + 1) = '\0';
fclose(input);
sprintf(path, "cpuidle/state%d/time", state);
if (is_deferred_skip(name_buf))
continue;
add_counter(0, path, name_buf, 64, SCOPE_CPU, COUNTER_USEC,
FORMAT_PERCENT, SYSFS_PERCPU);
}
for (state = 10; state > 0; --state) {
sprintf(path, "/sys/devices/system/cpu/cpu%d/cpuidle/state%d/name",
base_cpu, state);
input = fopen(path, "r");
if (input == NULL)
continue;
fgets(name_buf, sizeof(name_buf), input);
/* truncate "C1-HSW\n" to "C1", or truncate "C1\n" to "C1" */
sp = strchr(name_buf, '-');
if (!sp)
sp = strchrnul(name_buf, '\n');
*sp = '\0';
fclose(input);
sprintf(path, "cpuidle/state%d/usage", state);
if (is_deferred_skip(name_buf))
continue;
add_counter(0, path, name_buf, 64, SCOPE_CPU, COUNTER_ITEMS,
FORMAT_DELTA, SYSFS_PERCPU);
}
}
/*
* parse cpuset with following syntax
* 1,2,4..6,8-10 and set bits in cpu_subset
*/
void parse_cpu_command(char *optarg)
{
unsigned int start, end;
char *next;
if (!strcmp(optarg, "core")) {
if (cpu_subset)
goto error;
show_core_only++;
return;
}
if (!strcmp(optarg, "package")) {
if (cpu_subset)
goto error;
show_pkg_only++;
return;
}
if (show_core_only || show_pkg_only)
goto error;
cpu_subset = CPU_ALLOC(CPU_SUBSET_MAXCPUS);
if (cpu_subset == NULL)
err(3, "CPU_ALLOC");
cpu_subset_size = CPU_ALLOC_SIZE(CPU_SUBSET_MAXCPUS);
CPU_ZERO_S(cpu_subset_size, cpu_subset);
next = optarg;
while (next && *next) {
if (*next == '-') /* no negative cpu numbers */
goto error;
start = strtoul(next, &next, 10);
if (start >= CPU_SUBSET_MAXCPUS)
goto error;
CPU_SET_S(start, cpu_subset_size, cpu_subset);
if (*next == '\0')
break;
if (*next == ',') {
next += 1;
continue;
}
if (*next == '-') {
next += 1; /* start range */
} else if (*next == '.') {
next += 1;
if (*next == '.')
next += 1; /* start range */
else
goto error;
}
end = strtoul(next, &next, 10);
if (end <= start)
goto error;
while (++start <= end) {
if (start >= CPU_SUBSET_MAXCPUS)
goto error;
CPU_SET_S(start, cpu_subset_size, cpu_subset);
}
if (*next == ',')
next += 1;
else if (*next != '\0')
goto error;
}
return;
error:
fprintf(stderr, "\"--cpu %s\" malformed\n", optarg);
help();
exit(-1);
}
int shown;
/*
* parse_show_hide() - process cmdline to set default counter action
*/
void parse_show_hide(char *optarg, enum show_hide_mode new_mode)
{
/*
* --show: show only those specified
* The 1st invocation will clear and replace the enabled mask
* subsequent invocations can add to it.
*/
if (new_mode == SHOW_LIST) {
if (shown == 0)
bic_enabled = bic_lookup(optarg, new_mode);
else
bic_enabled |= bic_lookup(optarg, new_mode);
shown = 1;
return;
}
/*
* --hide: do not show those specified
* multiple invocations simply clear more bits in enabled mask
*/
bic_enabled &= ~bic_lookup(optarg, new_mode);
}
void cmdline(int argc, char **argv) void cmdline(int argc, char **argv)
{ {
int opt; int opt;
int option_index = 0; int option_index = 0;
static struct option long_options[] = { static struct option long_options[] = {
{"add", required_argument, 0, 'a'}, {"add", required_argument, 0, 'a'},
{"cpu", required_argument, 0, 'c'},
{"Dump", no_argument, 0, 'D'}, {"Dump", no_argument, 0, 'D'},
{"debug", no_argument, 0, 'd'}, {"debug", no_argument, 0, 'd'}, /* internal, not documented */
{"interval", required_argument, 0, 'i'}, {"interval", required_argument, 0, 'i'},
{"help", no_argument, 0, 'h'}, {"help", no_argument, 0, 'h'},
{"hide", required_argument, 0, 'H'}, // meh, -h taken by --help
{"Joules", no_argument, 0, 'J'}, {"Joules", no_argument, 0, 'J'},
{"list", no_argument, 0, 'l'},
{"out", required_argument, 0, 'o'}, {"out", required_argument, 0, 'o'},
{"Package", no_argument, 0, 'p'}, {"quiet", no_argument, 0, 'q'},
{"processor", no_argument, 0, 'p'}, {"show", required_argument, 0, 's'},
{"Summary", no_argument, 0, 'S'}, {"Summary", no_argument, 0, 'S'},
{"TCC", required_argument, 0, 'T'}, {"TCC", required_argument, 0, 'T'},
{"version", no_argument, 0, 'v' }, {"version", no_argument, 0, 'v' },
...@@ -4051,18 +4962,24 @@ void cmdline(int argc, char **argv) ...@@ -4051,18 +4962,24 @@ void cmdline(int argc, char **argv)
progname = argv[0]; progname = argv[0];
while ((opt = getopt_long_only(argc, argv, "+C:c:Ddhi:JM:m:o:PpST:v", while ((opt = getopt_long_only(argc, argv, "+C:c:Ddhi:JM:m:o:qST:v",
long_options, &option_index)) != -1) { long_options, &option_index)) != -1) {
switch (opt) { switch (opt) {
case 'a': case 'a':
parse_add_command(optarg); parse_add_command(optarg);
break; break;
case 'c':
parse_cpu_command(optarg);
break;
case 'D': case 'D':
dump_only++; dump_only++;
break; break;
case 'd': case 'd':
debug++; debug++;
break; break;
case 'H':
parse_show_hide(optarg, HIDE_LIST);
break;
case 'h': case 'h':
default: default:
help(); help();
...@@ -4084,14 +5001,18 @@ void cmdline(int argc, char **argv) ...@@ -4084,14 +5001,18 @@ void cmdline(int argc, char **argv)
case 'J': case 'J':
rapl_joules++; rapl_joules++;
break; break;
case 'l':
list_header_only++;
quiet++;
break;
case 'o': case 'o':
outf = fopen_or_die(optarg, "w"); outf = fopen_or_die(optarg, "w");
break; break;
case 'P': case 'q':
show_pkg_only++; quiet = 1;
break; break;
case 'p': case 's':
show_core_only++; parse_show_hide(optarg, SHOW_LIST);
break; break;
case 'S': case 'S':
summary_only++; summary_only++;
...@@ -4113,15 +5034,24 @@ int main(int argc, char **argv) ...@@ -4113,15 +5034,24 @@ int main(int argc, char **argv)
cmdline(argc, argv); cmdline(argc, argv);
if (debug) if (!quiet)
print_version(); print_version();
probe_sysfs();
turbostat_init(); turbostat_init();
/* dump counters and exit */ /* dump counters and exit */
if (dump_only) if (dump_only)
return get_and_dump_counters(); return get_and_dump_counters();
/* list header and exit */
if (list_header_only) {
print_header(",");
flush_output_stdout();
return 0;
}
/* /*
* if any params left, it must be a command to fork * if any params left, it must be a command to fork
*/ */
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment