Commit ceaa1a13 authored by Russell King's avatar Russell King

Merge branch 'arch-timers' into for-linus

Conflicts:
	arch/arm/include/asm/timex.h
	arch/arm/lib/delay.c
parents ba4a63f8 56942fec
...@@ -2,11 +2,12 @@ ...@@ -2,11 +2,12 @@
#define __ASMARM_ARCH_TIMER_H #define __ASMARM_ARCH_TIMER_H
#include <asm/errno.h> #include <asm/errno.h>
#include <linux/clocksource.h>
#ifdef CONFIG_ARM_ARCH_TIMER #ifdef CONFIG_ARM_ARCH_TIMER
#define ARCH_HAS_READ_CURRENT_TIMER
int arch_timer_of_register(void); int arch_timer_of_register(void);
int arch_timer_sched_clock_init(void); int arch_timer_sched_clock_init(void);
struct timecounter *arch_timer_get_timecounter(void);
#else #else
static inline int arch_timer_of_register(void) static inline int arch_timer_of_register(void)
{ {
...@@ -17,6 +18,11 @@ static inline int arch_timer_sched_clock_init(void) ...@@ -17,6 +18,11 @@ static inline int arch_timer_sched_clock_init(void)
{ {
return -ENXIO; return -ENXIO;
} }
static inline struct timecounter *arch_timer_get_timecounter(void)
{
return NULL;
}
#endif #endif
#endif #endif
...@@ -15,6 +15,11 @@ ...@@ -15,6 +15,11 @@
#ifndef __ASSEMBLY__ #ifndef __ASSEMBLY__
struct delay_timer {
unsigned long (*read_current_timer)(void);
unsigned long freq;
};
extern struct arm_delay_ops { extern struct arm_delay_ops {
void (*delay)(unsigned long); void (*delay)(unsigned long);
void (*const_udelay)(unsigned long); void (*const_udelay)(unsigned long);
...@@ -56,6 +61,10 @@ extern void __loop_delay(unsigned long loops); ...@@ -56,6 +61,10 @@ extern void __loop_delay(unsigned long loops);
extern void __loop_udelay(unsigned long usecs); extern void __loop_udelay(unsigned long usecs);
extern void __loop_const_udelay(unsigned long); extern void __loop_const_udelay(unsigned long);
/* Delay-loop timer registration. */
#define ARCH_HAS_READ_CURRENT_TIMER
extern void register_current_timer_delay(const struct delay_timer *timer);
#endif /* __ASSEMBLY__ */ #endif /* __ASSEMBLY__ */
#endif /* defined(_ARM_DELAY_H) */ #endif /* defined(_ARM_DELAY_H) */
......
...@@ -12,13 +12,9 @@ ...@@ -12,13 +12,9 @@
#ifndef _ASMARM_TIMEX_H #ifndef _ASMARM_TIMEX_H
#define _ASMARM_TIMEX_H #define _ASMARM_TIMEX_H
#include <asm/arch_timer.h>
#include <mach/timex.h> #include <mach/timex.h>
#ifdef ARCH_HAS_READ_CURRENT_TIMER typedef unsigned long cycles_t;
#define get_cycles() ({ cycles_t c; read_current_timer(&c) ? 0 : c; }) #define get_cycles() ({ cycles_t c; read_current_timer(&c) ? 0 : c; })
#endif
#include <asm-generic/timex.h>
#endif #endif
...@@ -21,18 +21,28 @@ ...@@ -21,18 +21,28 @@
#include <linux/io.h> #include <linux/io.h>
#include <asm/cputype.h> #include <asm/cputype.h>
#include <asm/delay.h>
#include <asm/localtimer.h> #include <asm/localtimer.h>
#include <asm/arch_timer.h> #include <asm/arch_timer.h>
#include <asm/system_info.h> #include <asm/system_info.h>
#include <asm/sched_clock.h> #include <asm/sched_clock.h>
static unsigned long arch_timer_rate; static unsigned long arch_timer_rate;
static int arch_timer_ppi;
static int arch_timer_ppi2; enum ppi_nr {
PHYS_SECURE_PPI,
PHYS_NONSECURE_PPI,
VIRT_PPI,
HYP_PPI,
MAX_TIMER_PPI
};
static int arch_timer_ppi[MAX_TIMER_PPI];
static struct clock_event_device __percpu **arch_timer_evt; static struct clock_event_device __percpu **arch_timer_evt;
static struct delay_timer arch_delay_timer;
extern void init_current_timer_delay(unsigned long freq); static bool arch_timer_use_virtual = true;
/* /*
* Architected system timer support. * Architected system timer support.
...@@ -46,8 +56,17 @@ extern void init_current_timer_delay(unsigned long freq); ...@@ -46,8 +56,17 @@ extern void init_current_timer_delay(unsigned long freq);
#define ARCH_TIMER_REG_FREQ 1 #define ARCH_TIMER_REG_FREQ 1
#define ARCH_TIMER_REG_TVAL 2 #define ARCH_TIMER_REG_TVAL 2
static void arch_timer_reg_write(int reg, u32 val) #define ARCH_TIMER_PHYS_ACCESS 0
#define ARCH_TIMER_VIRT_ACCESS 1
/*
* These register accessors are marked inline so the compiler can
* nicely work out which register we want, and chuck away the rest of
* the code. At least it does so with a recent GCC (4.6.3).
*/
static inline void arch_timer_reg_write(const int access, const int reg, u32 val)
{ {
if (access == ARCH_TIMER_PHYS_ACCESS) {
switch (reg) { switch (reg) {
case ARCH_TIMER_REG_CTRL: case ARCH_TIMER_REG_CTRL:
asm volatile("mcr p15, 0, %0, c14, c2, 1" : : "r" (val)); asm volatile("mcr p15, 0, %0, c14, c2, 1" : : "r" (val));
...@@ -56,40 +75,85 @@ static void arch_timer_reg_write(int reg, u32 val) ...@@ -56,40 +75,85 @@ static void arch_timer_reg_write(int reg, u32 val)
asm volatile("mcr p15, 0, %0, c14, c2, 0" : : "r" (val)); asm volatile("mcr p15, 0, %0, c14, c2, 0" : : "r" (val));
break; break;
} }
}
if (access == ARCH_TIMER_VIRT_ACCESS) {
switch (reg) {
case ARCH_TIMER_REG_CTRL:
asm volatile("mcr p15, 0, %0, c14, c3, 1" : : "r" (val));
break;
case ARCH_TIMER_REG_TVAL:
asm volatile("mcr p15, 0, %0, c14, c3, 0" : : "r" (val));
break;
}
}
isb(); isb();
} }
static u32 arch_timer_reg_read(int reg) static inline u32 arch_timer_reg_read(const int access, const int reg)
{ {
u32 val; u32 val = 0;
if (access == ARCH_TIMER_PHYS_ACCESS) {
switch (reg) { switch (reg) {
case ARCH_TIMER_REG_CTRL: case ARCH_TIMER_REG_CTRL:
asm volatile("mrc p15, 0, %0, c14, c2, 1" : "=r" (val)); asm volatile("mrc p15, 0, %0, c14, c2, 1" : "=r" (val));
break; break;
case ARCH_TIMER_REG_TVAL:
asm volatile("mrc p15, 0, %0, c14, c2, 0" : "=r" (val));
break;
case ARCH_TIMER_REG_FREQ: case ARCH_TIMER_REG_FREQ:
asm volatile("mrc p15, 0, %0, c14, c0, 0" : "=r" (val)); asm volatile("mrc p15, 0, %0, c14, c0, 0" : "=r" (val));
break; break;
}
}
if (access == ARCH_TIMER_VIRT_ACCESS) {
switch (reg) {
case ARCH_TIMER_REG_CTRL:
asm volatile("mrc p15, 0, %0, c14, c3, 1" : "=r" (val));
break;
case ARCH_TIMER_REG_TVAL: case ARCH_TIMER_REG_TVAL:
asm volatile("mrc p15, 0, %0, c14, c2, 0" : "=r" (val)); asm volatile("mrc p15, 0, %0, c14, c3, 0" : "=r" (val));
break; break;
default: }
BUG();
} }
return val; return val;
} }
static irqreturn_t arch_timer_handler(int irq, void *dev_id) static inline cycle_t arch_timer_counter_read(const int access)
{ {
struct clock_event_device *evt = *(struct clock_event_device **)dev_id; cycle_t cval = 0;
unsigned long ctrl;
if (access == ARCH_TIMER_PHYS_ACCESS)
asm volatile("mrrc p15, 0, %Q0, %R0, c14" : "=r" (cval));
ctrl = arch_timer_reg_read(ARCH_TIMER_REG_CTRL); if (access == ARCH_TIMER_VIRT_ACCESS)
asm volatile("mrrc p15, 1, %Q0, %R0, c14" : "=r" (cval));
return cval;
}
static inline cycle_t arch_counter_get_cntpct(void)
{
return arch_timer_counter_read(ARCH_TIMER_PHYS_ACCESS);
}
static inline cycle_t arch_counter_get_cntvct(void)
{
return arch_timer_counter_read(ARCH_TIMER_VIRT_ACCESS);
}
static irqreturn_t inline timer_handler(const int access,
struct clock_event_device *evt)
{
unsigned long ctrl;
ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL);
if (ctrl & ARCH_TIMER_CTRL_IT_STAT) { if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
ctrl |= ARCH_TIMER_CTRL_IT_MASK; ctrl |= ARCH_TIMER_CTRL_IT_MASK;
arch_timer_reg_write(ARCH_TIMER_REG_CTRL, ctrl); arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl);
evt->event_handler(evt); evt->event_handler(evt);
return IRQ_HANDLED; return IRQ_HANDLED;
} }
...@@ -97,63 +161,100 @@ static irqreturn_t arch_timer_handler(int irq, void *dev_id) ...@@ -97,63 +161,100 @@ static irqreturn_t arch_timer_handler(int irq, void *dev_id)
return IRQ_NONE; return IRQ_NONE;
} }
static void arch_timer_disable(void) static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
{ {
unsigned long ctrl; struct clock_event_device *evt = *(struct clock_event_device **)dev_id;
ctrl = arch_timer_reg_read(ARCH_TIMER_REG_CTRL); return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
arch_timer_reg_write(ARCH_TIMER_REG_CTRL, ctrl);
} }
static void arch_timer_set_mode(enum clock_event_mode mode, static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
struct clock_event_device *clk)
{ {
struct clock_event_device *evt = *(struct clock_event_device **)dev_id;
return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
}
static inline void timer_set_mode(const int access, int mode)
{
unsigned long ctrl;
switch (mode) { switch (mode) {
case CLOCK_EVT_MODE_UNUSED: case CLOCK_EVT_MODE_UNUSED:
case CLOCK_EVT_MODE_SHUTDOWN: case CLOCK_EVT_MODE_SHUTDOWN:
arch_timer_disable(); ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL);
ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl);
break; break;
default: default:
break; break;
} }
} }
static int arch_timer_set_next_event(unsigned long evt, static void arch_timer_set_mode_virt(enum clock_event_mode mode,
struct clock_event_device *unused) struct clock_event_device *clk)
{ {
unsigned long ctrl; timer_set_mode(ARCH_TIMER_VIRT_ACCESS, mode);
}
static void arch_timer_set_mode_phys(enum clock_event_mode mode,
struct clock_event_device *clk)
{
timer_set_mode(ARCH_TIMER_PHYS_ACCESS, mode);
}
ctrl = arch_timer_reg_read(ARCH_TIMER_REG_CTRL); static inline void set_next_event(const int access, unsigned long evt)
{
unsigned long ctrl;
ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL);
ctrl |= ARCH_TIMER_CTRL_ENABLE; ctrl |= ARCH_TIMER_CTRL_ENABLE;
ctrl &= ~ARCH_TIMER_CTRL_IT_MASK; ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt);
arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl);
}
arch_timer_reg_write(ARCH_TIMER_REG_TVAL, evt); static int arch_timer_set_next_event_virt(unsigned long evt,
arch_timer_reg_write(ARCH_TIMER_REG_CTRL, ctrl); struct clock_event_device *unused)
{
set_next_event(ARCH_TIMER_VIRT_ACCESS, evt);
return 0;
}
static int arch_timer_set_next_event_phys(unsigned long evt,
struct clock_event_device *unused)
{
set_next_event(ARCH_TIMER_PHYS_ACCESS, evt);
return 0; return 0;
} }
static int __cpuinit arch_timer_setup(struct clock_event_device *clk) static int __cpuinit arch_timer_setup(struct clock_event_device *clk)
{ {
/* Be safe... */
arch_timer_disable();
clk->features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_C3STOP; clk->features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_C3STOP;
clk->name = "arch_sys_timer"; clk->name = "arch_sys_timer";
clk->rating = 450; clk->rating = 450;
clk->set_mode = arch_timer_set_mode; if (arch_timer_use_virtual) {
clk->set_next_event = arch_timer_set_next_event; clk->irq = arch_timer_ppi[VIRT_PPI];
clk->irq = arch_timer_ppi; clk->set_mode = arch_timer_set_mode_virt;
clk->set_next_event = arch_timer_set_next_event_virt;
} else {
clk->irq = arch_timer_ppi[PHYS_SECURE_PPI];
clk->set_mode = arch_timer_set_mode_phys;
clk->set_next_event = arch_timer_set_next_event_phys;
}
clk->set_mode(CLOCK_EVT_MODE_SHUTDOWN, NULL);
clockevents_config_and_register(clk, arch_timer_rate, clockevents_config_and_register(clk, arch_timer_rate,
0xf, 0x7fffffff); 0xf, 0x7fffffff);
*__this_cpu_ptr(arch_timer_evt) = clk; *__this_cpu_ptr(arch_timer_evt) = clk;
enable_percpu_irq(clk->irq, 0); if (arch_timer_use_virtual)
if (arch_timer_ppi2) enable_percpu_irq(arch_timer_ppi[VIRT_PPI], 0);
enable_percpu_irq(arch_timer_ppi2, 0); else {
enable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI], 0);
if (arch_timer_ppi[PHYS_NONSECURE_PPI])
enable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], 0);
}
return 0; return 0;
} }
...@@ -173,8 +274,8 @@ static int arch_timer_available(void) ...@@ -173,8 +274,8 @@ static int arch_timer_available(void)
return -ENXIO; return -ENXIO;
if (arch_timer_rate == 0) { if (arch_timer_rate == 0) {
arch_timer_reg_write(ARCH_TIMER_REG_CTRL, 0); freq = arch_timer_reg_read(ARCH_TIMER_PHYS_ACCESS,
freq = arch_timer_reg_read(ARCH_TIMER_REG_FREQ); ARCH_TIMER_REG_FREQ);
/* Check the timer frequency. */ /* Check the timer frequency. */
if (freq == 0) { if (freq == 0) {
...@@ -185,52 +286,57 @@ static int arch_timer_available(void) ...@@ -185,52 +286,57 @@ static int arch_timer_available(void)
arch_timer_rate = freq; arch_timer_rate = freq;
} }
pr_info_once("Architected local timer running at %lu.%02luMHz.\n", pr_info_once("Architected local timer running at %lu.%02luMHz (%s).\n",
arch_timer_rate / 1000000, (arch_timer_rate / 10000) % 100); arch_timer_rate / 1000000, (arch_timer_rate / 10000) % 100,
arch_timer_use_virtual ? "virt" : "phys");
return 0; return 0;
} }
static inline cycle_t arch_counter_get_cntpct(void) static u32 notrace arch_counter_get_cntpct32(void)
{ {
u32 cvall, cvalh; cycle_t cnt = arch_counter_get_cntpct();
asm volatile("mrrc p15, 0, %0, %1, c14" : "=r" (cvall), "=r" (cvalh)); /*
* The sched_clock infrastructure only knows about counters
return ((cycle_t) cvalh << 32) | cvall; * with at most 32bits. Forget about the upper 24 bits for the
} * time being...
*/
static inline cycle_t arch_counter_get_cntvct(void) return (u32)cnt;
{
u32 cvall, cvalh;
asm volatile("mrrc p15, 1, %0, %1, c14" : "=r" (cvall), "=r" (cvalh));
return ((cycle_t) cvalh << 32) | cvall;
} }
static u32 notrace arch_counter_get_cntvct32(void) static u32 notrace arch_counter_get_cntvct32(void)
{ {
cycle_t cntvct = arch_counter_get_cntvct(); cycle_t cnt = arch_counter_get_cntvct();
/* /*
* The sched_clock infrastructure only knows about counters * The sched_clock infrastructure only knows about counters
* with at most 32bits. Forget about the upper 24 bits for the * with at most 32bits. Forget about the upper 24 bits for the
* time being... * time being...
*/ */
return (u32)(cntvct & (u32)~0); return (u32)cnt;
} }
static cycle_t arch_counter_read(struct clocksource *cs) static cycle_t arch_counter_read(struct clocksource *cs)
{ {
/*
* Always use the physical counter for the clocksource.
* CNTHCTL.PL1PCTEN must be set to 1.
*/
return arch_counter_get_cntpct(); return arch_counter_get_cntpct();
} }
int read_current_timer(unsigned long *timer_val) static unsigned long arch_timer_read_current_timer(void)
{ {
if (!arch_timer_rate) return arch_counter_get_cntpct();
return -ENXIO; }
*timer_val = arch_counter_get_cntpct();
return 0; static cycle_t arch_counter_read_cc(const struct cyclecounter *cc)
{
/*
* Always use the physical counter for the clocksource.
* CNTHCTL.PL1PCTEN must be set to 1.
*/
return arch_counter_get_cntpct();
} }
static struct clocksource clocksource_counter = { static struct clocksource clocksource_counter = {
...@@ -241,14 +347,32 @@ static struct clocksource clocksource_counter = { ...@@ -241,14 +347,32 @@ static struct clocksource clocksource_counter = {
.flags = CLOCK_SOURCE_IS_CONTINUOUS, .flags = CLOCK_SOURCE_IS_CONTINUOUS,
}; };
static struct cyclecounter cyclecounter = {
.read = arch_counter_read_cc,
.mask = CLOCKSOURCE_MASK(56),
};
static struct timecounter timecounter;
struct timecounter *arch_timer_get_timecounter(void)
{
return &timecounter;
}
static void __cpuinit arch_timer_stop(struct clock_event_device *clk) static void __cpuinit arch_timer_stop(struct clock_event_device *clk)
{ {
pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n", pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n",
clk->irq, smp_processor_id()); clk->irq, smp_processor_id());
disable_percpu_irq(clk->irq);
if (arch_timer_ppi2) if (arch_timer_use_virtual)
disable_percpu_irq(arch_timer_ppi2); disable_percpu_irq(arch_timer_ppi[VIRT_PPI]);
arch_timer_set_mode(CLOCK_EVT_MODE_UNUSED, clk); else {
disable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI]);
if (arch_timer_ppi[PHYS_NONSECURE_PPI])
disable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI]);
}
clk->set_mode(CLOCK_EVT_MODE_UNUSED, clk);
} }
static struct local_timer_ops arch_timer_ops __cpuinitdata = { static struct local_timer_ops arch_timer_ops __cpuinitdata = {
...@@ -261,34 +385,46 @@ static struct clock_event_device arch_timer_global_evt; ...@@ -261,34 +385,46 @@ static struct clock_event_device arch_timer_global_evt;
static int __init arch_timer_register(void) static int __init arch_timer_register(void)
{ {
int err; int err;
int ppi;
err = arch_timer_available(); err = arch_timer_available();
if (err) if (err)
return err; goto out;
arch_timer_evt = alloc_percpu(struct clock_event_device *); arch_timer_evt = alloc_percpu(struct clock_event_device *);
if (!arch_timer_evt) if (!arch_timer_evt) {
return -ENOMEM; err = -ENOMEM;
goto out;
}
clocksource_register_hz(&clocksource_counter, arch_timer_rate); clocksource_register_hz(&clocksource_counter, arch_timer_rate);
cyclecounter.mult = clocksource_counter.mult;
err = request_percpu_irq(arch_timer_ppi, arch_timer_handler, cyclecounter.shift = clocksource_counter.shift;
timecounter_init(&timecounter, &cyclecounter,
arch_counter_get_cntpct());
if (arch_timer_use_virtual) {
ppi = arch_timer_ppi[VIRT_PPI];
err = request_percpu_irq(ppi, arch_timer_handler_virt,
"arch_timer", arch_timer_evt); "arch_timer", arch_timer_evt);
if (err) { } else {
pr_err("arch_timer: can't register interrupt %d (%d)\n", ppi = arch_timer_ppi[PHYS_SECURE_PPI];
arch_timer_ppi, err); err = request_percpu_irq(ppi, arch_timer_handler_phys,
goto out_free; "arch_timer", arch_timer_evt);
if (!err && arch_timer_ppi[PHYS_NONSECURE_PPI]) {
ppi = arch_timer_ppi[PHYS_NONSECURE_PPI];
err = request_percpu_irq(ppi, arch_timer_handler_phys,
"arch_timer", arch_timer_evt);
if (err)
free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
arch_timer_evt);
}
} }
if (arch_timer_ppi2) {
err = request_percpu_irq(arch_timer_ppi2, arch_timer_handler,
"arch_timer", arch_timer_evt);
if (err) { if (err) {
pr_err("arch_timer: can't register interrupt %d (%d)\n", pr_err("arch_timer: can't register interrupt %d (%d)\n",
arch_timer_ppi2, err); ppi, err);
arch_timer_ppi2 = 0; goto out_free;
goto out_free_irq;
}
} }
err = local_timer_register(&arch_timer_ops); err = local_timer_register(&arch_timer_ops);
...@@ -302,21 +438,29 @@ static int __init arch_timer_register(void) ...@@ -302,21 +438,29 @@ static int __init arch_timer_register(void)
arch_timer_global_evt.cpumask = cpumask_of(0); arch_timer_global_evt.cpumask = cpumask_of(0);
err = arch_timer_setup(&arch_timer_global_evt); err = arch_timer_setup(&arch_timer_global_evt);
} }
if (err) if (err)
goto out_free_irq; goto out_free_irq;
init_current_timer_delay(arch_timer_rate); /* Use the architected timer for the delay loop. */
arch_delay_timer.read_current_timer = &arch_timer_read_current_timer;
arch_delay_timer.freq = arch_timer_rate;
register_current_timer_delay(&arch_delay_timer);
return 0; return 0;
out_free_irq: out_free_irq:
free_percpu_irq(arch_timer_ppi, arch_timer_evt); if (arch_timer_use_virtual)
if (arch_timer_ppi2) free_percpu_irq(arch_timer_ppi[VIRT_PPI], arch_timer_evt);
free_percpu_irq(arch_timer_ppi2, arch_timer_evt); else {
free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
arch_timer_evt);
if (arch_timer_ppi[PHYS_NONSECURE_PPI])
free_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI],
arch_timer_evt);
}
out_free: out_free:
free_percpu(arch_timer_evt); free_percpu(arch_timer_evt);
out:
return err; return err;
} }
...@@ -329,6 +473,7 @@ int __init arch_timer_of_register(void) ...@@ -329,6 +473,7 @@ int __init arch_timer_of_register(void)
{ {
struct device_node *np; struct device_node *np;
u32 freq; u32 freq;
int i;
np = of_find_matching_node(NULL, arch_timer_of_match); np = of_find_matching_node(NULL, arch_timer_of_match);
if (!np) { if (!np) {
...@@ -340,22 +485,40 @@ int __init arch_timer_of_register(void) ...@@ -340,22 +485,40 @@ int __init arch_timer_of_register(void)
if (!of_property_read_u32(np, "clock-frequency", &freq)) if (!of_property_read_u32(np, "clock-frequency", &freq))
arch_timer_rate = freq; arch_timer_rate = freq;
arch_timer_ppi = irq_of_parse_and_map(np, 0); for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++)
arch_timer_ppi2 = irq_of_parse_and_map(np, 1); arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
pr_info("arch_timer: found %s irqs %d %d\n",
np->name, arch_timer_ppi, arch_timer_ppi2); /*
* If no interrupt provided for virtual timer, we'll have to
* stick to the physical timer. It'd better be accessible...
*/
if (!arch_timer_ppi[VIRT_PPI]) {
arch_timer_use_virtual = false;
if (!arch_timer_ppi[PHYS_SECURE_PPI] ||
!arch_timer_ppi[PHYS_NONSECURE_PPI]) {
pr_warn("arch_timer: No interrupt available, giving up\n");
return -EINVAL;
}
}
return arch_timer_register(); return arch_timer_register();
} }
int __init arch_timer_sched_clock_init(void) int __init arch_timer_sched_clock_init(void)
{ {
u32 (*cnt32)(void);
int err; int err;
err = arch_timer_available(); err = arch_timer_available();
if (err) if (err)
return err; return err;
setup_sched_clock(arch_counter_get_cntvct32, 32, arch_timer_rate); if (arch_timer_use_virtual)
cnt32 = arch_counter_get_cntvct32;
else
cnt32 = arch_counter_get_cntpct32;
setup_sched_clock(cnt32, 32, arch_timer_rate);
return 0; return 0;
} }
...@@ -34,7 +34,18 @@ struct arm_delay_ops arm_delay_ops = { ...@@ -34,7 +34,18 @@ struct arm_delay_ops arm_delay_ops = {
.udelay = __loop_udelay, .udelay = __loop_udelay,
}; };
#ifdef ARCH_HAS_READ_CURRENT_TIMER static const struct delay_timer *delay_timer;
static bool delay_calibrated;
int read_current_timer(unsigned long *timer_val)
{
if (!delay_timer)
return -ENXIO;
*timer_val = delay_timer->read_current_timer();
return 0;
}
static void __timer_delay(unsigned long cycles) static void __timer_delay(unsigned long cycles)
{ {
cycles_t start = get_cycles(); cycles_t start = get_cycles();
...@@ -55,18 +66,24 @@ static void __timer_udelay(unsigned long usecs) ...@@ -55,18 +66,24 @@ static void __timer_udelay(unsigned long usecs)
__timer_const_udelay(usecs * UDELAY_MULT); __timer_const_udelay(usecs * UDELAY_MULT);
} }
void __init init_current_timer_delay(unsigned long freq) void __init register_current_timer_delay(const struct delay_timer *timer)
{ {
if (!delay_calibrated) {
pr_info("Switching to timer-based delay loop\n"); pr_info("Switching to timer-based delay loop\n");
lpj_fine = freq / HZ; delay_timer = timer;
lpj_fine = timer->freq / HZ;
loops_per_jiffy = lpj_fine; loops_per_jiffy = lpj_fine;
arm_delay_ops.delay = __timer_delay; arm_delay_ops.delay = __timer_delay;
arm_delay_ops.const_udelay = __timer_const_udelay; arm_delay_ops.const_udelay = __timer_const_udelay;
arm_delay_ops.udelay = __timer_udelay; arm_delay_ops.udelay = __timer_udelay;
delay_calibrated = true;
} else {
pr_info("Ignoring duplicate/late registration of read_current_timer delay\n");
}
} }
unsigned long __cpuinit calibrate_delay_is_known(void) unsigned long __cpuinit calibrate_delay_is_known(void)
{ {
delay_calibrated = true;
return lpj_fine; return lpj_fine;
} }
#endif
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment