Commit d19a5372 authored by Edward Cree's avatar Edward Cree Committed by David S. Miller

sfc_ef100: TX path for EF100 NICs

Includes checksum offload and TSO, so declare those in our netdev features.
Signed-off-by: default avatarEdward Cree <ecree@solarflare.com>
Signed-off-by: default avatarDavid S. Miller <davem@davemloft.net>
parent adcfc348
...@@ -263,6 +263,9 @@ static int ef100_ev_process(struct efx_channel *channel, int quota) ...@@ -263,6 +263,9 @@ static int ef100_ev_process(struct efx_channel *channel, int quota)
case ESE_GZ_EF100_EV_MCDI: case ESE_GZ_EF100_EV_MCDI:
efx_mcdi_process_event(channel, p_event); efx_mcdi_process_event(channel, p_event);
break; break;
case ESE_GZ_EF100_EV_TX_COMPLETION:
ef100_ev_tx(channel, p_event);
break;
case ESE_GZ_EF100_EV_DRIVER: case ESE_GZ_EF100_EV_DRIVER:
netif_info(efx, drv, efx->net_dev, netif_info(efx, drv, efx->net_dev,
"Driver initiated event " EFX_QWORD_FMT "\n", "Driver initiated event " EFX_QWORD_FMT "\n",
...@@ -436,10 +439,15 @@ static unsigned int ef100_check_caps(const struct efx_nic *efx, ...@@ -436,10 +439,15 @@ static unsigned int ef100_check_caps(const struct efx_nic *efx,
/* NIC level access functions /* NIC level access functions
*/ */
#define EF100_OFFLOAD_FEATURES (NETIF_F_HW_CSUM | \
NETIF_F_HIGHDMA | NETIF_F_SG | NETIF_F_FRAGLIST | \
NETIF_F_TSO_ECN | NETIF_F_TSO_MANGLEID | NETIF_F_HW_VLAN_CTAG_TX)
const struct efx_nic_type ef100_pf_nic_type = { const struct efx_nic_type ef100_pf_nic_type = {
.revision = EFX_REV_EF100, .revision = EFX_REV_EF100,
.is_vf = false, .is_vf = false,
.probe = ef100_probe_pf, .probe = ef100_probe_pf,
.offload_features = EF100_OFFLOAD_FEATURES,
.mcdi_max_ver = 2, .mcdi_max_ver = 2,
.mcdi_request = ef100_mcdi_request, .mcdi_request = ef100_mcdi_request,
.mcdi_poll_response = ef100_mcdi_poll_response, .mcdi_poll_response = ef100_mcdi_poll_response,
......
...@@ -9,14 +9,24 @@ ...@@ -9,14 +9,24 @@
* by the Free Software Foundation, incorporated herein by reference. * by the Free Software Foundation, incorporated herein by reference.
*/ */
#include <net/ip6_checksum.h>
#include "net_driver.h" #include "net_driver.h"
#include "tx_common.h" #include "tx_common.h"
#include "nic_common.h" #include "nic_common.h"
#include "mcdi_functions.h"
#include "ef100_regs.h"
#include "io.h"
#include "ef100_tx.h" #include "ef100_tx.h"
#include "ef100_nic.h"
/* TX queue stubs */
int ef100_tx_probe(struct efx_tx_queue *tx_queue) int ef100_tx_probe(struct efx_tx_queue *tx_queue)
{ {
/* Allocate an extra descriptor for the QMDA status completion entry */
return efx_nic_alloc_buffer(tx_queue->efx, &tx_queue->txd.buf,
(tx_queue->ptr_mask + 2) *
sizeof(efx_oword_t),
GFP_KERNEL);
return 0; return 0;
} }
...@@ -27,10 +37,286 @@ void ef100_tx_init(struct efx_tx_queue *tx_queue) ...@@ -27,10 +37,286 @@ void ef100_tx_init(struct efx_tx_queue *tx_queue)
netdev_get_tx_queue(tx_queue->efx->net_dev, netdev_get_tx_queue(tx_queue->efx->net_dev,
tx_queue->channel->channel - tx_queue->channel->channel -
tx_queue->efx->tx_channel_offset); tx_queue->efx->tx_channel_offset);
if (efx_mcdi_tx_init(tx_queue, false))
netdev_WARN(tx_queue->efx->net_dev,
"failed to initialise TXQ %d\n", tx_queue->queue);
}
static bool ef100_tx_can_tso(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
{
struct efx_nic *efx = tx_queue->efx;
struct ef100_nic_data *nic_data;
struct efx_tx_buffer *buffer;
struct tcphdr *tcphdr;
struct iphdr *iphdr;
size_t header_len;
u32 mss;
nic_data = efx->nic_data;
if (!skb_is_gso_tcp(skb))
return false;
if (!(efx->net_dev->features & NETIF_F_TSO))
return false;
mss = skb_shinfo(skb)->gso_size;
if (unlikely(mss < 4)) {
WARN_ONCE(1, "MSS of %u is too small for TSO\n", mss);
return false;
}
header_len = efx_tx_tso_header_length(skb);
if (header_len > nic_data->tso_max_hdr_len)
return false;
if (skb_shinfo(skb)->gso_segs > nic_data->tso_max_payload_num_segs) {
/* net_dev->gso_max_segs should've caught this */
WARN_ON_ONCE(1);
return false;
}
if (skb->data_len / mss > nic_data->tso_max_frames)
return false;
/* net_dev->gso_max_size should've caught this */
if (WARN_ON_ONCE(skb->data_len > nic_data->tso_max_payload_len))
return false;
/* Reserve an empty buffer for the TSO V3 descriptor.
* Convey the length of the header since we already know it.
*/
buffer = efx_tx_queue_get_insert_buffer(tx_queue);
buffer->flags = EFX_TX_BUF_TSO_V3 | EFX_TX_BUF_CONT;
buffer->len = header_len;
buffer->unmap_len = 0;
buffer->skb = skb;
++tx_queue->insert_count;
/* Adjust the TCP checksum to exclude the total length, since we set
* ED_INNER_IP_LEN in the descriptor.
*/
tcphdr = tcp_hdr(skb);
if (skb_is_gso_v6(skb)) {
tcphdr->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
&ipv6_hdr(skb)->daddr,
0, IPPROTO_TCP, 0);
} else {
iphdr = ip_hdr(skb);
tcphdr->check = ~csum_tcpudp_magic(iphdr->saddr, iphdr->daddr,
0, IPPROTO_TCP, 0);
}
return true;
}
static efx_oword_t *ef100_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index)
{
if (likely(tx_queue->txd.buf.addr))
return ((efx_oword_t *)tx_queue->txd.buf.addr) + index;
else
return NULL;
}
void ef100_notify_tx_desc(struct efx_tx_queue *tx_queue)
{
unsigned int write_ptr;
efx_dword_t reg;
if (unlikely(tx_queue->notify_count == tx_queue->write_count))
return;
write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
/* The write pointer goes into the high word */
EFX_POPULATE_DWORD_1(reg, ERF_GZ_TX_RING_PIDX, write_ptr);
efx_writed_page(tx_queue->efx, &reg,
ER_GZ_TX_RING_DOORBELL, tx_queue->queue);
tx_queue->notify_count = tx_queue->write_count;
tx_queue->xmit_more_available = false;
}
static void ef100_tx_push_buffers(struct efx_tx_queue *tx_queue)
{
ef100_notify_tx_desc(tx_queue);
++tx_queue->pushes;
}
static void ef100_set_tx_csum_partial(const struct sk_buff *skb,
struct efx_tx_buffer *buffer, efx_oword_t *txd)
{
efx_oword_t csum;
int csum_start;
if (!skb || skb->ip_summed != CHECKSUM_PARTIAL)
return;
/* skb->csum_start has the offset from head, but we need the offset
* from data.
*/
csum_start = skb_checksum_start_offset(skb);
EFX_POPULATE_OWORD_3(csum,
ESF_GZ_TX_SEND_CSO_PARTIAL_EN, 1,
ESF_GZ_TX_SEND_CSO_PARTIAL_START_W,
csum_start >> 1,
ESF_GZ_TX_SEND_CSO_PARTIAL_CSUM_W,
skb->csum_offset >> 1);
EFX_OR_OWORD(*txd, *txd, csum);
}
static void ef100_set_tx_hw_vlan(const struct sk_buff *skb, efx_oword_t *txd)
{
u16 vlan_tci = skb_vlan_tag_get(skb);
efx_oword_t vlan;
EFX_POPULATE_OWORD_2(vlan,
ESF_GZ_TX_SEND_VLAN_INSERT_EN, 1,
ESF_GZ_TX_SEND_VLAN_INSERT_TCI, vlan_tci);
EFX_OR_OWORD(*txd, *txd, vlan);
}
static void ef100_make_send_desc(struct efx_nic *efx,
const struct sk_buff *skb,
struct efx_tx_buffer *buffer, efx_oword_t *txd,
unsigned int segment_count)
{
/* TX send descriptor */
EFX_POPULATE_OWORD_3(*txd,
ESF_GZ_TX_SEND_NUM_SEGS, segment_count,
ESF_GZ_TX_SEND_LEN, buffer->len,
ESF_GZ_TX_SEND_ADDR, buffer->dma_addr);
if (likely(efx->net_dev->features & NETIF_F_HW_CSUM))
ef100_set_tx_csum_partial(skb, buffer, txd);
if (efx->net_dev->features & NETIF_F_HW_VLAN_CTAG_TX &&
skb && skb_vlan_tag_present(skb))
ef100_set_tx_hw_vlan(skb, txd);
}
static void ef100_make_tso_desc(struct efx_nic *efx,
const struct sk_buff *skb,
struct efx_tx_buffer *buffer, efx_oword_t *txd,
unsigned int segment_count)
{
u32 mangleid = (efx->net_dev->features & NETIF_F_TSO_MANGLEID) ||
skb_shinfo(skb)->gso_type & SKB_GSO_TCP_FIXEDID ?
ESE_GZ_TX_DESC_IP4_ID_NO_OP :
ESE_GZ_TX_DESC_IP4_ID_INC_MOD16;
u16 vlan_enable = efx->net_dev->features & NETIF_F_HW_VLAN_CTAG_TX ?
skb_vlan_tag_present(skb) : 0;
unsigned int len, ip_offset, tcp_offset, payload_segs;
u16 vlan_tci = skb_vlan_tag_get(skb);
u32 mss = skb_shinfo(skb)->gso_size;
len = skb->len - buffer->len;
/* We use 1 for the TSO descriptor and 1 for the header */
payload_segs = segment_count - 2;
ip_offset = skb_network_offset(skb);
tcp_offset = skb_transport_offset(skb);
EFX_POPULATE_OWORD_13(*txd,
ESF_GZ_TX_DESC_TYPE, ESE_GZ_TX_DESC_TYPE_TSO,
ESF_GZ_TX_TSO_MSS, mss,
ESF_GZ_TX_TSO_HDR_NUM_SEGS, 1,
ESF_GZ_TX_TSO_PAYLOAD_NUM_SEGS, payload_segs,
ESF_GZ_TX_TSO_HDR_LEN_W, buffer->len >> 1,
ESF_GZ_TX_TSO_PAYLOAD_LEN, len,
ESF_GZ_TX_TSO_CSO_INNER_L4, 1,
ESF_GZ_TX_TSO_INNER_L3_OFF_W, ip_offset >> 1,
ESF_GZ_TX_TSO_INNER_L4_OFF_W, tcp_offset >> 1,
ESF_GZ_TX_TSO_ED_INNER_IP4_ID, mangleid,
ESF_GZ_TX_TSO_ED_INNER_IP_LEN, 1,
ESF_GZ_TX_TSO_VLAN_INSERT_EN, vlan_enable,
ESF_GZ_TX_TSO_VLAN_INSERT_TCI, vlan_tci
);
}
static void ef100_tx_make_descriptors(struct efx_tx_queue *tx_queue,
const struct sk_buff *skb,
unsigned int segment_count)
{
unsigned int old_write_count = tx_queue->write_count;
unsigned int new_write_count = old_write_count;
struct efx_tx_buffer *buffer;
unsigned int next_desc_type;
unsigned int write_ptr;
efx_oword_t *txd;
unsigned int nr_descs = tx_queue->insert_count - old_write_count;
if (unlikely(nr_descs == 0))
return;
if (segment_count)
next_desc_type = ESE_GZ_TX_DESC_TYPE_TSO;
else
next_desc_type = ESE_GZ_TX_DESC_TYPE_SEND;
/* if it's a raw write (such as XDP) then always SEND single frames */
if (!skb)
nr_descs = 1;
do {
write_ptr = new_write_count & tx_queue->ptr_mask;
buffer = &tx_queue->buffer[write_ptr];
txd = ef100_tx_desc(tx_queue, write_ptr);
++new_write_count;
/* Create TX descriptor ring entry */
tx_queue->packet_write_count = new_write_count;
switch (next_desc_type) {
case ESE_GZ_TX_DESC_TYPE_SEND:
ef100_make_send_desc(tx_queue->efx, skb,
buffer, txd, nr_descs);
break;
case ESE_GZ_TX_DESC_TYPE_TSO:
/* TX TSO descriptor */
WARN_ON_ONCE(!(buffer->flags & EFX_TX_BUF_TSO_V3));
ef100_make_tso_desc(tx_queue->efx, skb,
buffer, txd, nr_descs);
break;
default:
/* TX segment descriptor */
EFX_POPULATE_OWORD_3(*txd,
ESF_GZ_TX_DESC_TYPE, ESE_GZ_TX_DESC_TYPE_SEG,
ESF_GZ_TX_SEG_LEN, buffer->len,
ESF_GZ_TX_SEG_ADDR, buffer->dma_addr);
}
/* if it's a raw write (such as XDP) then always SEND */
next_desc_type = skb ? ESE_GZ_TX_DESC_TYPE_SEG :
ESE_GZ_TX_DESC_TYPE_SEND;
} while (new_write_count != tx_queue->insert_count);
wmb(); /* Ensure descriptors are written before they are fetched */
tx_queue->write_count = new_write_count;
/* The write_count above must be updated before reading
* channel->holdoff_doorbell to avoid a race with the
* completion path, so ensure these operations are not
* re-ordered. This also flushes the update of write_count
* back into the cache.
*/
smp_mb();
} }
void ef100_tx_write(struct efx_tx_queue *tx_queue) void ef100_tx_write(struct efx_tx_queue *tx_queue)
{ {
ef100_tx_make_descriptors(tx_queue, NULL, 0);
ef100_tx_push_buffers(tx_queue);
}
void ef100_ev_tx(struct efx_channel *channel, const efx_qword_t *p_event)
{
unsigned int tx_done =
EFX_QWORD_FIELD(*p_event, ESF_GZ_EV_TXCMPL_NUM_DESC);
unsigned int qlabel =
EFX_QWORD_FIELD(*p_event, ESF_GZ_EV_TXCMPL_Q_LABEL);
struct efx_tx_queue *tx_queue =
efx_channel_get_tx_queue(channel, qlabel);
unsigned int tx_index = (tx_queue->read_count + tx_done - 1) &
tx_queue->ptr_mask;
efx_xmit_done(tx_queue, tx_index);
} }
/* Add a socket buffer to a TX queue /* Add a socket buffer to a TX queue
...@@ -42,10 +328,81 @@ void ef100_tx_write(struct efx_tx_queue *tx_queue) ...@@ -42,10 +328,81 @@ void ef100_tx_write(struct efx_tx_queue *tx_queue)
*/ */
int ef100_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb) int ef100_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
{ {
/* Stub. No TX path yet. */ unsigned int old_insert_count = tx_queue->insert_count;
struct efx_nic *efx = tx_queue->efx; struct efx_nic *efx = tx_queue->efx;
bool xmit_more = netdev_xmit_more();
unsigned int fill_level;
unsigned int segments;
int rc;
if (!tx_queue->buffer || !tx_queue->ptr_mask) {
netif_stop_queue(efx->net_dev);
dev_kfree_skb_any(skb);
return -ENODEV;
}
segments = skb_is_gso(skb) ? skb_shinfo(skb)->gso_segs : 0;
if (segments == 1)
segments = 0; /* Don't use TSO/GSO for a single segment. */
if (segments && !ef100_tx_can_tso(tx_queue, skb)) {
rc = efx_tx_tso_fallback(tx_queue, skb);
tx_queue->tso_fallbacks++;
if (rc)
goto err;
else
return 0;
}
/* Map for DMA and create descriptors */
rc = efx_tx_map_data(tx_queue, skb, segments);
if (rc)
goto err;
ef100_tx_make_descriptors(tx_queue, skb, segments);
fill_level = efx_channel_tx_fill_level(tx_queue->channel);
if (fill_level > efx->txq_stop_thresh) {
netif_tx_stop_queue(tx_queue->core_txq);
/* Re-read after a memory barrier in case we've raced with
* the completion path. Otherwise there's a danger we'll never
* restart the queue if all completions have just happened.
*/
smp_mb();
fill_level = efx_channel_tx_fill_level(tx_queue->channel);
if (fill_level < efx->txq_stop_thresh)
netif_tx_start_queue(tx_queue->core_txq);
}
if (__netdev_tx_sent_queue(tx_queue->core_txq, skb->len, xmit_more))
tx_queue->xmit_more_available = false; /* push doorbell */
else if (tx_queue->write_count - tx_queue->notify_count > 255)
/* Ensure we never push more than 256 packets at once */
tx_queue->xmit_more_available = false; /* push */
else
tx_queue->xmit_more_available = true; /* don't push yet */
if (!tx_queue->xmit_more_available)
ef100_tx_push_buffers(tx_queue);
if (segments) {
tx_queue->tso_bursts++;
tx_queue->tso_packets += segments;
tx_queue->tx_packets += segments;
} else {
tx_queue->tx_packets++;
}
return 0;
err:
efx_enqueue_unwind(tx_queue, old_insert_count);
if (!IS_ERR_OR_NULL(skb))
dev_kfree_skb_any(skb);
netif_stop_queue(efx->net_dev); /* If we're not expecting another transmit and we had something to push
dev_kfree_skb_any(skb); * on this queue then we need to push here to get the previous packets
return -ENODEV; * out. We only enter this branch from before the 'Update BQL' section
* above, so xmit_more_available still refers to the old state.
*/
if (tx_queue->xmit_more_available && !xmit_more)
ef100_tx_push_buffers(tx_queue);
return rc;
} }
...@@ -17,6 +17,10 @@ ...@@ -17,6 +17,10 @@
int ef100_tx_probe(struct efx_tx_queue *tx_queue); int ef100_tx_probe(struct efx_tx_queue *tx_queue);
void ef100_tx_init(struct efx_tx_queue *tx_queue); void ef100_tx_init(struct efx_tx_queue *tx_queue);
void ef100_tx_write(struct efx_tx_queue *tx_queue); void ef100_tx_write(struct efx_tx_queue *tx_queue);
void ef100_notify_tx_desc(struct efx_tx_queue *tx_queue);
unsigned int ef100_tx_max_skb_descs(struct efx_nic *efx);
void ef100_ev_tx(struct efx_channel *channel, const efx_qword_t *p_event);
netdev_tx_t ef100_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb); netdev_tx_t ef100_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb);
#endif #endif
...@@ -173,6 +173,7 @@ struct efx_tx_buffer { ...@@ -173,6 +173,7 @@ struct efx_tx_buffer {
#define EFX_TX_BUF_MAP_SINGLE 8 /* buffer was mapped with dma_map_single() */ #define EFX_TX_BUF_MAP_SINGLE 8 /* buffer was mapped with dma_map_single() */
#define EFX_TX_BUF_OPTION 0x10 /* empty buffer for option descriptor */ #define EFX_TX_BUF_OPTION 0x10 /* empty buffer for option descriptor */
#define EFX_TX_BUF_XDP 0x20 /* buffer was sent with XDP */ #define EFX_TX_BUF_XDP 0x20 /* buffer was sent with XDP */
#define EFX_TX_BUF_TSO_V3 0x40 /* empty buffer for a TSO_V3 descriptor */
/** /**
* struct efx_tx_queue - An Efx TX queue * struct efx_tx_queue - An Efx TX queue
...@@ -245,6 +246,7 @@ struct efx_tx_buffer { ...@@ -245,6 +246,7 @@ struct efx_tx_buffer {
* @pio_packets: Number of times the TX PIO feature has been used * @pio_packets: Number of times the TX PIO feature has been used
* @xmit_more_available: Are any packets waiting to be pushed to the NIC * @xmit_more_available: Are any packets waiting to be pushed to the NIC
* @cb_packets: Number of times the TX copybreak feature has been used * @cb_packets: Number of times the TX copybreak feature has been used
* @notify_count: Count of notified descriptors to the NIC
* @empty_read_count: If the completion path has seen the queue as empty * @empty_read_count: If the completion path has seen the queue as empty
* and the transmission path has not yet checked this, the value of * and the transmission path has not yet checked this, the value of
* @read_count bitwise-added to %EFX_EMPTY_COUNT_VALID; otherwise 0. * @read_count bitwise-added to %EFX_EMPTY_COUNT_VALID; otherwise 0.
...@@ -292,6 +294,7 @@ struct efx_tx_queue { ...@@ -292,6 +294,7 @@ struct efx_tx_queue {
unsigned int pio_packets; unsigned int pio_packets;
bool xmit_more_available; bool xmit_more_available;
unsigned int cb_packets; unsigned int cb_packets;
unsigned int notify_count;
/* Statistics to supplement MAC stats */ /* Statistics to supplement MAC stats */
unsigned long tx_packets; unsigned long tx_packets;
...@@ -1669,6 +1672,24 @@ static inline void efx_xmit_hwtstamp_pending(struct sk_buff *skb) ...@@ -1669,6 +1672,24 @@ static inline void efx_xmit_hwtstamp_pending(struct sk_buff *skb)
skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
} }
/* Get the max fill level of the TX queues on this channel */
static inline unsigned int
efx_channel_tx_fill_level(struct efx_channel *channel)
{
struct efx_tx_queue *tx_queue;
unsigned int fill_level = 0;
/* This function is currently only used by EF100, which maybe
* could do something simpler and just compute the fill level
* of the single TXQ that's really in use.
*/
efx_for_each_channel_tx_queue(tx_queue, channel)
fill_level = max(fill_level,
tx_queue->insert_count - tx_queue->read_count);
return fill_level;
}
/* Get all supported features. /* Get all supported features.
* If a feature is not fixed, it is present in hw_features. * If a feature is not fixed, it is present in hw_features.
* If a feature is fixed, it does not present in hw_features, but * If a feature is fixed, it does not present in hw_features, but
......
...@@ -71,6 +71,7 @@ void efx_init_tx_queue(struct efx_tx_queue *tx_queue) ...@@ -71,6 +71,7 @@ void efx_init_tx_queue(struct efx_tx_queue *tx_queue)
"initialising TX queue %d\n", tx_queue->queue); "initialising TX queue %d\n", tx_queue->queue);
tx_queue->insert_count = 0; tx_queue->insert_count = 0;
tx_queue->notify_count = 0;
tx_queue->write_count = 0; tx_queue->write_count = 0;
tx_queue->packet_write_count = 0; tx_queue->packet_write_count = 0;
tx_queue->old_write_count = 0; tx_queue->old_write_count = 0;
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment