Commit d9978ec5 authored by Linus Torvalds's avatar Linus Torvalds

Merge tag 'upstream-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jgarzik/libata-dev

Pull libata updates from Jeff Garzik:

1) apply, and then revert, the sysfs export of ATA host controller
   number.  Discussion was continuing after patch application, trying to
   figure out how to best mesh exported data with the installers,
   boot-time agents and other parties that want this info.

2) Merge Zero-Power Optical Device Driver (ZPODD) support, bringing the
   wonderfulness of sane power management to your CD/DVD device.

   Includes one SCSI-subsystem patch (with appropriate ACKs), adding
   runtime PM support to 'sr' driver.  That is the ZPODD interaction
   bits.

   Patchset went through some 13 revisions before it got here; kudos to
   Intel for persistence.

3) pata_samsung_cf: use devm_clk_get()

4) more ata_piix, ahci PCI IDs

5) Add SATA driver for R-Car SoC

6) Convert libata to use devm_ioremap_resource (Note: I think Greg sent
   this to you, also)

7) Set proper Sense Key (SK) in the SCSI simulator when ATA passthrough
   indicates check condition.  Google and specification hawks everywhere
   shall rejoice.

* tag 'upstream-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jgarzik/libata-dev: (22 commits)
  [libata] fix smatch warning for zpodd_wake_dev
  [libata] Set proper SK when CK_COND is set.
  [libata] Convert to devm_ioremap_resource()
  libata: add R-Car SATA driver
  ahci: Add Device IDs for Intel Wellsburg PCH
  ata_piix: Add Device IDs for Intel Wellsburg PCH
  [SCSI] remove can_power_off flag from scsi_device
  [libata] scsi: no poll when ODD is powered off
  [SCSI] sr: support runtime pm
  ahci: AHCI-mode SATA patch for Intel Avoton DeviceIDs
  ata_piix: IDE-mode SATA patch for Intel Avoton DeviceIDs
  [libata] PM code cleanup for ata port
  [libata] pm: differentiate system and runtime pm for ata port
  Revert "libata: export host controller number thru /sys"
  libata: do not suspend port if normal ODD is attached
  libata: expose pm qos flags for ata device
  libata: handle power transition of ODD
  libata: check zero power ready status for ZPODD
  libata: move acpi notification code to zpodd
  libata: identify and init ZPODD devices
  ...
parents a883b70d 53637e07
...@@ -58,6 +58,19 @@ config ATA_ACPI ...@@ -58,6 +58,19 @@ config ATA_ACPI
You can disable this at kernel boot time by using the You can disable this at kernel boot time by using the
option libata.noacpi=1 option libata.noacpi=1
config SATA_ZPODD
bool "SATA Zero Power ODD Support"
depends on ATA_ACPI
default n
help
This option adds support for SATA ZPODD. It requires both
ODD and the platform support, and if enabled, will automatically
power on/off the ODD when certain condition is satisfied. This
does not impact user's experience of the ODD, only power is saved
when ODD is not in use(i.e. no disc inside).
If unsure, say N.
config SATA_PMP config SATA_PMP
bool "SATA Port Multiplier support" bool "SATA Port Multiplier support"
default y default y
...@@ -247,6 +260,14 @@ config SATA_PROMISE ...@@ -247,6 +260,14 @@ config SATA_PROMISE
If unsure, say N. If unsure, say N.
config SATA_RCAR
tristate "Renesas R-Car SATA support"
depends on ARCH_SHMOBILE && ARCH_R8A7779
help
This option enables support for Renesas R-Car Serial ATA.
If unsure, say N.
config SATA_SIL config SATA_SIL
tristate "Silicon Image SATA support" tristate "Silicon Image SATA support"
depends on PCI depends on PCI
......
...@@ -23,6 +23,7 @@ obj-$(CONFIG_ATA_PIIX) += ata_piix.o ...@@ -23,6 +23,7 @@ obj-$(CONFIG_ATA_PIIX) += ata_piix.o
obj-$(CONFIG_SATA_MV) += sata_mv.o obj-$(CONFIG_SATA_MV) += sata_mv.o
obj-$(CONFIG_SATA_NV) += sata_nv.o obj-$(CONFIG_SATA_NV) += sata_nv.o
obj-$(CONFIG_SATA_PROMISE) += sata_promise.o obj-$(CONFIG_SATA_PROMISE) += sata_promise.o
obj-$(CONFIG_SATA_RCAR) += sata_rcar.o
obj-$(CONFIG_SATA_SIL) += sata_sil.o obj-$(CONFIG_SATA_SIL) += sata_sil.o
obj-$(CONFIG_SATA_SIS) += sata_sis.o obj-$(CONFIG_SATA_SIS) += sata_sis.o
obj-$(CONFIG_SATA_SVW) += sata_svw.o obj-$(CONFIG_SATA_SVW) += sata_svw.o
...@@ -107,3 +108,4 @@ libata-y := libata-core.o libata-scsi.o libata-eh.o libata-transport.o ...@@ -107,3 +108,4 @@ libata-y := libata-core.o libata-scsi.o libata-eh.o libata-transport.o
libata-$(CONFIG_ATA_SFF) += libata-sff.o libata-$(CONFIG_ATA_SFF) += libata-sff.o
libata-$(CONFIG_SATA_PMP) += libata-pmp.o libata-$(CONFIG_SATA_PMP) += libata-pmp.o
libata-$(CONFIG_ATA_ACPI) += libata-acpi.o libata-$(CONFIG_ATA_ACPI) += libata-acpi.o
libata-$(CONFIG_SATA_ZPODD) += libata-zpodd.o
...@@ -265,6 +265,30 @@ static const struct pci_device_id ahci_pci_tbl[] = { ...@@ -265,6 +265,30 @@ static const struct pci_device_id ahci_pci_tbl[] = {
{ PCI_VDEVICE(INTEL, 0x9c07), board_ahci }, /* Lynx Point-LP RAID */ { PCI_VDEVICE(INTEL, 0x9c07), board_ahci }, /* Lynx Point-LP RAID */
{ PCI_VDEVICE(INTEL, 0x9c0e), board_ahci }, /* Lynx Point-LP RAID */ { PCI_VDEVICE(INTEL, 0x9c0e), board_ahci }, /* Lynx Point-LP RAID */
{ PCI_VDEVICE(INTEL, 0x9c0f), board_ahci }, /* Lynx Point-LP RAID */ { PCI_VDEVICE(INTEL, 0x9c0f), board_ahci }, /* Lynx Point-LP RAID */
{ PCI_VDEVICE(INTEL, 0x1f22), board_ahci }, /* Avoton AHCI */
{ PCI_VDEVICE(INTEL, 0x1f23), board_ahci }, /* Avoton AHCI */
{ PCI_VDEVICE(INTEL, 0x1f24), board_ahci }, /* Avoton RAID */
{ PCI_VDEVICE(INTEL, 0x1f25), board_ahci }, /* Avoton RAID */
{ PCI_VDEVICE(INTEL, 0x1f26), board_ahci }, /* Avoton RAID */
{ PCI_VDEVICE(INTEL, 0x1f27), board_ahci }, /* Avoton RAID */
{ PCI_VDEVICE(INTEL, 0x1f2e), board_ahci }, /* Avoton RAID */
{ PCI_VDEVICE(INTEL, 0x1f2f), board_ahci }, /* Avoton RAID */
{ PCI_VDEVICE(INTEL, 0x1f32), board_ahci }, /* Avoton AHCI */
{ PCI_VDEVICE(INTEL, 0x1f33), board_ahci }, /* Avoton AHCI */
{ PCI_VDEVICE(INTEL, 0x1f34), board_ahci }, /* Avoton RAID */
{ PCI_VDEVICE(INTEL, 0x1f35), board_ahci }, /* Avoton RAID */
{ PCI_VDEVICE(INTEL, 0x1f36), board_ahci }, /* Avoton RAID */
{ PCI_VDEVICE(INTEL, 0x1f37), board_ahci }, /* Avoton RAID */
{ PCI_VDEVICE(INTEL, 0x1f3e), board_ahci }, /* Avoton RAID */
{ PCI_VDEVICE(INTEL, 0x1f3f), board_ahci }, /* Avoton RAID */
{ PCI_VDEVICE(INTEL, 0x8d02), board_ahci }, /* Wellsburg AHCI */
{ PCI_VDEVICE(INTEL, 0x8d04), board_ahci }, /* Wellsburg RAID */
{ PCI_VDEVICE(INTEL, 0x8d06), board_ahci }, /* Wellsburg RAID */
{ PCI_VDEVICE(INTEL, 0x8d0e), board_ahci }, /* Wellsburg RAID */
{ PCI_VDEVICE(INTEL, 0x8d62), board_ahci }, /* Wellsburg AHCI */
{ PCI_VDEVICE(INTEL, 0x8d64), board_ahci }, /* Wellsburg RAID */
{ PCI_VDEVICE(INTEL, 0x8d66), board_ahci }, /* Wellsburg RAID */
{ PCI_VDEVICE(INTEL, 0x8d6e), board_ahci }, /* Wellsburg RAID */
/* JMicron 360/1/3/5/6, match class to avoid IDE function */ /* JMicron 360/1/3/5/6, match class to avoid IDE function */
{ PCI_VENDOR_ID_JMICRON, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID, { PCI_VENDOR_ID_JMICRON, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
......
...@@ -317,6 +317,23 @@ static const struct pci_device_id piix_pci_tbl[] = { ...@@ -317,6 +317,23 @@ static const struct pci_device_id piix_pci_tbl[] = {
{ 0x8086, 0x9c09, PCI_ANY_ID, PCI_ANY_ID, 0, 0, ich8_2port_sata }, { 0x8086, 0x9c09, PCI_ANY_ID, PCI_ANY_ID, 0, 0, ich8_2port_sata },
/* SATA Controller IDE (DH89xxCC) */ /* SATA Controller IDE (DH89xxCC) */
{ 0x8086, 0x2326, PCI_ANY_ID, PCI_ANY_ID, 0, 0, ich8_2port_sata }, { 0x8086, 0x2326, PCI_ANY_ID, PCI_ANY_ID, 0, 0, ich8_2port_sata },
/* SATA Controller IDE (Avoton) */
{ 0x8086, 0x1f20, PCI_ANY_ID, PCI_ANY_ID, 0, 0, ich8_sata_snb },
/* SATA Controller IDE (Avoton) */
{ 0x8086, 0x1f21, PCI_ANY_ID, PCI_ANY_ID, 0, 0, ich8_sata_snb },
/* SATA Controller IDE (Avoton) */
{ 0x8086, 0x1f30, PCI_ANY_ID, PCI_ANY_ID, 0, 0, ich8_2port_sata },
/* SATA Controller IDE (Avoton) */
{ 0x8086, 0x1f31, PCI_ANY_ID, PCI_ANY_ID, 0, 0, ich8_2port_sata },
/* SATA Controller IDE (Wellsburg) */
{ 0x8086, 0x8d00, PCI_ANY_ID, PCI_ANY_ID, 0, 0, ich8_sata_snb },
/* SATA Controller IDE (Wellsburg) */
{ 0x8086, 0x8d08, PCI_ANY_ID, PCI_ANY_ID, 0, 0, ich8_2port_sata },
/* SATA Controller IDE (Wellsburg) */
{ 0x8086, 0x8d60, PCI_ANY_ID, PCI_ANY_ID, 0, 0, ich8_sata_snb },
/* SATA Controller IDE (Wellsburg) */
{ 0x8086, 0x8d68, PCI_ANY_ID, PCI_ANY_ID, 0, 0, ich8_2port_sata },
{ } /* terminate list */ { } /* terminate list */
}; };
......
...@@ -17,6 +17,7 @@ ...@@ -17,6 +17,7 @@
#include <linux/pci.h> #include <linux/pci.h>
#include <linux/slab.h> #include <linux/slab.h>
#include <linux/pm_runtime.h> #include <linux/pm_runtime.h>
#include <linux/pm_qos.h>
#include <scsi/scsi_device.h> #include <scsi/scsi_device.h>
#include "libata.h" #include "libata.h"
...@@ -835,50 +836,95 @@ void ata_acpi_on_resume(struct ata_port *ap) ...@@ -835,50 +836,95 @@ void ata_acpi_on_resume(struct ata_port *ap)
} }
} }
/** static int ata_acpi_choose_suspend_state(struct ata_device *dev, bool runtime)
* ata_acpi_set_state - set the port power state {
* @ap: target ATA port int d_max_in = ACPI_STATE_D3_COLD;
* @state: state, on/off if (!runtime)
* goto out;
* This function executes the _PS0/_PS3 ACPI method to set the power state.
* ACPI spec requires _PS0 when IDE power on and _PS3 when power off /*
*/ * For ATAPI, runtime D3 cold is only allowed
void ata_acpi_set_state(struct ata_port *ap, pm_message_t state) * for ZPODD in zero power ready state
*/
if (dev->class == ATA_DEV_ATAPI &&
!(zpodd_dev_enabled(dev) && zpodd_zpready(dev)))
d_max_in = ACPI_STATE_D3_HOT;
out:
return acpi_pm_device_sleep_state(&dev->sdev->sdev_gendev,
NULL, d_max_in);
}
static void sata_acpi_set_state(struct ata_port *ap, pm_message_t state)
{ {
bool runtime = PMSG_IS_AUTO(state);
struct ata_device *dev; struct ata_device *dev;
acpi_handle handle; acpi_handle handle;
int acpi_state; int acpi_state;
/* channel first and then drives for power on and vica versa
for power off */
handle = ata_ap_acpi_handle(ap);
if (handle && state.event == PM_EVENT_ON)
acpi_bus_set_power(handle, ACPI_STATE_D0);
ata_for_each_dev(dev, &ap->link, ENABLED) { ata_for_each_dev(dev, &ap->link, ENABLED) {
handle = ata_dev_acpi_handle(dev); handle = ata_dev_acpi_handle(dev);
if (!handle) if (!handle)
continue; continue;
if (state.event != PM_EVENT_ON) { if (!(state.event & PM_EVENT_RESUME)) {
acpi_state = acpi_pm_device_sleep_state( acpi_state = ata_acpi_choose_suspend_state(dev, runtime);
&dev->sdev->sdev_gendev, NULL, ACPI_STATE_D3); if (acpi_state == ACPI_STATE_D0)
if (acpi_state > 0) continue;
acpi_bus_set_power(handle, acpi_state); if (runtime && zpodd_dev_enabled(dev) &&
/* TBD: need to check if it's runtime pm request */ acpi_state == ACPI_STATE_D3_COLD)
acpi_pm_device_run_wake( zpodd_enable_run_wake(dev);
&dev->sdev->sdev_gendev, true); acpi_bus_set_power(handle, acpi_state);
} else { } else {
/* Ditto */ if (runtime && zpodd_dev_enabled(dev))
acpi_pm_device_run_wake( zpodd_disable_run_wake(dev);
&dev->sdev->sdev_gendev, false);
acpi_bus_set_power(handle, ACPI_STATE_D0); acpi_bus_set_power(handle, ACPI_STATE_D0);
} }
} }
}
handle = ata_ap_acpi_handle(ap); /* ACPI spec requires _PS0 when IDE power on and _PS3 when power off */
if (handle && state.event != PM_EVENT_ON) static void pata_acpi_set_state(struct ata_port *ap, pm_message_t state)
acpi_bus_set_power(handle, ACPI_STATE_D3); {
struct ata_device *dev;
acpi_handle port_handle;
port_handle = ata_ap_acpi_handle(ap);
if (!port_handle)
return;
/* channel first and then drives for power on and vica versa
for power off */
if (state.event & PM_EVENT_RESUME)
acpi_bus_set_power(port_handle, ACPI_STATE_D0);
ata_for_each_dev(dev, &ap->link, ENABLED) {
acpi_handle dev_handle = ata_dev_acpi_handle(dev);
if (!dev_handle)
continue;
acpi_bus_set_power(dev_handle, state.event & PM_EVENT_RESUME ?
ACPI_STATE_D0 : ACPI_STATE_D3);
}
if (!(state.event & PM_EVENT_RESUME))
acpi_bus_set_power(port_handle, ACPI_STATE_D3);
}
/**
* ata_acpi_set_state - set the port power state
* @ap: target ATA port
* @state: state, on/off
*
* This function sets a proper ACPI D state for the device on
* system and runtime PM operations.
*/
void ata_acpi_set_state(struct ata_port *ap, pm_message_t state)
{
if (ap->flags & ATA_FLAG_ACPI_SATA)
sata_acpi_set_state(ap, state);
else
pata_acpi_set_state(ap, state);
} }
/** /**
...@@ -974,57 +1020,6 @@ void ata_acpi_on_disable(struct ata_device *dev) ...@@ -974,57 +1020,6 @@ void ata_acpi_on_disable(struct ata_device *dev)
ata_acpi_clear_gtf(dev); ata_acpi_clear_gtf(dev);
} }
static void ata_acpi_wake_dev(acpi_handle handle, u32 event, void *context)
{
struct ata_device *ata_dev = context;
if (event == ACPI_NOTIFY_DEVICE_WAKE && ata_dev &&
pm_runtime_suspended(&ata_dev->sdev->sdev_gendev))
scsi_autopm_get_device(ata_dev->sdev);
}
static void ata_acpi_add_pm_notifier(struct ata_device *dev)
{
struct acpi_device *acpi_dev;
acpi_handle handle;
acpi_status status;
handle = ata_dev_acpi_handle(dev);
if (!handle)
return;
status = acpi_bus_get_device(handle, &acpi_dev);
if (ACPI_FAILURE(status))
return;
if (dev->sdev->can_power_off) {
acpi_install_notify_handler(handle, ACPI_SYSTEM_NOTIFY,
ata_acpi_wake_dev, dev);
device_set_run_wake(&dev->sdev->sdev_gendev, true);
}
}
static void ata_acpi_remove_pm_notifier(struct ata_device *dev)
{
struct acpi_device *acpi_dev;
acpi_handle handle;
acpi_status status;
handle = ata_dev_acpi_handle(dev);
if (!handle)
return;
status = acpi_bus_get_device(handle, &acpi_dev);
if (ACPI_FAILURE(status))
return;
if (dev->sdev->can_power_off) {
device_set_run_wake(&dev->sdev->sdev_gendev, false);
acpi_remove_notify_handler(handle, ACPI_SYSTEM_NOTIFY,
ata_acpi_wake_dev);
}
}
static void ata_acpi_register_power_resource(struct ata_device *dev) static void ata_acpi_register_power_resource(struct ata_device *dev)
{ {
struct scsi_device *sdev = dev->sdev; struct scsi_device *sdev = dev->sdev;
...@@ -1047,13 +1042,13 @@ static void ata_acpi_unregister_power_resource(struct ata_device *dev) ...@@ -1047,13 +1042,13 @@ static void ata_acpi_unregister_power_resource(struct ata_device *dev)
void ata_acpi_bind(struct ata_device *dev) void ata_acpi_bind(struct ata_device *dev)
{ {
ata_acpi_add_pm_notifier(dev);
ata_acpi_register_power_resource(dev); ata_acpi_register_power_resource(dev);
if (zpodd_dev_enabled(dev))
dev_pm_qos_expose_flags(&dev->sdev->sdev_gendev, 0);
} }
void ata_acpi_unbind(struct ata_device *dev) void ata_acpi_unbind(struct ata_device *dev)
{ {
ata_acpi_remove_pm_notifier(dev);
ata_acpi_unregister_power_resource(dev); ata_acpi_unregister_power_resource(dev);
} }
...@@ -1095,9 +1090,6 @@ static int ata_acpi_bind_device(struct ata_port *ap, struct scsi_device *sdev, ...@@ -1095,9 +1090,6 @@ static int ata_acpi_bind_device(struct ata_port *ap, struct scsi_device *sdev,
acpi_handle *handle) acpi_handle *handle)
{ {
struct ata_device *ata_dev; struct ata_device *ata_dev;
acpi_status status;
struct acpi_device *acpi_dev;
struct acpi_device_power_state *states;
if (ap->flags & ATA_FLAG_ACPI_SATA) { if (ap->flags & ATA_FLAG_ACPI_SATA) {
if (!sata_pmp_attached(ap)) if (!sata_pmp_attached(ap))
...@@ -1114,21 +1106,6 @@ static int ata_acpi_bind_device(struct ata_port *ap, struct scsi_device *sdev, ...@@ -1114,21 +1106,6 @@ static int ata_acpi_bind_device(struct ata_port *ap, struct scsi_device *sdev,
if (!*handle) if (!*handle)
return -ENODEV; return -ENODEV;
status = acpi_bus_get_device(*handle, &acpi_dev);
if (ACPI_FAILURE(status))
return 0;
/*
* If firmware has _PS3 or _PR3 for this device,
* and this ata ODD device support device attention,
* it means this device can be powered off
*/
states = acpi_dev->power.states;
if ((states[ACPI_STATE_D3_HOT].flags.valid ||
states[ACPI_STATE_D3_COLD].flags.explicit_set) &&
ata_dev->flags & ATA_DFLAG_DA)
sdev->can_power_off = 1;
return 0; return 0;
} }
......
...@@ -2400,8 +2400,10 @@ int ata_dev_configure(struct ata_device *dev) ...@@ -2400,8 +2400,10 @@ int ata_dev_configure(struct ata_device *dev)
dma_dir_string = ", DMADIR"; dma_dir_string = ", DMADIR";
} }
if (ata_id_has_da(dev->id)) if (ata_id_has_da(dev->id)) {
dev->flags |= ATA_DFLAG_DA; dev->flags |= ATA_DFLAG_DA;
zpodd_init(dev);
}
/* print device info to dmesg */ /* print device info to dmesg */
if (ata_msg_drv(ap) && print_info) if (ata_msg_drv(ap) && print_info)
...@@ -5331,9 +5333,6 @@ static int ata_port_request_pm(struct ata_port *ap, pm_message_t mesg, ...@@ -5331,9 +5333,6 @@ static int ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
static int __ata_port_suspend_common(struct ata_port *ap, pm_message_t mesg, int *async) static int __ata_port_suspend_common(struct ata_port *ap, pm_message_t mesg, int *async)
{ {
unsigned int ehi_flags = ATA_EHI_QUIET;
int rc;
/* /*
* On some hardware, device fails to respond after spun down * On some hardware, device fails to respond after spun down
* for suspend. As the device won't be used before being * for suspend. As the device won't be used before being
...@@ -5342,11 +5341,9 @@ static int __ata_port_suspend_common(struct ata_port *ap, pm_message_t mesg, int ...@@ -5342,11 +5341,9 @@ static int __ata_port_suspend_common(struct ata_port *ap, pm_message_t mesg, int
* *
* http://thread.gmane.org/gmane.linux.ide/46764 * http://thread.gmane.org/gmane.linux.ide/46764
*/ */
if (mesg.event == PM_EVENT_SUSPEND) unsigned int ehi_flags = ATA_EHI_QUIET | ATA_EHI_NO_AUTOPSY |
ehi_flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_NO_RECOVERY; ATA_EHI_NO_RECOVERY;
return ata_port_request_pm(ap, mesg, 0, ehi_flags, async);
rc = ata_port_request_pm(ap, mesg, 0, ehi_flags, async);
return rc;
} }
static int ata_port_suspend_common(struct device *dev, pm_message_t mesg) static int ata_port_suspend_common(struct device *dev, pm_message_t mesg)
...@@ -5367,40 +5364,38 @@ static int ata_port_suspend(struct device *dev) ...@@ -5367,40 +5364,38 @@ static int ata_port_suspend(struct device *dev)
static int ata_port_do_freeze(struct device *dev) static int ata_port_do_freeze(struct device *dev)
{ {
if (pm_runtime_suspended(dev)) if (pm_runtime_suspended(dev))
pm_runtime_resume(dev); return 0;
return ata_port_suspend_common(dev, PMSG_FREEZE); return ata_port_suspend_common(dev, PMSG_FREEZE);
} }
static int ata_port_poweroff(struct device *dev) static int ata_port_poweroff(struct device *dev)
{ {
if (pm_runtime_suspended(dev))
return 0;
return ata_port_suspend_common(dev, PMSG_HIBERNATE); return ata_port_suspend_common(dev, PMSG_HIBERNATE);
} }
static int __ata_port_resume_common(struct ata_port *ap, int *async) static int __ata_port_resume_common(struct ata_port *ap, pm_message_t mesg,
int *async)
{ {
int rc; int rc;
rc = ata_port_request_pm(ap, PMSG_ON, ATA_EH_RESET, rc = ata_port_request_pm(ap, mesg, ATA_EH_RESET,
ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, async); ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, async);
return rc; return rc;
} }
static int ata_port_resume_common(struct device *dev) static int ata_port_resume_common(struct device *dev, pm_message_t mesg)
{ {
struct ata_port *ap = to_ata_port(dev); struct ata_port *ap = to_ata_port(dev);
return __ata_port_resume_common(ap, NULL); return __ata_port_resume_common(ap, mesg, NULL);
} }
static int ata_port_resume(struct device *dev) static int ata_port_resume(struct device *dev)
{ {
int rc; int rc;
rc = ata_port_resume_common(dev); rc = ata_port_resume_common(dev, PMSG_RESUME);
if (!rc) { if (!rc) {
pm_runtime_disable(dev); pm_runtime_disable(dev);
pm_runtime_set_active(dev); pm_runtime_set_active(dev);
...@@ -5410,11 +5405,40 @@ static int ata_port_resume(struct device *dev) ...@@ -5410,11 +5405,40 @@ static int ata_port_resume(struct device *dev)
return rc; return rc;
} }
/*
* For ODDs, the upper layer will poll for media change every few seconds,
* which will make it enter and leave suspend state every few seconds. And
* as each suspend will cause a hard/soft reset, the gain of runtime suspend
* is very little and the ODD may malfunction after constantly being reset.
* So the idle callback here will not proceed to suspend if a non-ZPODD capable
* ODD is attached to the port.
*/
static int ata_port_runtime_idle(struct device *dev) static int ata_port_runtime_idle(struct device *dev)
{ {
struct ata_port *ap = to_ata_port(dev);
struct ata_link *link;
struct ata_device *adev;
ata_for_each_link(link, ap, HOST_FIRST) {
ata_for_each_dev(adev, link, ENABLED)
if (adev->class == ATA_DEV_ATAPI &&
!zpodd_dev_enabled(adev))
return -EBUSY;
}
return pm_runtime_suspend(dev); return pm_runtime_suspend(dev);
} }
static int ata_port_runtime_suspend(struct device *dev)
{
return ata_port_suspend_common(dev, PMSG_AUTO_SUSPEND);
}
static int ata_port_runtime_resume(struct device *dev)
{
return ata_port_resume_common(dev, PMSG_AUTO_RESUME);
}
static const struct dev_pm_ops ata_port_pm_ops = { static const struct dev_pm_ops ata_port_pm_ops = {
.suspend = ata_port_suspend, .suspend = ata_port_suspend,
.resume = ata_port_resume, .resume = ata_port_resume,
...@@ -5423,8 +5447,8 @@ static const struct dev_pm_ops ata_port_pm_ops = { ...@@ -5423,8 +5447,8 @@ static const struct dev_pm_ops ata_port_pm_ops = {
.poweroff = ata_port_poweroff, .poweroff = ata_port_poweroff,
.restore = ata_port_resume, .restore = ata_port_resume,
.runtime_suspend = ata_port_suspend, .runtime_suspend = ata_port_runtime_suspend,
.runtime_resume = ata_port_resume_common, .runtime_resume = ata_port_runtime_resume,
.runtime_idle = ata_port_runtime_idle, .runtime_idle = ata_port_runtime_idle,
}; };
...@@ -5441,7 +5465,7 @@ EXPORT_SYMBOL_GPL(ata_sas_port_async_suspend); ...@@ -5441,7 +5465,7 @@ EXPORT_SYMBOL_GPL(ata_sas_port_async_suspend);
int ata_sas_port_async_resume(struct ata_port *ap, int *async) int ata_sas_port_async_resume(struct ata_port *ap, int *async)
{ {
return __ata_port_resume_common(ap, async); return __ata_port_resume_common(ap, PMSG_RESUME, async);
} }
EXPORT_SYMBOL_GPL(ata_sas_port_async_resume); EXPORT_SYMBOL_GPL(ata_sas_port_async_resume);
......
...@@ -1591,7 +1591,7 @@ static int ata_eh_read_log_10h(struct ata_device *dev, ...@@ -1591,7 +1591,7 @@ static int ata_eh_read_log_10h(struct ata_device *dev,
* RETURNS: * RETURNS:
* 0 on success, AC_ERR_* mask on failure. * 0 on success, AC_ERR_* mask on failure.
*/ */
static unsigned int atapi_eh_tur(struct ata_device *dev, u8 *r_sense_key) unsigned int atapi_eh_tur(struct ata_device *dev, u8 *r_sense_key)
{ {
u8 cdb[ATAPI_CDB_LEN] = { TEST_UNIT_READY, 0, 0, 0, 0, 0 }; u8 cdb[ATAPI_CDB_LEN] = { TEST_UNIT_READY, 0, 0, 0, 0, 0 };
struct ata_taskfile tf; struct ata_taskfile tf;
...@@ -1624,7 +1624,7 @@ static unsigned int atapi_eh_tur(struct ata_device *dev, u8 *r_sense_key) ...@@ -1624,7 +1624,7 @@ static unsigned int atapi_eh_tur(struct ata_device *dev, u8 *r_sense_key)
* RETURNS: * RETURNS:
* 0 on success, AC_ERR_* mask on failure * 0 on success, AC_ERR_* mask on failure
*/ */
static unsigned int atapi_eh_request_sense(struct ata_device *dev, unsigned int atapi_eh_request_sense(struct ata_device *dev,
u8 *sense_buf, u8 dfl_sense_key) u8 *sense_buf, u8 dfl_sense_key)
{ {
u8 cdb[ATAPI_CDB_LEN] = u8 cdb[ATAPI_CDB_LEN] =
...@@ -3857,6 +3857,8 @@ int ata_eh_recover(struct ata_port *ap, ata_prereset_fn_t prereset, ...@@ -3857,6 +3857,8 @@ int ata_eh_recover(struct ata_port *ap, ata_prereset_fn_t prereset,
rc = atapi_eh_clear_ua(dev); rc = atapi_eh_clear_ua(dev);
if (rc) if (rc)
goto rest_fail; goto rest_fail;
if (zpodd_dev_enabled(dev))
zpodd_post_poweron(dev);
} }
} }
...@@ -4022,11 +4024,12 @@ static void ata_eh_handle_port_suspend(struct ata_port *ap) ...@@ -4022,11 +4024,12 @@ static void ata_eh_handle_port_suspend(struct ata_port *ap)
{ {
unsigned long flags; unsigned long flags;
int rc = 0; int rc = 0;
struct ata_device *dev;
/* are we suspending? */ /* are we suspending? */
spin_lock_irqsave(ap->lock, flags); spin_lock_irqsave(ap->lock, flags);
if (!(ap->pflags & ATA_PFLAG_PM_PENDING) || if (!(ap->pflags & ATA_PFLAG_PM_PENDING) ||
ap->pm_mesg.event == PM_EVENT_ON) { ap->pm_mesg.event & PM_EVENT_RESUME) {
spin_unlock_irqrestore(ap->lock, flags); spin_unlock_irqrestore(ap->lock, flags);
return; return;
} }
...@@ -4034,6 +4037,18 @@ static void ata_eh_handle_port_suspend(struct ata_port *ap) ...@@ -4034,6 +4037,18 @@ static void ata_eh_handle_port_suspend(struct ata_port *ap)
WARN_ON(ap->pflags & ATA_PFLAG_SUSPENDED); WARN_ON(ap->pflags & ATA_PFLAG_SUSPENDED);
/*
* If we have a ZPODD attached, check its zero
* power ready status before the port is frozen.
* Only needed for runtime suspend.
*/
if (PMSG_IS_AUTO(ap->pm_mesg)) {
ata_for_each_dev(dev, &ap->link, ENABLED) {
if (zpodd_dev_enabled(dev))
zpodd_on_suspend(dev);
}
}
/* tell ACPI we're suspending */ /* tell ACPI we're suspending */
rc = ata_acpi_on_suspend(ap); rc = ata_acpi_on_suspend(ap);
if (rc) if (rc)
...@@ -4045,7 +4060,7 @@ static void ata_eh_handle_port_suspend(struct ata_port *ap) ...@@ -4045,7 +4060,7 @@ static void ata_eh_handle_port_suspend(struct ata_port *ap)
if (ap->ops->port_suspend) if (ap->ops->port_suspend)
rc = ap->ops->port_suspend(ap, ap->pm_mesg); rc = ap->ops->port_suspend(ap, ap->pm_mesg);
ata_acpi_set_state(ap, PMSG_SUSPEND); ata_acpi_set_state(ap, ap->pm_mesg);
out: out:
/* report result */ /* report result */
spin_lock_irqsave(ap->lock, flags); spin_lock_irqsave(ap->lock, flags);
...@@ -4085,7 +4100,7 @@ static void ata_eh_handle_port_resume(struct ata_port *ap) ...@@ -4085,7 +4100,7 @@ static void ata_eh_handle_port_resume(struct ata_port *ap)
/* are we resuming? */ /* are we resuming? */
spin_lock_irqsave(ap->lock, flags); spin_lock_irqsave(ap->lock, flags);
if (!(ap->pflags & ATA_PFLAG_PM_PENDING) || if (!(ap->pflags & ATA_PFLAG_PM_PENDING) ||
ap->pm_mesg.event != PM_EVENT_ON) { !(ap->pm_mesg.event & PM_EVENT_RESUME)) {
spin_unlock_irqrestore(ap->lock, flags); spin_unlock_irqrestore(ap->lock, flags);
return; return;
} }
...@@ -4104,7 +4119,7 @@ static void ata_eh_handle_port_resume(struct ata_port *ap) ...@@ -4104,7 +4119,7 @@ static void ata_eh_handle_port_resume(struct ata_port *ap)
ata_for_each_dev(dev, link, ALL) ata_for_each_dev(dev, link, ALL)
ata_ering_clear(&dev->ering); ata_ering_clear(&dev->ering);
ata_acpi_set_state(ap, PMSG_ON); ata_acpi_set_state(ap, ap->pm_mesg);
if (ap->ops->port_resume) if (ap->ops->port_resume)
rc = ap->ops->port_resume(ap); rc = ap->ops->port_resume(ap);
......
...@@ -933,7 +933,11 @@ static void ata_to_sense_error(unsigned id, u8 drv_stat, u8 drv_err, u8 *sk, ...@@ -933,7 +933,11 @@ static void ata_to_sense_error(unsigned id, u8 drv_stat, u8 drv_err, u8 *sk,
* block specified for the ATA pass through commands. Regardless * block specified for the ATA pass through commands. Regardless
* of whether the command errored or not, return a sense * of whether the command errored or not, return a sense
* block. Copy all controller registers into the sense * block. Copy all controller registers into the sense
* block. Clear sense key, ASC & ASCQ if there is no error. * block. If there was no error, we get the request from an ATA
* passthrough command, so we use the following sense data:
* sk = RECOVERED ERROR
* asc,ascq = ATA PASS-THROUGH INFORMATION AVAILABLE
*
* *
* LOCKING: * LOCKING:
* None. * None.
...@@ -959,6 +963,10 @@ static void ata_gen_passthru_sense(struct ata_queued_cmd *qc) ...@@ -959,6 +963,10 @@ static void ata_gen_passthru_sense(struct ata_queued_cmd *qc)
ata_to_sense_error(qc->ap->print_id, tf->command, tf->feature, ata_to_sense_error(qc->ap->print_id, tf->command, tf->feature,
&sb[1], &sb[2], &sb[3], verbose); &sb[1], &sb[2], &sb[3], verbose);
sb[1] &= 0x0f; sb[1] &= 0x0f;
} else {
sb[1] = RECOVERED_ERROR;
sb[2] = 0;
sb[3] = 0x1D;
} }
/* /*
...@@ -1733,10 +1741,12 @@ static void ata_scsi_qc_complete(struct ata_queued_cmd *qc) ...@@ -1733,10 +1741,12 @@ static void ata_scsi_qc_complete(struct ata_queued_cmd *qc)
/* For ATA pass thru (SAT) commands, generate a sense block if /* For ATA pass thru (SAT) commands, generate a sense block if
* user mandated it or if there's an error. Note that if we * user mandated it or if there's an error. Note that if we
* generate because the user forced us to, a check condition * generate because the user forced us to [CK_COND =1], a check
* is generated and the ATA register values are returned * condition is generated and the ATA register values are returned
* whether the command completed successfully or not. If there * whether the command completed successfully or not. If there
* was no error, SK, ASC and ASCQ will all be zero. * was no error, we use the following sense data:
* sk = RECOVERED ERROR
* asc,ascq = ATA PASS-THROUGH INFORMATION AVAILABLE
*/ */
if (((cdb[0] == ATA_16) || (cdb[0] == ATA_12)) && if (((cdb[0] == ATA_16) || (cdb[0] == ATA_12)) &&
((cdb[2] & 0x20) || need_sense)) { ((cdb[2] & 0x20) || need_sense)) {
...@@ -3755,6 +3765,8 @@ static void ata_scsi_remove_dev(struct ata_device *dev) ...@@ -3755,6 +3765,8 @@ static void ata_scsi_remove_dev(struct ata_device *dev)
mutex_lock(&ap->scsi_host->scan_mutex); mutex_lock(&ap->scsi_host->scan_mutex);
spin_lock_irqsave(ap->lock, flags); spin_lock_irqsave(ap->lock, flags);
if (zpodd_dev_enabled(dev))
zpodd_exit(dev);
ata_acpi_unbind(dev); ata_acpi_unbind(dev);
/* clearing dev->sdev is protected by host lock */ /* clearing dev->sdev is protected by host lock */
......
#include <linux/libata.h>
#include <linux/cdrom.h>
#include <linux/pm_runtime.h>
#include <linux/module.h>
#include <scsi/scsi_device.h>
#include "libata.h"
static int zpodd_poweroff_delay = 30; /* 30 seconds for power off delay */
module_param(zpodd_poweroff_delay, int, 0644);
MODULE_PARM_DESC(zpodd_poweroff_delay, "Poweroff delay for ZPODD in seconds");
enum odd_mech_type {
ODD_MECH_TYPE_SLOT,
ODD_MECH_TYPE_DRAWER,
ODD_MECH_TYPE_UNSUPPORTED,
};
struct zpodd {
enum odd_mech_type mech_type; /* init during probe, RO afterwards */
struct ata_device *dev;
/* The following fields are synchronized by PM core. */
bool from_notify; /* resumed as a result of
* acpi wake notification */
bool zp_ready; /* ZP ready state */
unsigned long last_ready; /* last ZP ready timestamp */
bool zp_sampled; /* ZP ready state sampled */
bool powered_off; /* ODD is powered off
* during suspend */
};
static int eject_tray(struct ata_device *dev)
{
struct ata_taskfile tf = {};
const char cdb[] = { GPCMD_START_STOP_UNIT,
0, 0, 0,
0x02, /* LoEj */
0, 0, 0, 0, 0, 0, 0,
};
tf.flags = ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
tf.command = ATA_CMD_PACKET;
tf.protocol = ATAPI_PROT_NODATA;
return ata_exec_internal(dev, &tf, cdb, DMA_NONE, NULL, 0, 0);
}
/* Per the spec, only slot type and drawer type ODD can be supported */
static enum odd_mech_type zpodd_get_mech_type(struct ata_device *dev)
{
char buf[16];
unsigned int ret;
struct rm_feature_desc *desc = (void *)(buf + 8);
struct ata_taskfile tf = {};
char cdb[] = { GPCMD_GET_CONFIGURATION,
2, /* only 1 feature descriptor requested */
0, 3, /* 3, removable medium feature */
0, 0, 0,/* reserved */
0, sizeof(buf),
0, 0, 0,
};
tf.flags = ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
tf.command = ATA_CMD_PACKET;
tf.protocol = ATAPI_PROT_PIO;
tf.lbam = sizeof(buf);
ret = ata_exec_internal(dev, &tf, cdb, DMA_FROM_DEVICE,
buf, sizeof(buf), 0);
if (ret)
return ODD_MECH_TYPE_UNSUPPORTED;
if (be16_to_cpu(desc->feature_code) != 3)
return ODD_MECH_TYPE_UNSUPPORTED;
if (desc->mech_type == 0 && desc->load == 0 && desc->eject == 1)
return ODD_MECH_TYPE_SLOT;
else if (desc->mech_type == 1 && desc->load == 0 && desc->eject == 1)
return ODD_MECH_TYPE_DRAWER;
else
return ODD_MECH_TYPE_UNSUPPORTED;
}
static bool odd_can_poweroff(struct ata_device *ata_dev)
{
acpi_handle handle;
acpi_status status;
struct acpi_device *acpi_dev;
handle = ata_dev_acpi_handle(ata_dev);
if (!handle)
return false;
status = acpi_bus_get_device(handle, &acpi_dev);
if (ACPI_FAILURE(status))
return false;
return acpi_device_can_poweroff(acpi_dev);
}
/* Test if ODD is zero power ready by sense code */
static bool zpready(struct ata_device *dev)
{
u8 sense_key, *sense_buf;
unsigned int ret, asc, ascq, add_len;
struct zpodd *zpodd = dev->zpodd;
ret = atapi_eh_tur(dev, &sense_key);
if (!ret || sense_key != NOT_READY)
return false;
sense_buf = dev->link->ap->sector_buf;
ret = atapi_eh_request_sense(dev, sense_buf, sense_key);
if (ret)
return false;
/* sense valid */
if ((sense_buf[0] & 0x7f) != 0x70)
return false;
add_len = sense_buf[7];
/* has asc and ascq */
if (add_len < 6)
return false;
asc = sense_buf[12];
ascq = sense_buf[13];
if (zpodd->mech_type == ODD_MECH_TYPE_SLOT)
/* no media inside */
return asc == 0x3a;
else
/* no media inside and door closed */
return asc == 0x3a && ascq == 0x01;
}
/*
* Update the zpodd->zp_ready field. This field will only be set
* if the ODD has stayed in ZP ready state for zpodd_poweroff_delay
* time, and will be used to decide if power off is allowed. If it
* is set, it will be cleared during resume from powered off state.
*/
void zpodd_on_suspend(struct ata_device *dev)
{
struct zpodd *zpodd = dev->zpodd;
unsigned long expires;
if (!zpready(dev)) {
zpodd->zp_sampled = false;
zpodd->zp_ready = false;
return;
}
if (!zpodd->zp_sampled) {
zpodd->zp_sampled = true;
zpodd->last_ready = jiffies;
return;
}
expires = zpodd->last_ready +
msecs_to_jiffies(zpodd_poweroff_delay * 1000);
if (time_before(jiffies, expires))
return;
zpodd->zp_ready = true;
}
bool zpodd_zpready(struct ata_device *dev)
{
struct zpodd *zpodd = dev->zpodd;
return zpodd->zp_ready;
}
/*
* Enable runtime wake capability through ACPI and set the powered_off flag,
* this flag will be used during resume to decide what operations are needed
* to take.
*
* Also, media poll needs to be silenced, so that it doesn't bring the ODD
* back to full power state every few seconds.
*/
void zpodd_enable_run_wake(struct ata_device *dev)
{
struct zpodd *zpodd = dev->zpodd;
sdev_disable_disk_events(dev->sdev);
zpodd->powered_off = true;
device_set_run_wake(&dev->sdev->sdev_gendev, true);
acpi_pm_device_run_wake(&dev->sdev->sdev_gendev, true);
}
/* Disable runtime wake capability if it is enabled */
void zpodd_disable_run_wake(struct ata_device *dev)
{
struct zpodd *zpodd = dev->zpodd;
if (zpodd->powered_off) {
acpi_pm_device_run_wake(&dev->sdev->sdev_gendev, false);
device_set_run_wake(&dev->sdev->sdev_gendev, false);
}
}
/*
* Post power on processing after the ODD has been recovered. If the
* ODD wasn't powered off during suspend, it doesn't do anything.
*
* For drawer type ODD, if it is powered on due to user pressed the
* eject button, the tray needs to be ejected. This can only be done
* after the ODD has been recovered, i.e. link is initialized and
* device is able to process NON_DATA PIO command, as eject needs to
* send command for the ODD to process.
*
* The from_notify flag set in wake notification handler function
* zpodd_wake_dev represents if power on is due to user's action.
*
* For both types of ODD, several fields need to be reset.
*/
void zpodd_post_poweron(struct ata_device *dev)
{
struct zpodd *zpodd = dev->zpodd;
if (!zpodd->powered_off)
return;
zpodd->powered_off = false;
if (zpodd->from_notify) {
zpodd->from_notify = false;
if (zpodd->mech_type == ODD_MECH_TYPE_DRAWER)
eject_tray(dev);
}
zpodd->zp_sampled = false;
zpodd->zp_ready = false;
sdev_enable_disk_events(dev->sdev);
}
static void zpodd_wake_dev(acpi_handle handle, u32 event, void *context)
{
struct ata_device *ata_dev = context;
struct zpodd *zpodd = ata_dev->zpodd;
struct device *dev = &ata_dev->sdev->sdev_gendev;
if (event == ACPI_NOTIFY_DEVICE_WAKE && pm_runtime_suspended(dev)) {
zpodd->from_notify = true;
pm_runtime_resume(dev);
}
}
static void ata_acpi_add_pm_notifier(struct ata_device *dev)
{
acpi_handle handle = ata_dev_acpi_handle(dev);
acpi_install_notify_handler(handle, ACPI_SYSTEM_NOTIFY,
zpodd_wake_dev, dev);
}
static void ata_acpi_remove_pm_notifier(struct ata_device *dev)
{
acpi_handle handle = DEVICE_ACPI_HANDLE(&dev->sdev->sdev_gendev);
acpi_remove_notify_handler(handle, ACPI_SYSTEM_NOTIFY, zpodd_wake_dev);
}
void zpodd_init(struct ata_device *dev)
{
enum odd_mech_type mech_type;
struct zpodd *zpodd;
if (dev->zpodd)
return;
if (!odd_can_poweroff(dev))
return;
mech_type = zpodd_get_mech_type(dev);
if (mech_type == ODD_MECH_TYPE_UNSUPPORTED)
return;
zpodd = kzalloc(sizeof(struct zpodd), GFP_KERNEL);
if (!zpodd)
return;
zpodd->mech_type = mech_type;
ata_acpi_add_pm_notifier(dev);
zpodd->dev = dev;
dev->zpodd = zpodd;
}
void zpodd_exit(struct ata_device *dev)
{
ata_acpi_remove_pm_notifier(dev);
kfree(dev->zpodd);
dev->zpodd = NULL;
}
...@@ -182,6 +182,9 @@ extern void ata_eh_finish(struct ata_port *ap); ...@@ -182,6 +182,9 @@ extern void ata_eh_finish(struct ata_port *ap);
extern int ata_ering_map(struct ata_ering *ering, extern int ata_ering_map(struct ata_ering *ering,
int (*map_fn)(struct ata_ering_entry *, void *), int (*map_fn)(struct ata_ering_entry *, void *),
void *arg); void *arg);
extern unsigned int atapi_eh_tur(struct ata_device *dev, u8 *r_sense_key);
extern unsigned int atapi_eh_request_sense(struct ata_device *dev,
u8 *sense_buf, u8 dfl_sense_key);
/* libata-pmp.c */ /* libata-pmp.c */
#ifdef CONFIG_SATA_PMP #ifdef CONFIG_SATA_PMP
...@@ -230,4 +233,28 @@ static inline void ata_sff_exit(void) ...@@ -230,4 +233,28 @@ static inline void ata_sff_exit(void)
{ } { }
#endif /* CONFIG_ATA_SFF */ #endif /* CONFIG_ATA_SFF */
/* libata-zpodd.c */
#ifdef CONFIG_SATA_ZPODD
void zpodd_init(struct ata_device *dev);
void zpodd_exit(struct ata_device *dev);
static inline bool zpodd_dev_enabled(struct ata_device *dev)
{
return dev->zpodd != NULL;
}
void zpodd_on_suspend(struct ata_device *dev);
bool zpodd_zpready(struct ata_device *dev);
void zpodd_enable_run_wake(struct ata_device *dev);
void zpodd_disable_run_wake(struct ata_device *dev);
void zpodd_post_poweron(struct ata_device *dev);
#else /* CONFIG_SATA_ZPODD */
static inline void zpodd_init(struct ata_device *dev) {}
static inline void zpodd_exit(struct ata_device *dev) {}
static inline bool zpodd_dev_enabled(struct ata_device *dev) { return false; }
static inline void zpodd_on_suspend(struct ata_device *dev) {}
static inline bool zpodd_zpready(struct ata_device *dev) { return false; }
static inline void zpodd_enable_run_wake(struct ata_device *dev) {}
static inline void zpodd_disable_run_wake(struct ata_device *dev) {}
static inline void zpodd_post_poweron(struct ata_device *dev) {}
#endif /* CONFIG_SATA_ZPODD */
#endif /* __LIBATA_H__ */ #endif /* __LIBATA_H__ */
...@@ -512,7 +512,7 @@ static int __init pata_s3c_probe(struct platform_device *pdev) ...@@ -512,7 +512,7 @@ static int __init pata_s3c_probe(struct platform_device *pdev)
return -ENOMEM; return -ENOMEM;
} }
info->clk = clk_get(&pdev->dev, "cfcon"); info->clk = devm_clk_get(&pdev->dev, "cfcon");
if (IS_ERR(info->clk)) { if (IS_ERR(info->clk)) {
dev_err(dev, "failed to get access to cf controller clock\n"); dev_err(dev, "failed to get access to cf controller clock\n");
ret = PTR_ERR(info->clk); ret = PTR_ERR(info->clk);
...@@ -589,7 +589,6 @@ static int __init pata_s3c_probe(struct platform_device *pdev) ...@@ -589,7 +589,6 @@ static int __init pata_s3c_probe(struct platform_device *pdev)
stop_clk: stop_clk:
clk_disable(info->clk); clk_disable(info->clk);
clk_put(info->clk);
return ret; return ret;
} }
...@@ -601,7 +600,6 @@ static int __exit pata_s3c_remove(struct platform_device *pdev) ...@@ -601,7 +600,6 @@ static int __exit pata_s3c_remove(struct platform_device *pdev)
ata_host_detach(host); ata_host_detach(host);
clk_disable(info->clk); clk_disable(info->clk);
clk_put(info->clk);
return 0; return 0;
} }
......
/*
* Renesas R-Car SATA driver
*
* Author: Vladimir Barinov <source@cogentembedded.com>
* Copyright (C) 2013 Cogent Embedded, Inc.
* Copyright (C) 2013 Renesas Solutions Corp.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/ata.h>
#include <linux/libata.h>
#include <linux/platform_device.h>
#include <linux/clk.h>
#define DRV_NAME "sata_rcar"
/* SH-Navi2G/ATAPI-ATA compatible task registers */
#define DATA_REG 0x100
#define SDEVCON_REG 0x138
/* SH-Navi2G/ATAPI module compatible control registers */
#define ATAPI_CONTROL1_REG 0x180
#define ATAPI_STATUS_REG 0x184
#define ATAPI_INT_ENABLE_REG 0x188
#define ATAPI_DTB_ADR_REG 0x198
#define ATAPI_DMA_START_ADR_REG 0x19C
#define ATAPI_DMA_TRANS_CNT_REG 0x1A0
#define ATAPI_CONTROL2_REG 0x1A4
#define ATAPI_SIG_ST_REG 0x1B0
#define ATAPI_BYTE_SWAP_REG 0x1BC
/* ATAPI control 1 register (ATAPI_CONTROL1) bits */
#define ATAPI_CONTROL1_ISM BIT(16)
#define ATAPI_CONTROL1_DTA32M BIT(11)
#define ATAPI_CONTROL1_RESET BIT(7)
#define ATAPI_CONTROL1_DESE BIT(3)
#define ATAPI_CONTROL1_RW BIT(2)
#define ATAPI_CONTROL1_STOP BIT(1)
#define ATAPI_CONTROL1_START BIT(0)
/* ATAPI status register (ATAPI_STATUS) bits */
#define ATAPI_STATUS_SATAINT BIT(11)
#define ATAPI_STATUS_DNEND BIT(6)
#define ATAPI_STATUS_DEVTRM BIT(5)
#define ATAPI_STATUS_DEVINT BIT(4)
#define ATAPI_STATUS_ERR BIT(2)
#define ATAPI_STATUS_NEND BIT(1)
#define ATAPI_STATUS_ACT BIT(0)
/* Interrupt enable register (ATAPI_INT_ENABLE) bits */
#define ATAPI_INT_ENABLE_SATAINT BIT(11)
#define ATAPI_INT_ENABLE_DNEND BIT(6)
#define ATAPI_INT_ENABLE_DEVTRM BIT(5)
#define ATAPI_INT_ENABLE_DEVINT BIT(4)
#define ATAPI_INT_ENABLE_ERR BIT(2)
#define ATAPI_INT_ENABLE_NEND BIT(1)
#define ATAPI_INT_ENABLE_ACT BIT(0)
/* Access control registers for physical layer control register */
#define SATAPHYADDR_REG 0x200
#define SATAPHYWDATA_REG 0x204
#define SATAPHYACCEN_REG 0x208
#define SATAPHYRESET_REG 0x20C
#define SATAPHYRDATA_REG 0x210
#define SATAPHYACK_REG 0x214
/* Physical layer control address command register (SATAPHYADDR) bits */
#define SATAPHYADDR_PHYRATEMODE BIT(10)
#define SATAPHYADDR_PHYCMD_READ BIT(9)
#define SATAPHYADDR_PHYCMD_WRITE BIT(8)
/* Physical layer control enable register (SATAPHYACCEN) bits */
#define SATAPHYACCEN_PHYLANE BIT(0)
/* Physical layer control reset register (SATAPHYRESET) bits */
#define SATAPHYRESET_PHYRST BIT(1)
#define SATAPHYRESET_PHYSRES BIT(0)
/* Physical layer control acknowledge register (SATAPHYACK) bits */
#define SATAPHYACK_PHYACK BIT(0)
/* Serial-ATA HOST control registers */
#define BISTCONF_REG 0x102C
#define SDATA_REG 0x1100
#define SSDEVCON_REG 0x1204
#define SCRSSTS_REG 0x1400
#define SCRSERR_REG 0x1404
#define SCRSCON_REG 0x1408
#define SCRSACT_REG 0x140C
#define SATAINTSTAT_REG 0x1508
#define SATAINTMASK_REG 0x150C
/* SATA INT status register (SATAINTSTAT) bits */
#define SATAINTSTAT_SERR BIT(3)
#define SATAINTSTAT_ATA BIT(0)
/* SATA INT mask register (SATAINTSTAT) bits */
#define SATAINTMASK_SERRMSK BIT(3)
#define SATAINTMASK_ERRMSK BIT(2)
#define SATAINTMASK_ERRCRTMSK BIT(1)
#define SATAINTMASK_ATAMSK BIT(0)
#define SATA_RCAR_INT_MASK (SATAINTMASK_SERRMSK | \
SATAINTMASK_ATAMSK)
/* Physical Layer Control Registers */
#define SATAPCTLR1_REG 0x43
#define SATAPCTLR2_REG 0x52
#define SATAPCTLR3_REG 0x5A
#define SATAPCTLR4_REG 0x60
/* Descriptor table word 0 bit (when DTA32M = 1) */
#define SATA_RCAR_DTEND BIT(0)
struct sata_rcar_priv {
void __iomem *base;
struct clk *clk;
};
static void sata_rcar_phy_initialize(struct sata_rcar_priv *priv)
{
/* idle state */
iowrite32(0, priv->base + SATAPHYADDR_REG);
/* reset */
iowrite32(SATAPHYRESET_PHYRST, priv->base + SATAPHYRESET_REG);
udelay(10);
/* deassert reset */
iowrite32(0, priv->base + SATAPHYRESET_REG);
}
static void sata_rcar_phy_write(struct sata_rcar_priv *priv, u16 reg, u32 val,
int group)
{
int timeout;
/* deassert reset */
iowrite32(0, priv->base + SATAPHYRESET_REG);
/* lane 1 */
iowrite32(SATAPHYACCEN_PHYLANE, priv->base + SATAPHYACCEN_REG);
/* write phy register value */
iowrite32(val, priv->base + SATAPHYWDATA_REG);
/* set register group */
if (group)
reg |= SATAPHYADDR_PHYRATEMODE;
/* write command */
iowrite32(SATAPHYADDR_PHYCMD_WRITE | reg, priv->base + SATAPHYADDR_REG);
/* wait for ack */
for (timeout = 0; timeout < 100; timeout++) {
val = ioread32(priv->base + SATAPHYACK_REG);
if (val & SATAPHYACK_PHYACK)
break;
}
if (timeout >= 100)
pr_err("%s timeout\n", __func__);
/* idle state */
iowrite32(0, priv->base + SATAPHYADDR_REG);
}
static void sata_rcar_freeze(struct ata_port *ap)
{
struct sata_rcar_priv *priv = ap->host->private_data;
/* mask */
iowrite32(0x7ff, priv->base + SATAINTMASK_REG);
ata_sff_freeze(ap);
}
static void sata_rcar_thaw(struct ata_port *ap)
{
struct sata_rcar_priv *priv = ap->host->private_data;
/* ack */
iowrite32(~SATA_RCAR_INT_MASK, priv->base + SATAINTSTAT_REG);
ata_sff_thaw(ap);
/* unmask */
iowrite32(0x7ff & ~SATA_RCAR_INT_MASK, priv->base + SATAINTMASK_REG);
}
static void sata_rcar_ioread16_rep(void __iomem *reg, void *buffer, int count)
{
u16 *ptr = buffer;
while (count--) {
u16 data = ioread32(reg);
*ptr++ = data;
}
}
static void sata_rcar_iowrite16_rep(void __iomem *reg, void *buffer, int count)
{
const u16 *ptr = buffer;
while (count--)
iowrite32(*ptr++, reg);
}
static u8 sata_rcar_check_status(struct ata_port *ap)
{
return ioread32(ap->ioaddr.status_addr);
}
static u8 sata_rcar_check_altstatus(struct ata_port *ap)
{
return ioread32(ap->ioaddr.altstatus_addr);
}
static void sata_rcar_set_devctl(struct ata_port *ap, u8 ctl)
{
iowrite32(ctl, ap->ioaddr.ctl_addr);
}
static void sata_rcar_dev_select(struct ata_port *ap, unsigned int device)
{
iowrite32(ATA_DEVICE_OBS, ap->ioaddr.device_addr);
ata_sff_pause(ap); /* needed; also flushes, for mmio */
}
static unsigned int sata_rcar_ata_devchk(struct ata_port *ap,
unsigned int device)
{
struct ata_ioports *ioaddr = &ap->ioaddr;
u8 nsect, lbal;
sata_rcar_dev_select(ap, device);
iowrite32(0x55, ioaddr->nsect_addr);
iowrite32(0xaa, ioaddr->lbal_addr);
iowrite32(0xaa, ioaddr->nsect_addr);
iowrite32(0x55, ioaddr->lbal_addr);
iowrite32(0x55, ioaddr->nsect_addr);
iowrite32(0xaa, ioaddr->lbal_addr);
nsect = ioread32(ioaddr->nsect_addr);
lbal = ioread32(ioaddr->lbal_addr);
if (nsect == 0x55 && lbal == 0xaa)
return 1; /* found a device */
return 0; /* nothing found */
}
static int sata_rcar_wait_after_reset(struct ata_link *link,
unsigned long deadline)
{
struct ata_port *ap = link->ap;
ata_msleep(ap, ATA_WAIT_AFTER_RESET);
return ata_sff_wait_ready(link, deadline);
}
static int sata_rcar_bus_softreset(struct ata_port *ap, unsigned long deadline)
{
struct ata_ioports *ioaddr = &ap->ioaddr;
DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
/* software reset. causes dev0 to be selected */
iowrite32(ap->ctl, ioaddr->ctl_addr);
udelay(20);
iowrite32(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
udelay(20);
iowrite32(ap->ctl, ioaddr->ctl_addr);
ap->last_ctl = ap->ctl;
/* wait the port to become ready */
return sata_rcar_wait_after_reset(&ap->link, deadline);
}
static int sata_rcar_softreset(struct ata_link *link, unsigned int *classes,
unsigned long deadline)
{
struct ata_port *ap = link->ap;
unsigned int devmask = 0;
int rc;
u8 err;
/* determine if device 0 is present */
if (sata_rcar_ata_devchk(ap, 0))
devmask |= 1 << 0;
/* issue bus reset */
DPRINTK("about to softreset, devmask=%x\n", devmask);
rc = sata_rcar_bus_softreset(ap, deadline);
/* if link is occupied, -ENODEV too is an error */
if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
ata_link_err(link, "SRST failed (errno=%d)\n", rc);
return rc;
}
/* determine by signature whether we have ATA or ATAPI devices */
classes[0] = ata_sff_dev_classify(&link->device[0], devmask, &err);
DPRINTK("classes[0]=%u\n", classes[0]);
return 0;
}
static void sata_rcar_tf_load(struct ata_port *ap,
const struct ata_taskfile *tf)
{
struct ata_ioports *ioaddr = &ap->ioaddr;
unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
if (tf->ctl != ap->last_ctl) {
iowrite32(tf->ctl, ioaddr->ctl_addr);
ap->last_ctl = tf->ctl;
ata_wait_idle(ap);
}
if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
iowrite32(tf->hob_feature, ioaddr->feature_addr);
iowrite32(tf->hob_nsect, ioaddr->nsect_addr);
iowrite32(tf->hob_lbal, ioaddr->lbal_addr);
iowrite32(tf->hob_lbam, ioaddr->lbam_addr);
iowrite32(tf->hob_lbah, ioaddr->lbah_addr);
VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
tf->hob_feature,
tf->hob_nsect,
tf->hob_lbal,
tf->hob_lbam,
tf->hob_lbah);
}
if (is_addr) {
iowrite32(tf->feature, ioaddr->feature_addr);
iowrite32(tf->nsect, ioaddr->nsect_addr);
iowrite32(tf->lbal, ioaddr->lbal_addr);
iowrite32(tf->lbam, ioaddr->lbam_addr);
iowrite32(tf->lbah, ioaddr->lbah_addr);
VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
tf->feature,
tf->nsect,
tf->lbal,
tf->lbam,
tf->lbah);
}
if (tf->flags & ATA_TFLAG_DEVICE) {
iowrite32(tf->device, ioaddr->device_addr);
VPRINTK("device 0x%X\n", tf->device);
}
ata_wait_idle(ap);
}
static void sata_rcar_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
{
struct ata_ioports *ioaddr = &ap->ioaddr;
tf->command = sata_rcar_check_status(ap);
tf->feature = ioread32(ioaddr->error_addr);
tf->nsect = ioread32(ioaddr->nsect_addr);
tf->lbal = ioread32(ioaddr->lbal_addr);
tf->lbam = ioread32(ioaddr->lbam_addr);
tf->lbah = ioread32(ioaddr->lbah_addr);
tf->device = ioread32(ioaddr->device_addr);
if (tf->flags & ATA_TFLAG_LBA48) {
iowrite32(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
tf->hob_feature = ioread32(ioaddr->error_addr);
tf->hob_nsect = ioread32(ioaddr->nsect_addr);
tf->hob_lbal = ioread32(ioaddr->lbal_addr);
tf->hob_lbam = ioread32(ioaddr->lbam_addr);
tf->hob_lbah = ioread32(ioaddr->lbah_addr);
iowrite32(tf->ctl, ioaddr->ctl_addr);
ap->last_ctl = tf->ctl;
}
}
static void sata_rcar_exec_command(struct ata_port *ap,
const struct ata_taskfile *tf)
{
DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command);
iowrite32(tf->command, ap->ioaddr.command_addr);
ata_sff_pause(ap);
}
static unsigned int sata_rcar_data_xfer(struct ata_device *dev,
unsigned char *buf,
unsigned int buflen, int rw)
{
struct ata_port *ap = dev->link->ap;
void __iomem *data_addr = ap->ioaddr.data_addr;
unsigned int words = buflen >> 1;
/* Transfer multiple of 2 bytes */
if (rw == READ)
sata_rcar_ioread16_rep(data_addr, buf, words);
else
sata_rcar_iowrite16_rep(data_addr, buf, words);
/* Transfer trailing byte, if any. */
if (unlikely(buflen & 0x01)) {
unsigned char pad[2] = { };
/* Point buf to the tail of buffer */
buf += buflen - 1;
/*
* Use io*16_rep() accessors here as well to avoid pointlessly
* swapping bytes to and from on the big endian machines...
*/
if (rw == READ) {
sata_rcar_ioread16_rep(data_addr, pad, 1);
*buf = pad[0];
} else {
pad[0] = *buf;
sata_rcar_iowrite16_rep(data_addr, pad, 1);
}
words++;
}
return words << 1;
}
static void sata_rcar_drain_fifo(struct ata_queued_cmd *qc)
{
int count;
struct ata_port *ap;
/* We only need to flush incoming data when a command was running */
if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE)
return;
ap = qc->ap;
/* Drain up to 64K of data before we give up this recovery method */
for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ) &&
count < 65536; count += 2)
ioread32(ap->ioaddr.data_addr);
/* Can become DEBUG later */
if (count)
ata_port_dbg(ap, "drained %d bytes to clear DRQ\n", count);
}
static int sata_rcar_scr_read(struct ata_link *link, unsigned int sc_reg,
u32 *val)
{
if (sc_reg > SCR_ACTIVE)
return -EINVAL;
*val = ioread32(link->ap->ioaddr.scr_addr + (sc_reg << 2));
return 0;
}
static int sata_rcar_scr_write(struct ata_link *link, unsigned int sc_reg,
u32 val)
{
if (sc_reg > SCR_ACTIVE)
return -EINVAL;
iowrite32(val, link->ap->ioaddr.scr_addr + (sc_reg << 2));
return 0;
}
static void sata_rcar_bmdma_fill_sg(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
struct ata_bmdma_prd *prd = ap->bmdma_prd;
struct scatterlist *sg;
unsigned int si, pi;
pi = 0;
for_each_sg(qc->sg, sg, qc->n_elem, si) {
u32 addr, sg_len, len;
/*
* Note: h/w doesn't support 64-bit, so we unconditionally
* truncate dma_addr_t to u32.
*/
addr = (u32)sg_dma_address(sg);
sg_len = sg_dma_len(sg);
/* H/w transfer count is only 29 bits long, let's be careful */
while (sg_len) {
len = sg_len;
if (len > 0x1ffffffe)
len = 0x1ffffffe;
prd[pi].addr = cpu_to_le32(addr);
prd[pi].flags_len = cpu_to_le32(len);
VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
pi++;
sg_len -= len;
addr += len;
}
}
/* end-of-table flag */
prd[pi - 1].addr |= cpu_to_le32(SATA_RCAR_DTEND);
}
static void sata_rcar_qc_prep(struct ata_queued_cmd *qc)
{
if (!(qc->flags & ATA_QCFLAG_DMAMAP))
return;
sata_rcar_bmdma_fill_sg(qc);
}
static void sata_rcar_bmdma_setup(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
unsigned int rw = qc->tf.flags & ATA_TFLAG_WRITE;
u32 dmactl;
struct sata_rcar_priv *priv = ap->host->private_data;
/* load PRD table addr. */
mb(); /* make sure PRD table writes are visible to controller */
iowrite32(ap->bmdma_prd_dma, priv->base + ATAPI_DTB_ADR_REG);
/* specify data direction, triple-check start bit is clear */
dmactl = ioread32(priv->base + ATAPI_CONTROL1_REG);
dmactl &= ~(ATAPI_CONTROL1_RW | ATAPI_CONTROL1_STOP);
if (dmactl & ATAPI_CONTROL1_START) {
dmactl &= ~ATAPI_CONTROL1_START;
dmactl |= ATAPI_CONTROL1_STOP;
}
if (!rw)
dmactl |= ATAPI_CONTROL1_RW;
iowrite32(dmactl, priv->base + ATAPI_CONTROL1_REG);
/* issue r/w command */
ap->ops->sff_exec_command(ap, &qc->tf);
}
static void sata_rcar_bmdma_start(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
u32 dmactl;
struct sata_rcar_priv *priv = ap->host->private_data;
/* start host DMA transaction */
dmactl = ioread32(priv->base + ATAPI_CONTROL1_REG);
dmactl |= ATAPI_CONTROL1_START;
iowrite32(dmactl, priv->base + ATAPI_CONTROL1_REG);
}
static void sata_rcar_bmdma_stop(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
struct sata_rcar_priv *priv = ap->host->private_data;
u32 dmactl;
/* force termination of DMA transfer if active */
dmactl = ioread32(priv->base + ATAPI_CONTROL1_REG);
if (dmactl & ATAPI_CONTROL1_START) {
dmactl &= ~ATAPI_CONTROL1_START;
dmactl |= ATAPI_CONTROL1_STOP;
iowrite32(dmactl, priv->base + ATAPI_CONTROL1_REG);
}
/* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
ata_sff_dma_pause(ap);
}
static u8 sata_rcar_bmdma_status(struct ata_port *ap)
{
struct sata_rcar_priv *priv = ap->host->private_data;
u32 status;
u8 host_stat = 0;
status = ioread32(priv->base + ATAPI_STATUS_REG);
if (status & ATAPI_STATUS_DEVINT)
host_stat |= ATA_DMA_INTR;
if (status & ATAPI_STATUS_ACT)
host_stat |= ATA_DMA_ACTIVE;
return host_stat;
}
static struct scsi_host_template sata_rcar_sht = {
ATA_BMDMA_SHT(DRV_NAME),
};
static struct ata_port_operations sata_rcar_port_ops = {
.inherits = &ata_bmdma_port_ops,
.freeze = sata_rcar_freeze,
.thaw = sata_rcar_thaw,
.softreset = sata_rcar_softreset,
.scr_read = sata_rcar_scr_read,
.scr_write = sata_rcar_scr_write,
.sff_dev_select = sata_rcar_dev_select,
.sff_set_devctl = sata_rcar_set_devctl,
.sff_check_status = sata_rcar_check_status,
.sff_check_altstatus = sata_rcar_check_altstatus,
.sff_tf_load = sata_rcar_tf_load,
.sff_tf_read = sata_rcar_tf_read,
.sff_exec_command = sata_rcar_exec_command,
.sff_data_xfer = sata_rcar_data_xfer,
.sff_drain_fifo = sata_rcar_drain_fifo,
.qc_prep = sata_rcar_qc_prep,
.bmdma_setup = sata_rcar_bmdma_setup,
.bmdma_start = sata_rcar_bmdma_start,
.bmdma_stop = sata_rcar_bmdma_stop,
.bmdma_status = sata_rcar_bmdma_status,
};
static int sata_rcar_serr_interrupt(struct ata_port *ap)
{
struct sata_rcar_priv *priv = ap->host->private_data;
struct ata_eh_info *ehi = &ap->link.eh_info;
int freeze = 0;
int handled = 0;
u32 serror;
serror = ioread32(priv->base + SCRSERR_REG);
if (!serror)
return 0;
DPRINTK("SError @host_intr: 0x%x\n", serror);
/* first, analyze and record host port events */
ata_ehi_clear_desc(ehi);
if (serror & (SERR_DEV_XCHG | SERR_PHYRDY_CHG)) {
/* Setup a soft-reset EH action */
ata_ehi_hotplugged(ehi);
ata_ehi_push_desc(ehi, "%s", "hotplug");
freeze = serror & SERR_COMM_WAKE ? 0 : 1;
handled = 1;
}
/* freeze or abort */
if (freeze)
ata_port_freeze(ap);
else
ata_port_abort(ap);
return handled;
}
static int sata_rcar_ata_interrupt(struct ata_port *ap)
{
struct ata_queued_cmd *qc;
int handled = 0;
qc = ata_qc_from_tag(ap, ap->link.active_tag);
if (qc)
handled |= ata_bmdma_port_intr(ap, qc);
return handled;
}
static irqreturn_t sata_rcar_interrupt(int irq, void *dev_instance)
{
struct ata_host *host = dev_instance;
struct sata_rcar_priv *priv = host->private_data;
struct ata_port *ap;
unsigned int handled = 0;
u32 sataintstat;
unsigned long flags;
spin_lock_irqsave(&host->lock, flags);
sataintstat = ioread32(priv->base + SATAINTSTAT_REG);
if (!sataintstat)
goto done;
/* ack */
iowrite32(sataintstat & ~SATA_RCAR_INT_MASK,
priv->base + SATAINTSTAT_REG);
ap = host->ports[0];
if (sataintstat & SATAINTSTAT_ATA)
handled |= sata_rcar_ata_interrupt(ap);
if (sataintstat & SATAINTSTAT_SERR)
handled |= sata_rcar_serr_interrupt(ap);
done:
spin_unlock_irqrestore(&host->lock, flags);
return IRQ_RETVAL(handled);
}
static void sata_rcar_setup_port(struct ata_host *host)
{
struct ata_port *ap = host->ports[0];
struct ata_ioports *ioaddr = &ap->ioaddr;
struct sata_rcar_priv *priv = host->private_data;
ap->ops = &sata_rcar_port_ops;
ap->pio_mask = ATA_PIO4;
ap->udma_mask = ATA_UDMA6;
ap->flags |= ATA_FLAG_SATA;
ioaddr->cmd_addr = priv->base + SDATA_REG;
ioaddr->ctl_addr = priv->base + SSDEVCON_REG;
ioaddr->scr_addr = priv->base + SCRSSTS_REG;
ioaddr->altstatus_addr = ioaddr->ctl_addr;
ioaddr->data_addr = ioaddr->cmd_addr + (ATA_REG_DATA << 2);
ioaddr->error_addr = ioaddr->cmd_addr + (ATA_REG_ERR << 2);
ioaddr->feature_addr = ioaddr->cmd_addr + (ATA_REG_FEATURE << 2);
ioaddr->nsect_addr = ioaddr->cmd_addr + (ATA_REG_NSECT << 2);
ioaddr->lbal_addr = ioaddr->cmd_addr + (ATA_REG_LBAL << 2);
ioaddr->lbam_addr = ioaddr->cmd_addr + (ATA_REG_LBAM << 2);
ioaddr->lbah_addr = ioaddr->cmd_addr + (ATA_REG_LBAH << 2);
ioaddr->device_addr = ioaddr->cmd_addr + (ATA_REG_DEVICE << 2);
ioaddr->status_addr = ioaddr->cmd_addr + (ATA_REG_STATUS << 2);
ioaddr->command_addr = ioaddr->cmd_addr + (ATA_REG_CMD << 2);
}
static void sata_rcar_init_controller(struct ata_host *host)
{
struct sata_rcar_priv *priv = host->private_data;
u32 val;
/* reset and setup phy */
sata_rcar_phy_initialize(priv);
sata_rcar_phy_write(priv, SATAPCTLR1_REG, 0x00200188, 0);
sata_rcar_phy_write(priv, SATAPCTLR1_REG, 0x00200188, 1);
sata_rcar_phy_write(priv, SATAPCTLR3_REG, 0x0000A061, 0);
sata_rcar_phy_write(priv, SATAPCTLR2_REG, 0x20000000, 0);
sata_rcar_phy_write(priv, SATAPCTLR2_REG, 0x20000000, 1);
sata_rcar_phy_write(priv, SATAPCTLR4_REG, 0x28E80000, 0);
/* SATA-IP reset state */
val = ioread32(priv->base + ATAPI_CONTROL1_REG);
val |= ATAPI_CONTROL1_RESET;
iowrite32(val, priv->base + ATAPI_CONTROL1_REG);
/* ISM mode, PRD mode, DTEND flag at bit 0 */
val = ioread32(priv->base + ATAPI_CONTROL1_REG);
val |= ATAPI_CONTROL1_ISM;
val |= ATAPI_CONTROL1_DESE;
val |= ATAPI_CONTROL1_DTA32M;
iowrite32(val, priv->base + ATAPI_CONTROL1_REG);
/* Release the SATA-IP from the reset state */
val = ioread32(priv->base + ATAPI_CONTROL1_REG);
val &= ~ATAPI_CONTROL1_RESET;
iowrite32(val, priv->base + ATAPI_CONTROL1_REG);
/* ack and mask */
iowrite32(0, priv->base + SATAINTSTAT_REG);
iowrite32(0x7ff, priv->base + SATAINTMASK_REG);
/* enable interrupts */
iowrite32(ATAPI_INT_ENABLE_SATAINT, priv->base + ATAPI_INT_ENABLE_REG);
}
static int sata_rcar_probe(struct platform_device *pdev)
{
struct ata_host *host;
struct sata_rcar_priv *priv;
struct resource *mem;
int irq;
int ret = 0;
mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (mem == NULL)
return -EINVAL;
irq = platform_get_irq(pdev, 0);
if (irq <= 0)
return -EINVAL;
priv = devm_kzalloc(&pdev->dev, sizeof(struct sata_rcar_priv),
GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(priv->clk)) {
dev_err(&pdev->dev, "failed to get access to sata clock\n");
return PTR_ERR(priv->clk);
}
clk_enable(priv->clk);
host = ata_host_alloc(&pdev->dev, 1);
if (!host) {
dev_err(&pdev->dev, "ata_host_alloc failed\n");
ret = -ENOMEM;
goto cleanup;
}
host->private_data = priv;
priv->base = devm_request_and_ioremap(&pdev->dev, mem);
if (!priv->base) {
ret = -EADDRNOTAVAIL;
goto cleanup;
}
/* setup port */
sata_rcar_setup_port(host);
/* initialize host controller */
sata_rcar_init_controller(host);
ret = ata_host_activate(host, irq, sata_rcar_interrupt, 0,
&sata_rcar_sht);
if (!ret)
return 0;
cleanup:
clk_disable(priv->clk);
return ret;
}
static int sata_rcar_remove(struct platform_device *pdev)
{
struct ata_host *host = dev_get_drvdata(&pdev->dev);
struct sata_rcar_priv *priv = host->private_data;
ata_host_detach(host);
/* disable interrupts */
iowrite32(0, priv->base + ATAPI_INT_ENABLE_REG);
/* ack and mask */
iowrite32(0, priv->base + SATAINTSTAT_REG);
iowrite32(0x7ff, priv->base + SATAINTMASK_REG);
clk_disable(priv->clk);
return 0;
}
#ifdef CONFIG_PM
static int sata_rcar_suspend(struct device *dev)
{
struct ata_host *host = dev_get_drvdata(dev);
struct sata_rcar_priv *priv = host->private_data;
int ret;
ret = ata_host_suspend(host, PMSG_SUSPEND);
if (!ret) {
/* disable interrupts */
iowrite32(0, priv->base + ATAPI_INT_ENABLE_REG);
/* mask */
iowrite32(0x7ff, priv->base + SATAINTMASK_REG);
clk_disable(priv->clk);
}
return ret;
}
static int sata_rcar_resume(struct device *dev)
{
struct ata_host *host = dev_get_drvdata(dev);
struct sata_rcar_priv *priv = host->private_data;
clk_enable(priv->clk);
/* ack and mask */
iowrite32(0, priv->base + SATAINTSTAT_REG);
iowrite32(0x7ff, priv->base + SATAINTMASK_REG);
/* enable interrupts */
iowrite32(ATAPI_INT_ENABLE_SATAINT, priv->base + ATAPI_INT_ENABLE_REG);
ata_host_resume(host);
return 0;
}
static const struct dev_pm_ops sata_rcar_pm_ops = {
.suspend = sata_rcar_suspend,
.resume = sata_rcar_resume,
};
#endif
static struct of_device_id sata_rcar_match[] = {
{ .compatible = "renesas,rcar-sata", },
{},
};
MODULE_DEVICE_TABLE(of, sata_rcar_match);
static struct platform_driver sata_rcar_driver = {
.probe = sata_rcar_probe,
.remove = sata_rcar_remove,
.driver = {
.name = DRV_NAME,
.owner = THIS_MODULE,
.of_match_table = sata_rcar_match,
#ifdef CONFIG_PM
.pm = &sata_rcar_pm_ops,
#endif
},
};
module_platform_driver(sata_rcar_driver);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Vladimir Barinov");
MODULE_DESCRIPTION("Renesas R-Car SATA controller low level driver");
...@@ -2617,3 +2617,17 @@ void scsi_kunmap_atomic_sg(void *virt) ...@@ -2617,3 +2617,17 @@ void scsi_kunmap_atomic_sg(void *virt)
kunmap_atomic(virt); kunmap_atomic(virt);
} }
EXPORT_SYMBOL(scsi_kunmap_atomic_sg); EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
void sdev_disable_disk_events(struct scsi_device *sdev)
{
atomic_inc(&sdev->disk_events_disable_depth);
}
EXPORT_SYMBOL(sdev_disable_disk_events);
void sdev_enable_disk_events(struct scsi_device *sdev)
{
if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
return;
atomic_dec(&sdev->disk_events_disable_depth);
}
EXPORT_SYMBOL(sdev_enable_disk_events);
...@@ -45,6 +45,7 @@ ...@@ -45,6 +45,7 @@
#include <linux/blkdev.h> #include <linux/blkdev.h>
#include <linux/mutex.h> #include <linux/mutex.h>
#include <linux/slab.h> #include <linux/slab.h>
#include <linux/pm_runtime.h>
#include <asm/uaccess.h> #include <asm/uaccess.h>
#include <scsi/scsi.h> #include <scsi/scsi.h>
...@@ -79,6 +80,11 @@ static DEFINE_MUTEX(sr_mutex); ...@@ -79,6 +80,11 @@ static DEFINE_MUTEX(sr_mutex);
static int sr_probe(struct device *); static int sr_probe(struct device *);
static int sr_remove(struct device *); static int sr_remove(struct device *);
static int sr_done(struct scsi_cmnd *); static int sr_done(struct scsi_cmnd *);
static int sr_runtime_suspend(struct device *dev);
static struct dev_pm_ops sr_pm_ops = {
.runtime_suspend = sr_runtime_suspend,
};
static struct scsi_driver sr_template = { static struct scsi_driver sr_template = {
.owner = THIS_MODULE, .owner = THIS_MODULE,
...@@ -86,6 +92,7 @@ static struct scsi_driver sr_template = { ...@@ -86,6 +92,7 @@ static struct scsi_driver sr_template = {
.name = "sr", .name = "sr",
.probe = sr_probe, .probe = sr_probe,
.remove = sr_remove, .remove = sr_remove,
.pm = &sr_pm_ops,
}, },
.done = sr_done, .done = sr_done,
}; };
...@@ -131,6 +138,16 @@ static inline struct scsi_cd *scsi_cd(struct gendisk *disk) ...@@ -131,6 +138,16 @@ static inline struct scsi_cd *scsi_cd(struct gendisk *disk)
return container_of(disk->private_data, struct scsi_cd, driver); return container_of(disk->private_data, struct scsi_cd, driver);
} }
static int sr_runtime_suspend(struct device *dev)
{
struct scsi_cd *cd = dev_get_drvdata(dev);
if (cd->media_present)
return -EBUSY;
else
return 0;
}
/* /*
* The get and put routines for the struct scsi_cd. Note this entity * The get and put routines for the struct scsi_cd. Note this entity
* has a scsi_device pointer and owns a reference to this. * has a scsi_device pointer and owns a reference to this.
...@@ -146,7 +163,8 @@ static inline struct scsi_cd *scsi_cd_get(struct gendisk *disk) ...@@ -146,7 +163,8 @@ static inline struct scsi_cd *scsi_cd_get(struct gendisk *disk)
kref_get(&cd->kref); kref_get(&cd->kref);
if (scsi_device_get(cd->device)) if (scsi_device_get(cd->device))
goto out_put; goto out_put;
goto out; if (!scsi_autopm_get_device(cd->device))
goto out;
out_put: out_put:
kref_put(&cd->kref, sr_kref_release); kref_put(&cd->kref, sr_kref_release);
...@@ -162,6 +180,7 @@ static void scsi_cd_put(struct scsi_cd *cd) ...@@ -162,6 +180,7 @@ static void scsi_cd_put(struct scsi_cd *cd)
mutex_lock(&sr_ref_mutex); mutex_lock(&sr_ref_mutex);
kref_put(&cd->kref, sr_kref_release); kref_put(&cd->kref, sr_kref_release);
scsi_autopm_put_device(sdev);
scsi_device_put(sdev); scsi_device_put(sdev);
mutex_unlock(&sr_ref_mutex); mutex_unlock(&sr_ref_mutex);
} }
...@@ -540,6 +559,8 @@ static int sr_block_ioctl(struct block_device *bdev, fmode_t mode, unsigned cmd, ...@@ -540,6 +559,8 @@ static int sr_block_ioctl(struct block_device *bdev, fmode_t mode, unsigned cmd,
void __user *argp = (void __user *)arg; void __user *argp = (void __user *)arg;
int ret; int ret;
scsi_autopm_get_device(cd->device);
mutex_lock(&sr_mutex); mutex_lock(&sr_mutex);
/* /*
...@@ -571,6 +592,7 @@ static int sr_block_ioctl(struct block_device *bdev, fmode_t mode, unsigned cmd, ...@@ -571,6 +592,7 @@ static int sr_block_ioctl(struct block_device *bdev, fmode_t mode, unsigned cmd,
out: out:
mutex_unlock(&sr_mutex); mutex_unlock(&sr_mutex);
scsi_autopm_put_device(cd->device);
return ret; return ret;
} }
...@@ -578,7 +600,17 @@ static unsigned int sr_block_check_events(struct gendisk *disk, ...@@ -578,7 +600,17 @@ static unsigned int sr_block_check_events(struct gendisk *disk,
unsigned int clearing) unsigned int clearing)
{ {
struct scsi_cd *cd = scsi_cd(disk); struct scsi_cd *cd = scsi_cd(disk);
return cdrom_check_events(&cd->cdi, clearing); unsigned int ret;
if (atomic_read(&cd->device->disk_events_disable_depth) == 0) {
scsi_autopm_get_device(cd->device);
ret = cdrom_check_events(&cd->cdi, clearing);
scsi_autopm_put_device(cd->device);
} else {
ret = 0;
}
return ret;
} }
static int sr_block_revalidate_disk(struct gendisk *disk) static int sr_block_revalidate_disk(struct gendisk *disk)
...@@ -586,12 +618,16 @@ static int sr_block_revalidate_disk(struct gendisk *disk) ...@@ -586,12 +618,16 @@ static int sr_block_revalidate_disk(struct gendisk *disk)
struct scsi_cd *cd = scsi_cd(disk); struct scsi_cd *cd = scsi_cd(disk);
struct scsi_sense_hdr sshdr; struct scsi_sense_hdr sshdr;
scsi_autopm_get_device(cd->device);
/* if the unit is not ready, nothing more to do */ /* if the unit is not ready, nothing more to do */
if (scsi_test_unit_ready(cd->device, SR_TIMEOUT, MAX_RETRIES, &sshdr)) if (scsi_test_unit_ready(cd->device, SR_TIMEOUT, MAX_RETRIES, &sshdr))
return 0; goto out;
sr_cd_check(&cd->cdi); sr_cd_check(&cd->cdi);
get_sectorsize(cd); get_sectorsize(cd);
out:
scsi_autopm_put_device(cd->device);
return 0; return 0;
} }
...@@ -718,6 +754,8 @@ static int sr_probe(struct device *dev) ...@@ -718,6 +754,8 @@ static int sr_probe(struct device *dev)
sdev_printk(KERN_DEBUG, sdev, sdev_printk(KERN_DEBUG, sdev,
"Attached scsi CD-ROM %s\n", cd->cdi.name); "Attached scsi CD-ROM %s\n", cd->cdi.name);
scsi_autopm_put_device(cd->device);
return 0; return 0;
fail_put: fail_put:
...@@ -965,6 +1003,8 @@ static int sr_remove(struct device *dev) ...@@ -965,6 +1003,8 @@ static int sr_remove(struct device *dev)
{ {
struct scsi_cd *cd = dev_get_drvdata(dev); struct scsi_cd *cd = dev_get_drvdata(dev);
scsi_autopm_get_device(cd->device);
blk_queue_prep_rq(cd->device->request_queue, scsi_prep_fn); blk_queue_prep_rq(cd->device->request_queue, scsi_prep_fn);
del_gendisk(cd->disk); del_gendisk(cd->disk);
......
...@@ -619,6 +619,9 @@ struct ata_device { ...@@ -619,6 +619,9 @@ struct ata_device {
#ifdef CONFIG_ATA_ACPI #ifdef CONFIG_ATA_ACPI
union acpi_object *gtf_cache; union acpi_object *gtf_cache;
unsigned int gtf_filter; unsigned int gtf_filter;
#endif
#ifdef CONFIG_SATA_ZPODD
void *zpodd;
#endif #endif
struct device tdev; struct device tdev;
/* n_sector is CLEAR_BEGIN, read comment above CLEAR_BEGIN */ /* n_sector is CLEAR_BEGIN, read comment above CLEAR_BEGIN */
......
...@@ -157,10 +157,11 @@ struct scsi_device { ...@@ -157,10 +157,11 @@ struct scsi_device {
unsigned no_read_capacity_16:1; /* Avoid READ_CAPACITY_16 cmds */ unsigned no_read_capacity_16:1; /* Avoid READ_CAPACITY_16 cmds */
unsigned try_rc_10_first:1; /* Try READ_CAPACACITY_10 first */ unsigned try_rc_10_first:1; /* Try READ_CAPACACITY_10 first */
unsigned is_visible:1; /* is the device visible in sysfs */ unsigned is_visible:1; /* is the device visible in sysfs */
unsigned can_power_off:1; /* Device supports runtime power off */
unsigned wce_default_on:1; /* Cache is ON by default */ unsigned wce_default_on:1; /* Cache is ON by default */
unsigned no_dif:1; /* T10 PI (DIF) should be disabled */ unsigned no_dif:1; /* T10 PI (DIF) should be disabled */
atomic_t disk_events_disable_depth; /* disable depth for disk events */
DECLARE_BITMAP(supported_events, SDEV_EVT_MAXBITS); /* supported events */ DECLARE_BITMAP(supported_events, SDEV_EVT_MAXBITS); /* supported events */
struct list_head event_list; /* asserted events */ struct list_head event_list; /* asserted events */
struct work_struct event_work; struct work_struct event_work;
...@@ -397,6 +398,8 @@ extern int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd, ...@@ -397,6 +398,8 @@ extern int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
int data_direction, void *buffer, unsigned bufflen, int data_direction, void *buffer, unsigned bufflen,
struct scsi_sense_hdr *, int timeout, int retries, struct scsi_sense_hdr *, int timeout, int retries,
int *resid); int *resid);
extern void sdev_disable_disk_events(struct scsi_device *sdev);
extern void sdev_enable_disk_events(struct scsi_device *sdev);
#ifdef CONFIG_PM_RUNTIME #ifdef CONFIG_PM_RUNTIME
extern int scsi_autopm_get_device(struct scsi_device *); extern int scsi_autopm_get_device(struct scsi_device *);
......
...@@ -908,5 +908,39 @@ struct mode_page_header { ...@@ -908,5 +908,39 @@ struct mode_page_header {
__be16 desc_length; __be16 desc_length;
}; };
/* removable medium feature descriptor */
struct rm_feature_desc {
__be16 feature_code;
#if defined(__BIG_ENDIAN_BITFIELD)
__u8 reserved1:2;
__u8 feature_version:4;
__u8 persistent:1;
__u8 curr:1;
#elif defined(__LITTLE_ENDIAN_BITFIELD)
__u8 curr:1;
__u8 persistent:1;
__u8 feature_version:4;
__u8 reserved1:2;
#endif
__u8 add_len;
#if defined(__BIG_ENDIAN_BITFIELD)
__u8 mech_type:3;
__u8 load:1;
__u8 eject:1;
__u8 pvnt_jmpr:1;
__u8 dbml:1;
__u8 lock:1;
#elif defined(__LITTLE_ENDIAN_BITFIELD)
__u8 lock:1;
__u8 dbml:1;
__u8 pvnt_jmpr:1;
__u8 eject:1;
__u8 load:1;
__u8 mech_type:3;
#endif
__u8 reserved2;
__u8 reserved3;
__u8 reserved4;
};
#endif /* _UAPI_LINUX_CDROM_H */ #endif /* _UAPI_LINUX_CDROM_H */
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment