Commit cf2ddacb authored by Leo Chen's avatar Leo Chen Committed by Russell King

ARM: 5659/1: bcmring: add csp dmac source files

add csp dmac source files
Signed-off-by: default avatarLeo Chen <leochen@broadcom.com>
Signed-off-by: default avatarRussell King <rmk+kernel@arm.linux.org.uk>
parent 1a4a561b
obj-y += dmacHw.o dmacHw_extra.o
\ No newline at end of file
/*****************************************************************************
* Copyright 2003 - 2008 Broadcom Corporation. All rights reserved.
*
* Unless you and Broadcom execute a separate written software license
* agreement governing use of this software, this software is licensed to you
* under the terms of the GNU General Public License version 2, available at
* http://www.broadcom.com/licenses/GPLv2.php (the "GPL").
*
* Notwithstanding the above, under no circumstances may you combine this
* software in any way with any other Broadcom software provided under a
* license other than the GPL, without Broadcom's express prior written
* consent.
*****************************************************************************/
/****************************************************************************/
/**
* @file dmacHw.c
*
* @brief Low level DMA controller driver routines
*
* @note
*
* These routines provide basic DMA functionality only.
*/
/****************************************************************************/
/* ---- Include Files ---------------------------------------------------- */
#include <csp/stdint.h>
#include <csp/string.h>
#include <stddef.h>
#include <csp/dmacHw.h>
#include <mach/csp/dmacHw_reg.h>
#include <mach/csp/dmacHw_priv.h>
#include <mach/csp/chipcHw_inline.h>
/* ---- External Function Prototypes ------------------------------------- */
/* Allocate DMA control blocks */
dmacHw_CBLK_t dmacHw_gCblk[dmacHw_MAX_CHANNEL_COUNT];
uint32_t dmaChannelCount_0 = dmacHw_MAX_CHANNEL_COUNT / 2;
uint32_t dmaChannelCount_1 = dmacHw_MAX_CHANNEL_COUNT / 2;
/****************************************************************************/
/**
* @brief Get maximum FIFO for a DMA channel
*
* @return Maximum allowable FIFO size
*
*
*/
/****************************************************************************/
static uint32_t GetFifoSize(dmacHw_HANDLE_t handle /* [ IN ] DMA Channel handle */
) {
uint32_t val = 0;
dmacHw_CBLK_t *pCblk = dmacHw_HANDLE_TO_CBLK(handle);
dmacHw_MISC_t *pMiscReg =
(dmacHw_MISC_t *) dmacHw_REG_MISC_BASE(pCblk->module);
switch (pCblk->channel) {
case 0:
val = (pMiscReg->CompParm2.lo & 0x70000000) >> 28;
break;
case 1:
val = (pMiscReg->CompParm3.hi & 0x70000000) >> 28;
break;
case 2:
val = (pMiscReg->CompParm3.lo & 0x70000000) >> 28;
break;
case 3:
val = (pMiscReg->CompParm4.hi & 0x70000000) >> 28;
break;
case 4:
val = (pMiscReg->CompParm4.lo & 0x70000000) >> 28;
break;
case 5:
val = (pMiscReg->CompParm5.hi & 0x70000000) >> 28;
break;
case 6:
val = (pMiscReg->CompParm5.lo & 0x70000000) >> 28;
break;
case 7:
val = (pMiscReg->CompParm6.hi & 0x70000000) >> 28;
break;
}
if (val <= 0x4) {
return 8 << val;
} else {
dmacHw_ASSERT(0);
}
return 0;
}
/****************************************************************************/
/**
* @brief Program channel register to initiate transfer
*
* @return void
*
*
* @note
* - Descriptor buffer MUST ALWAYS be flushed before calling this function
* - This function should also be called from ISR to program the channel with
* pending descriptors
*/
/****************************************************************************/
void dmacHw_initiateTransfer(dmacHw_HANDLE_t handle, /* [ IN ] DMA Channel handle */
dmacHw_CONFIG_t *pConfig, /* [ IN ] Configuration settings */
void *pDescriptor /* [ IN ] Descriptor buffer */
) {
dmacHw_DESC_RING_t *pRing;
dmacHw_DESC_t *pProg;
dmacHw_CBLK_t *pCblk;
pCblk = dmacHw_HANDLE_TO_CBLK(handle);
pRing = dmacHw_GET_DESC_RING(pDescriptor);
if (CHANNEL_BUSY(pCblk->module, pCblk->channel)) {
/* Not safe yet to program the channel */
return;
}
if (pCblk->varDataStarted) {
if (pCblk->descUpdated) {
pCblk->descUpdated = 0;
pProg =
(dmacHw_DESC_t *) ((uint32_t)
dmacHw_REG_LLP(pCblk->module,
pCblk->channel) +
pRing->virt2PhyOffset);
/* Load descriptor if not loaded */
if (!(pProg->ctl.hi & dmacHw_REG_CTL_DONE)) {
dmacHw_SET_SAR(pCblk->module, pCblk->channel,
pProg->sar);
dmacHw_SET_DAR(pCblk->module, pCblk->channel,
pProg->dar);
dmacHw_REG_CTL_LO(pCblk->module,
pCblk->channel) =
pProg->ctl.lo;
dmacHw_REG_CTL_HI(pCblk->module,
pCblk->channel) =
pProg->ctl.hi;
} else if (pProg == (dmacHw_DESC_t *) pRing->pEnd->llp) {
/* Return as end descriptor is processed */
return;
} else {
dmacHw_ASSERT(0);
}
} else {
return;
}
} else {
if (pConfig->transferMode == dmacHw_TRANSFER_MODE_PERIODIC) {
/* Do not make a single chain, rather process one descriptor at a time */
pProg = pRing->pHead;
/* Point to the next descriptor for next iteration */
dmacHw_NEXT_DESC(pRing, pHead);
} else {
/* Return if no more pending descriptor */
if (pRing->pEnd == NULL) {
return;
}
pProg = pRing->pProg;
if (pConfig->transferMode ==
dmacHw_TRANSFER_MODE_CONTINUOUS) {
/* Make sure a complete ring can be formed */
dmacHw_ASSERT((dmacHw_DESC_t *) pRing->pEnd->
llp == pRing->pProg);
/* Make sure pProg pointing to the pHead */
dmacHw_ASSERT((dmacHw_DESC_t *) pRing->pProg ==
pRing->pHead);
/* Make a complete ring */
do {
pRing->pProg->ctl.lo |=
(dmacHw_REG_CTL_LLP_DST_EN |
dmacHw_REG_CTL_LLP_SRC_EN);
pRing->pProg =
(dmacHw_DESC_t *) pRing->pProg->llp;
} while (pRing->pProg != pRing->pHead);
} else {
/* Make a single long chain */
while (pRing->pProg != pRing->pEnd) {
pRing->pProg->ctl.lo |=
(dmacHw_REG_CTL_LLP_DST_EN |
dmacHw_REG_CTL_LLP_SRC_EN);
pRing->pProg =
(dmacHw_DESC_t *) pRing->pProg->llp;
}
}
}
/* Program the channel registers */
dmacHw_SET_SAR(pCblk->module, pCblk->channel, pProg->sar);
dmacHw_SET_DAR(pCblk->module, pCblk->channel, pProg->dar);
dmacHw_SET_LLP(pCblk->module, pCblk->channel,
(uint32_t) pProg - pRing->virt2PhyOffset);
dmacHw_REG_CTL_LO(pCblk->module, pCblk->channel) =
pProg->ctl.lo;
dmacHw_REG_CTL_HI(pCblk->module, pCblk->channel) =
pProg->ctl.hi;
if (pRing->pEnd) {
/* Remember the descriptor to use next */
pRing->pProg = (dmacHw_DESC_t *) pRing->pEnd->llp;
}
/* Indicate no more pending descriptor */
pRing->pEnd = (dmacHw_DESC_t *) NULL;
}
/* Start DMA operation */
dmacHw_DMA_START(pCblk->module, pCblk->channel);
}
/****************************************************************************/
/**
* @brief Initializes DMA
*
* This function initializes DMA CSP driver
*
* @note
* Must be called before using any DMA channel
*/
/****************************************************************************/
void dmacHw_initDma(void)
{
uint32_t i = 0;
dmaChannelCount_0 = dmacHw_GET_NUM_CHANNEL(0);
dmaChannelCount_1 = dmacHw_GET_NUM_CHANNEL(1);
/* Enable access to the DMA block */
chipcHw_busInterfaceClockEnable(chipcHw_REG_BUS_CLOCK_DMAC0);
chipcHw_busInterfaceClockEnable(chipcHw_REG_BUS_CLOCK_DMAC1);
if ((dmaChannelCount_0 + dmaChannelCount_1) > dmacHw_MAX_CHANNEL_COUNT) {
dmacHw_ASSERT(0);
}
memset((void *)dmacHw_gCblk, 0,
sizeof(dmacHw_CBLK_t) * (dmaChannelCount_0 + dmaChannelCount_1));
for (i = 0; i < dmaChannelCount_0; i++) {
dmacHw_gCblk[i].module = 0;
dmacHw_gCblk[i].channel = i;
}
for (i = 0; i < dmaChannelCount_1; i++) {
dmacHw_gCblk[i + dmaChannelCount_0].module = 1;
dmacHw_gCblk[i + dmaChannelCount_0].channel = i;
}
}
/****************************************************************************/
/**
* @brief Exit function for DMA
*
* This function isolates DMA from the system
*
*/
/****************************************************************************/
void dmacHw_exitDma(void)
{
/* Disable access to the DMA block */
chipcHw_busInterfaceClockDisable(chipcHw_REG_BUS_CLOCK_DMAC0);
chipcHw_busInterfaceClockDisable(chipcHw_REG_BUS_CLOCK_DMAC1);
}
/****************************************************************************/
/**
* @brief Gets a handle to a DMA channel
*
* This function returns a handle, representing a control block of a particular DMA channel
*
* @return -1 - On Failure
* handle - On Success, representing a channel control block
*
* @note
* None Channel ID must be created using "dmacHw_MAKE_CHANNEL_ID" macro
*/
/****************************************************************************/
dmacHw_HANDLE_t dmacHw_getChannelHandle(dmacHw_ID_t channelId /* [ IN ] DMA Channel Id */
) {
int idx;
switch ((channelId >> 8)) {
case 0:
dmacHw_ASSERT((channelId & 0xff) < dmaChannelCount_0);
idx = (channelId & 0xff);
break;
case 1:
dmacHw_ASSERT((channelId & 0xff) < dmaChannelCount_1);
idx = dmaChannelCount_0 + (channelId & 0xff);
break;
default:
dmacHw_ASSERT(0);
return (dmacHw_HANDLE_t) -1;
}
return dmacHw_CBLK_TO_HANDLE(&dmacHw_gCblk[idx]);
}
/****************************************************************************/
/**
* @brief Initializes a DMA channel for use
*
* This function initializes and resets a DMA channel for use
*
* @return -1 - On Failure
* 0 - On Success
*
* @note
* None
*/
/****************************************************************************/
int dmacHw_initChannel(dmacHw_HANDLE_t handle /* [ IN ] DMA Channel handle */
) {
dmacHw_CBLK_t *pCblk = dmacHw_HANDLE_TO_CBLK(handle);
int module = pCblk->module;
int channel = pCblk->channel;
/* Reinitialize the control block */
memset((void *)pCblk, 0, sizeof(dmacHw_CBLK_t));
pCblk->module = module;
pCblk->channel = channel;
/* Enable DMA controller */
dmacHw_DMA_ENABLE(pCblk->module);
/* Reset DMA channel */
dmacHw_RESET_CONTROL_LO(pCblk->module, pCblk->channel);
dmacHw_RESET_CONTROL_HI(pCblk->module, pCblk->channel);
dmacHw_RESET_CONFIG_LO(pCblk->module, pCblk->channel);
dmacHw_RESET_CONFIG_HI(pCblk->module, pCblk->channel);
/* Clear all raw interrupt status */
dmacHw_TRAN_INT_CLEAR(pCblk->module, pCblk->channel);
dmacHw_BLOCK_INT_CLEAR(pCblk->module, pCblk->channel);
dmacHw_ERROR_INT_CLEAR(pCblk->module, pCblk->channel);
/* Mask event specific interrupts */
dmacHw_TRAN_INT_DISABLE(pCblk->module, pCblk->channel);
dmacHw_BLOCK_INT_DISABLE(pCblk->module, pCblk->channel);
dmacHw_STRAN_INT_DISABLE(pCblk->module, pCblk->channel);
dmacHw_DTRAN_INT_DISABLE(pCblk->module, pCblk->channel);
dmacHw_ERROR_INT_DISABLE(pCblk->module, pCblk->channel);
return 0;
}
/****************************************************************************/
/**
* @brief Finds amount of memory required to form a descriptor ring
*
*
* @return Number of bytes required to form a descriptor ring
*
*
*/
/****************************************************************************/
uint32_t dmacHw_descriptorLen(uint32_t descCnt /* [ IN ] Number of descriptor in the ring */
) {
/* Need extra 4 byte to ensure 32 bit alignment */
return (descCnt * sizeof(dmacHw_DESC_t)) + sizeof(dmacHw_DESC_RING_t) +
sizeof(uint32_t);
}
/****************************************************************************/
/**
* @brief Initializes descriptor ring
*
* This function will initializes the descriptor ring of a DMA channel
*
*
* @return -1 - On failure
* 0 - On success
* @note
* - "len" parameter should be obtained from "dmacHw_descriptorLen"
* - Descriptor buffer MUST be 32 bit aligned and uncached as it is
* accessed by ARM and DMA
*/
/****************************************************************************/
int dmacHw_initDescriptor(void *pDescriptorVirt, /* [ IN ] Virtual address of uncahced buffer allocated to form descriptor ring */
uint32_t descriptorPhyAddr, /* [ IN ] Physical address of pDescriptorVirt (descriptor buffer) */
uint32_t len, /* [ IN ] Size of the pBuf */
uint32_t num /* [ IN ] Number of descriptor in the ring */
) {
uint32_t i;
dmacHw_DESC_RING_t *pRing;
dmacHw_DESC_t *pDesc;
/* Check the alignment of the descriptor */
if ((uint32_t) pDescriptorVirt & 0x00000003) {
dmacHw_ASSERT(0);
return -1;
}
/* Check if enough space has been allocated for descriptor ring */
if (len < dmacHw_descriptorLen(num)) {
return -1;
}
pRing = dmacHw_GET_DESC_RING(pDescriptorVirt);
pRing->pHead =
(dmacHw_DESC_t *) ((uint32_t) pRing + sizeof(dmacHw_DESC_RING_t));
pRing->pFree = pRing->pTail = pRing->pEnd = pRing->pHead;
pRing->pProg = dmacHw_DESC_INIT;
/* Initialize link item chain, starting from the head */
pDesc = pRing->pHead;
/* Find the offset between virtual to physical address */
pRing->virt2PhyOffset = (uint32_t) pDescriptorVirt - descriptorPhyAddr;
/* Form the descriptor ring */
for (i = 0; i < num - 1; i++) {
/* Clear link list item */
memset((void *)pDesc, 0, sizeof(dmacHw_DESC_t));
/* Point to the next item in the physical address */
pDesc->llpPhy = (uint32_t) (pDesc + 1) - pRing->virt2PhyOffset;
/* Point to the next item in the virtual address */
pDesc->llp = (uint32_t) (pDesc + 1);
/* Mark descriptor is ready to use */
pDesc->ctl.hi = dmacHw_DESC_FREE;
/* Look into next link list item */
pDesc++;
}
/* Clear last link list item */
memset((void *)pDesc, 0, sizeof(dmacHw_DESC_t));
/* Last item pointing to the first item in the
physical address to complete the ring */
pDesc->llpPhy = (uint32_t) pRing->pHead - pRing->virt2PhyOffset;
/* Last item pointing to the first item in the
virtual address to complete the ring
*/
pDesc->llp = (uint32_t) pRing->pHead;
/* Mark descriptor is ready to use */
pDesc->ctl.hi = dmacHw_DESC_FREE;
/* Set the number of descriptors in the ring */
pRing->num = num;
return 0;
}
/****************************************************************************/
/**
* @brief Configure DMA channel
*
* @return 0 : On success
* -1 : On failure
*/
/****************************************************************************/
int dmacHw_configChannel(dmacHw_HANDLE_t handle, /* [ IN ] DMA Channel handle */
dmacHw_CONFIG_t *pConfig /* [ IN ] Configuration settings */
) {
dmacHw_CBLK_t *pCblk = dmacHw_HANDLE_TO_CBLK(handle);
uint32_t cfgHigh = 0;
int srcTrSize;
int dstTrSize;
pCblk->varDataStarted = 0;
pCblk->userData = NULL;
/* Configure
- Burst transaction when enough data in available in FIFO
- AHB Access protection 1
- Source and destination peripheral ports
*/
cfgHigh =
dmacHw_REG_CFG_HI_FIFO_ENOUGH | dmacHw_REG_CFG_HI_AHB_HPROT_1 |
dmacHw_SRC_PERI_INTF(pConfig->
srcPeripheralPort) |
dmacHw_DST_PERI_INTF(pConfig->dstPeripheralPort);
/* Set priority */
dmacHw_SET_CHANNEL_PRIORITY(pCblk->module, pCblk->channel,
pConfig->channelPriority);
if (pConfig->dstStatusRegisterAddress != 0) {
/* Destination status update enable */
cfgHigh |= dmacHw_REG_CFG_HI_UPDATE_DST_STAT;
/* Configure status registers */
dmacHw_SET_DSTATAR(pCblk->module, pCblk->channel,
pConfig->dstStatusRegisterAddress);
}
if (pConfig->srcStatusRegisterAddress != 0) {
/* Source status update enable */
cfgHigh |= dmacHw_REG_CFG_HI_UPDATE_SRC_STAT;
/* Source status update enable */
dmacHw_SET_SSTATAR(pCblk->module, pCblk->channel,
pConfig->srcStatusRegisterAddress);
}
/* Configure the config high register */
dmacHw_GET_CONFIG_HI(pCblk->module, pCblk->channel) = cfgHigh;
/* Clear all raw interrupt status */
dmacHw_TRAN_INT_CLEAR(pCblk->module, pCblk->channel);
dmacHw_BLOCK_INT_CLEAR(pCblk->module, pCblk->channel);
dmacHw_ERROR_INT_CLEAR(pCblk->module, pCblk->channel);
/* Configure block interrupt */
if (pConfig->blockTransferInterrupt == dmacHw_INTERRUPT_ENABLE) {
dmacHw_BLOCK_INT_ENABLE(pCblk->module, pCblk->channel);
} else {
dmacHw_BLOCK_INT_DISABLE(pCblk->module, pCblk->channel);
}
/* Configure complete transfer interrupt */
if (pConfig->completeTransferInterrupt == dmacHw_INTERRUPT_ENABLE) {
dmacHw_TRAN_INT_ENABLE(pCblk->module, pCblk->channel);
} else {
dmacHw_TRAN_INT_DISABLE(pCblk->module, pCblk->channel);
}
/* Configure error interrupt */
if (pConfig->errorInterrupt == dmacHw_INTERRUPT_ENABLE) {
dmacHw_ERROR_INT_ENABLE(pCblk->module, pCblk->channel);
} else {
dmacHw_ERROR_INT_DISABLE(pCblk->module, pCblk->channel);
}
/* Configure gather register */
if (pConfig->srcGatherWidth) {
srcTrSize =
dmacHw_GetTrWidthInBytes(pConfig->srcMaxTransactionWidth);
if (!
((pConfig->srcGatherWidth % srcTrSize)
&& (pConfig->srcGatherJump % srcTrSize))) {
dmacHw_REG_SGR_LO(pCblk->module, pCblk->channel) =
((pConfig->srcGatherWidth /
srcTrSize) << 20) | (pConfig->srcGatherJump /
srcTrSize);
} else {
return -1;
}
}
/* Configure scatter register */
if (pConfig->dstScatterWidth) {
dstTrSize =
dmacHw_GetTrWidthInBytes(pConfig->dstMaxTransactionWidth);
if (!
((pConfig->dstScatterWidth % dstTrSize)
&& (pConfig->dstScatterJump % dstTrSize))) {
dmacHw_REG_DSR_LO(pCblk->module, pCblk->channel) =
((pConfig->dstScatterWidth /
dstTrSize) << 20) | (pConfig->dstScatterJump /
dstTrSize);
} else {
return -1;
}
}
return 0;
}
/****************************************************************************/
/**
* @brief Indicates whether DMA transfer is in progress or completed
*
* @return DMA transfer status
* dmacHw_TRANSFER_STATUS_BUSY: DMA Transfer ongoing
* dmacHw_TRANSFER_STATUS_DONE: DMA Transfer completed
* dmacHw_TRANSFER_STATUS_ERROR: DMA Transfer error
*
*/
/****************************************************************************/
dmacHw_TRANSFER_STATUS_e dmacHw_transferCompleted(dmacHw_HANDLE_t handle /* [ IN ] DMA Channel handle */
) {
dmacHw_CBLK_t *pCblk = dmacHw_HANDLE_TO_CBLK(handle);
if (CHANNEL_BUSY(pCblk->module, pCblk->channel)) {
return dmacHw_TRANSFER_STATUS_BUSY;
} else if (dmacHw_REG_INT_RAW_ERROR(pCblk->module) &
(0x00000001 << pCblk->channel)) {
return dmacHw_TRANSFER_STATUS_ERROR;
}
return dmacHw_TRANSFER_STATUS_DONE;
}
/****************************************************************************/
/**
* @brief Set descriptors for known data length
*
* When DMA has to work as a flow controller, this function prepares the
* descriptor chain to transfer data
*
* from:
* - Memory to memory
* - Peripheral to memory
* - Memory to Peripheral
* - Peripheral to Peripheral
*
* @return -1 - On failure
* 0 - On success
*
*/
/****************************************************************************/
int dmacHw_setDataDescriptor(dmacHw_CONFIG_t *pConfig, /* [ IN ] Configuration settings */
void *pDescriptor, /* [ IN ] Descriptor buffer */
void *pSrcAddr, /* [ IN ] Source (Peripheral/Memory) address */
void *pDstAddr, /* [ IN ] Destination (Peripheral/Memory) address */
size_t dataLen /* [ IN ] Data length in bytes */
) {
dmacHw_TRANSACTION_WIDTH_e dstTrWidth;
dmacHw_TRANSACTION_WIDTH_e srcTrWidth;
dmacHw_DESC_RING_t *pRing = dmacHw_GET_DESC_RING(pDescriptor);
dmacHw_DESC_t *pStart;
dmacHw_DESC_t *pProg;
int srcTs = 0;
int blkTs = 0;
int oddSize = 0;
int descCount = 0;
int count = 0;
int dstTrSize = 0;
int srcTrSize = 0;
uint32_t maxBlockSize = dmacHw_MAX_BLOCKSIZE;
dstTrSize = dmacHw_GetTrWidthInBytes(pConfig->dstMaxTransactionWidth);
srcTrSize = dmacHw_GetTrWidthInBytes(pConfig->srcMaxTransactionWidth);
/* Skip Tx if buffer is NULL or length is unknown */
if ((pSrcAddr == NULL) || (pDstAddr == NULL) || (dataLen == 0)) {
/* Do not initiate transfer */
return -1;
}
/* Ensure scatter and gather are transaction aligned */
if ((pConfig->srcGatherWidth % srcTrSize)
|| (pConfig->dstScatterWidth % dstTrSize)) {
return -2;
}
/*
Background 1: DMAC can not perform DMA if source and destination addresses are
not properly aligned with the channel's transaction width. So, for successful
DMA transfer, transaction width must be set according to the alignment of the
source and destination address.
*/
/* Adjust destination transaction width if destination address is not aligned properly */
dstTrWidth = pConfig->dstMaxTransactionWidth;
while (dmacHw_ADDRESS_MASK(dstTrSize) & (uint32_t) pDstAddr) {
dstTrWidth = dmacHw_GetNextTrWidth(dstTrWidth);
dstTrSize = dmacHw_GetTrWidthInBytes(dstTrWidth);
}
/* Adjust source transaction width if source address is not aligned properly */
srcTrWidth = pConfig->srcMaxTransactionWidth;
while (dmacHw_ADDRESS_MASK(srcTrSize) & (uint32_t) pSrcAddr) {
srcTrWidth = dmacHw_GetNextTrWidth(srcTrWidth);
srcTrSize = dmacHw_GetTrWidthInBytes(srcTrWidth);
}
/* Find the maximum transaction per descriptor */
if (pConfig->maxDataPerBlock
&& ((pConfig->maxDataPerBlock / srcTrSize) <
dmacHw_MAX_BLOCKSIZE)) {
maxBlockSize = pConfig->maxDataPerBlock / srcTrSize;
}
/* Find number of source transactions needed to complete the DMA transfer */
srcTs = dataLen / srcTrSize;
/* Find the odd number of bytes that need to be transferred as single byte transaction width */
if (srcTs && (dstTrSize > srcTrSize)) {
oddSize = dataLen % dstTrSize;
/* Adjust source transaction count due to "oddSize" */
srcTs = srcTs - (oddSize / srcTrSize);
} else {
oddSize = dataLen % srcTrSize;
}
/* Adjust "descCount" due to "oddSize" */
if (oddSize) {
descCount++;
}
/* Find the number of descriptor needed for total "srcTs" */
if (srcTs) {
descCount += ((srcTs - 1) / maxBlockSize) + 1;
}
/* Check the availability of "descCount" discriptors in the ring */
pProg = pRing->pHead;
for (count = 0; (descCount <= pRing->num) && (count < descCount);
count++) {
if ((pProg->ctl.hi & dmacHw_DESC_FREE) == 0) {
/* Sufficient descriptors are not available */
return -3;
}
pProg = (dmacHw_DESC_t *) pProg->llp;
}
/* Remember the link list item to program the channel registers */
pStart = pProg = pRing->pHead;
/* Make a link list with "descCount(=count)" number of descriptors */
while (count) {
/* Reset channel control information */
pProg->ctl.lo = 0;
/* Enable source gather if configured */
if (pConfig->srcGatherWidth) {
pProg->ctl.lo |= dmacHw_REG_CTL_SG_ENABLE;
}
/* Enable destination scatter if configured */
if (pConfig->dstScatterWidth) {
pProg->ctl.lo |= dmacHw_REG_CTL_DS_ENABLE;
}
/* Set source and destination address */
pProg->sar = (uint32_t) pSrcAddr;
pProg->dar = (uint32_t) pDstAddr;
/* Use "devCtl" to mark that user memory need to be freed later if needed */
if (pProg == pRing->pHead) {
pProg->devCtl = dmacHw_FREE_USER_MEMORY;
} else {
pProg->devCtl = 0;
}
blkTs = srcTs;
/* Special treatmeant for last descriptor */
if (count == 1) {
/* Mark the last descriptor */
pProg->ctl.lo &=
~(dmacHw_REG_CTL_LLP_DST_EN |
dmacHw_REG_CTL_LLP_SRC_EN);
/* Treatment for odd data bytes */
if (oddSize) {
/* Adjust for single byte transaction width */
switch (pConfig->transferType) {
case dmacHw_TRANSFER_TYPE_PERIPHERAL_TO_MEM:
dstTrWidth =
dmacHw_DST_TRANSACTION_WIDTH_8;
blkTs =
(oddSize / srcTrSize) +
((oddSize % srcTrSize) ? 1 : 0);
break;
case dmacHw_TRANSFER_TYPE_MEM_TO_PERIPHERAL:
srcTrWidth =
dmacHw_SRC_TRANSACTION_WIDTH_8;
blkTs = oddSize;
break;
case dmacHw_TRANSFER_TYPE_MEM_TO_MEM:
srcTrWidth =
dmacHw_SRC_TRANSACTION_WIDTH_8;
dstTrWidth =
dmacHw_DST_TRANSACTION_WIDTH_8;
blkTs = oddSize;
break;
case dmacHw_TRANSFER_TYPE_PERIPHERAL_TO_PERIPHERAL:
/* Do not adjust the transaction width */
break;
}
} else {
srcTs -= blkTs;
}
} else {
if (srcTs / maxBlockSize) {
blkTs = maxBlockSize;
}
/* Remaining source transactions for next iteration */
srcTs -= blkTs;
}
/* Must have a valid source transactions */
dmacHw_ASSERT(blkTs > 0);
/* Set control information */
if (pConfig->flowControler == dmacHw_FLOW_CONTROL_DMA) {
pProg->ctl.lo |= pConfig->transferType |
pConfig->srcUpdate |
pConfig->dstUpdate |
srcTrWidth |
dstTrWidth |
pConfig->srcMaxBurstWidth |
pConfig->dstMaxBurstWidth |
pConfig->srcMasterInterface |
pConfig->dstMasterInterface | dmacHw_REG_CTL_INT_EN;
} else {
uint32_t transferType = 0;
switch (pConfig->transferType) {
case dmacHw_TRANSFER_TYPE_PERIPHERAL_TO_MEM:
transferType = dmacHw_REG_CTL_TTFC_PM_PERI;
break;
case dmacHw_TRANSFER_TYPE_MEM_TO_PERIPHERAL:
transferType = dmacHw_REG_CTL_TTFC_MP_PERI;
break;
default:
dmacHw_ASSERT(0);
}
pProg->ctl.lo |= transferType |
pConfig->srcUpdate |
pConfig->dstUpdate |
srcTrWidth |
dstTrWidth |
pConfig->srcMaxBurstWidth |
pConfig->dstMaxBurstWidth |
pConfig->srcMasterInterface |
pConfig->dstMasterInterface | dmacHw_REG_CTL_INT_EN;
}
/* Set block transaction size */
pProg->ctl.hi = blkTs & dmacHw_REG_CTL_BLOCK_TS_MASK;
/* Look for next descriptor */
if (count > 1) {
/* Point to the next descriptor */
pProg = (dmacHw_DESC_t *) pProg->llp;
/* Update source and destination address for next iteration */
switch (pConfig->transferType) {
case dmacHw_TRANSFER_TYPE_PERIPHERAL_TO_MEM:
if (pConfig->dstScatterWidth) {
pDstAddr =
(char *)pDstAddr +
blkTs * srcTrSize +
(((blkTs * srcTrSize) /
pConfig->dstScatterWidth) *
pConfig->dstScatterJump);
} else {
pDstAddr =
(char *)pDstAddr +
blkTs * srcTrSize;
}
break;
case dmacHw_TRANSFER_TYPE_MEM_TO_PERIPHERAL:
if (pConfig->srcGatherWidth) {
pSrcAddr =
(char *)pDstAddr +
blkTs * srcTrSize +
(((blkTs * srcTrSize) /
pConfig->srcGatherWidth) *
pConfig->srcGatherJump);
} else {
pSrcAddr =
(char *)pSrcAddr +
blkTs * srcTrSize;
}
break;
case dmacHw_TRANSFER_TYPE_MEM_TO_MEM:
if (pConfig->dstScatterWidth) {
pDstAddr =
(char *)pDstAddr +
blkTs * srcTrSize +
(((blkTs * srcTrSize) /
pConfig->dstScatterWidth) *
pConfig->dstScatterJump);
} else {
pDstAddr =
(char *)pDstAddr +
blkTs * srcTrSize;
}
if (pConfig->srcGatherWidth) {
pSrcAddr =
(char *)pDstAddr +
blkTs * srcTrSize +
(((blkTs * srcTrSize) /
pConfig->srcGatherWidth) *
pConfig->srcGatherJump);
} else {
pSrcAddr =
(char *)pSrcAddr +
blkTs * srcTrSize;
}
break;
case dmacHw_TRANSFER_TYPE_PERIPHERAL_TO_PERIPHERAL:
/* Do not adjust the address */
break;
default:
dmacHw_ASSERT(0);
}
} else {
/* At the end of transfer "srcTs" must be zero */
dmacHw_ASSERT(srcTs == 0);
}
count--;
}
/* Remember the descriptor to initialize the registers */
if (pRing->pProg == dmacHw_DESC_INIT) {
pRing->pProg = pStart;
}
/* Indicate that the descriptor is updated */
pRing->pEnd = pProg;
/* Head pointing to the next descriptor */
pRing->pHead = (dmacHw_DESC_t *) pProg->llp;
/* Update Tail pointer if destination is a peripheral,
because no one is going to read from the pTail
*/
if (!dmacHw_DST_IS_MEMORY(pConfig->transferType)) {
pRing->pTail = pRing->pHead;
}
return 0;
}
/****************************************************************************/
/**
* @brief Provides DMA controller attributes
*
*
* @return DMA controller attributes
*
* @note
* None
*/
/****************************************************************************/
uint32_t dmacHw_getDmaControllerAttribute(dmacHw_HANDLE_t handle, /* [ IN ] DMA Channel handle */
dmacHw_CONTROLLER_ATTRIB_e attr /* [ IN ] DMA Controler attribute of type dmacHw_CONTROLLER_ATTRIB_e */
) {
dmacHw_CBLK_t *pCblk = dmacHw_HANDLE_TO_CBLK(handle);
switch (attr) {
case dmacHw_CONTROLLER_ATTRIB_CHANNEL_NUM:
return dmacHw_GET_NUM_CHANNEL(pCblk->module);
case dmacHw_CONTROLLER_ATTRIB_CHANNEL_MAX_BLOCK_SIZE:
return (1 <<
(dmacHw_GET_MAX_BLOCK_SIZE
(pCblk->module, pCblk->module) + 2)) - 8;
case dmacHw_CONTROLLER_ATTRIB_MASTER_INTF_NUM:
return dmacHw_GET_NUM_INTERFACE(pCblk->module);
case dmacHw_CONTROLLER_ATTRIB_CHANNEL_BUS_WIDTH:
return 32 << dmacHw_GET_CHANNEL_DATA_WIDTH(pCblk->module,
pCblk->channel);
case dmacHw_CONTROLLER_ATTRIB_CHANNEL_FIFO_SIZE:
return GetFifoSize(handle);
}
dmacHw_ASSERT(0);
return 0;
}
/*****************************************************************************
* Copyright 2003 - 2008 Broadcom Corporation. All rights reserved.
*
* Unless you and Broadcom execute a separate written software license
* agreement governing use of this software, this software is licensed to you
* under the terms of the GNU General Public License version 2, available at
* http://www.broadcom.com/licenses/GPLv2.php (the "GPL").
*
* Notwithstanding the above, under no circumstances may you combine this
* software in any way with any other Broadcom software provided under a
* license other than the GPL, without Broadcom's express prior written
* consent.
*****************************************************************************/
/****************************************************************************/
/**
* @file dmacHw_extra.c
*
* @brief Extra Low level DMA controller driver routines
*
* @note
*
* These routines provide basic DMA functionality only.
*/
/****************************************************************************/
/* ---- Include Files ---------------------------------------------------- */
#include <csp/stdint.h>
#include <stddef.h>
#include <csp/dmacHw.h>
#include <mach/csp/dmacHw_reg.h>
#include <mach/csp/dmacHw_priv.h>
extern dmacHw_CBLK_t dmacHw_gCblk[dmacHw_MAX_CHANNEL_COUNT]; /* Declared in dmacHw.c */
/* ---- External Function Prototypes ------------------------------------- */
/* ---- Internal Use Function Prototypes --------------------------------- */
/****************************************************************************/
/**
* @brief Overwrites data length in the descriptor
*
* This function overwrites data length in the descriptor
*
*
* @return void
*
* @note
* This is only used for PCM channel
*/
/****************************************************************************/
void dmacHw_setDataLength(dmacHw_CONFIG_t *pConfig, /* [ IN ] Configuration settings */
void *pDescriptor, /* [ IN ] Descriptor buffer */
size_t dataLen /* [ IN ] Data length in bytes */
);
/****************************************************************************/
/**
* @brief Helper function to display DMA registers
*
* @return void
*
*
* @note
* None
*/
/****************************************************************************/
static void DisplayRegisterContents(int module, /* [ IN ] DMA Controller unit (0-1) */
int channel, /* [ IN ] DMA Channel (0-7) / -1(all) */
int (*fpPrint) (const char *, ...) /* [ IN ] Callback to the print function */
) {
int chan;
(*fpPrint) ("Displaying register content \n\n");
(*fpPrint) ("Module %d: Interrupt raw transfer 0x%X\n",
module, (uint32_t) (dmacHw_REG_INT_RAW_TRAN(module)));
(*fpPrint) ("Module %d: Interrupt raw block 0x%X\n",
module, (uint32_t) (dmacHw_REG_INT_RAW_BLOCK(module)));
(*fpPrint) ("Module %d: Interrupt raw src transfer 0x%X\n",
module, (uint32_t) (dmacHw_REG_INT_RAW_STRAN(module)));
(*fpPrint) ("Module %d: Interrupt raw dst transfer 0x%X\n",
module, (uint32_t) (dmacHw_REG_INT_RAW_DTRAN(module)));
(*fpPrint) ("Module %d: Interrupt raw error 0x%X\n",
module, (uint32_t) (dmacHw_REG_INT_RAW_ERROR(module)));
(*fpPrint) ("--------------------------------------------------\n");
(*fpPrint) ("Module %d: Interrupt stat transfer 0x%X\n",
module, (uint32_t) (dmacHw_REG_INT_STAT_TRAN(module)));
(*fpPrint) ("Module %d: Interrupt stat block 0x%X\n",
module, (uint32_t) (dmacHw_REG_INT_STAT_BLOCK(module)));
(*fpPrint) ("Module %d: Interrupt stat src transfer 0x%X\n",
module, (uint32_t) (dmacHw_REG_INT_STAT_STRAN(module)));
(*fpPrint) ("Module %d: Interrupt stat dst transfer 0x%X\n",
module, (uint32_t) (dmacHw_REG_INT_STAT_DTRAN(module)));
(*fpPrint) ("Module %d: Interrupt stat error 0x%X\n",
module, (uint32_t) (dmacHw_REG_INT_STAT_ERROR(module)));
(*fpPrint) ("--------------------------------------------------\n");
(*fpPrint) ("Module %d: Interrupt mask transfer 0x%X\n",
module, (uint32_t) (dmacHw_REG_INT_MASK_TRAN(module)));
(*fpPrint) ("Module %d: Interrupt mask block 0x%X\n",
module, (uint32_t) (dmacHw_REG_INT_MASK_BLOCK(module)));
(*fpPrint) ("Module %d: Interrupt mask src transfer 0x%X\n",
module, (uint32_t) (dmacHw_REG_INT_MASK_STRAN(module)));
(*fpPrint) ("Module %d: Interrupt mask dst transfer 0x%X\n",
module, (uint32_t) (dmacHw_REG_INT_MASK_DTRAN(module)));
(*fpPrint) ("Module %d: Interrupt mask error 0x%X\n",
module, (uint32_t) (dmacHw_REG_INT_MASK_ERROR(module)));
(*fpPrint) ("--------------------------------------------------\n");
(*fpPrint) ("Module %d: Interrupt clear transfer 0x%X\n",
module, (uint32_t) (dmacHw_REG_INT_CLEAR_TRAN(module)));
(*fpPrint) ("Module %d: Interrupt clear block 0x%X\n",
module, (uint32_t) (dmacHw_REG_INT_CLEAR_BLOCK(module)));
(*fpPrint) ("Module %d: Interrupt clear src transfer 0x%X\n",
module, (uint32_t) (dmacHw_REG_INT_CLEAR_STRAN(module)));
(*fpPrint) ("Module %d: Interrupt clear dst transfer 0x%X\n",
module, (uint32_t) (dmacHw_REG_INT_CLEAR_DTRAN(module)));
(*fpPrint) ("Module %d: Interrupt clear error 0x%X\n",
module, (uint32_t) (dmacHw_REG_INT_CLEAR_ERROR(module)));
(*fpPrint) ("--------------------------------------------------\n");
(*fpPrint) ("Module %d: SW source req 0x%X\n",
module, (uint32_t) (dmacHw_REG_SW_HS_SRC_REQ(module)));
(*fpPrint) ("Module %d: SW dest req 0x%X\n",
module, (uint32_t) (dmacHw_REG_SW_HS_DST_REQ(module)));
(*fpPrint) ("Module %d: SW source signal 0x%X\n",
module, (uint32_t) (dmacHw_REG_SW_HS_SRC_SGL_REQ(module)));
(*fpPrint) ("Module %d: SW dest signal 0x%X\n",
module, (uint32_t) (dmacHw_REG_SW_HS_DST_SGL_REQ(module)));
(*fpPrint) ("Module %d: SW source last 0x%X\n",
module, (uint32_t) (dmacHw_REG_SW_HS_SRC_LST_REQ(module)));
(*fpPrint) ("Module %d: SW dest last 0x%X\n",
module, (uint32_t) (dmacHw_REG_SW_HS_DST_LST_REQ(module)));
(*fpPrint) ("--------------------------------------------------\n");
(*fpPrint) ("Module %d: misc config 0x%X\n",
module, (uint32_t) (dmacHw_REG_MISC_CFG(module)));
(*fpPrint) ("Module %d: misc channel enable 0x%X\n",
module, (uint32_t) (dmacHw_REG_MISC_CH_ENABLE(module)));
(*fpPrint) ("Module %d: misc ID 0x%X\n",
module, (uint32_t) (dmacHw_REG_MISC_ID(module)));
(*fpPrint) ("Module %d: misc test 0x%X\n",
module, (uint32_t) (dmacHw_REG_MISC_TEST(module)));
if (channel == -1) {
for (chan = 0; chan < 8; chan++) {
(*fpPrint)
("--------------------------------------------------\n");
(*fpPrint)
("Module %d: Channel %d Source 0x%X\n",
module, chan,
(uint32_t) (dmacHw_REG_SAR(module, chan)));
(*fpPrint)
("Module %d: Channel %d Destination 0x%X\n",
module, chan,
(uint32_t) (dmacHw_REG_DAR(module, chan)));
(*fpPrint)
("Module %d: Channel %d LLP 0x%X\n",
module, chan,
(uint32_t) (dmacHw_REG_LLP(module, chan)));
(*fpPrint)
("Module %d: Channel %d Control (LO) 0x%X\n",
module, chan,
(uint32_t) (dmacHw_REG_CTL_LO(module, chan)));
(*fpPrint)
("Module %d: Channel %d Control (HI) 0x%X\n",
module, chan,
(uint32_t) (dmacHw_REG_CTL_HI(module, chan)));
(*fpPrint)
("Module %d: Channel %d Source Stats 0x%X\n",
module, chan,
(uint32_t) (dmacHw_REG_SSTAT(module, chan)));
(*fpPrint)
("Module %d: Channel %d Dest Stats 0x%X\n",
module, chan,
(uint32_t) (dmacHw_REG_DSTAT(module, chan)));
(*fpPrint)
("Module %d: Channel %d Source Stats Addr 0x%X\n",
module, chan,
(uint32_t) (dmacHw_REG_SSTATAR(module, chan)));
(*fpPrint)
("Module %d: Channel %d Dest Stats Addr 0x%X\n",
module, chan,
(uint32_t) (dmacHw_REG_DSTATAR(module, chan)));
(*fpPrint)
("Module %d: Channel %d Config (LO) 0x%X\n",
module, chan,
(uint32_t) (dmacHw_REG_CFG_LO(module, chan)));
(*fpPrint)
("Module %d: Channel %d Config (HI) 0x%X\n",
module, chan,
(uint32_t) (dmacHw_REG_CFG_HI(module, chan)));
}
} else {
chan = channel;
(*fpPrint)
("--------------------------------------------------\n");
(*fpPrint)
("Module %d: Channel %d Source 0x%X\n",
module, chan, (uint32_t) (dmacHw_REG_SAR(module, chan)));
(*fpPrint)
("Module %d: Channel %d Destination 0x%X\n",
module, chan, (uint32_t) (dmacHw_REG_DAR(module, chan)));
(*fpPrint)
("Module %d: Channel %d LLP 0x%X\n",
module, chan, (uint32_t) (dmacHw_REG_LLP(module, chan)));
(*fpPrint)
("Module %d: Channel %d Control (LO) 0x%X\n",
module, chan,
(uint32_t) (dmacHw_REG_CTL_LO(module, chan)));
(*fpPrint)
("Module %d: Channel %d Control (HI) 0x%X\n",
module, chan,
(uint32_t) (dmacHw_REG_CTL_HI(module, chan)));
(*fpPrint)
("Module %d: Channel %d Source Stats 0x%X\n",
module, chan, (uint32_t) (dmacHw_REG_SSTAT(module, chan)));
(*fpPrint)
("Module %d: Channel %d Dest Stats 0x%X\n",
module, chan, (uint32_t) (dmacHw_REG_DSTAT(module, chan)));
(*fpPrint)
("Module %d: Channel %d Source Stats Addr 0x%X\n",
module, chan,
(uint32_t) (dmacHw_REG_SSTATAR(module, chan)));
(*fpPrint)
("Module %d: Channel %d Dest Stats Addr 0x%X\n",
module, chan,
(uint32_t) (dmacHw_REG_DSTATAR(module, chan)));
(*fpPrint)
("Module %d: Channel %d Config (LO) 0x%X\n",
module, chan,
(uint32_t) (dmacHw_REG_CFG_LO(module, chan)));
(*fpPrint)
("Module %d: Channel %d Config (HI) 0x%X\n",
module, chan,
(uint32_t) (dmacHw_REG_CFG_HI(module, chan)));
}
}
/****************************************************************************/
/**
* @brief Helper function to display descriptor ring
*
* @return void
*
*
* @note
* None
*/
/****************************************************************************/
static void DisplayDescRing(void *pDescriptor, /* [ IN ] Descriptor buffer */
int (*fpPrint) (const char *, ...) /* [ IN ] Callback to the print function */
) {
dmacHw_DESC_RING_t *pRing = dmacHw_GET_DESC_RING(pDescriptor);
dmacHw_DESC_t *pStart;
if (pRing->pHead == NULL) {
return;
}
pStart = pRing->pHead;
while ((dmacHw_DESC_t *) pStart->llp != pRing->pHead) {
if (pStart == pRing->pHead) {
(*fpPrint) ("Head\n");
}
if (pStart == pRing->pTail) {
(*fpPrint) ("Tail\n");
}
if (pStart == pRing->pProg) {
(*fpPrint) ("Prog\n");
}
if (pStart == pRing->pEnd) {
(*fpPrint) ("End\n");
}
if (pStart == pRing->pFree) {
(*fpPrint) ("Free\n");
}
(*fpPrint) ("0x%X:\n", (uint32_t) pStart);
(*fpPrint) ("sar 0x%0X\n", pStart->sar);
(*fpPrint) ("dar 0x%0X\n", pStart->dar);
(*fpPrint) ("llp 0x%0X\n", pStart->llp);
(*fpPrint) ("ctl.lo 0x%0X\n", pStart->ctl.lo);
(*fpPrint) ("ctl.hi 0x%0X\n", pStart->ctl.hi);
(*fpPrint) ("sstat 0x%0X\n", pStart->sstat);
(*fpPrint) ("dstat 0x%0X\n", pStart->dstat);
(*fpPrint) ("devCtl 0x%0X\n", pStart->devCtl);
pStart = (dmacHw_DESC_t *) pStart->llp;
}
if (pStart == pRing->pHead) {
(*fpPrint) ("Head\n");
}
if (pStart == pRing->pTail) {
(*fpPrint) ("Tail\n");
}
if (pStart == pRing->pProg) {
(*fpPrint) ("Prog\n");
}
if (pStart == pRing->pEnd) {
(*fpPrint) ("End\n");
}
if (pStart == pRing->pFree) {
(*fpPrint) ("Free\n");
}
(*fpPrint) ("0x%X:\n", (uint32_t) pStart);
(*fpPrint) ("sar 0x%0X\n", pStart->sar);
(*fpPrint) ("dar 0x%0X\n", pStart->dar);
(*fpPrint) ("llp 0x%0X\n", pStart->llp);
(*fpPrint) ("ctl.lo 0x%0X\n", pStart->ctl.lo);
(*fpPrint) ("ctl.hi 0x%0X\n", pStart->ctl.hi);
(*fpPrint) ("sstat 0x%0X\n", pStart->sstat);
(*fpPrint) ("dstat 0x%0X\n", pStart->dstat);
(*fpPrint) ("devCtl 0x%0X\n", pStart->devCtl);
}
/****************************************************************************/
/**
* @brief Check if DMA channel is the flow controller
*
* @return 1 : If DMA is a flow controler
* 0 : Peripheral is the flow controller
*
* @note
* None
*/
/****************************************************************************/
static inline int DmaIsFlowController(void *pDescriptor /* [ IN ] Descriptor buffer */
) {
uint32_t ttfc =
(dmacHw_GET_DESC_RING(pDescriptor))->pTail->ctl.
lo & dmacHw_REG_CTL_TTFC_MASK;
switch (ttfc) {
case dmacHw_REG_CTL_TTFC_MM_DMAC:
case dmacHw_REG_CTL_TTFC_MP_DMAC:
case dmacHw_REG_CTL_TTFC_PM_DMAC:
case dmacHw_REG_CTL_TTFC_PP_DMAC:
return 1;
}
return 0;
}
/****************************************************************************/
/**
* @brief Overwrites data length in the descriptor
*
* This function overwrites data length in the descriptor
*
*
* @return void
*
* @note
* This is only used for PCM channel
*/
/****************************************************************************/
void dmacHw_setDataLength(dmacHw_CONFIG_t *pConfig, /* [ IN ] Configuration settings */
void *pDescriptor, /* [ IN ] Descriptor buffer */
size_t dataLen /* [ IN ] Data length in bytes */
) {
dmacHw_DESC_t *pProg;
dmacHw_DESC_t *pHead;
int srcTs = 0;
int srcTrSize = 0;
pHead = (dmacHw_GET_DESC_RING(pDescriptor))->pHead;
pProg = pHead;
srcTrSize = dmacHw_GetTrWidthInBytes(pConfig->srcMaxTransactionWidth);
srcTs = dataLen / srcTrSize;
do {
pProg->ctl.hi = srcTs & dmacHw_REG_CTL_BLOCK_TS_MASK;
pProg = (dmacHw_DESC_t *) pProg->llp;
} while (pProg != pHead);
}
/****************************************************************************/
/**
* @brief Clears the interrupt
*
* This function clears the DMA channel specific interrupt
*
*
* @return void
*
* @note
* Must be called under the context of ISR
*/
/****************************************************************************/
void dmacHw_clearInterrupt(dmacHw_HANDLE_t handle /* [ IN ] DMA Channel handle */
) {
dmacHw_CBLK_t *pCblk = dmacHw_HANDLE_TO_CBLK(handle);
dmacHw_TRAN_INT_CLEAR(pCblk->module, pCblk->channel);
dmacHw_BLOCK_INT_CLEAR(pCblk->module, pCblk->channel);
dmacHw_ERROR_INT_CLEAR(pCblk->module, pCblk->channel);
}
/****************************************************************************/
/**
* @brief Returns the cause of channel specific DMA interrupt
*
* This function returns the cause of interrupt
*
* @return Interrupt status, each bit representing a specific type of interrupt
*
* @note
* Should be called under the context of ISR
*/
/****************************************************************************/
dmacHw_INTERRUPT_STATUS_e dmacHw_getInterruptStatus(dmacHw_HANDLE_t handle /* [ IN ] DMA Channel handle */
) {
dmacHw_CBLK_t *pCblk = dmacHw_HANDLE_TO_CBLK(handle);
dmacHw_INTERRUPT_STATUS_e status = dmacHw_INTERRUPT_STATUS_NONE;
if (dmacHw_REG_INT_STAT_TRAN(pCblk->module) &
((0x00000001 << pCblk->channel))) {
status |= dmacHw_INTERRUPT_STATUS_TRANS;
}
if (dmacHw_REG_INT_STAT_BLOCK(pCblk->module) &
((0x00000001 << pCblk->channel))) {
status |= dmacHw_INTERRUPT_STATUS_BLOCK;
}
if (dmacHw_REG_INT_STAT_ERROR(pCblk->module) &
((0x00000001 << pCblk->channel))) {
status |= dmacHw_INTERRUPT_STATUS_ERROR;
}
return status;
}
/****************************************************************************/
/**
* @brief Indentifies a DMA channel causing interrupt
*
* This functions returns a channel causing interrupt of type dmacHw_INTERRUPT_STATUS_e
*
* @return NULL : No channel causing DMA interrupt
* ! NULL : Handle to a channel causing DMA interrupt
* @note
* dmacHw_clearInterrupt() must be called with a valid handle after calling this function
*/
/****************************************************************************/
dmacHw_HANDLE_t dmacHw_getInterruptSource(void)
{
uint32_t i;
for (i = 0; i < dmaChannelCount_0 + dmaChannelCount_1; i++) {
if ((dmacHw_REG_INT_STAT_TRAN(dmacHw_gCblk[i].module) &
((0x00000001 << dmacHw_gCblk[i].channel)))
|| (dmacHw_REG_INT_STAT_BLOCK(dmacHw_gCblk[i].module) &
((0x00000001 << dmacHw_gCblk[i].channel)))
|| (dmacHw_REG_INT_STAT_ERROR(dmacHw_gCblk[i].module) &
((0x00000001 << dmacHw_gCblk[i].channel)))
) {
return dmacHw_CBLK_TO_HANDLE(&dmacHw_gCblk[i]);
}
}
return dmacHw_CBLK_TO_HANDLE(NULL);
}
/****************************************************************************/
/**
* @brief Estimates number of descriptor needed to perform certain DMA transfer
*
*
* @return On failure : -1
* On success : Number of descriptor count
*
*
*/
/****************************************************************************/
int dmacHw_calculateDescriptorCount(dmacHw_CONFIG_t *pConfig, /* [ IN ] Configuration settings */
void *pSrcAddr, /* [ IN ] Source (Peripheral/Memory) address */
void *pDstAddr, /* [ IN ] Destination (Peripheral/Memory) address */
size_t dataLen /* [ IN ] Data length in bytes */
) {
int srcTs = 0;
int oddSize = 0;
int descCount = 0;
int dstTrSize = 0;
int srcTrSize = 0;
uint32_t maxBlockSize = dmacHw_MAX_BLOCKSIZE;
dmacHw_TRANSACTION_WIDTH_e dstTrWidth;
dmacHw_TRANSACTION_WIDTH_e srcTrWidth;
dstTrSize = dmacHw_GetTrWidthInBytes(pConfig->dstMaxTransactionWidth);
srcTrSize = dmacHw_GetTrWidthInBytes(pConfig->srcMaxTransactionWidth);
/* Skip Tx if buffer is NULL or length is unknown */
if ((pSrcAddr == NULL) || (pDstAddr == NULL) || (dataLen == 0)) {
/* Do not initiate transfer */
return -1;
}
/* Ensure scatter and gather are transaction aligned */
if (pConfig->srcGatherWidth % srcTrSize
|| pConfig->dstScatterWidth % dstTrSize) {
return -1;
}
/*
Background 1: DMAC can not perform DMA if source and destination addresses are
not properly aligned with the channel's transaction width. So, for successful
DMA transfer, transaction width must be set according to the alignment of the
source and destination address.
*/
/* Adjust destination transaction width if destination address is not aligned properly */
dstTrWidth = pConfig->dstMaxTransactionWidth;
while (dmacHw_ADDRESS_MASK(dstTrSize) & (uint32_t) pDstAddr) {
dstTrWidth = dmacHw_GetNextTrWidth(dstTrWidth);
dstTrSize = dmacHw_GetTrWidthInBytes(dstTrWidth);
}
/* Adjust source transaction width if source address is not aligned properly */
srcTrWidth = pConfig->srcMaxTransactionWidth;
while (dmacHw_ADDRESS_MASK(srcTrSize) & (uint32_t) pSrcAddr) {
srcTrWidth = dmacHw_GetNextTrWidth(srcTrWidth);
srcTrSize = dmacHw_GetTrWidthInBytes(srcTrWidth);
}
/* Find the maximum transaction per descriptor */
if (pConfig->maxDataPerBlock
&& ((pConfig->maxDataPerBlock / srcTrSize) <
dmacHw_MAX_BLOCKSIZE)) {
maxBlockSize = pConfig->maxDataPerBlock / srcTrSize;
}
/* Find number of source transactions needed to complete the DMA transfer */
srcTs = dataLen / srcTrSize;
/* Find the odd number of bytes that need to be transferred as single byte transaction width */
if (srcTs && (dstTrSize > srcTrSize)) {
oddSize = dataLen % dstTrSize;
/* Adjust source transaction count due to "oddSize" */
srcTs = srcTs - (oddSize / srcTrSize);
} else {
oddSize = dataLen % srcTrSize;
}
/* Adjust "descCount" due to "oddSize" */
if (oddSize) {
descCount++;
}
/* Find the number of descriptor needed for total "srcTs" */
if (srcTs) {
descCount += ((srcTs - 1) / maxBlockSize) + 1;
}
return descCount;
}
/****************************************************************************/
/**
* @brief Check the existance of pending descriptor
*
* This function confirmes if there is any pending descriptor in the chain
* to program the channel
*
* @return 1 : Channel need to be programmed with pending descriptor
* 0 : No more pending descriptor to programe the channel
*
* @note
* - This function should be called from ISR in case there are pending
* descriptor to program the channel.
*
* Example:
*
* dmac_isr ()
* {
* ...
* if (dmacHw_descriptorPending (handle))
* {
* dmacHw_initiateTransfer (handle);
* }
* }
*
*/
/****************************************************************************/
uint32_t dmacHw_descriptorPending(dmacHw_HANDLE_t handle, /* [ IN ] DMA Channel handle */
void *pDescriptor /* [ IN ] Descriptor buffer */
) {
dmacHw_CBLK_t *pCblk = dmacHw_HANDLE_TO_CBLK(handle);
dmacHw_DESC_RING_t *pRing = dmacHw_GET_DESC_RING(pDescriptor);
/* Make sure channel is not busy */
if (!CHANNEL_BUSY(pCblk->module, pCblk->channel)) {
/* Check if pEnd is not processed */
if (pRing->pEnd) {
/* Something left for processing */
return 1;
}
}
return 0;
}
/****************************************************************************/
/**
* @brief Program channel register to stop transfer
*
* Ensures the channel is not doing any transfer after calling this function
*
* @return void
*
*/
/****************************************************************************/
void dmacHw_stopTransfer(dmacHw_HANDLE_t handle /* [ IN ] DMA Channel handle */
) {
dmacHw_CBLK_t *pCblk;
pCblk = dmacHw_HANDLE_TO_CBLK(handle);
/* Stop the channel */
dmacHw_DMA_STOP(pCblk->module, pCblk->channel);
}
/****************************************************************************/
/**
* @brief Deallocates source or destination memory, allocated
*
* This function can be called to deallocate data memory that was DMAed successfully
*
* @return On failure : -1
* On success : Number of buffer freed
*
* @note
* This function will be called ONLY, when source OR destination address is pointing
* to dynamic memory
*/
/****************************************************************************/
int dmacHw_freeMem(dmacHw_CONFIG_t *pConfig, /* [ IN ] Configuration settings */
void *pDescriptor, /* [ IN ] Descriptor buffer */
void (*fpFree) (void *) /* [ IN ] Function pointer to free data memory */
) {
dmacHw_DESC_RING_t *pRing = dmacHw_GET_DESC_RING(pDescriptor);
uint32_t count = 0;
if (fpFree == NULL) {
return -1;
}
while ((pRing->pFree != pRing->pTail)
&& (pRing->pFree->ctl.lo & dmacHw_DESC_FREE)) {
if (pRing->pFree->devCtl == dmacHw_FREE_USER_MEMORY) {
/* Identify, which memory to free */
if (dmacHw_DST_IS_MEMORY(pConfig->transferType)) {
(*fpFree) ((void *)pRing->pFree->dar);
} else {
/* Destination was a peripheral */
(*fpFree) ((void *)pRing->pFree->sar);
}
/* Unmark user memory to indicate it is freed */
pRing->pFree->devCtl = ~dmacHw_FREE_USER_MEMORY;
}
dmacHw_NEXT_DESC(pRing, pFree);
count++;
}
return count;
}
/****************************************************************************/
/**
* @brief Prepares descriptor ring, when source peripheral working as a flow controller
*
* This function will update the discriptor ring by allocating buffers, when source peripheral
* has to work as a flow controller to transfer data from:
* - Peripheral to memory.
*
* @return On failure : -1
* On success : Number of descriptor updated
*
*
* @note
* Channel must be configured for peripheral to memory transfer
*
*/
/****************************************************************************/
int dmacHw_setVariableDataDescriptor(dmacHw_HANDLE_t handle, /* [ IN ] DMA Channel handle */
dmacHw_CONFIG_t *pConfig, /* [ IN ] Configuration settings */
void *pDescriptor, /* [ IN ] Descriptor buffer */
uint32_t srcAddr, /* [ IN ] Source peripheral address */
void *(*fpAlloc) (int len), /* [ IN ] Function pointer that provides destination memory */
int len, /* [ IN ] Number of bytes "fpAlloc" will allocate for destination */
int num /* [ IN ] Number of descriptor to set */
) {
dmacHw_CBLK_t *pCblk = dmacHw_HANDLE_TO_CBLK(handle);
dmacHw_DESC_t *pProg = NULL;
dmacHw_DESC_t *pLast = NULL;
dmacHw_DESC_RING_t *pRing = dmacHw_GET_DESC_RING(pDescriptor);
uint32_t dstAddr;
uint32_t controlParam;
int i;
dmacHw_ASSERT(pConfig->transferType ==
dmacHw_TRANSFER_TYPE_PERIPHERAL_TO_MEM);
if (num > pRing->num) {
return -1;
}
pLast = pRing->pEnd; /* Last descriptor updated */
pProg = pRing->pHead; /* First descriptor in the new list */
controlParam = pConfig->srcUpdate |
pConfig->dstUpdate |
pConfig->srcMaxTransactionWidth |
pConfig->dstMaxTransactionWidth |
pConfig->srcMasterInterface |
pConfig->dstMasterInterface |
pConfig->srcMaxBurstWidth |
pConfig->dstMaxBurstWidth |
dmacHw_REG_CTL_TTFC_PM_PERI |
dmacHw_REG_CTL_LLP_DST_EN |
dmacHw_REG_CTL_LLP_SRC_EN | dmacHw_REG_CTL_INT_EN;
for (i = 0; i < num; i++) {
/* Allocate Rx buffer only for idle descriptor */
if (((pRing->pHead->ctl.hi & dmacHw_DESC_FREE) == 0) ||
((dmacHw_DESC_t *) pRing->pHead->llp == pRing->pTail)
) {
/* Rx descriptor is not idle */
break;
}
/* Set source address */
pRing->pHead->sar = srcAddr;
if (fpAlloc) {
/* Allocate memory for buffer in descriptor */
dstAddr = (uint32_t) (*fpAlloc) (len);
/* Check the destination address */
if (dstAddr == 0) {
if (i == 0) {
/* Not a single descriptor is available */
return -1;
}
break;
}
/* Set destination address */
pRing->pHead->dar = dstAddr;
}
/* Set control information */
pRing->pHead->ctl.lo = controlParam;
/* Use "devCtl" to mark the memory that need to be freed later */
pRing->pHead->devCtl = dmacHw_FREE_USER_MEMORY;
/* Descriptor is now owned by the channel */
pRing->pHead->ctl.hi = 0;
/* Remember the descriptor last updated */
pRing->pEnd = pRing->pHead;
/* Update next descriptor */
dmacHw_NEXT_DESC(pRing, pHead);
}
/* Mark the end of the list */
pRing->pEnd->ctl.lo &=
~(dmacHw_REG_CTL_LLP_DST_EN | dmacHw_REG_CTL_LLP_SRC_EN);
/* Connect the list */
if (pLast != pProg) {
pLast->ctl.lo |=
dmacHw_REG_CTL_LLP_DST_EN | dmacHw_REG_CTL_LLP_SRC_EN;
}
/* Mark the descriptors are updated */
pCblk->descUpdated = 1;
if (!pCblk->varDataStarted) {
/* LLP must be pointing to the first descriptor */
dmacHw_SET_LLP(pCblk->module, pCblk->channel,
(uint32_t) pProg - pRing->virt2PhyOffset);
/* Channel, handling variable data started */
pCblk->varDataStarted = 1;
}
return i;
}
/****************************************************************************/
/**
* @brief Read data DMAed to memory
*
* This function will read data that has been DMAed to memory while transfering from:
* - Memory to memory
* - Peripheral to memory
*
* @param handle -
* @param ppBbuf -
* @param pLen -
*
* @return 0 - No more data is available to read
* 1 - More data might be available to read
*
*/
/****************************************************************************/
int dmacHw_readTransferredData(dmacHw_HANDLE_t handle, /* [ IN ] DMA Channel handle */
dmacHw_CONFIG_t *pConfig, /* [ IN ] Configuration settings */
void *pDescriptor, /* [ IN ] Descriptor buffer */
void **ppBbuf, /* [ OUT ] Data received */
size_t *pLlen /* [ OUT ] Length of the data received */
) {
dmacHw_DESC_RING_t *pRing = dmacHw_GET_DESC_RING(pDescriptor);
(void)handle;
if (pConfig->transferMode != dmacHw_TRANSFER_MODE_CONTINUOUS) {
if (((pRing->pTail->ctl.hi & dmacHw_DESC_FREE) == 0) ||
(pRing->pTail == pRing->pHead)
) {
/* No receive data available */
*ppBbuf = (char *)NULL;
*pLlen = 0;
return 0;
}
}
/* Return read buffer and length */
*ppBbuf = (char *)pRing->pTail->dar;
/* Extract length of the received data */
if (DmaIsFlowController(pDescriptor)) {
uint32_t srcTrSize = 0;
switch (pRing->pTail->ctl.lo & dmacHw_REG_CTL_SRC_TR_WIDTH_MASK) {
case dmacHw_REG_CTL_SRC_TR_WIDTH_8:
srcTrSize = 1;
break;
case dmacHw_REG_CTL_SRC_TR_WIDTH_16:
srcTrSize = 2;
break;
case dmacHw_REG_CTL_SRC_TR_WIDTH_32:
srcTrSize = 4;
break;
case dmacHw_REG_CTL_SRC_TR_WIDTH_64:
srcTrSize = 8;
break;
default:
dmacHw_ASSERT(0);
}
/* Calculate length from the block size */
*pLlen =
(pRing->pTail->ctl.hi & dmacHw_REG_CTL_BLOCK_TS_MASK) *
srcTrSize;
} else {
/* Extract length from the source peripheral */
*pLlen = pRing->pTail->sstat;
}
/* Advance tail to next descriptor */
dmacHw_NEXT_DESC(pRing, pTail);
return 1;
}
/****************************************************************************/
/**
* @brief Set descriptor carrying control information
*
* This function will be used to send specific control information to the device
* using the DMA channel
*
*
* @return -1 - On failure
* 0 - On success
*
* @note
* None
*/
/****************************************************************************/
int dmacHw_setControlDescriptor(dmacHw_CONFIG_t *pConfig, /* [ IN ] Configuration settings */
void *pDescriptor, /* [ IN ] Descriptor buffer */
uint32_t ctlAddress, /* [ IN ] Address of the device control register */
uint32_t control /* [ IN ] Device control information */
) {
dmacHw_DESC_RING_t *pRing = dmacHw_GET_DESC_RING(pDescriptor);
if (ctlAddress == 0) {
return -1;
}
/* Check the availability of descriptors in the ring */
if ((pRing->pHead->ctl.hi & dmacHw_DESC_FREE) == 0) {
return -1;
}
/* Set control information */
pRing->pHead->devCtl = control;
/* Set source and destination address */
pRing->pHead->sar = (uint32_t) &pRing->pHead->devCtl;
pRing->pHead->dar = ctlAddress;
/* Set control parameters */
if (pConfig->flowControler == dmacHw_FLOW_CONTROL_DMA) {
pRing->pHead->ctl.lo = pConfig->transferType |
dmacHw_SRC_ADDRESS_UPDATE_MODE_INC |
dmacHw_DST_ADDRESS_UPDATE_MODE_INC |
dmacHw_SRC_TRANSACTION_WIDTH_32 |
pConfig->dstMaxTransactionWidth |
dmacHw_SRC_BURST_WIDTH_0 |
dmacHw_DST_BURST_WIDTH_0 |
pConfig->srcMasterInterface |
pConfig->dstMasterInterface | dmacHw_REG_CTL_INT_EN;
} else {
uint32_t transferType = 0;
switch (pConfig->transferType) {
case dmacHw_TRANSFER_TYPE_PERIPHERAL_TO_MEM:
transferType = dmacHw_REG_CTL_TTFC_PM_PERI;
break;
case dmacHw_TRANSFER_TYPE_MEM_TO_PERIPHERAL:
transferType = dmacHw_REG_CTL_TTFC_MP_PERI;
break;
default:
dmacHw_ASSERT(0);
}
pRing->pHead->ctl.lo = transferType |
dmacHw_SRC_ADDRESS_UPDATE_MODE_INC |
dmacHw_DST_ADDRESS_UPDATE_MODE_INC |
dmacHw_SRC_TRANSACTION_WIDTH_32 |
pConfig->dstMaxTransactionWidth |
dmacHw_SRC_BURST_WIDTH_0 |
dmacHw_DST_BURST_WIDTH_0 |
pConfig->srcMasterInterface |
pConfig->dstMasterInterface |
pConfig->flowControler | dmacHw_REG_CTL_INT_EN;
}
/* Set block transaction size to one 32 bit transaction */
pRing->pHead->ctl.hi = dmacHw_REG_CTL_BLOCK_TS_MASK & 1;
/* Remember the descriptor to initialize the registers */
if (pRing->pProg == dmacHw_DESC_INIT) {
pRing->pProg = pRing->pHead;
}
pRing->pEnd = pRing->pHead;
/* Advance the descriptor */
dmacHw_NEXT_DESC(pRing, pHead);
/* Update Tail pointer if destination is a peripheral */
if (!dmacHw_DST_IS_MEMORY(pConfig->transferType)) {
pRing->pTail = pRing->pHead;
}
return 0;
}
/****************************************************************************/
/**
* @brief Sets channel specific user data
*
* This function associates user data to a specif DMA channel
*
*/
/****************************************************************************/
void dmacHw_setChannelUserData(dmacHw_HANDLE_t handle, /* [ IN ] DMA Channel handle */
void *userData /* [ IN ] User data */
) {
dmacHw_CBLK_t *pCblk = dmacHw_HANDLE_TO_CBLK(handle);
pCblk->userData = userData;
}
/****************************************************************************/
/**
* @brief Gets channel specific user data
*
* This function returns user data specific to a DMA channel
*
* @return user data
*/
/****************************************************************************/
void *dmacHw_getChannelUserData(dmacHw_HANDLE_t handle /* [ IN ] DMA Channel handle */
) {
dmacHw_CBLK_t *pCblk = dmacHw_HANDLE_TO_CBLK(handle);
return pCblk->userData;
}
/****************************************************************************/
/**
* @brief Resets descriptor control information
*
* @return void
*/
/****************************************************************************/
void dmacHw_resetDescriptorControl(void *pDescriptor /* [ IN ] Descriptor buffer */
) {
int i;
dmacHw_DESC_RING_t *pRing;
dmacHw_DESC_t *pDesc;
pRing = dmacHw_GET_DESC_RING(pDescriptor);
pDesc = pRing->pHead;
for (i = 0; i < pRing->num; i++) {
/* Mark descriptor is ready to use */
pDesc->ctl.hi = dmacHw_DESC_FREE;
/* Look into next link list item */
pDesc++;
}
pRing->pFree = pRing->pTail = pRing->pEnd = pRing->pHead;
pRing->pProg = dmacHw_DESC_INIT;
}
/****************************************************************************/
/**
* @brief Displays channel specific registers and other control parameters
*
* @return void
*
*
* @note
* None
*/
/****************************************************************************/
void dmacHw_printDebugInfo(dmacHw_HANDLE_t handle, /* [ IN ] DMA Channel handle */
void *pDescriptor, /* [ IN ] Descriptor buffer */
int (*fpPrint) (const char *, ...) /* [ IN ] Print callback function */
) {
dmacHw_CBLK_t *pCblk = dmacHw_HANDLE_TO_CBLK(handle);
DisplayRegisterContents(pCblk->module, pCblk->channel, fpPrint);
DisplayDescRing(pDescriptor, fpPrint);
}
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment