Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
L
linux
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
Analytics
Analytics
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Commits
Issue Boards
Open sidebar
nexedi
linux
Commits
d5f26790
Commit
d5f26790
authored
Mar 25, 2003
by
Jan Dittmer
Committed by
Greg Kroah-Hartman
Mar 25, 2003
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
[PATCH] i2c: add i2c-via686a driver
parent
1ee1f748
Changes
3
Show whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
966 additions
and
0 deletions
+966
-0
drivers/i2c/chips/Kconfig
drivers/i2c/chips/Kconfig
+13
-0
drivers/i2c/chips/Makefile
drivers/i2c/chips/Makefile
+1
-0
drivers/i2c/chips/via686a.c
drivers/i2c/chips/via686a.c
+952
-0
No files found.
drivers/i2c/chips/Kconfig
View file @
d5f26790
...
@@ -37,4 +37,17 @@ config SENSORS_LM75
...
@@ -37,4 +37,17 @@ config SENSORS_LM75
in the lm_sensors package, which you can download at
in the lm_sensors package, which you can download at
http://www.lm-sensors.nu
http://www.lm-sensors.nu
config SENSORS_VIA686A
tristate " VIA686A"
depends on I2C && I2C_PROC
help
support for via686a
If you say yes here you get support for the integrated sensors in
Via 686A/B South Bridges. This can also be built as a module
which can be inserted and removed while the kernel is running.
You will also need the latest user-space utilties: you can find them
in the lm_sensors package, which you can download at
http://www.lm-sensors.nu
endmenu
endmenu
drivers/i2c/chips/Makefile
View file @
d5f26790
...
@@ -4,3 +4,4 @@
...
@@ -4,3 +4,4 @@
obj-$(CONFIG_SENSORS_ADM1021)
+=
adm1021.o
obj-$(CONFIG_SENSORS_ADM1021)
+=
adm1021.o
obj-$(CONFIG_SENSORS_LM75)
+=
lm75.o
obj-$(CONFIG_SENSORS_LM75)
+=
lm75.o
obj-$(CONFIG_SENSORS_VIA686A)
+=
via686a.o
drivers/i2c/chips/via686a.c
0 → 100644
View file @
d5f26790
/*
via686a.c - Part of lm_sensors, Linux kernel modules
for hardware monitoring
Copyright (c) 1998 - 2002 Frodo Looijaard <frodol@dds.nl>,
Kyösti Mälkki <kmalkki@cc.hut.fi>,
Mark Studebaker <mdsxyz123@yahoo.com>,
and Bob Dougherty <bobd@stanford.edu>
(Some conversion-factor data were contributed by Jonathan Teh Soon Yew
<j.teh@iname.com> and Alex van Kaam <darkside@chello.nl>.)
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
Supports the Via VT82C686A, VT82C686B south bridges.
Reports all as a 686A.
See doc/chips/via686a for details.
Warning - only supports a single device.
*/
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/i2c.h>
#include <linux/i2c-proc.h>
#include <linux/init.h>
#include <asm/io.h>
/* If force_addr is set to anything different from 0, we forcibly enable
the device at the given address. */
static
int
force_addr
=
0
;
MODULE_PARM
(
force_addr
,
"i"
);
MODULE_PARM_DESC
(
force_addr
,
"Initialize the base address of the sensors"
);
/* Addresses to scan.
Note that we can't determine the ISA address until we have initialized
our module */
static
unsigned
short
normal_i2c
[]
=
{
SENSORS_I2C_END
};
static
unsigned
short
normal_i2c_range
[]
=
{
SENSORS_I2C_END
};
static
unsigned
int
normal_isa
[]
=
{
0x0000
,
SENSORS_ISA_END
};
static
unsigned
int
normal_isa_range
[]
=
{
SENSORS_ISA_END
};
/* Insmod parameters */
SENSORS_INSMOD_1
(
via686a
);
/*
The Via 686a southbridge has a LM78-like chip integrated on the same IC.
This driver is a customized copy of lm78.c
*/
/* Many VIA686A constants specified below */
/* Length of ISA address segment */
#define VIA686A_EXTENT 0x80
#define VIA686A_BASE_REG 0x70
#define VIA686A_ENABLE_REG 0x74
/* The VIA686A registers */
/* ins numbered 0-4 */
#define VIA686A_REG_IN_MAX(nr) (0x2b + ((nr) * 2))
#define VIA686A_REG_IN_MIN(nr) (0x2c + ((nr) * 2))
#define VIA686A_REG_IN(nr) (0x22 + (nr))
/* fans numbered 1-2 */
#define VIA686A_REG_FAN_MIN(nr) (0x3a + (nr))
#define VIA686A_REG_FAN(nr) (0x28 + (nr))
/* the following values are as speced by VIA: */
static
const
u8
regtemp
[]
=
{
0x20
,
0x21
,
0x1f
};
static
const
u8
regover
[]
=
{
0x39
,
0x3d
,
0x1d
};
static
const
u8
reghyst
[]
=
{
0x3a
,
0x3e
,
0x1e
};
/* temps numbered 1-3 */
#define VIA686A_REG_TEMP(nr) (regtemp[(nr) - 1])
#define VIA686A_REG_TEMP_OVER(nr) (regover[(nr) - 1])
#define VIA686A_REG_TEMP_HYST(nr) (reghyst[(nr) - 1])
#define VIA686A_REG_TEMP_LOW1 0x4b // bits 7-6
#define VIA686A_REG_TEMP_LOW23 0x49 // 2 = bits 5-4, 3 = bits 7-6
#define VIA686A_REG_ALARM1 0x41
#define VIA686A_REG_ALARM2 0x42
#define VIA686A_REG_FANDIV 0x47
#define VIA686A_REG_CONFIG 0x40
/* The following register sets temp interrupt mode (bits 1-0 for temp1,
3-2 for temp2, 5-4 for temp3). Modes are:
00 interrupt stays as long as value is out-of-range
01 interrupt is cleared once register is read (default)
10 comparator mode- like 00, but ignores hysteresis
11 same as 00 */
#define VIA686A_REG_TEMP_MODE 0x4b
/* We'll just assume that you want to set all 3 simultaneously: */
#define VIA686A_TEMP_MODE_MASK 0x3F
#define VIA686A_TEMP_MODE_CONTINUOUS (0x00)
/* Conversions. Rounding and limit checking is only done on the TO_REG
variants.
********* VOLTAGE CONVERSIONS (Bob Dougherty) ********
From HWMon.cpp (Copyright 1998-2000 Jonathan Teh Soon Yew):
voltagefactor[0]=1.25/2628; (2628/1.25=2102.4) // Vccp
voltagefactor[1]=1.25/2628; (2628/1.25=2102.4) // +2.5V
voltagefactor[2]=1.67/2628; (2628/1.67=1573.7) // +3.3V
voltagefactor[3]=2.6/2628; (2628/2.60=1010.8) // +5V
voltagefactor[4]=6.3/2628; (2628/6.30=417.14) // +12V
in[i]=(data[i+2]*25.0+133)*voltagefactor[i];
That is:
volts = (25*regVal+133)*factor
regVal = (volts/factor-133)/25
(These conversions were contributed by Jonathan Teh Soon Yew
<j.teh@iname.com>)
These get us close, but they don't completely agree with what my BIOS
says- they are all a bit low. But, it all we have to go on... */
static
inline
u8
IN_TO_REG
(
long
val
,
int
inNum
)
{
/* to avoid floating point, we multiply everything by 100.
val is guaranteed to be positive, so we can achieve the effect of
rounding by (...*10+5)/10. Note that the *10 is hidden in the
/250 (which should really be /2500).
At the end, we need to /100 because we *100 everything and we need
to /10 because of the rounding thing, so we /1000. */
if
(
inNum
<=
1
)
return
(
u8
)
SENSORS_LIMIT
(((
val
*
210240
-
13300
)
/
250
+
5
)
/
1000
,
0
,
255
);
else
if
(
inNum
==
2
)
return
(
u8
)
SENSORS_LIMIT
(((
val
*
157370
-
13300
)
/
250
+
5
)
/
1000
,
0
,
255
);
else
if
(
inNum
==
3
)
return
(
u8
)
SENSORS_LIMIT
(((
val
*
101080
-
13300
)
/
250
+
5
)
/
1000
,
0
,
255
);
else
return
(
u8
)
SENSORS_LIMIT
(((
val
*
41714
-
13300
)
/
250
+
5
)
/
1000
,
0
,
255
);
}
static
inline
long
IN_FROM_REG
(
u8
val
,
int
inNum
)
{
/* to avoid floating point, we multiply everything by 100.
val is guaranteed to be positive, so we can achieve the effect of
rounding by adding 0.5. Or, to avoid fp math, we do (...*10+5)/10.
We need to scale with *100 anyway, so no need to /100 at the end. */
if
(
inNum
<=
1
)
return
(
long
)
(((
250000
*
val
+
13300
)
/
210240
*
10
+
5
)
/
10
);
else
if
(
inNum
==
2
)
return
(
long
)
(((
250000
*
val
+
13300
)
/
157370
*
10
+
5
)
/
10
);
else
if
(
inNum
==
3
)
return
(
long
)
(((
250000
*
val
+
13300
)
/
101080
*
10
+
5
)
/
10
);
else
return
(
long
)
(((
250000
*
val
+
13300
)
/
41714
*
10
+
5
)
/
10
);
}
/********* FAN RPM CONVERSIONS ********/
/* Higher register values = slower fans (the fan's strobe gates a counter).
But this chip saturates back at 0, not at 255 like all the other chips.
So, 0 means 0 RPM */
static
inline
u8
FAN_TO_REG
(
long
rpm
,
int
div
)
{
if
(
rpm
==
0
)
return
0
;
rpm
=
SENSORS_LIMIT
(
rpm
,
1
,
1000000
);
return
SENSORS_LIMIT
((
1350000
+
rpm
*
div
/
2
)
/
(
rpm
*
div
),
1
,
255
);
}
#define FAN_FROM_REG(val,div) ((val)==0?0:(val)==255?0:1350000/((val)*(div)))
/******** TEMP CONVERSIONS (Bob Dougherty) *********/
/* linear fits from HWMon.cpp (Copyright 1998-2000 Jonathan Teh Soon Yew)
if(temp<169)
return double(temp)*0.427-32.08;
else if(temp>=169 && temp<=202)
return double(temp)*0.582-58.16;
else
return double(temp)*0.924-127.33;
A fifth-order polynomial fits the unofficial data (provided by Alex van
Kaam <darkside@chello.nl>) a bit better. It also give more reasonable
numbers on my machine (ie. they agree with what my BIOS tells me).
Here's the fifth-order fit to the 8-bit data:
temp = 1.625093e-10*val^5 - 1.001632e-07*val^4 + 2.457653e-05*val^3 -
2.967619e-03*val^2 + 2.175144e-01*val - 7.090067e+0.
(2000-10-25- RFD: thanks to Uwe Andersen <uandersen@mayah.com> for
finding my typos in this formula!)
Alas, none of the elegant function-fit solutions will work because we
aren't allowed to use floating point in the kernel and doing it with
integers doesn't rpovide enough precision. So we'll do boring old
look-up table stuff. The unofficial data (see below) have effectively
7-bit resolution (they are rounded to the nearest degree). I'm assuming
that the transfer function of the device is monotonic and smooth, so a
smooth function fit to the data will allow us to get better precision.
I used the 5th-order poly fit described above and solved for
VIA register values 0-255. I *10 before rounding, so we get tenth-degree
precision. (I could have done all 1024 values for our 10-bit readings,
but the function is very linear in the useful range (0-80 deg C), so
we'll just use linear interpolation for 10-bit readings.) So, tempLUT
is the temp at via register values 0-255: */
static
const
long
tempLUT
[]
=
{
-
709
,
-
688
,
-
667
,
-
646
,
-
627
,
-
607
,
-
589
,
-
570
,
-
553
,
-
536
,
-
519
,
-
503
,
-
487
,
-
471
,
-
456
,
-
442
,
-
428
,
-
414
,
-
400
,
-
387
,
-
375
,
-
362
,
-
350
,
-
339
,
-
327
,
-
316
,
-
305
,
-
295
,
-
285
,
-
275
,
-
265
,
-
255
,
-
246
,
-
237
,
-
229
,
-
220
,
-
212
,
-
204
,
-
196
,
-
188
,
-
180
,
-
173
,
-
166
,
-
159
,
-
152
,
-
145
,
-
139
,
-
132
,
-
126
,
-
120
,
-
114
,
-
108
,
-
102
,
-
96
,
-
91
,
-
85
,
-
80
,
-
74
,
-
69
,
-
64
,
-
59
,
-
54
,
-
49
,
-
44
,
-
39
,
-
34
,
-
29
,
-
25
,
-
20
,
-
15
,
-
11
,
-
6
,
-
2
,
3
,
7
,
12
,
16
,
20
,
25
,
29
,
33
,
37
,
42
,
46
,
50
,
54
,
59
,
63
,
67
,
71
,
75
,
79
,
84
,
88
,
92
,
96
,
100
,
104
,
109
,
113
,
117
,
121
,
125
,
130
,
134
,
138
,
142
,
146
,
151
,
155
,
159
,
163
,
168
,
172
,
176
,
181
,
185
,
189
,
193
,
198
,
202
,
206
,
211
,
215
,
219
,
224
,
228
,
232
,
237
,
241
,
245
,
250
,
254
,
259
,
263
,
267
,
272
,
276
,
281
,
285
,
290
,
294
,
299
,
303
,
307
,
312
,
316
,
321
,
325
,
330
,
334
,
339
,
344
,
348
,
353
,
357
,
362
,
366
,
371
,
376
,
380
,
385
,
390
,
395
,
399
,
404
,
409
,
414
,
419
,
423
,
428
,
433
,
438
,
443
,
449
,
454
,
459
,
464
,
469
,
475
,
480
,
486
,
491
,
497
,
502
,
508
,
514
,
520
,
526
,
532
,
538
,
544
,
551
,
557
,
564
,
571
,
578
,
584
,
592
,
599
,
606
,
614
,
621
,
629
,
637
,
645
,
654
,
662
,
671
,
680
,
689
,
698
,
708
,
718
,
728
,
738
,
749
,
759
,
770
,
782
,
793
,
805
,
818
,
830
,
843
,
856
,
870
,
883
,
898
,
912
,
927
,
943
,
958
,
975
,
991
,
1008
,
1026
,
1044
,
1062
,
1081
,
1101
,
1121
,
1141
,
1162
,
1184
,
1206
,
1229
,
1252
,
1276
,
1301
,
1326
,
1352
,
1378
,
1406
,
1434
,
1462
};
/* the original LUT values from Alex van Kaam <darkside@chello.nl>
(for via register values 12-240):
{-50,-49,-47,-45,-43,-41,-39,-38,-37,-35,-34,-33,-32,-31,
-30,-29,-28,-27,-26,-25,-24,-24,-23,-22,-21,-20,-20,-19,-18,-17,-17,-16,-15,
-15,-14,-14,-13,-12,-12,-11,-11,-10,-9,-9,-8,-8,-7,-7,-6,-6,-5,-5,-4,-4,-3,
-3,-2,-2,-1,-1,0,0,1,1,1,3,3,3,4,4,4,5,5,5,6,6,7,7,8,8,9,9,9,10,10,11,11,12,
12,12,13,13,13,14,14,15,15,16,16,16,17,17,18,18,19,19,20,20,21,21,21,22,22,
22,23,23,24,24,25,25,26,26,26,27,27,27,28,28,29,29,30,30,30,31,31,32,32,33,
33,34,34,35,35,35,36,36,37,37,38,38,39,39,40,40,41,41,42,42,43,43,44,44,45,
45,46,46,47,48,48,49,49,50,51,51,52,52,53,53,54,55,55,56,57,57,58,59,59,60,
61,62,62,63,64,65,66,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,83,84,
85,86,88,89,91,92,94,96,97,99,101,103,105,107,109,110};
Here's the reverse LUT. I got it by doing a 6-th order poly fit (needed
an extra term for a good fit to these inverse data!) and then
solving for each temp value from -50 to 110 (the useable range for
this chip). Here's the fit:
viaRegVal = -1.160370e-10*val^6 +3.193693e-08*val^5 - 1.464447e-06*val^4
- 2.525453e-04*val^3 + 1.424593e-02*val^2 + 2.148941e+00*val +7.275808e+01)
Note that n=161: */
static
const
u8
viaLUT
[]
=
{
12
,
12
,
13
,
14
,
14
,
15
,
16
,
16
,
17
,
18
,
18
,
19
,
20
,
20
,
21
,
22
,
23
,
23
,
24
,
25
,
26
,
27
,
28
,
29
,
30
,
31
,
32
,
33
,
35
,
36
,
37
,
39
,
40
,
41
,
43
,
45
,
46
,
48
,
49
,
51
,
53
,
55
,
57
,
59
,
60
,
62
,
64
,
66
,
69
,
71
,
73
,
75
,
77
,
79
,
82
,
84
,
86
,
88
,
91
,
93
,
95
,
98
,
100
,
103
,
105
,
107
,
110
,
112
,
115
,
117
,
119
,
122
,
124
,
126
,
129
,
131
,
134
,
136
,
138
,
140
,
143
,
145
,
147
,
150
,
152
,
154
,
156
,
158
,
160
,
162
,
164
,
166
,
168
,
170
,
172
,
174
,
176
,
178
,
180
,
182
,
183
,
185
,
187
,
188
,
190
,
192
,
193
,
195
,
196
,
198
,
199
,
200
,
202
,
203
,
205
,
206
,
207
,
208
,
209
,
210
,
211
,
212
,
213
,
214
,
215
,
216
,
217
,
218
,
219
,
220
,
221
,
222
,
222
,
223
,
224
,
225
,
226
,
226
,
227
,
228
,
228
,
229
,
230
,
230
,
231
,
232
,
232
,
233
,
233
,
234
,
235
,
235
,
236
,
236
,
237
,
237
,
238
,
238
,
239
,
239
,
240
};
/* Converting temps to (8-bit) hyst and over registers
No interpolation here. Just check the limits and go.
The +5 effectively rounds off properly and the +50 is because
the temps start at -50 */
static
inline
u8
TEMP_TO_REG
(
long
val
)
{
return
(
u8
)
SENSORS_LIMIT
(
viaLUT
[((
val
<=
-
500
)
?
0
:
(
val
>=
1100
)
?
160
:
((
val
+
5
)
/
10
+
50
))],
0
,
255
);
}
/* for 8-bit temperature hyst and over registers
The temp values are already *10, so we don't need to do that.
But we _will_ round these off to the nearest degree with (...*10+5)/10 */
#define TEMP_FROM_REG(val) ((tempLUT[(val)]*10+5)/10)
/* for 10-bit temperature readings
You might _think_ this is too long to inline, but's it's really only
called once... */
static
inline
long
TEMP_FROM_REG10
(
u16
val
)
{
/* the temp values are already *10, so we don't need to do that. */
long
temp
;
u16
eightBits
=
val
>>
2
;
u16
twoBits
=
val
&
3
;
/* handle the extremes first (they won't interpolate well! ;-) */
if
(
val
==
0
)
return
(
long
)
tempLUT
[
0
];
if
(
val
==
1023
)
return
(
long
)
tempLUT
[
255
];
if
(
twoBits
==
0
)
return
(
long
)
tempLUT
[
eightBits
];
else
{
/* do some interpolation by multipying the lower and upper
bounds by 25, 50 or 75, then /100. */
temp
=
((
25
*
(
4
-
twoBits
))
*
tempLUT
[
eightBits
]
+
(
25
*
twoBits
)
*
tempLUT
[
eightBits
+
1
]);
/* increase the magnitude by 50 to achieve rounding. */
if
(
temp
>
0
)
temp
+=
50
;
else
temp
-=
50
;
return
(
temp
/
100
);
}
}
#define ALARMS_FROM_REG(val) (val)
#define DIV_FROM_REG(val) (1 << (val))
#define DIV_TO_REG(val) ((val)==8?3:(val)==4?2:(val)==1?0:1)
/* Initial limits */
#define VIA686A_INIT_IN_0 200
#define VIA686A_INIT_IN_1 250
#define VIA686A_INIT_IN_2 330
#define VIA686A_INIT_IN_3 500
#define VIA686A_INIT_IN_4 1200
#define VIA686A_INIT_IN_PERCENTAGE 10
#define VIA686A_INIT_IN_MIN_0 (VIA686A_INIT_IN_0 - VIA686A_INIT_IN_0 \
* VIA686A_INIT_IN_PERCENTAGE / 100)
#define VIA686A_INIT_IN_MAX_0 (VIA686A_INIT_IN_0 + VIA686A_INIT_IN_0 \
* VIA686A_INIT_IN_PERCENTAGE / 100)
#define VIA686A_INIT_IN_MIN_1 (VIA686A_INIT_IN_1 - VIA686A_INIT_IN_1 \
* VIA686A_INIT_IN_PERCENTAGE / 100)
#define VIA686A_INIT_IN_MAX_1 (VIA686A_INIT_IN_1 + VIA686A_INIT_IN_1 \
* VIA686A_INIT_IN_PERCENTAGE / 100)
#define VIA686A_INIT_IN_MIN_2 (VIA686A_INIT_IN_2 - VIA686A_INIT_IN_2 \
* VIA686A_INIT_IN_PERCENTAGE / 100)
#define VIA686A_INIT_IN_MAX_2 (VIA686A_INIT_IN_2 + VIA686A_INIT_IN_2 \
* VIA686A_INIT_IN_PERCENTAGE / 100)
#define VIA686A_INIT_IN_MIN_3 (VIA686A_INIT_IN_3 - VIA686A_INIT_IN_3 \
* VIA686A_INIT_IN_PERCENTAGE / 100)
#define VIA686A_INIT_IN_MAX_3 (VIA686A_INIT_IN_3 + VIA686A_INIT_IN_3 \
* VIA686A_INIT_IN_PERCENTAGE / 100)
#define VIA686A_INIT_IN_MIN_4 (VIA686A_INIT_IN_4 - VIA686A_INIT_IN_4 \
* VIA686A_INIT_IN_PERCENTAGE / 100)
#define VIA686A_INIT_IN_MAX_4 (VIA686A_INIT_IN_4 + VIA686A_INIT_IN_4 \
* VIA686A_INIT_IN_PERCENTAGE / 100)
#define VIA686A_INIT_FAN_MIN 3000
#define VIA686A_INIT_TEMP_OVER 600
#define VIA686A_INIT_TEMP_HYST 500
/* For the VIA686A, we need to keep some data in memory. That
data is pointed to by via686a_list[NR]->data. The structure itself is
dynamically allocated, at the same time when a new via686a client is
allocated. */
struct
via686a_data
{
int
sysctl_id
;
struct
semaphore
update_lock
;
char
valid
;
/* !=0 if following fields are valid */
unsigned
long
last_updated
;
/* In jiffies */
u8
in
[
5
];
/* Register value */
u8
in_max
[
5
];
/* Register value */
u8
in_min
[
5
];
/* Register value */
u8
fan
[
2
];
/* Register value */
u8
fan_min
[
2
];
/* Register value */
u16
temp
[
3
];
/* Register value 10 bit */
u8
temp_over
[
3
];
/* Register value */
u8
temp_hyst
[
3
];
/* Register value */
u8
fan_div
[
2
];
/* Register encoding, shifted right */
u16
alarms
;
/* Register encoding, combined */
};
static
struct
pci_dev
*
s_bridge
;
/* pointer to the (only) via686a */
static
int
via686a_attach_adapter
(
struct
i2c_adapter
*
adapter
);
static
int
via686a_detect
(
struct
i2c_adapter
*
adapter
,
int
address
,
unsigned
short
flags
,
int
kind
);
static
int
via686a_detach_client
(
struct
i2c_client
*
client
);
static
int
via686a_read_value
(
struct
i2c_client
*
client
,
u8
register
);
static
void
via686a_write_value
(
struct
i2c_client
*
client
,
u8
register
,
u8
value
);
static
void
via686a_update_client
(
struct
i2c_client
*
client
);
static
void
via686a_init_client
(
struct
i2c_client
*
client
);
static
void
via686a_in
(
struct
i2c_client
*
client
,
int
operation
,
int
ctl_name
,
int
*
nrels_mag
,
long
*
results
);
static
void
via686a_fan
(
struct
i2c_client
*
client
,
int
operation
,
int
ctl_name
,
int
*
nrels_mag
,
long
*
results
);
static
void
via686a_temp
(
struct
i2c_client
*
client
,
int
operation
,
int
ctl_name
,
int
*
nrels_mag
,
long
*
results
);
static
void
via686a_alarms
(
struct
i2c_client
*
client
,
int
operation
,
int
ctl_name
,
int
*
nrels_mag
,
long
*
results
);
static
void
via686a_fan_div
(
struct
i2c_client
*
client
,
int
operation
,
int
ctl_name
,
int
*
nrels_mag
,
long
*
results
);
static
int
via686a_id
=
0
;
/* The driver. I choose to use type i2c_driver, as at is identical to both
smbus_driver and isa_driver, and clients could be of either kind */
static
struct
i2c_driver
via686a_driver
=
{
.
owner
=
THIS_MODULE
,
.
name
=
"VIA686A"
,
.
id
=
I2C_DRIVERID_VIA686A
,
.
flags
=
I2C_DF_NOTIFY
,
.
attach_adapter
=
via686a_attach_adapter
,
.
detach_client
=
via686a_detach_client
,
};
/* The /proc/sys entries */
/* -- SENSORS SYSCTL START -- */
#define VIA686A_SYSCTL_IN0 1000
#define VIA686A_SYSCTL_IN1 1001
#define VIA686A_SYSCTL_IN2 1002
#define VIA686A_SYSCTL_IN3 1003
#define VIA686A_SYSCTL_IN4 1004
#define VIA686A_SYSCTL_FAN1 1101
#define VIA686A_SYSCTL_FAN2 1102
#define VIA686A_SYSCTL_TEMP 1200
#define VIA686A_SYSCTL_TEMP2 1201
#define VIA686A_SYSCTL_TEMP3 1202
#define VIA686A_SYSCTL_FAN_DIV 2000
#define VIA686A_SYSCTL_ALARMS 2001
#define VIA686A_ALARM_IN0 0x01
#define VIA686A_ALARM_IN1 0x02
#define VIA686A_ALARM_IN2 0x04
#define VIA686A_ALARM_IN3 0x08
#define VIA686A_ALARM_TEMP 0x10
#define VIA686A_ALARM_FAN1 0x40
#define VIA686A_ALARM_FAN2 0x80
#define VIA686A_ALARM_IN4 0x100
#define VIA686A_ALARM_TEMP2 0x800
#define VIA686A_ALARM_CHAS 0x1000
#define VIA686A_ALARM_TEMP3 0x8000
/* -- SENSORS SYSCTL END -- */
/* These files are created for each detected VIA686A. This is just a template;
though at first sight, you might think we could use a statically
allocated list, we need some way to get back to the parent - which
is done through one of the 'extra' fields which are initialized
when a new copy is allocated. */
static
ctl_table
via686a_dir_table_template
[]
=
{
{
VIA686A_SYSCTL_IN0
,
"in0"
,
NULL
,
0
,
0644
,
NULL
,
&
i2c_proc_real
,
&
i2c_sysctl_real
,
NULL
,
&
via686a_in
},
{
VIA686A_SYSCTL_IN1
,
"in1"
,
NULL
,
0
,
0644
,
NULL
,
&
i2c_proc_real
,
&
i2c_sysctl_real
,
NULL
,
&
via686a_in
},
{
VIA686A_SYSCTL_IN2
,
"in2"
,
NULL
,
0
,
0644
,
NULL
,
&
i2c_proc_real
,
&
i2c_sysctl_real
,
NULL
,
&
via686a_in
},
{
VIA686A_SYSCTL_IN3
,
"in3"
,
NULL
,
0
,
0644
,
NULL
,
&
i2c_proc_real
,
&
i2c_sysctl_real
,
NULL
,
&
via686a_in
},
{
VIA686A_SYSCTL_IN4
,
"in4"
,
NULL
,
0
,
0644
,
NULL
,
&
i2c_proc_real
,
&
i2c_sysctl_real
,
NULL
,
&
via686a_in
},
{
VIA686A_SYSCTL_FAN1
,
"fan1"
,
NULL
,
0
,
0644
,
NULL
,
&
i2c_proc_real
,
&
i2c_sysctl_real
,
NULL
,
&
via686a_fan
},
{
VIA686A_SYSCTL_FAN2
,
"fan2"
,
NULL
,
0
,
0644
,
NULL
,
&
i2c_proc_real
,
&
i2c_sysctl_real
,
NULL
,
&
via686a_fan
},
{
VIA686A_SYSCTL_TEMP
,
"temp1"
,
NULL
,
0
,
0644
,
NULL
,
&
i2c_proc_real
,
&
i2c_sysctl_real
,
NULL
,
&
via686a_temp
},
{
VIA686A_SYSCTL_TEMP2
,
"temp2"
,
NULL
,
0
,
0644
,
NULL
,
&
i2c_proc_real
,
&
i2c_sysctl_real
,
NULL
,
&
via686a_temp
},
{
VIA686A_SYSCTL_TEMP3
,
"temp3"
,
NULL
,
0
,
0644
,
NULL
,
&
i2c_proc_real
,
&
i2c_sysctl_real
,
NULL
,
&
via686a_temp
},
{
VIA686A_SYSCTL_FAN_DIV
,
"fan_div"
,
NULL
,
0
,
0644
,
NULL
,
&
i2c_proc_real
,
&
i2c_sysctl_real
,
NULL
,
&
via686a_fan_div
},
{
VIA686A_SYSCTL_ALARMS
,
"alarms"
,
NULL
,
0
,
0444
,
NULL
,
&
i2c_proc_real
,
&
i2c_sysctl_real
,
NULL
,
&
via686a_alarms
},
{
0
}
};
static
inline
int
via686a_read_value
(
struct
i2c_client
*
client
,
u8
reg
)
{
return
(
inb_p
(
client
->
addr
+
reg
));
}
static
inline
void
via686a_write_value
(
struct
i2c_client
*
client
,
u8
reg
,
u8
value
)
{
outb_p
(
value
,
client
->
addr
+
reg
);
}
/* This is called when the module is loaded */
static
int
via686a_attach_adapter
(
struct
i2c_adapter
*
adapter
)
{
return
i2c_detect
(
adapter
,
&
addr_data
,
via686a_detect
);
}
int
via686a_detect
(
struct
i2c_adapter
*
adapter
,
int
address
,
unsigned
short
flags
,
int
kind
)
{
int
i
;
struct
i2c_client
*
new_client
;
struct
via686a_data
*
data
;
int
err
=
0
;
const
char
*
type_name
=
"via686a"
;
const
char
client_name
[]
=
"via686a chip"
;
u16
val
;
/* Make sure we are probing the ISA bus!! */
if
(
!
i2c_is_isa_adapter
(
adapter
))
{
dev_err
(
&
adapter
->
dev
,
"via686a_detect called for an I2C bus adapter?!?
\n
"
);
return
0
;
}
/* 8231 requires multiple of 256, we enforce that on 686 as well */
if
(
force_addr
)
address
=
force_addr
&
0xFF00
;
if
(
force_addr
)
{
dev_warn
(
&
adapter
->
dev
,
"forcing ISA address 0x%04X
\n
"
,
address
);
if
(
PCIBIOS_SUCCESSFUL
!=
pci_write_config_word
(
s_bridge
,
VIA686A_BASE_REG
,
address
))
return
-
ENODEV
;
}
if
(
PCIBIOS_SUCCESSFUL
!=
pci_read_config_word
(
s_bridge
,
VIA686A_ENABLE_REG
,
&
val
))
return
-
ENODEV
;
if
(
!
(
val
&
0x0001
))
{
dev_warn
(
&
adapter
->
dev
,
"enabling sensors
\n
"
);
if
(
PCIBIOS_SUCCESSFUL
!=
pci_write_config_word
(
s_bridge
,
VIA686A_ENABLE_REG
,
val
|
0x0001
))
return
-
ENODEV
;
}
/* Reserve the ISA region */
if
(
!
request_region
(
address
,
VIA686A_EXTENT
,
"via686a-sensor"
))
{
dev_err
(
&
adapter
->
dev
,
"region 0x%x already in use!
\n
"
,
address
);
return
-
ENODEV
;
}
if
(
!
(
new_client
=
kmalloc
(
sizeof
(
struct
i2c_client
)
+
sizeof
(
struct
via686a_data
),
GFP_KERNEL
)))
{
err
=
-
ENOMEM
;
goto
ERROR0
;
}
memset
(
new_client
,
0x00
,
sizeof
(
struct
i2c_client
)
+
sizeof
(
struct
via686a_data
));
data
=
(
struct
via686a_data
*
)
(
new_client
+
1
);
i2c_set_clientdata
(
new_client
,
data
);
new_client
->
addr
=
address
;
new_client
->
adapter
=
adapter
;
new_client
->
driver
=
&
via686a_driver
;
new_client
->
flags
=
0
;
/* Fill in the remaining client fields and put into the global list */
snprintf
(
new_client
->
dev
.
name
,
DEVICE_NAME_SIZE
,
client_name
);
new_client
->
id
=
via686a_id
++
;
data
->
valid
=
0
;
init_MUTEX
(
&
data
->
update_lock
);
/* Tell the I2C layer a new client has arrived */
if
((
err
=
i2c_attach_client
(
new_client
)))
goto
ERROR3
;
/* Register a new directory entry with module sensors */
if
((
i
=
i2c_register_entry
((
struct
i2c_client
*
)
new_client
,
type_name
,
via686a_dir_table_template
))
<
0
)
{
err
=
i
;
goto
ERROR4
;
}
data
->
sysctl_id
=
i
;
/* Initialize the VIA686A chip */
via686a_init_client
(
new_client
);
return
0
;
ERROR4:
i2c_detach_client
(
new_client
);
ERROR3:
release_region
(
address
,
VIA686A_EXTENT
);
kfree
(
new_client
);
ERROR0:
return
err
;
}
static
int
via686a_detach_client
(
struct
i2c_client
*
client
)
{
int
err
;
struct
via686a_data
*
data
=
i2c_get_clientdata
(
client
);
i2c_deregister_entry
(
data
->
sysctl_id
);
if
((
err
=
i2c_detach_client
(
client
)))
{
dev_err
(
&
client
->
dev
,
"Client deregistration failed, client not detached.
\n
"
);
return
err
;
}
release_region
(
client
->
addr
,
VIA686A_EXTENT
);
kfree
(
client
);
return
0
;
}
/* Called when we have found a new VIA686A. Set limits, etc. */
static
void
via686a_init_client
(
struct
i2c_client
*
client
)
{
int
i
;
/* Reset the device */
via686a_write_value
(
client
,
VIA686A_REG_CONFIG
,
0x80
);
/* Have to wait for reset to complete or else the following
initializations won't work reliably. The delay was arrived at
empirically, the datasheet doesn't tell you.
Waiting for the reset bit to clear doesn't work, it
clears in about 2-4 udelays and that isn't nearly enough. */
udelay
(
50
);
via686a_write_value
(
client
,
VIA686A_REG_IN_MIN
(
0
),
IN_TO_REG
(
VIA686A_INIT_IN_MIN_0
,
0
));
via686a_write_value
(
client
,
VIA686A_REG_IN_MAX
(
0
),
IN_TO_REG
(
VIA686A_INIT_IN_MAX_0
,
0
));
via686a_write_value
(
client
,
VIA686A_REG_IN_MIN
(
1
),
IN_TO_REG
(
VIA686A_INIT_IN_MIN_1
,
1
));
via686a_write_value
(
client
,
VIA686A_REG_IN_MAX
(
1
),
IN_TO_REG
(
VIA686A_INIT_IN_MAX_1
,
1
));
via686a_write_value
(
client
,
VIA686A_REG_IN_MIN
(
2
),
IN_TO_REG
(
VIA686A_INIT_IN_MIN_2
,
2
));
via686a_write_value
(
client
,
VIA686A_REG_IN_MAX
(
2
),
IN_TO_REG
(
VIA686A_INIT_IN_MAX_2
,
2
));
via686a_write_value
(
client
,
VIA686A_REG_IN_MIN
(
3
),
IN_TO_REG
(
VIA686A_INIT_IN_MIN_3
,
3
));
via686a_write_value
(
client
,
VIA686A_REG_IN_MAX
(
3
),
IN_TO_REG
(
VIA686A_INIT_IN_MAX_3
,
3
));
via686a_write_value
(
client
,
VIA686A_REG_IN_MIN
(
4
),
IN_TO_REG
(
VIA686A_INIT_IN_MIN_4
,
4
));
via686a_write_value
(
client
,
VIA686A_REG_IN_MAX
(
4
),
IN_TO_REG
(
VIA686A_INIT_IN_MAX_4
,
4
));
via686a_write_value
(
client
,
VIA686A_REG_FAN_MIN
(
1
),
FAN_TO_REG
(
VIA686A_INIT_FAN_MIN
,
2
));
via686a_write_value
(
client
,
VIA686A_REG_FAN_MIN
(
2
),
FAN_TO_REG
(
VIA686A_INIT_FAN_MIN
,
2
));
for
(
i
=
1
;
i
<=
3
;
i
++
)
{
via686a_write_value
(
client
,
VIA686A_REG_TEMP_OVER
(
i
),
TEMP_TO_REG
(
VIA686A_INIT_TEMP_OVER
));
via686a_write_value
(
client
,
VIA686A_REG_TEMP_HYST
(
i
),
TEMP_TO_REG
(
VIA686A_INIT_TEMP_HYST
));
}
/* Start monitoring */
via686a_write_value
(
client
,
VIA686A_REG_CONFIG
,
0x01
);
/* Cofigure temp interrupt mode for continuous-interrupt operation */
via686a_write_value
(
client
,
VIA686A_REG_TEMP_MODE
,
via686a_read_value
(
client
,
VIA686A_REG_TEMP_MODE
)
&
!
(
VIA686A_TEMP_MODE_MASK
|
VIA686A_TEMP_MODE_CONTINUOUS
));
}
static
void
via686a_update_client
(
struct
i2c_client
*
client
)
{
struct
via686a_data
*
data
=
i2c_get_clientdata
(
client
);
int
i
;
down
(
&
data
->
update_lock
);
if
((
jiffies
-
data
->
last_updated
>
HZ
+
HZ
/
2
)
||
(
jiffies
<
data
->
last_updated
)
||
!
data
->
valid
)
{
for
(
i
=
0
;
i
<=
4
;
i
++
)
{
data
->
in
[
i
]
=
via686a_read_value
(
client
,
VIA686A_REG_IN
(
i
));
data
->
in_min
[
i
]
=
via686a_read_value
(
client
,
VIA686A_REG_IN_MIN
(
i
));
data
->
in_max
[
i
]
=
via686a_read_value
(
client
,
VIA686A_REG_IN_MAX
(
i
));
}
for
(
i
=
1
;
i
<=
2
;
i
++
)
{
data
->
fan
[
i
-
1
]
=
via686a_read_value
(
client
,
VIA686A_REG_FAN
(
i
));
data
->
fan_min
[
i
-
1
]
=
via686a_read_value
(
client
,
VIA686A_REG_FAN_MIN
(
i
));
}
for
(
i
=
1
;
i
<=
3
;
i
++
)
{
data
->
temp
[
i
-
1
]
=
via686a_read_value
(
client
,
VIA686A_REG_TEMP
(
i
))
<<
2
;
data
->
temp_over
[
i
-
1
]
=
via686a_read_value
(
client
,
VIA686A_REG_TEMP_OVER
(
i
));
data
->
temp_hyst
[
i
-
1
]
=
via686a_read_value
(
client
,
VIA686A_REG_TEMP_HYST
(
i
));
}
/* add in lower 2 bits
temp1 uses bits 7-6 of VIA686A_REG_TEMP_LOW1
temp2 uses bits 5-4 of VIA686A_REG_TEMP_LOW23
temp3 uses bits 7-6 of VIA686A_REG_TEMP_LOW23
*/
data
->
temp
[
0
]
|=
(
via686a_read_value
(
client
,
VIA686A_REG_TEMP_LOW1
)
&
0xc0
)
>>
6
;
data
->
temp
[
1
]
|=
(
via686a_read_value
(
client
,
VIA686A_REG_TEMP_LOW23
)
&
0x30
)
>>
4
;
data
->
temp
[
2
]
|=
(
via686a_read_value
(
client
,
VIA686A_REG_TEMP_LOW23
)
&
0xc0
)
>>
6
;
i
=
via686a_read_value
(
client
,
VIA686A_REG_FANDIV
);
data
->
fan_div
[
0
]
=
(
i
>>
4
)
&
0x03
;
data
->
fan_div
[
1
]
=
i
>>
6
;
data
->
alarms
=
via686a_read_value
(
client
,
VIA686A_REG_ALARM1
)
|
(
via686a_read_value
(
client
,
VIA686A_REG_ALARM2
)
<<
8
);
data
->
last_updated
=
jiffies
;
data
->
valid
=
1
;
}
up
(
&
data
->
update_lock
);
}
/* The next few functions are the call-back functions of the /proc/sys and
sysctl files. Which function is used is defined in the ctl_table in
the extra1 field.
Each function must return the magnitude (power of 10 to divide the date
with) if it is called with operation==SENSORS_PROC_REAL_INFO. It must
put a maximum of *nrels elements in results reflecting the data of this
file, and set *nrels to the number it actually put in it, if operation==
SENSORS_PROC_REAL_READ. Finally, it must get upto *nrels elements from
results and write them to the chip, if operations==SENSORS_PROC_REAL_WRITE.
Note that on SENSORS_PROC_REAL_READ, I do not check whether results is
large enough (by checking the incoming value of *nrels). This is not very
good practice, but as long as you put less than about 5 values in results,
you can assume it is large enough. */
static
void
via686a_in
(
struct
i2c_client
*
client
,
int
operation
,
int
ctl_name
,
int
*
nrels_mag
,
long
*
results
)
{
struct
via686a_data
*
data
=
i2c_get_clientdata
(
client
);
int
nr
=
ctl_name
-
VIA686A_SYSCTL_IN0
;
if
(
operation
==
SENSORS_PROC_REAL_INFO
)
*
nrels_mag
=
2
;
else
if
(
operation
==
SENSORS_PROC_REAL_READ
)
{
via686a_update_client
(
client
);
results
[
0
]
=
IN_FROM_REG
(
data
->
in_min
[
nr
],
nr
);
results
[
1
]
=
IN_FROM_REG
(
data
->
in_max
[
nr
],
nr
);
results
[
2
]
=
IN_FROM_REG
(
data
->
in
[
nr
],
nr
);
*
nrels_mag
=
3
;
}
else
if
(
operation
==
SENSORS_PROC_REAL_WRITE
)
{
if
(
*
nrels_mag
>=
1
)
{
data
->
in_min
[
nr
]
=
IN_TO_REG
(
results
[
0
],
nr
);
via686a_write_value
(
client
,
VIA686A_REG_IN_MIN
(
nr
),
data
->
in_min
[
nr
]);
}
if
(
*
nrels_mag
>=
2
)
{
data
->
in_max
[
nr
]
=
IN_TO_REG
(
results
[
1
],
nr
);
via686a_write_value
(
client
,
VIA686A_REG_IN_MAX
(
nr
),
data
->
in_max
[
nr
]);
}
}
}
void
via686a_fan
(
struct
i2c_client
*
client
,
int
operation
,
int
ctl_name
,
int
*
nrels_mag
,
long
*
results
)
{
struct
via686a_data
*
data
=
i2c_get_clientdata
(
client
);
int
nr
=
ctl_name
-
VIA686A_SYSCTL_FAN1
+
1
;
if
(
operation
==
SENSORS_PROC_REAL_INFO
)
*
nrels_mag
=
0
;
else
if
(
operation
==
SENSORS_PROC_REAL_READ
)
{
via686a_update_client
(
client
);
results
[
0
]
=
FAN_FROM_REG
(
data
->
fan_min
[
nr
-
1
],
DIV_FROM_REG
(
data
->
fan_div
[
nr
-
1
]));
results
[
1
]
=
FAN_FROM_REG
(
data
->
fan
[
nr
-
1
],
DIV_FROM_REG
(
data
->
fan_div
[
nr
-
1
]));
*
nrels_mag
=
2
;
}
else
if
(
operation
==
SENSORS_PROC_REAL_WRITE
)
{
if
(
*
nrels_mag
>=
1
)
{
data
->
fan_min
[
nr
-
1
]
=
FAN_TO_REG
(
results
[
0
],
DIV_FROM_REG
(
data
->
fan_div
[
nr
-
1
]));
via686a_write_value
(
client
,
VIA686A_REG_FAN_MIN
(
nr
),
data
->
fan_min
[
nr
-
1
]);
}
}
}
void
via686a_temp
(
struct
i2c_client
*
client
,
int
operation
,
int
ctl_name
,
int
*
nrels_mag
,
long
*
results
)
{
struct
via686a_data
*
data
=
i2c_get_clientdata
(
client
);
int
nr
=
ctl_name
-
VIA686A_SYSCTL_TEMP
;
if
(
operation
==
SENSORS_PROC_REAL_INFO
)
*
nrels_mag
=
1
;
else
if
(
operation
==
SENSORS_PROC_REAL_READ
)
{
via686a_update_client
(
client
);
results
[
0
]
=
TEMP_FROM_REG
(
data
->
temp_over
[
nr
]);
results
[
1
]
=
TEMP_FROM_REG
(
data
->
temp_hyst
[
nr
]);
results
[
2
]
=
TEMP_FROM_REG10
(
data
->
temp
[
nr
]);
*
nrels_mag
=
3
;
}
else
if
(
operation
==
SENSORS_PROC_REAL_WRITE
)
{
if
(
*
nrels_mag
>=
1
)
{
data
->
temp_over
[
nr
]
=
TEMP_TO_REG
(
results
[
0
]);
via686a_write_value
(
client
,
VIA686A_REG_TEMP_OVER
(
nr
+
1
),
data
->
temp_over
[
nr
]);
}
if
(
*
nrels_mag
>=
2
)
{
data
->
temp_hyst
[
nr
]
=
TEMP_TO_REG
(
results
[
1
]);
via686a_write_value
(
client
,
VIA686A_REG_TEMP_HYST
(
nr
+
1
),
data
->
temp_hyst
[
nr
]);
}
}
}
void
via686a_alarms
(
struct
i2c_client
*
client
,
int
operation
,
int
ctl_name
,
int
*
nrels_mag
,
long
*
results
)
{
struct
via686a_data
*
data
=
i2c_get_clientdata
(
client
);
if
(
operation
==
SENSORS_PROC_REAL_INFO
)
*
nrels_mag
=
0
;
else
if
(
operation
==
SENSORS_PROC_REAL_READ
)
{
via686a_update_client
(
client
);
results
[
0
]
=
ALARMS_FROM_REG
(
data
->
alarms
);
*
nrels_mag
=
1
;
}
}
void
via686a_fan_div
(
struct
i2c_client
*
client
,
int
operation
,
int
ctl_name
,
int
*
nrels_mag
,
long
*
results
)
{
struct
via686a_data
*
data
=
i2c_get_clientdata
(
client
);
int
old
;
if
(
operation
==
SENSORS_PROC_REAL_INFO
)
*
nrels_mag
=
0
;
else
if
(
operation
==
SENSORS_PROC_REAL_READ
)
{
via686a_update_client
(
client
);
results
[
0
]
=
DIV_FROM_REG
(
data
->
fan_div
[
0
]);
results
[
1
]
=
DIV_FROM_REG
(
data
->
fan_div
[
1
]);
*
nrels_mag
=
2
;
}
else
if
(
operation
==
SENSORS_PROC_REAL_WRITE
)
{
old
=
via686a_read_value
(
client
,
VIA686A_REG_FANDIV
);
if
(
*
nrels_mag
>=
2
)
{
data
->
fan_div
[
1
]
=
DIV_TO_REG
(
results
[
1
]);
old
=
(
old
&
0x3f
)
|
(
data
->
fan_div
[
1
]
<<
6
);
}
if
(
*
nrels_mag
>=
1
)
{
data
->
fan_div
[
0
]
=
DIV_TO_REG
(
results
[
0
]);
old
=
(
old
&
0xcf
)
|
(
data
->
fan_div
[
0
]
<<
4
);
via686a_write_value
(
client
,
VIA686A_REG_FANDIV
,
old
);
}
}
}
static
struct
pci_device_id
via686a_pci_ids
[]
__devinitdata
=
{
{
.
vendor
=
PCI_VENDOR_ID_VIA
,
.
device
=
PCI_DEVICE_ID_VIA_82C686_4
,
.
subvendor
=
PCI_ANY_ID
,
.
subdevice
=
PCI_ANY_ID
,
.
class
=
0
,
.
class_mask
=
0
,
.
driver_data
=
0
,
},
{
0
,
}
};
static
int
__devinit
via686a_pci_probe
(
struct
pci_dev
*
dev
,
const
struct
pci_device_id
*
id
)
{
u16
val
;
int
addr
=
0
;
if
(
PCIBIOS_SUCCESSFUL
!=
pci_read_config_word
(
dev
,
VIA686A_BASE_REG
,
&
val
))
return
-
ENODEV
;
addr
=
val
&
~
(
VIA686A_EXTENT
-
1
);
if
(
addr
==
0
&&
force_addr
==
0
)
{
dev_err
(
&
dev
->
dev
,
"base address not set - upgrade BIOS or use force_addr=0xaddr
\n
"
);
return
-
ENODEV
;
}
if
(
force_addr
)
addr
=
force_addr
;
/* so detect will get called */
if
(
!
addr
)
{
dev_err
(
&
dev
->
dev
,
"No Via 686A sensors found.
\n
"
);
return
-
ENODEV
;
}
normal_isa
[
0
]
=
addr
;
s_bridge
=
dev
;
return
i2c_add_driver
(
&
via686a_driver
);
}
static
void
__devexit
via686a_pci_remove
(
struct
pci_dev
*
dev
)
{
i2c_del_driver
(
&
via686a_driver
);
}
static
struct
pci_driver
via686a_pci_driver
=
{
.
name
=
"via686a"
,
.
id_table
=
via686a_pci_ids
,
.
probe
=
via686a_pci_probe
,
.
remove
=
__devexit_p
(
via686a_pci_remove
),
};
static
int
__init
sm_via686a_init
(
void
)
{
return
pci_module_init
(
&
via686a_pci_driver
);
}
static
void
__exit
sm_via686a_exit
(
void
)
{
pci_unregister_driver
(
&
via686a_pci_driver
);
}
MODULE_AUTHOR
(
"Kyösti Mälkki <kmalkki@cc.hut.fi>, "
"Mark Studebaker <mdsxyz123@yahoo.com> "
"and Bob Dougherty <bobd@stanford.edu>"
);
MODULE_DESCRIPTION
(
"VIA 686A Sensor device"
);
MODULE_LICENSE
(
"GPL"
);
module_init
(
sm_via686a_init
);
module_exit
(
sm_via686a_exit
);
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment