Commit d2b21f19 authored by Colin McCabe's avatar Colin McCabe Committed by John W. Linville

libertas: if_spi, driver for libertas GSPI devices

Add initial support for libertas devices using a GSPI interface.  This has
been tested with the 8686.

GSPI is intended to be used on embedded systems. Board-specific parameters are
required (see libertas_spi.h).

Thanks to everyone who took a look at the earlier versions of the patch.
Signed-off-by: default avatarColin McCabe <colin@cozybit.com>
Signed-off-by: default avatarAndrey Yurovsky <andrey@cozybit.com>
Acked-by: default avatarDan Williams <dcbw@redhat.com>
Signed-off-by: default avatarJohn W. Linville <linville@tuxdriver.com>
parent 3cd08b38
......@@ -151,6 +151,12 @@ config LIBERTAS_SDIO
---help---
A driver for Marvell Libertas 8385 and 8686 SDIO devices.
config LIBERTAS_SPI
tristate "Marvell Libertas 8686 SPI 802.11b/g cards"
depends on LIBERTAS && SPI && GENERIC_GPIO
---help---
A driver for Marvell Libertas 8686 SPI devices.
config LIBERTAS_DEBUG
bool "Enable full debugging output in the Libertas module."
depends on LIBERTAS
......
......@@ -4,8 +4,10 @@ libertas-objs := main.o wext.o rx.o tx.o cmd.o cmdresp.o scan.o 11d.o \
usb8xxx-objs += if_usb.o
libertas_cs-objs += if_cs.o
libertas_sdio-objs += if_sdio.o
libertas_spi-objs += if_spi.o
obj-$(CONFIG_LIBERTAS) += libertas.o
obj-$(CONFIG_LIBERTAS_USB) += usb8xxx.o
obj-$(CONFIG_LIBERTAS_CS) += libertas_cs.o
obj-$(CONFIG_LIBERTAS_SDIO) += libertas_sdio.o
obj-$(CONFIG_LIBERTAS_SPI) += libertas_spi.o
......@@ -41,6 +41,7 @@
#define LBS_DEB_HEX 0x00200000
#define LBS_DEB_SDIO 0x00400000
#define LBS_DEB_SYSFS 0x00800000
#define LBS_DEB_SPI 0x01000000
extern unsigned int lbs_debug;
......@@ -84,6 +85,7 @@ do { if ((lbs_debug & (grp)) == (grp)) \
#define lbs_deb_thread(fmt, args...) LBS_DEB_LL(LBS_DEB_THREAD, " thread", fmt, ##args)
#define lbs_deb_sdio(fmt, args...) LBS_DEB_LL(LBS_DEB_SDIO, " sdio", fmt, ##args)
#define lbs_deb_sysfs(fmt, args...) LBS_DEB_LL(LBS_DEB_SYSFS, " sysfs", fmt, ##args)
#define lbs_deb_spi(fmt, args...) LBS_DEB_LL(LBS_DEB_SPI, " spi", fmt, ##args)
#define lbs_pr_info(format, args...) \
printk(KERN_INFO DRV_NAME": " format, ## args)
......
/*
* linux/drivers/net/wireless/libertas/if_spi.c
*
* Driver for Marvell SPI WLAN cards.
*
* Copyright 2008 Analog Devices Inc.
*
* Authors:
* Andrey Yurovsky <andrey@cozybit.com>
* Colin McCabe <colin@cozybit.com>
*
* Inspired by if_sdio.c, Copyright 2007-2008 Pierre Ossman
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#include <linux/moduleparam.h>
#include <linux/firmware.h>
#include <linux/gpio.h>
#include <linux/jiffies.h>
#include <linux/kthread.h>
#include <linux/list.h>
#include <linux/netdevice.h>
#include <linux/spi/libertas_spi.h>
#include <linux/spi/spi.h>
#include "host.h"
#include "decl.h"
#include "defs.h"
#include "dev.h"
#include "if_spi.h"
struct if_spi_packet {
struct list_head list;
u16 blen;
u8 buffer[0] __attribute__((aligned(4)));
};
struct if_spi_card {
struct spi_device *spi;
struct lbs_private *priv;
char helper_fw_name[FIRMWARE_NAME_MAX];
char main_fw_name[FIRMWARE_NAME_MAX];
/* The card ID and card revision, as reported by the hardware. */
u16 card_id;
u8 card_rev;
/* Pin number for our GPIO chip-select. */
/* TODO: Once the generic SPI layer has some additional features, we
* should take this out and use the normal chip select here.
* We need support for chip select delays, and not dropping chipselect
* after each word. */
int gpio_cs;
/* The last time that we initiated an SPU operation */
unsigned long prev_xfer_time;
int use_dummy_writes;
unsigned long spu_port_delay;
unsigned long spu_reg_delay;
/* Handles all SPI communication (except for FW load) */
struct task_struct *spi_thread;
int run_thread;
/* Used to wake up the spi_thread */
struct semaphore spi_ready;
struct semaphore spi_thread_terminated;
u8 cmd_buffer[IF_SPI_CMD_BUF_SIZE];
/* A buffer of incoming packets from libertas core.
* Since we can't sleep in hw_host_to_card, we have to buffer
* them. */
struct list_head cmd_packet_list;
struct list_head data_packet_list;
/* Protects cmd_packet_list and data_packet_list */
spinlock_t buffer_lock;
};
static void free_if_spi_card(struct if_spi_card *card)
{
struct list_head *cursor, *next;
struct if_spi_packet *packet;
BUG_ON(card->run_thread);
list_for_each_safe(cursor, next, &card->cmd_packet_list) {
packet = container_of(cursor, struct if_spi_packet, list);
list_del(&packet->list);
kfree(packet);
}
list_for_each_safe(cursor, next, &card->data_packet_list) {
packet = container_of(cursor, struct if_spi_packet, list);
list_del(&packet->list);
kfree(packet);
}
spi_set_drvdata(card->spi, NULL);
kfree(card);
}
static struct chip_ident chip_id_to_device_name[] = {
{ .chip_id = 0x04, .name = 8385 },
{ .chip_id = 0x0b, .name = 8686 },
};
/*
* SPI Interface Unit Routines
*
* The SPU sits between the host and the WLAN module.
* All communication with the firmware is through SPU transactions.
*
* First we have to put a SPU register name on the bus. Then we can
* either read from or write to that register.
*
* For 16-bit transactions, byte order on the bus is big-endian.
* We don't have to worry about that here, though.
* The translation takes place in the SPI routines.
*/
static void spu_transaction_init(struct if_spi_card *card)
{
if (!time_after(jiffies, card->prev_xfer_time + 1)) {
/* Unfortunately, the SPU requires a delay between successive
* transactions. If our last transaction was more than a jiffy
* ago, we have obviously already delayed enough.
* If not, we have to busy-wait to be on the safe side. */
ndelay(400);
}
gpio_set_value(card->gpio_cs, 0); /* assert CS */
}
static void spu_transaction_finish(struct if_spi_card *card)
{
gpio_set_value(card->gpio_cs, 1); /* drop CS */
card->prev_xfer_time = jiffies;
}
/* Write out a byte buffer to an SPI register,
* using a series of 16-bit transfers. */
static int spu_write(struct if_spi_card *card, u16 reg, const u8 *buf, int len)
{
int err = 0;
u16 reg_out = reg | IF_SPI_WRITE_OPERATION_MASK;
/* You must give an even number of bytes to the SPU, even if it
* doesn't care about the last one. */
BUG_ON(len & 0x1);
spu_transaction_init(card);
/* write SPU register index */
err = spi_write(card->spi, (u8 *)&reg_out, sizeof(u16));
if (err)
goto out;
err = spi_write(card->spi, buf, len);
out:
spu_transaction_finish(card);
return err;
}
static inline int spu_write_u16(struct if_spi_card *card, u16 reg, u16 val)
{
return spu_write(card, reg, (u8 *)&val, sizeof(u16));
}
static inline int spu_write_u32(struct if_spi_card *card, u16 reg, u32 val)
{
/* The lower 16 bits are written first. */
u16 out[2];
out[0] = val & 0xffff;
out[1] = (val & 0xffff0000) >> 16;
return spu_write(card, reg, (u8 *)&out, sizeof(u32));
}
static inline int spu_reg_is_port_reg(u16 reg)
{
switch (reg) {
case IF_SPI_IO_RDWRPORT_REG:
case IF_SPI_CMD_RDWRPORT_REG:
case IF_SPI_DATA_RDWRPORT_REG:
return 1;
default:
return 0;
}
}
static int spu_read(struct if_spi_card *card, u16 reg, u8 *buf, int len)
{
unsigned int i, delay;
int err = 0;
u16 zero = 0;
u16 reg_out = reg | IF_SPI_READ_OPERATION_MASK;
/* You must take an even number of bytes from the SPU, even if you
* don't care about the last one. */
BUG_ON(len & 0x1);
spu_transaction_init(card);
/* write SPU register index */
err = spi_write(card->spi, (u8 *)&reg_out, sizeof(u16));
if (err)
goto out;
delay = spu_reg_is_port_reg(reg) ? card->spu_port_delay :
card->spu_reg_delay;
if (card->use_dummy_writes) {
/* Clock in dummy cycles while the SPU fills the FIFO */
for (i = 0; i < delay / 16; ++i) {
err = spi_write(card->spi, (u8 *)&zero, sizeof(u16));
if (err)
return err;
}
} else {
/* Busy-wait while the SPU fills the FIFO */
ndelay(100 + (delay * 10));
}
/* read in data */
err = spi_read(card->spi, buf, len);
out:
spu_transaction_finish(card);
return err;
}
/* Read 16 bits from an SPI register */
static inline int spu_read_u16(struct if_spi_card *card, u16 reg, u16 *val)
{
return spu_read(card, reg, (u8 *)val, sizeof(u16));
}
/* Read 32 bits from an SPI register.
* The low 16 bits are read first. */
static int spu_read_u32(struct if_spi_card *card, u16 reg, u32 *val)
{
u16 buf[2];
int err;
err = spu_read(card, reg, (u8 *)buf, sizeof(u32));
if (!err)
*val = buf[0] | (buf[1] << 16);
return err;
}
/* Keep reading 16 bits from an SPI register until you get the correct result.
*
* If mask = 0, the correct result is any non-zero number.
* If mask != 0, the correct result is any number where
* number & target_mask == target
*
* Returns -ETIMEDOUT if a second passes without the correct result. */
static int spu_wait_for_u16(struct if_spi_card *card, u16 reg,
u16 target_mask, u16 target)
{
int err;
unsigned long timeout = jiffies + 5*HZ;
while (1) {
u16 val;
err = spu_read_u16(card, reg, &val);
if (err)
return err;
if (target_mask) {
if ((val & target_mask) == target)
return 0;
} else {
if (val)
return 0;
}
udelay(100);
if (time_after(jiffies, timeout)) {
lbs_pr_err("%s: timeout with val=%02x, "
"target_mask=%02x, target=%02x\n",
__func__, val, target_mask, target);
return -ETIMEDOUT;
}
}
}
/* Read 16 bits from an SPI register until you receive a specific value.
* Returns -ETIMEDOUT if a 4 tries pass without success. */
static int spu_wait_for_u32(struct if_spi_card *card, u32 reg, u32 target)
{
int err, try;
for (try = 0; try < 4; ++try) {
u32 val = 0;
err = spu_read_u32(card, reg, &val);
if (err)
return err;
if (val == target)
return 0;
mdelay(100);
}
return -ETIMEDOUT;
}
static int spu_set_interrupt_mode(struct if_spi_card *card,
int suppress_host_int,
int auto_int)
{
int err = 0;
/* We can suppress a host interrupt by clearing the appropriate
* bit in the "host interrupt status mask" register */
if (suppress_host_int) {
err = spu_write_u16(card, IF_SPI_HOST_INT_STATUS_MASK_REG, 0);
if (err)
return err;
} else {
err = spu_write_u16(card, IF_SPI_HOST_INT_STATUS_MASK_REG,
IF_SPI_HISM_TX_DOWNLOAD_RDY |
IF_SPI_HISM_RX_UPLOAD_RDY |
IF_SPI_HISM_CMD_DOWNLOAD_RDY |
IF_SPI_HISM_CARDEVENT |
IF_SPI_HISM_CMD_UPLOAD_RDY);
if (err)
return err;
}
/* If auto-interrupts are on, the completion of certain transactions
* will trigger an interrupt automatically. If auto-interrupts
* are off, we need to set the "Card Interrupt Cause" register to
* trigger a card interrupt. */
if (auto_int) {
err = spu_write_u16(card, IF_SPI_HOST_INT_CTRL_REG,
IF_SPI_HICT_TX_DOWNLOAD_OVER_AUTO |
IF_SPI_HICT_RX_UPLOAD_OVER_AUTO |
IF_SPI_HICT_CMD_DOWNLOAD_OVER_AUTO |
IF_SPI_HICT_CMD_UPLOAD_OVER_AUTO);
if (err)
return err;
} else {
err = spu_write_u16(card, IF_SPI_HOST_INT_STATUS_MASK_REG, 0);
if (err)
return err;
}
return err;
}
static int spu_get_chip_revision(struct if_spi_card *card,
u16 *card_id, u8 *card_rev)
{
int err = 0;
u32 dev_ctrl;
err = spu_read_u32(card, IF_SPI_DEVICEID_CTRL_REG, &dev_ctrl);
if (err)
return err;
*card_id = IF_SPI_DEVICEID_CTRL_REG_TO_CARD_ID(dev_ctrl);
*card_rev = IF_SPI_DEVICEID_CTRL_REG_TO_CARD_REV(dev_ctrl);
return err;
}
static int spu_set_bus_mode(struct if_spi_card *card, u16 mode)
{
int err = 0;
u16 rval;
/* set bus mode */
err = spu_write_u16(card, IF_SPI_SPU_BUS_MODE_REG, mode);
if (err)
return err;
/* Check that we were able to read back what we just wrote. */
err = spu_read_u16(card, IF_SPI_SPU_BUS_MODE_REG, &rval);
if (err)
return err;
if (rval != mode) {
lbs_pr_err("Can't read bus mode register.\n");
return -EIO;
}
return 0;
}
static int spu_init(struct if_spi_card *card, int use_dummy_writes)
{
int err = 0;
u32 delay;
/* We have to start up in timed delay mode so that we can safely
* read the Delay Read Register. */
card->use_dummy_writes = 0;
err = spu_set_bus_mode(card,
IF_SPI_BUS_MODE_SPI_CLOCK_PHASE_RISING |
IF_SPI_BUS_MODE_DELAY_METHOD_TIMED |
IF_SPI_BUS_MODE_16_BIT_ADDRESS_16_BIT_DATA);
if (err)
return err;
card->spu_port_delay = 1000;
card->spu_reg_delay = 1000;
err = spu_read_u32(card, IF_SPI_DELAY_READ_REG, &delay);
if (err)
return err;
card->spu_port_delay = delay & 0x0000ffff;
card->spu_reg_delay = (delay & 0xffff0000) >> 16;
/* If dummy clock delay mode has been requested, switch to it now */
if (use_dummy_writes) {
card->use_dummy_writes = 1;
err = spu_set_bus_mode(card,
IF_SPI_BUS_MODE_SPI_CLOCK_PHASE_RISING |
IF_SPI_BUS_MODE_DELAY_METHOD_DUMMY_CLOCK |
IF_SPI_BUS_MODE_16_BIT_ADDRESS_16_BIT_DATA);
if (err)
return err;
}
lbs_deb_spi("Initialized SPU unit. "
"spu_port_delay=0x%04lx, spu_reg_delay=0x%04lx\n",
card->spu_port_delay, card->spu_reg_delay);
return err;
}
/*
* Firmware Loading
*/
static int if_spi_prog_helper_firmware(struct if_spi_card *card)
{
int err = 0;
const struct firmware *firmware = NULL;
int bytes_remaining;
const u8 *fw;
u8 temp[HELPER_FW_LOAD_CHUNK_SZ];
struct spi_device *spi = card->spi;
lbs_deb_enter(LBS_DEB_SPI);
err = spu_set_interrupt_mode(card, 1, 0);
if (err)
goto out;
/* Get helper firmware image */
err = request_firmware(&firmware, card->helper_fw_name, &spi->dev);
if (err) {
lbs_pr_err("request_firmware failed with err = %d\n", err);
goto out;
}
bytes_remaining = firmware->size;
fw = firmware->data;
/* Load helper firmware image */
while (bytes_remaining > 0) {
/* Scratch pad 1 should contain the number of bytes we
* want to download to the firmware */
err = spu_write_u16(card, IF_SPI_SCRATCH_1_REG,
HELPER_FW_LOAD_CHUNK_SZ);
if (err)
goto release_firmware;
err = spu_wait_for_u16(card, IF_SPI_HOST_INT_STATUS_REG,
IF_SPI_HIST_CMD_DOWNLOAD_RDY,
IF_SPI_HIST_CMD_DOWNLOAD_RDY);
if (err)
goto release_firmware;
/* Feed the data into the command read/write port reg
* in chunks of 64 bytes */
memset(temp, 0, sizeof(temp));
memcpy(temp, fw,
min(bytes_remaining, HELPER_FW_LOAD_CHUNK_SZ));
mdelay(10);
err = spu_write(card, IF_SPI_CMD_RDWRPORT_REG,
temp, HELPER_FW_LOAD_CHUNK_SZ);
if (err)
goto release_firmware;
/* Interrupt the boot code */
err = spu_write_u16(card, IF_SPI_HOST_INT_STATUS_REG, 0);
if (err)
goto release_firmware;
err = spu_write_u16(card, IF_SPI_CARD_INT_CAUSE_REG,
IF_SPI_CIC_CMD_DOWNLOAD_OVER);
if (err)
goto release_firmware;
bytes_remaining -= HELPER_FW_LOAD_CHUNK_SZ;
fw += HELPER_FW_LOAD_CHUNK_SZ;
}
/* Once the helper / single stage firmware download is complete,
* write 0 to scratch pad 1 and interrupt the
* bootloader. This completes the helper download. */
err = spu_write_u16(card, IF_SPI_SCRATCH_1_REG, FIRMWARE_DNLD_OK);
if (err)
goto release_firmware;
err = spu_write_u16(card, IF_SPI_HOST_INT_STATUS_REG, 0);
if (err)
goto release_firmware;
err = spu_write_u16(card, IF_SPI_CARD_INT_CAUSE_REG,
IF_SPI_CIC_CMD_DOWNLOAD_OVER);
goto release_firmware;
lbs_deb_spi("waiting for helper to boot...\n");
release_firmware:
release_firmware(firmware);
out:
if (err)
lbs_pr_err("failed to load helper firmware (err=%d)\n", err);
lbs_deb_leave_args(LBS_DEB_SPI, "err %d", err);
return err;
}
/* Returns the length of the next packet the firmware expects us to send
* Sets crc_err if the previous transfer had a CRC error. */
static int if_spi_prog_main_firmware_check_len(struct if_spi_card *card,
int *crc_err)
{
u16 len;
int err = 0;
/* wait until the host interrupt status register indicates
* that we are ready to download */
err = spu_wait_for_u16(card, IF_SPI_HOST_INT_STATUS_REG,
IF_SPI_HIST_CMD_DOWNLOAD_RDY,
IF_SPI_HIST_CMD_DOWNLOAD_RDY);
if (err) {
lbs_pr_err("timed out waiting for host_int_status\n");
return err;
}
/* Ask the device how many bytes of firmware it wants. */
err = spu_read_u16(card, IF_SPI_SCRATCH_1_REG, &len);
if (err)
return err;
if (len > IF_SPI_CMD_BUF_SIZE) {
lbs_pr_err("firmware load device requested a larger "
"tranfer than we are prepared to "
"handle. (len = %d)\n", len);
return -EIO;
}
if (len & 0x1) {
lbs_deb_spi("%s: crc error\n", __func__);
len &= ~0x1;
*crc_err = 1;
} else
*crc_err = 0;
return len;
}
static int if_spi_prog_main_firmware(struct if_spi_card *card)
{
int len, prev_len;
int bytes, crc_err = 0, err = 0;
const struct firmware *firmware = NULL;
const u8 *fw;
struct spi_device *spi = card->spi;
u16 num_crc_errs;
lbs_deb_enter(LBS_DEB_SPI);
err = spu_set_interrupt_mode(card, 1, 0);
if (err)
goto out;
/* Get firmware image */
err = request_firmware(&firmware, card->main_fw_name, &spi->dev);
if (err) {
lbs_pr_err("%s: can't get firmware '%s' from kernel. "
"err = %d\n", __func__, card->main_fw_name, err);
goto out;
}
err = spu_wait_for_u16(card, IF_SPI_SCRATCH_1_REG, 0, 0);
if (err) {
lbs_pr_err("%s: timed out waiting for initial "
"scratch reg = 0\n", __func__);
goto release_firmware;
}
num_crc_errs = 0;
prev_len = 0;
bytes = firmware->size;
fw = firmware->data;
while ((len = if_spi_prog_main_firmware_check_len(card, &crc_err))) {
if (len < 0) {
err = len;
goto release_firmware;
}
if (bytes < 0) {
/* If there are no more bytes left, we would normally
* expect to have terminated with len = 0 */
lbs_pr_err("Firmware load wants more bytes "
"than we have to offer.\n");
break;
}
if (crc_err) {
/* Previous transfer failed. */
if (++num_crc_errs > MAX_MAIN_FW_LOAD_CRC_ERR) {
lbs_pr_err("Too many CRC errors encountered "
"in firmware load.\n");
err = -EIO;
goto release_firmware;
}
} else {
/* Previous transfer succeeded. Advance counters. */
bytes -= prev_len;
fw += prev_len;
}
if (bytes < len) {
memset(card->cmd_buffer, 0, len);
memcpy(card->cmd_buffer, fw, bytes);
} else
memcpy(card->cmd_buffer, fw, len);
err = spu_write_u16(card, IF_SPI_HOST_INT_STATUS_REG, 0);
if (err)
goto release_firmware;
err = spu_write(card, IF_SPI_CMD_RDWRPORT_REG,
card->cmd_buffer, len);
if (err)
goto release_firmware;
err = spu_write_u16(card, IF_SPI_CARD_INT_CAUSE_REG ,
IF_SPI_CIC_CMD_DOWNLOAD_OVER);
if (err)
goto release_firmware;
prev_len = len;
}
if (bytes > prev_len) {
lbs_pr_err("firmware load wants fewer bytes than "
"we have to offer.\n");
}
/* Confirm firmware download */
err = spu_wait_for_u32(card, IF_SPI_SCRATCH_4_REG,
SUCCESSFUL_FW_DOWNLOAD_MAGIC);
if (err) {
lbs_pr_err("failed to confirm the firmware download\n");
goto release_firmware;
}
release_firmware:
release_firmware(firmware);
out:
if (err)
lbs_pr_err("failed to load firmware (err=%d)\n", err);
lbs_deb_leave_args(LBS_DEB_SPI, "err %d", err);
return err;
}
/*
* SPI Transfer Thread
*
* The SPI thread handles all SPI transfers, so there is no need for a lock.
*/
/* Move a command from the card to the host */
static int if_spi_c2h_cmd(struct if_spi_card *card)
{
struct lbs_private *priv = card->priv;
unsigned long flags;
int err = 0;
u16 len;
u8 i;
/* We need a buffer big enough to handle whatever people send to
* hw_host_to_card */
BUILD_BUG_ON(IF_SPI_CMD_BUF_SIZE < LBS_CMD_BUFFER_SIZE);
BUILD_BUG_ON(IF_SPI_CMD_BUF_SIZE < LBS_UPLD_SIZE);
/* It's just annoying if the buffer size isn't a multiple of 4, because
* then we might have len < IF_SPI_CMD_BUF_SIZE but
* ALIGN(len, 4) > IF_SPI_CMD_BUF_SIZE */
BUILD_BUG_ON(IF_SPI_CMD_BUF_SIZE % 4 != 0);
lbs_deb_enter(LBS_DEB_SPI);
/* How many bytes are there to read? */
err = spu_read_u16(card, IF_SPI_SCRATCH_2_REG, &len);
if (err)
goto out;
if (!len) {
lbs_pr_err("%s: error: card has no data for host\n",
__func__);
err = -EINVAL;
goto out;
} else if (len > IF_SPI_CMD_BUF_SIZE) {
lbs_pr_err("%s: error: response packet too large: "
"%d bytes, but maximum is %d\n",
__func__, len, IF_SPI_CMD_BUF_SIZE);
err = -EINVAL;
goto out;
}
/* Read the data from the WLAN module into our command buffer */
err = spu_read(card, IF_SPI_CMD_RDWRPORT_REG,
card->cmd_buffer, ALIGN(len, 4));
if (err)
goto out;
spin_lock_irqsave(&priv->driver_lock, flags);
i = (priv->resp_idx == 0) ? 1 : 0;
BUG_ON(priv->resp_len[i]);
priv->resp_len[i] = len;
memcpy(priv->resp_buf[i], card->cmd_buffer, len);
lbs_notify_command_response(priv, i);
spin_unlock_irqrestore(&priv->driver_lock, flags);
out:
if (err)
lbs_pr_err("%s: err=%d\n", __func__, err);
lbs_deb_leave(LBS_DEB_SPI);
return err;
}
/* Move data from the card to the host */
static int if_spi_c2h_data(struct if_spi_card *card)
{
struct sk_buff *skb;
char *data;
u16 len;
int err = 0;
lbs_deb_enter(LBS_DEB_SPI);
/* How many bytes are there to read? */
err = spu_read_u16(card, IF_SPI_SCRATCH_1_REG, &len);
if (err)
goto out;
if (!len) {
lbs_pr_err("%s: error: card has no data for host\n",
__func__);
err = -EINVAL;
goto out;
} else if (len > MRVDRV_ETH_RX_PACKET_BUFFER_SIZE) {
lbs_pr_err("%s: error: card has %d bytes of data, but "
"our maximum skb size is %u\n",
__func__, len, MRVDRV_ETH_RX_PACKET_BUFFER_SIZE);
err = -EINVAL;
goto out;
}
/* TODO: should we allocate a smaller skb if we have less data? */
skb = dev_alloc_skb(MRVDRV_ETH_RX_PACKET_BUFFER_SIZE);
if (!skb) {
err = -ENOBUFS;
goto out;
}
skb_reserve(skb, IPFIELD_ALIGN_OFFSET);
data = skb_put(skb, len);
/* Read the data from the WLAN module into our skb... */
err = spu_read(card, IF_SPI_DATA_RDWRPORT_REG, data, ALIGN(len, 4));
if (err)
goto free_skb;
/* pass the SKB to libertas */
err = lbs_process_rxed_packet(card->priv, skb);
if (err)
goto free_skb;
/* success */
goto out;
free_skb:
dev_kfree_skb(skb);
out:
if (err)
lbs_pr_err("%s: err=%d\n", __func__, err);
lbs_deb_leave(LBS_DEB_SPI);
return err;
}
/* Move data or a command from the host to the card. */
static void if_spi_h2c(struct if_spi_card *card,
struct if_spi_packet *packet, int type)
{
int err = 0;
u16 int_type, port_reg;
switch (type) {
case MVMS_DAT:
int_type = IF_SPI_CIC_TX_DOWNLOAD_OVER;
port_reg = IF_SPI_DATA_RDWRPORT_REG;
break;
case MVMS_CMD:
int_type = IF_SPI_CIC_CMD_DOWNLOAD_OVER;
port_reg = IF_SPI_CMD_RDWRPORT_REG;
break;
default:
lbs_pr_err("can't transfer buffer of type %d\n", type);
err = -EINVAL;
goto out;
}
/* Write the data to the card */
err = spu_write(card, port_reg, packet->buffer, packet->blen);
if (err)
goto out;
out:
kfree(packet);
if (err)
lbs_pr_err("%s: error %d\n", __func__, err);
}
/* Inform the host about a card event */
static void if_spi_e2h(struct if_spi_card *card)
{
int err = 0;
unsigned long flags;
u32 cause;
struct lbs_private *priv = card->priv;
err = spu_read_u32(card, IF_SPI_SCRATCH_3_REG, &cause);
if (err)
goto out;
spin_lock_irqsave(&priv->driver_lock, flags);
lbs_queue_event(priv, cause & 0xff);
spin_unlock_irqrestore(&priv->driver_lock, flags);
out:
if (err)
lbs_pr_err("%s: error %d\n", __func__, err);
}
static int lbs_spi_thread(void *data)
{
int err;
struct if_spi_card *card = data;
u16 hiStatus;
unsigned long flags;
struct if_spi_packet *packet;
while (1) {
/* Wait to be woken up by one of two things. First, our ISR
* could tell us that something happened on the WLAN.
* Secondly, libertas could call hw_host_to_card with more
* data, which we might be able to send.
*/
do {
err = down_interruptible(&card->spi_ready);
if (!card->run_thread) {
up(&card->spi_thread_terminated);
do_exit(0);
}
} while (err == EINTR);
/* Read the host interrupt status register to see what we
* can do. */
err = spu_read_u16(card, IF_SPI_HOST_INT_STATUS_REG,
&hiStatus);
if (err) {
lbs_pr_err("I/O error\n");
goto err;
}
if (hiStatus & IF_SPI_HIST_CMD_UPLOAD_RDY)
err = if_spi_c2h_cmd(card);
if (err)
goto err;
if (hiStatus & IF_SPI_HIST_RX_UPLOAD_RDY)
err = if_spi_c2h_data(card);
if (err)
goto err;
if (hiStatus & IF_SPI_HIST_CMD_DOWNLOAD_RDY) {
/* This means two things. First of all,
* if there was a previous command sent, the card has
* successfully received it.
* Secondly, it is now ready to download another
* command.
*/
lbs_host_to_card_done(card->priv);
/* Do we have any command packets from the host to
* send? */
packet = NULL;
spin_lock_irqsave(&card->buffer_lock, flags);
if (!list_empty(&card->cmd_packet_list)) {
packet = (struct if_spi_packet *)(card->
cmd_packet_list.next);
list_del(&packet->list);
}
spin_unlock_irqrestore(&card->buffer_lock, flags);
if (packet)
if_spi_h2c(card, packet, MVMS_CMD);
}
if (hiStatus & IF_SPI_HIST_TX_DOWNLOAD_RDY) {
/* Do we have any data packets from the host to
* send? */
packet = NULL;
spin_lock_irqsave(&card->buffer_lock, flags);
if (!list_empty(&card->data_packet_list)) {
packet = (struct if_spi_packet *)(card->
data_packet_list.next);
list_del(&packet->list);
}
spin_unlock_irqrestore(&card->buffer_lock, flags);
if (packet)
if_spi_h2c(card, packet, MVMS_DAT);
}
if (hiStatus & IF_SPI_HIST_CARD_EVENT)
if_spi_e2h(card);
err:
if (err)
lbs_pr_err("%s: got error %d\n", __func__, err);
}
}
/* Block until lbs_spi_thread thread has terminated */
static void if_spi_terminate_spi_thread(struct if_spi_card *card)
{
/* It would be nice to use kthread_stop here, but that function
* can't wake threads waiting for a semaphore. */
card->run_thread = 0;
up(&card->spi_ready);
down(&card->spi_thread_terminated);
}
/*
* Host to Card
*
* Called from Libertas to transfer some data to the WLAN device
* We can't sleep here. */
static int if_spi_host_to_card(struct lbs_private *priv,
u8 type, u8 *buf, u16 nb)
{
int err = 0;
unsigned long flags;
struct if_spi_card *card = priv->card;
struct if_spi_packet *packet;
u16 blen;
lbs_deb_enter_args(LBS_DEB_SPI, "type %d, bytes %d", type, nb);
if (nb == 0) {
lbs_pr_err("%s: invalid size requested: %d\n", __func__, nb);
err = -EINVAL;
goto out;
}
blen = ALIGN(nb, 4);
packet = kzalloc(sizeof(struct if_spi_packet) + blen, GFP_ATOMIC);
if (!packet) {
err = -ENOMEM;
goto out;
}
packet->blen = blen;
memcpy(packet->buffer, buf, nb);
memset(packet->buffer + nb, 0, blen - nb);
switch (type) {
case MVMS_CMD:
priv->dnld_sent = DNLD_CMD_SENT;
spin_lock_irqsave(&card->buffer_lock, flags);
list_add_tail(&packet->list, &card->cmd_packet_list);
spin_unlock_irqrestore(&card->buffer_lock, flags);
break;
case MVMS_DAT:
priv->dnld_sent = DNLD_DATA_SENT;
spin_lock_irqsave(&card->buffer_lock, flags);
list_add_tail(&packet->list, &card->data_packet_list);
spin_unlock_irqrestore(&card->buffer_lock, flags);
break;
default:
lbs_pr_err("can't transfer buffer of type %d", type);
err = -EINVAL;
break;
}
/* Wake up the spi thread */
up(&card->spi_ready);
out:
lbs_deb_leave_args(LBS_DEB_SPI, "err=%d", err);
return err;
}
/*
* Host Interrupts
*
* Service incoming interrupts from the WLAN device. We can't sleep here, so
* don't try to talk on the SPI bus, just wake up the SPI thread.
*/
static irqreturn_t if_spi_host_interrupt(int irq, void *dev_id)
{
struct if_spi_card *card = dev_id;
up(&card->spi_ready);
return IRQ_HANDLED;
}
/*
* SPI callbacks
*/
static int if_spi_calculate_fw_names(u16 card_id,
char *helper_fw, char *main_fw)
{
int i;
for (i = 0; i < ARRAY_SIZE(chip_id_to_device_name); ++i) {
if (card_id == chip_id_to_device_name[i].chip_id)
break;
}
if (i == ARRAY_SIZE(chip_id_to_device_name)) {
lbs_pr_err("Unsupported chip_id: 0x%02x\n", card_id);
return -EAFNOSUPPORT;
}
snprintf(helper_fw, FIRMWARE_NAME_MAX, "libertas/gspi%d_hlp.bin",
chip_id_to_device_name[i].name);
snprintf(main_fw, FIRMWARE_NAME_MAX, "libertas/gspi%d.bin",
chip_id_to_device_name[i].name);
return 0;
}
static int __devinit if_spi_probe(struct spi_device *spi)
{
struct if_spi_card *card;
struct lbs_private *priv = NULL;
struct libertas_spi_platform_data *pdata = spi->dev.platform_data;
int err = 0;
u32 scratch;
lbs_deb_enter(LBS_DEB_SPI);
/* Allocate card structure to represent this specific device */
card = kzalloc(sizeof(struct if_spi_card), GFP_KERNEL);
if (!card) {
err = -ENOMEM;
goto out;
}
spi_set_drvdata(spi, card);
card->spi = spi;
card->gpio_cs = pdata->gpio_cs;
card->prev_xfer_time = jiffies;
sema_init(&card->spi_ready, 0);
sema_init(&card->spi_thread_terminated, 0);
INIT_LIST_HEAD(&card->cmd_packet_list);
INIT_LIST_HEAD(&card->data_packet_list);
spin_lock_init(&card->buffer_lock);
/* set up GPIO CS line. TODO: use regular CS line */
err = gpio_request(card->gpio_cs, "if_spi_gpio_chip_select");
if (err)
goto free_card;
err = gpio_direction_output(card->gpio_cs, 1);
if (err)
goto free_gpio;
/* Initialize the SPI Interface Unit */
err = spu_init(card, pdata->use_dummy_writes);
if (err)
goto free_gpio;
err = spu_get_chip_revision(card, &card->card_id, &card->card_rev);
if (err)
goto free_gpio;
/* Firmware load */
err = spu_read_u32(card, IF_SPI_SCRATCH_4_REG, &scratch);
if (err)
goto free_gpio;
if (scratch == SUCCESSFUL_FW_DOWNLOAD_MAGIC)
lbs_deb_spi("Firmware is already loaded for "
"Marvell WLAN 802.11 adapter\n");
else {
err = if_spi_calculate_fw_names(card->card_id,
card->helper_fw_name, card->main_fw_name);
if (err)
goto free_gpio;
lbs_deb_spi("Initializing FW for Marvell WLAN 802.11 adapter "
"(chip_id = 0x%04x, chip_rev = 0x%02x) "
"attached to SPI bus_num %d, chip_select %d. "
"spi->max_speed_hz=%d\n",
card->card_id, card->card_rev,
spi->master->bus_num, spi->chip_select,
spi->max_speed_hz);
err = if_spi_prog_helper_firmware(card);
if (err)
goto free_gpio;
err = if_spi_prog_main_firmware(card);
if (err)
goto free_gpio;
lbs_deb_spi("loaded FW for Marvell WLAN 802.11 adapter\n");
}
err = spu_set_interrupt_mode(card, 0, 1);
if (err)
goto free_gpio;
/* Register our card with libertas.
* This will call alloc_etherdev */
priv = lbs_add_card(card, &spi->dev);
if (!priv) {
err = -ENOMEM;
goto free_gpio;
}
card->priv = priv;
priv->card = card;
priv->hw_host_to_card = if_spi_host_to_card;
priv->fw_ready = 1;
priv->ps_supported = 1;
/* Initialize interrupt handling stuff. */
card->run_thread = 1;
card->spi_thread = kthread_run(lbs_spi_thread, card, "lbs_spi_thread");
if (IS_ERR(card->spi_thread)) {
card->run_thread = 0;
err = PTR_ERR(card->spi_thread);
lbs_pr_err("error creating SPI thread: err=%d\n", err);
goto remove_card;
}
err = request_irq(spi->irq, if_spi_host_interrupt,
IRQF_TRIGGER_FALLING, "libertas_spi", card);
if (err) {
lbs_pr_err("can't get host irq line-- request_irq failed\n");
goto terminate_thread;
}
/* Start the card.
* This will call register_netdev, and we'll start
* getting interrupts... */
err = lbs_start_card(priv);
if (err)
goto release_irq;
lbs_deb_spi("Finished initializing WLAN module.\n");
/* successful exit */
goto out;
release_irq:
free_irq(spi->irq, card);
terminate_thread:
if_spi_terminate_spi_thread(card);
remove_card:
lbs_remove_card(priv); /* will call free_netdev */
free_gpio:
gpio_free(card->gpio_cs);
free_card:
free_if_spi_card(card);
out:
lbs_deb_leave_args(LBS_DEB_SPI, "err %d\n", err);
return err;
}
static int __devexit libertas_spi_remove(struct spi_device *spi)
{
struct if_spi_card *card = spi_get_drvdata(spi);
struct lbs_private *priv = card->priv;
lbs_deb_spi("libertas_spi_remove\n");
lbs_deb_enter(LBS_DEB_SPI);
priv->surpriseremoved = 1;
lbs_stop_card(priv);
free_irq(spi->irq, card);
if_spi_terminate_spi_thread(card);
lbs_remove_card(priv); /* will call free_netdev */
gpio_free(card->gpio_cs);
free_if_spi_card(card);
lbs_deb_leave(LBS_DEB_SPI);
return 0;
}
static struct spi_driver libertas_spi_driver = {
.probe = if_spi_probe,
.remove = __devexit_p(libertas_spi_remove),
.driver = {
.name = "libertas_spi",
.bus = &spi_bus_type,
.owner = THIS_MODULE,
},
};
/*
* Module functions
*/
static int __init if_spi_init_module(void)
{
int ret = 0;
lbs_deb_enter(LBS_DEB_SPI);
printk(KERN_INFO "libertas_spi: Libertas SPI driver\n");
ret = spi_register_driver(&libertas_spi_driver);
lbs_deb_leave(LBS_DEB_SPI);
return ret;
}
static void __exit if_spi_exit_module(void)
{
lbs_deb_enter(LBS_DEB_SPI);
spi_unregister_driver(&libertas_spi_driver);
lbs_deb_leave(LBS_DEB_SPI);
}
module_init(if_spi_init_module);
module_exit(if_spi_exit_module);
MODULE_DESCRIPTION("Libertas SPI WLAN Driver");
MODULE_AUTHOR("Andrey Yurovsky <andrey@cozybit.com>, "
"Colin McCabe <colin@cozybit.com>");
MODULE_LICENSE("GPL");
/*
* linux/drivers/net/wireless/libertas/if_spi.c
*
* Driver for Marvell SPI WLAN cards.
*
* Copyright 2008 Analog Devices Inc.
*
* Authors:
* Andrey Yurovsky <andrey@cozybit.com>
* Colin McCabe <colin@cozybit.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or (at
* your option) any later version.
*/
#ifndef _LBS_IF_SPI_H_
#define _LBS_IF_SPI_H_
#define IPFIELD_ALIGN_OFFSET 2
#define IF_SPI_CMD_BUF_SIZE 2400
/***************** Firmware *****************/
struct chip_ident {
u16 chip_id;
u16 name;
};
#define MAX_MAIN_FW_LOAD_CRC_ERR 10
/* Chunk size when loading the helper firmware */
#define HELPER_FW_LOAD_CHUNK_SZ 64
/* Value to write to indicate end of helper firmware dnld */
#define FIRMWARE_DNLD_OK 0x0000
/* Value to check once the main firmware is downloaded */
#define SUCCESSFUL_FW_DOWNLOAD_MAGIC 0x88888888
/***************** SPI Interface Unit *****************/
/* Masks used in SPI register read/write operations */
#define IF_SPI_READ_OPERATION_MASK 0x0
#define IF_SPI_WRITE_OPERATION_MASK 0x8000
/* SPI register offsets. 4-byte aligned. */
#define IF_SPI_DEVICEID_CTRL_REG 0x00 /* DeviceID controller reg */
#define IF_SPI_IO_READBASE_REG 0x04 /* Read I/O base reg */
#define IF_SPI_IO_WRITEBASE_REG 0x08 /* Write I/O base reg */
#define IF_SPI_IO_RDWRPORT_REG 0x0C /* Read/Write I/O port reg */
#define IF_SPI_CMD_READBASE_REG 0x10 /* Read command base reg */
#define IF_SPI_CMD_WRITEBASE_REG 0x14 /* Write command base reg */
#define IF_SPI_CMD_RDWRPORT_REG 0x18 /* Read/Write command port reg */
#define IF_SPI_DATA_READBASE_REG 0x1C /* Read data base reg */
#define IF_SPI_DATA_WRITEBASE_REG 0x20 /* Write data base reg */
#define IF_SPI_DATA_RDWRPORT_REG 0x24 /* Read/Write data port reg */
#define IF_SPI_SCRATCH_1_REG 0x28 /* Scratch reg 1 */
#define IF_SPI_SCRATCH_2_REG 0x2C /* Scratch reg 2 */
#define IF_SPI_SCRATCH_3_REG 0x30 /* Scratch reg 3 */
#define IF_SPI_SCRATCH_4_REG 0x34 /* Scratch reg 4 */
#define IF_SPI_TX_FRAME_SEQ_NUM_REG 0x38 /* Tx frame sequence number reg */
#define IF_SPI_TX_FRAME_STATUS_REG 0x3C /* Tx frame status reg */
#define IF_SPI_HOST_INT_CTRL_REG 0x40 /* Host interrupt controller reg */
#define IF_SPI_CARD_INT_CAUSE_REG 0x44 /* Card interrupt cause reg */
#define IF_SPI_CARD_INT_STATUS_REG 0x48 /* Card interupt status reg */
#define IF_SPI_CARD_INT_EVENT_MASK_REG 0x4C /* Card interrupt event mask */
#define IF_SPI_CARD_INT_STATUS_MASK_REG 0x50 /* Card interrupt status mask */
#define IF_SPI_CARD_INT_RESET_SELECT_REG 0x54 /* Card interrupt reset select */
#define IF_SPI_HOST_INT_CAUSE_REG 0x58 /* Host interrupt cause reg */
#define IF_SPI_HOST_INT_STATUS_REG 0x5C /* Host interrupt status reg */
#define IF_SPI_HOST_INT_EVENT_MASK_REG 0x60 /* Host interrupt event mask */
#define IF_SPI_HOST_INT_STATUS_MASK_REG 0x64 /* Host interrupt status mask */
#define IF_SPI_HOST_INT_RESET_SELECT_REG 0x68 /* Host interrupt reset select */
#define IF_SPI_DELAY_READ_REG 0x6C /* Delay read reg */
#define IF_SPI_SPU_BUS_MODE_REG 0x70 /* SPU BUS mode reg */
/***************** IF_SPI_DEVICEID_CTRL_REG *****************/
#define IF_SPI_DEVICEID_CTRL_REG_TO_CARD_ID(dc) ((dc & 0xffff0000)>>16)
#define IF_SPI_DEVICEID_CTRL_REG_TO_CARD_REV(dc) (dc & 0x000000ff)
/***************** IF_SPI_HOST_INT_CTRL_REG *****************/
/** Host Interrupt Control bit : Wake up */
#define IF_SPI_HICT_WAKE_UP (1<<0)
/** Host Interrupt Control bit : WLAN ready */
#define IF_SPI_HICT_WLAN_READY (1<<1)
/*#define IF_SPI_HICT_FIFO_FIRST_HALF_EMPTY (1<<2) */
/*#define IF_SPI_HICT_FIFO_SECOND_HALF_EMPTY (1<<3) */
/*#define IF_SPI_HICT_IRQSRC_WLAN (1<<4) */
/** Host Interrupt Control bit : Tx auto download */
#define IF_SPI_HICT_TX_DOWNLOAD_OVER_AUTO (1<<5)
/** Host Interrupt Control bit : Rx auto upload */
#define IF_SPI_HICT_RX_UPLOAD_OVER_AUTO (1<<6)
/** Host Interrupt Control bit : Command auto download */
#define IF_SPI_HICT_CMD_DOWNLOAD_OVER_AUTO (1<<7)
/** Host Interrupt Control bit : Command auto upload */
#define IF_SPI_HICT_CMD_UPLOAD_OVER_AUTO (1<<8)
/***************** IF_SPI_CARD_INT_CAUSE_REG *****************/
/** Card Interrupt Case bit : Tx download over */
#define IF_SPI_CIC_TX_DOWNLOAD_OVER (1<<0)
/** Card Interrupt Case bit : Rx upload over */
#define IF_SPI_CIC_RX_UPLOAD_OVER (1<<1)
/** Card Interrupt Case bit : Command download over */
#define IF_SPI_CIC_CMD_DOWNLOAD_OVER (1<<2)
/** Card Interrupt Case bit : Host event */
#define IF_SPI_CIC_HOST_EVENT (1<<3)
/** Card Interrupt Case bit : Command upload over */
#define IF_SPI_CIC_CMD_UPLOAD_OVER (1<<4)
/** Card Interrupt Case bit : Power down */
#define IF_SPI_CIC_POWER_DOWN (1<<5)
/***************** IF_SPI_CARD_INT_STATUS_REG *****************/
#define IF_SPI_CIS_TX_DOWNLOAD_OVER (1<<0)
#define IF_SPI_CIS_RX_UPLOAD_OVER (1<<1)
#define IF_SPI_CIS_CMD_DOWNLOAD_OVER (1<<2)
#define IF_SPI_CIS_HOST_EVENT (1<<3)
#define IF_SPI_CIS_CMD_UPLOAD_OVER (1<<4)
#define IF_SPI_CIS_POWER_DOWN (1<<5)
/***************** IF_SPI_HOST_INT_CAUSE_REG *****************/
#define IF_SPI_HICU_TX_DOWNLOAD_RDY (1<<0)
#define IF_SPI_HICU_RX_UPLOAD_RDY (1<<1)
#define IF_SPI_HICU_CMD_DOWNLOAD_RDY (1<<2)
#define IF_SPI_HICU_CARD_EVENT (1<<3)
#define IF_SPI_HICU_CMD_UPLOAD_RDY (1<<4)
#define IF_SPI_HICU_IO_WR_FIFO_OVERFLOW (1<<5)
#define IF_SPI_HICU_IO_RD_FIFO_UNDERFLOW (1<<6)
#define IF_SPI_HICU_DATA_WR_FIFO_OVERFLOW (1<<7)
#define IF_SPI_HICU_DATA_RD_FIFO_UNDERFLOW (1<<8)
#define IF_SPI_HICU_CMD_WR_FIFO_OVERFLOW (1<<9)
#define IF_SPI_HICU_CMD_RD_FIFO_UNDERFLOW (1<<10)
/***************** IF_SPI_HOST_INT_STATUS_REG *****************/
/** Host Interrupt Status bit : Tx download ready */
#define IF_SPI_HIST_TX_DOWNLOAD_RDY (1<<0)
/** Host Interrupt Status bit : Rx upload ready */
#define IF_SPI_HIST_RX_UPLOAD_RDY (1<<1)
/** Host Interrupt Status bit : Command download ready */
#define IF_SPI_HIST_CMD_DOWNLOAD_RDY (1<<2)
/** Host Interrupt Status bit : Card event */
#define IF_SPI_HIST_CARD_EVENT (1<<3)
/** Host Interrupt Status bit : Command upload ready */
#define IF_SPI_HIST_CMD_UPLOAD_RDY (1<<4)
/** Host Interrupt Status bit : I/O write FIFO overflow */
#define IF_SPI_HIST_IO_WR_FIFO_OVERFLOW (1<<5)
/** Host Interrupt Status bit : I/O read FIFO underflow */
#define IF_SPI_HIST_IO_RD_FIFO_UNDRFLOW (1<<6)
/** Host Interrupt Status bit : Data write FIFO overflow */
#define IF_SPI_HIST_DATA_WR_FIFO_OVERFLOW (1<<7)
/** Host Interrupt Status bit : Data read FIFO underflow */
#define IF_SPI_HIST_DATA_RD_FIFO_UNDERFLOW (1<<8)
/** Host Interrupt Status bit : Command write FIFO overflow */
#define IF_SPI_HIST_CMD_WR_FIFO_OVERFLOW (1<<9)
/** Host Interrupt Status bit : Command read FIFO underflow */
#define IF_SPI_HIST_CMD_RD_FIFO_UNDERFLOW (1<<10)
/***************** IF_SPI_HOST_INT_STATUS_MASK_REG *****************/
/** Host Interrupt Status Mask bit : Tx download ready */
#define IF_SPI_HISM_TX_DOWNLOAD_RDY (1<<0)
/** Host Interrupt Status Mask bit : Rx upload ready */
#define IF_SPI_HISM_RX_UPLOAD_RDY (1<<1)
/** Host Interrupt Status Mask bit : Command download ready */
#define IF_SPI_HISM_CMD_DOWNLOAD_RDY (1<<2)
/** Host Interrupt Status Mask bit : Card event */
#define IF_SPI_HISM_CARDEVENT (1<<3)
/** Host Interrupt Status Mask bit : Command upload ready */
#define IF_SPI_HISM_CMD_UPLOAD_RDY (1<<4)
/** Host Interrupt Status Mask bit : I/O write FIFO overflow */
#define IF_SPI_HISM_IO_WR_FIFO_OVERFLOW (1<<5)
/** Host Interrupt Status Mask bit : I/O read FIFO underflow */
#define IF_SPI_HISM_IO_RD_FIFO_UNDERFLOW (1<<6)
/** Host Interrupt Status Mask bit : Data write FIFO overflow */
#define IF_SPI_HISM_DATA_WR_FIFO_OVERFLOW (1<<7)
/** Host Interrupt Status Mask bit : Data write FIFO underflow */
#define IF_SPI_HISM_DATA_RD_FIFO_UNDERFLOW (1<<8)
/** Host Interrupt Status Mask bit : Command write FIFO overflow */
#define IF_SPI_HISM_CMD_WR_FIFO_OVERFLOW (1<<9)
/** Host Interrupt Status Mask bit : Command write FIFO underflow */
#define IF_SPI_HISM_CMD_RD_FIFO_UNDERFLOW (1<<10)
/***************** IF_SPI_SPU_BUS_MODE_REG *****************/
/* SCK edge on which the WLAN module outputs data on MISO */
#define IF_SPI_BUS_MODE_SPI_CLOCK_PHASE_FALLING 0x8
#define IF_SPI_BUS_MODE_SPI_CLOCK_PHASE_RISING 0x0
/* In a SPU read operation, there is a delay between writing the SPU
* register name and getting back data from the WLAN module.
* This can be specified in terms of nanoseconds or in terms of dummy
* clock cycles which the master must output before receiving a response. */
#define IF_SPI_BUS_MODE_DELAY_METHOD_DUMMY_CLOCK 0x4
#define IF_SPI_BUS_MODE_DELAY_METHOD_TIMED 0x0
/* Some different modes of SPI operation */
#define IF_SPI_BUS_MODE_8_BIT_ADDRESS_16_BIT_DATA 0x00
#define IF_SPI_BUS_MODE_8_BIT_ADDRESS_32_BIT_DATA 0x01
#define IF_SPI_BUS_MODE_16_BIT_ADDRESS_16_BIT_DATA 0x02
#define IF_SPI_BUS_MODE_16_BIT_ADDRESS_32_BIT_DATA 0x03
#endif
/*
* board-specific data for the libertas_spi driver.
*
* Copyright 2008 Analog Devices Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or (at
* your option) any later version.
*/
#ifndef _LIBERTAS_SPI_H_
#define _LIBERTAS_SPI_H_
struct libertas_spi_platform_data {
/* There are two ways to read data from the WLAN module's SPI
* interface. Setting 0 or 1 here controls which one is used.
*
* Usually you want to set use_dummy_writes = 1.
* However, if that doesn't work or if you are using a slow SPI clock
* speed, you may want to use 0 here. */
u16 use_dummy_writes;
/* GPIO number to use as chip select */
u16 gpio_cs;
};
#endif
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment