Commit d9f0d660 authored by David S. Miller's avatar David S. Miller

Merge branch '100GbE' of git://git.kernel.org/pub/scm/linux/kernel/git/jkirsher/next-queue

Jeff Kirsher says:

====================
100GbE Intel Wired LAN Driver Updates 2020-05-28

This series contains updates to the ice driver only.

Anirudh (Ani) adds a poll for reset completion before proceeding with
driver initialization when the DDP package fails to load and the firmware
issues a core reset.

Jake cleans up unnecessary code, since ice_set_dflt_vsi_ctx() performs a
memset to clear the info from the context structures.  Fixed a potential
double free during probe unrolling after a failure.  Also fixed a
potential NULL pointer dereference upon register_netdev() failure.

Tony makes two functions static which are not called outside of their
file.

Brett refactors the ice_ena_vf_mappings(), which was doing the VF's MSIx
and queue mapping in one function which was hard to digest.  So create a
new function to handle the enabling MSIx mappings and another function
to handle the enabling of queue mappings.  Simplify the code flow in
ice_sriov_configure().  Created a helper function for clearing
VPGEN_VFRTRIG register, as this needs to be done on reset to notify the
VF that we are done resetting it.  Fixed the initialization/creation and
reset flows, which was unnecessarily complicated, so separate the two
flows into their own functions.  Renamed VF initialization functions to
make it more clear what they do and why.  Added functionality to set the
VF trust mode bit on reset.  Added helper functions to rebuild the VLAN
and MAC configurations when resetting a VF.  Refactored how the VF reset
is handled to prevent VF reset timeouts.

Paul cleaned up code not needed during a CORER/GLOBR reset.
====================
Signed-off-by: default avatarDavid S. Miller <davem@davemloft.net>
parents 370c63fc 3726cce2
......@@ -938,7 +938,6 @@ static int ice_vsi_init(struct ice_vsi *vsi, bool init_vsi)
if (!ctxt)
return -ENOMEM;
ctxt->info = vsi->info;
switch (vsi->type) {
case ICE_VSI_CTRL:
case ICE_VSI_LB:
......
......@@ -2428,7 +2428,7 @@ static int ice_cfg_netdev(struct ice_vsi *vsi)
err = register_netdev(vsi->netdev);
if (err)
goto err_destroy_devlink_port;
goto err_free_netdev;
devlink_port_type_eth_set(&pf->devlink_port, vsi->netdev);
......@@ -2439,9 +2439,11 @@ static int ice_cfg_netdev(struct ice_vsi *vsi)
return 0;
err_free_netdev:
free_netdev(vsi->netdev);
vsi->netdev = NULL;
err_destroy_devlink_port:
ice_devlink_destroy_port(pf);
return err;
}
......@@ -3086,6 +3088,9 @@ ice_log_pkg_init(struct ice_hw *hw, enum ice_status *status)
case ICE_AQ_RC_EBADMAN:
case ICE_AQ_RC_EBADBUF:
dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n");
/* poll for reset to complete */
if (ice_check_reset(hw))
dev_err(dev, "Error resetting device. Please reload the driver\n");
return;
default:
break;
......@@ -3415,7 +3420,7 @@ ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent)
if (err) {
dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err);
err = -EIO;
goto err_init_interrupt_unroll;
goto err_init_vsi_unroll;
}
/* In case of MSIX we are going to setup the misc vector right here
......@@ -3508,6 +3513,7 @@ ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent)
ice_free_irq_msix_misc(pf);
err_init_interrupt_unroll:
ice_clear_interrupt_scheme(pf);
err_init_vsi_unroll:
devm_kfree(dev, pf->vsi);
err_init_pf_unroll:
ice_deinit_pf(pf);
......@@ -4891,6 +4897,11 @@ static void ice_update_pf_netdev_link(struct ice_pf *pf)
* ice_rebuild - rebuild after reset
* @pf: PF to rebuild
* @reset_type: type of reset
*
* Do not rebuild VF VSI in this flow because that is already handled via
* ice_reset_all_vfs(). This is because requirements for resetting a VF after a
* PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want
* to reset/rebuild all the VF VSI twice.
*/
static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type)
{
......@@ -4988,14 +4999,6 @@ static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type)
goto err_vsi_rebuild;
}
if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) {
err = ice_vsi_rebuild_by_type(pf, ICE_VSI_VF);
if (err) {
dev_err(dev, "VF VSI rebuild failed: %d\n", err);
goto err_vsi_rebuild;
}
}
/* If Flow Director is active */
if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL);
......
......@@ -172,7 +172,8 @@ void ice_release_nvm(struct ice_hw *hw)
*
* Reads one 16 bit word from the Shadow RAM using the ice_read_sr_word_aq.
*/
enum ice_status ice_read_sr_word(struct ice_hw *hw, u16 offset, u16 *data)
static enum ice_status
ice_read_sr_word(struct ice_hw *hw, u16 offset, u16 *data)
{
enum ice_status status;
......@@ -196,7 +197,7 @@ enum ice_status ice_read_sr_word(struct ice_hw *hw, u16 offset, u16 *data)
* Area (PFA) and returns the TLV pointer and length. The caller can
* use these to read the variable length TLV value.
*/
enum ice_status
static enum ice_status
ice_get_pfa_module_tlv(struct ice_hw *hw, u16 *module_tlv, u16 *module_tlv_len,
u16 module_type)
{
......
......@@ -11,10 +11,6 @@ enum ice_status
ice_read_flat_nvm(struct ice_hw *hw, u32 offset, u32 *length, u8 *data,
bool read_shadow_ram);
enum ice_status
ice_get_pfa_module_tlv(struct ice_hw *hw, u16 *module_tlv, u16 *module_tlv_len,
u16 module_type);
enum ice_status
ice_read_pba_string(struct ice_hw *hw, u8 *pba_num, u32 pba_num_size);
enum ice_status ice_init_nvm(struct ice_hw *hw);
enum ice_status ice_read_sr_word(struct ice_hw *hw, u16 offset, u16 *data);
#endif /* _ICE_NVM_H_ */
......@@ -181,6 +181,26 @@ static void ice_vc_notify_vf_link_state(struct ice_vf *vf)
sizeof(pfe), NULL);
}
/**
* ice_vf_invalidate_vsi - invalidate vsi_idx/vsi_num to remove VSI access
* @vf: VF to remove access to VSI for
*/
static void ice_vf_invalidate_vsi(struct ice_vf *vf)
{
vf->lan_vsi_idx = ICE_NO_VSI;
vf->lan_vsi_num = ICE_NO_VSI;
}
/**
* ice_vf_vsi_release - invalidate the VF's VSI after freeing it
* @vf: invalidate this VF's VSI after freeing it
*/
static void ice_vf_vsi_release(struct ice_vf *vf)
{
ice_vsi_release(vf->pf->vsi[vf->lan_vsi_idx]);
ice_vf_invalidate_vsi(vf);
}
/**
* ice_free_vf_res - Free a VF's resources
* @vf: pointer to the VF info
......@@ -196,10 +216,8 @@ static void ice_free_vf_res(struct ice_vf *vf)
clear_bit(ICE_VF_STATE_INIT, vf->vf_states);
/* free VSI and disconnect it from the parent uplink */
if (vf->lan_vsi_idx) {
ice_vsi_release(pf->vsi[vf->lan_vsi_idx]);
vf->lan_vsi_idx = 0;
vf->lan_vsi_num = 0;
if (vf->lan_vsi_idx != ICE_NO_VSI) {
ice_vf_vsi_release(vf);
vf->num_mac = 0;
}
......@@ -413,10 +431,7 @@ static void ice_trigger_vf_reset(struct ice_vf *vf, bool is_vflr, bool is_pfr)
clear_bit(ICE_VF_STATE_ACTIVE, vf->vf_states);
/* Disable VF's configuration API during reset. The flag is re-enabled
* in ice_alloc_vf_res(), when it's safe again to access VF's VSI.
* It's normally disabled in ice_free_vf_res(), but it's safer
* to do it earlier to give some time to finish to any VF config
* functions that may still be running at this point.
* when it's safe again to access VF's VSI.
*/
clear_bit(ICE_VF_STATE_INIT, vf->vf_states);
......@@ -508,19 +523,40 @@ static int ice_vsi_manage_pvid(struct ice_vsi *vsi, u16 pvid_info, bool enable)
return ret;
}
/**
* ice_vf_get_port_info - Get the VF's port info structure
* @vf: VF used to get the port info structure for
*/
static struct ice_port_info *ice_vf_get_port_info(struct ice_vf *vf)
{
return vf->pf->hw.port_info;
}
/**
* ice_vf_vsi_setup - Set up a VF VSI
* @pf: board private structure
* @pi: pointer to the port_info instance
* @vf_id: defines VF ID to which this VSI connects.
* @vf: VF to setup VSI for
*
* Returns pointer to the successfully allocated VSI struct on success,
* otherwise returns NULL on failure.
*/
static struct ice_vsi *
ice_vf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, u16 vf_id)
static struct ice_vsi *ice_vf_vsi_setup(struct ice_vf *vf)
{
return ice_vsi_setup(pf, pi, ICE_VSI_VF, vf_id);
struct ice_port_info *pi = ice_vf_get_port_info(vf);
struct ice_pf *pf = vf->pf;
struct ice_vsi *vsi;
vsi = ice_vsi_setup(pf, pi, ICE_VSI_VF, vf->vf_id);
if (!vsi) {
dev_err(ice_pf_to_dev(pf), "Failed to create VF VSI\n");
ice_vf_invalidate_vsi(vf);
return NULL;
}
vf->lan_vsi_idx = vsi->idx;
vf->lan_vsi_num = vsi->vsi_num;
return vsi;
}
/**
......@@ -541,165 +577,158 @@ static int ice_calc_vf_first_vector_idx(struct ice_pf *pf, struct ice_vf *vf)
}
/**
* ice_alloc_vsi_res - Setup VF VSI and its resources
* @vf: pointer to the VF structure
* ice_vf_rebuild_host_vlan_cfg - add VLAN 0 filter or rebuild the Port VLAN
* @vf: VF to add MAC filters for
*
* Returns 0 on success, negative value on failure
* Called after a VF VSI has been re-added/rebuilt during reset. The PF driver
* always re-adds either a VLAN 0 or port VLAN based filter after reset.
*/
static int ice_alloc_vsi_res(struct ice_vf *vf)
static int ice_vf_rebuild_host_vlan_cfg(struct ice_vf *vf)
{
struct ice_pf *pf = vf->pf;
u8 broadcast[ETH_ALEN];
struct ice_vsi *vsi;
struct device *dev;
int status = 0;
struct ice_vsi *vsi = vf->pf->vsi[vf->lan_vsi_idx];
struct device *dev = ice_pf_to_dev(vf->pf);
u16 vlan_id = 0;
int err;
dev = ice_pf_to_dev(pf);
/* first vector index is the VFs OICR index */
vf->first_vector_idx = ice_calc_vf_first_vector_idx(pf, vf);
if (vf->port_vlan_info) {
err = ice_vsi_manage_pvid(vsi, vf->port_vlan_info, true);
if (err) {
dev_err(dev, "failed to configure port VLAN via VSI parameters for VF %u, error %d\n",
vf->vf_id, err);
return err;
}
vsi = ice_vf_vsi_setup(pf, pf->hw.port_info, vf->vf_id);
if (!vsi) {
dev_err(dev, "Failed to create VF VSI\n");
return -ENOMEM;
vlan_id = vf->port_vlan_info & VLAN_VID_MASK;
}
vf->lan_vsi_idx = vsi->idx;
vf->lan_vsi_num = vsi->vsi_num;
/* vlan_id will either be 0 or the port VLAN number */
err = ice_vsi_add_vlan(vsi, vlan_id, ICE_FWD_TO_VSI);
if (err) {
dev_err(dev, "failed to add %s VLAN %u filter for VF %u, error %d\n",
vf->port_vlan_info ? "port" : "", vlan_id, vf->vf_id,
err);
return err;
}
/* Check if port VLAN exist before, and restore it accordingly */
if (vf->port_vlan_info) {
ice_vsi_manage_pvid(vsi, vf->port_vlan_info, true);
if (ice_vsi_add_vlan(vsi, vf->port_vlan_info & VLAN_VID_MASK,
ICE_FWD_TO_VSI))
dev_warn(ice_pf_to_dev(pf), "Failed to add Port VLAN %d filter for VF %d\n",
vf->port_vlan_info & VLAN_VID_MASK, vf->vf_id);
} else {
/* set VLAN 0 filter by default when no port VLAN is
* enabled. If a port VLAN is enabled we don't want
* untagged broadcast/multicast traffic seen on the VF
* interface.
return 0;
}
/**
* ice_vf_rebuild_host_mac_cfg - add broadcast and the VF's perm_addr/LAA
* @vf: VF to add MAC filters for
*
* Called after a VF VSI has been re-added/rebuilt during reset. The PF driver
* always re-adds a broadcast filter and the VF's perm_addr/LAA after reset.
*/
if (ice_vsi_add_vlan(vsi, 0, ICE_FWD_TO_VSI))
dev_warn(ice_pf_to_dev(pf), "Failed to add VLAN 0 filter for VF %d, MDD events will trigger. Reset the VF, disable spoofchk, or enable 8021q module on the guest\n",
vf->vf_id);
static int ice_vf_rebuild_host_mac_cfg(struct ice_vf *vf)
{
struct ice_vsi *vsi = vf->pf->vsi[vf->lan_vsi_idx];
struct device *dev = ice_pf_to_dev(vf->pf);
enum ice_status status;
u8 broadcast[ETH_ALEN];
eth_broadcast_addr(broadcast);
status = ice_fltr_add_mac(vsi, broadcast, ICE_FWD_TO_VSI);
if (status) {
dev_err(dev, "failed to add broadcast MAC filter for VF %u, error %s\n",
vf->vf_id, ice_stat_str(status));
return ice_status_to_errno(status);
}
vf->num_mac++;
if (is_valid_ether_addr(vf->dflt_lan_addr.addr)) {
status = ice_fltr_add_mac(vsi, vf->dflt_lan_addr.addr,
ICE_FWD_TO_VSI);
if (status)
goto ice_alloc_vsi_res_exit;
if (status) {
dev_err(dev, "failed to add default unicast MAC filter %pM for VF %u, error %s\n",
&vf->dflt_lan_addr.addr[0], vf->vf_id,
ice_stat_str(status));
return ice_status_to_errno(status);
}
vf->num_mac++;
}
eth_broadcast_addr(broadcast);
status = ice_fltr_add_mac(vsi, broadcast, ICE_FWD_TO_VSI);
if (status)
dev_err(dev, "could not add mac filters error %d\n",
status);
else
vf->num_mac = 1;
/* Clear this bit after VF initialization since we shouldn't reclaim
* and reassign interrupts for synchronous or asynchronous VFR events.
* We don't want to reconfigure interrupts since AVF driver doesn't
* expect vector assignment to be changed unless there is a request for
* more vectors.
*/
ice_alloc_vsi_res_exit:
return status;
return 0;
}
/**
* ice_alloc_vf_res - Allocate VF resources
* @vf: pointer to the VF structure
* ice_vf_set_host_trust_cfg - set trust setting based on pre-reset value
* @vf: VF to configure trust setting for
*/
static int ice_alloc_vf_res(struct ice_vf *vf)
static void ice_vf_set_host_trust_cfg(struct ice_vf *vf)
{
struct ice_pf *pf = vf->pf;
int tx_rx_queue_left;
int status;
/* Update number of VF queues, in case VF had requested for queue
* changes
*/
tx_rx_queue_left = min_t(int, ice_get_avail_txq_count(pf),
ice_get_avail_rxq_count(pf));
tx_rx_queue_left += pf->num_qps_per_vf;
if (vf->num_req_qs && vf->num_req_qs <= tx_rx_queue_left &&
vf->num_req_qs != vf->num_vf_qs)
vf->num_vf_qs = vf->num_req_qs;
/* setup VF VSI and necessary resources */
status = ice_alloc_vsi_res(vf);
if (status)
goto ice_alloc_vf_res_exit;
if (vf->trusted)
set_bit(ICE_VIRTCHNL_VF_CAP_PRIVILEGE, &vf->vf_caps);
else
clear_bit(ICE_VIRTCHNL_VF_CAP_PRIVILEGE, &vf->vf_caps);
/* VF is now completely initialized */
set_bit(ICE_VF_STATE_INIT, vf->vf_states);
return status;
ice_alloc_vf_res_exit:
ice_free_vf_res(vf);
return status;
}
/**
* ice_ena_vf_mappings
* @vf: pointer to the VF structure
* ice_ena_vf_msix_mappings - enable VF MSIX mappings in hardware
* @vf: VF to enable MSIX mappings for
*
* Enable VF vectors and queues allocation by writing the details into
* respective registers.
* Some of the registers need to be indexed/configured using hardware global
* device values and other registers need 0-based values, which represent PF
* based values.
*/
static void ice_ena_vf_mappings(struct ice_vf *vf)
static void ice_ena_vf_msix_mappings(struct ice_vf *vf)
{
int abs_vf_id, abs_first, abs_last;
int device_based_first_msix, device_based_last_msix;
int pf_based_first_msix, pf_based_last_msix, v;
struct ice_pf *pf = vf->pf;
struct ice_vsi *vsi;
struct device *dev;
int first, last, v;
int device_based_vf_id;
struct ice_hw *hw;
u32 reg;
dev = ice_pf_to_dev(pf);
hw = &pf->hw;
vsi = pf->vsi[vf->lan_vsi_idx];
first = vf->first_vector_idx;
last = (first + pf->num_msix_per_vf) - 1;
abs_first = first + pf->hw.func_caps.common_cap.msix_vector_first_id;
abs_last = (abs_first + pf->num_msix_per_vf) - 1;
abs_vf_id = vf->vf_id + hw->func_caps.vf_base_id;
/* VF Vector allocation */
reg = (((abs_first << VPINT_ALLOC_FIRST_S) & VPINT_ALLOC_FIRST_M) |
((abs_last << VPINT_ALLOC_LAST_S) & VPINT_ALLOC_LAST_M) |
VPINT_ALLOC_VALID_M);
pf_based_first_msix = vf->first_vector_idx;
pf_based_last_msix = (pf_based_first_msix + pf->num_msix_per_vf) - 1;
device_based_first_msix = pf_based_first_msix +
pf->hw.func_caps.common_cap.msix_vector_first_id;
device_based_last_msix =
(device_based_first_msix + pf->num_msix_per_vf) - 1;
device_based_vf_id = vf->vf_id + hw->func_caps.vf_base_id;
reg = (((device_based_first_msix << VPINT_ALLOC_FIRST_S) &
VPINT_ALLOC_FIRST_M) |
((device_based_last_msix << VPINT_ALLOC_LAST_S) &
VPINT_ALLOC_LAST_M) | VPINT_ALLOC_VALID_M);
wr32(hw, VPINT_ALLOC(vf->vf_id), reg);
reg = (((abs_first << VPINT_ALLOC_PCI_FIRST_S)
reg = (((device_based_first_msix << VPINT_ALLOC_PCI_FIRST_S)
& VPINT_ALLOC_PCI_FIRST_M) |
((abs_last << VPINT_ALLOC_PCI_LAST_S) & VPINT_ALLOC_PCI_LAST_M) |
VPINT_ALLOC_PCI_VALID_M);
((device_based_last_msix << VPINT_ALLOC_PCI_LAST_S) &
VPINT_ALLOC_PCI_LAST_M) | VPINT_ALLOC_PCI_VALID_M);
wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), reg);
/* map the interrupts to its functions */
for (v = first; v <= last; v++) {
reg = (((abs_vf_id << GLINT_VECT2FUNC_VF_NUM_S) &
for (v = pf_based_first_msix; v <= pf_based_last_msix; v++) {
reg = (((device_based_vf_id << GLINT_VECT2FUNC_VF_NUM_S) &
GLINT_VECT2FUNC_VF_NUM_M) |
((hw->pf_id << GLINT_VECT2FUNC_PF_NUM_S) &
GLINT_VECT2FUNC_PF_NUM_M));
wr32(hw, GLINT_VECT2FUNC(v), reg);
}
/* Map mailbox interrupt. We put an explicit 0 here to remind us that
* VF admin queue interrupts will go to VF MSI-X vector 0.
/* Map mailbox interrupt to VF MSI-X vector 0 */
wr32(hw, VPINT_MBX_CTL(device_based_vf_id), VPINT_MBX_CTL_CAUSE_ENA_M);
}
/**
* ice_ena_vf_q_mappings - enable Rx/Tx queue mappings for a VF
* @vf: VF to enable the mappings for
* @max_txq: max Tx queues allowed on the VF's VSI
* @max_rxq: max Rx queues allowed on the VF's VSI
*/
wr32(hw, VPINT_MBX_CTL(abs_vf_id), VPINT_MBX_CTL_CAUSE_ENA_M | 0);
static void ice_ena_vf_q_mappings(struct ice_vf *vf, u16 max_txq, u16 max_rxq)
{
struct ice_vsi *vsi = vf->pf->vsi[vf->lan_vsi_idx];
struct device *dev = ice_pf_to_dev(vf->pf);
struct ice_hw *hw = &vf->pf->hw;
u32 reg;
/* set regardless of mapping mode */
wr32(hw, VPLAN_TXQ_MAPENA(vf->vf_id), VPLAN_TXQ_MAPENA_TX_ENA_M);
......@@ -711,7 +740,7 @@ static void ice_ena_vf_mappings(struct ice_vf *vf)
*/
reg = (((vsi->txq_map[0] << VPLAN_TX_QBASE_VFFIRSTQ_S) &
VPLAN_TX_QBASE_VFFIRSTQ_M) |
(((vsi->alloc_txq - 1) << VPLAN_TX_QBASE_VFNUMQ_S) &
(((max_txq - 1) << VPLAN_TX_QBASE_VFNUMQ_S) &
VPLAN_TX_QBASE_VFNUMQ_M));
wr32(hw, VPLAN_TX_QBASE(vf->vf_id), reg);
} else {
......@@ -729,7 +758,7 @@ static void ice_ena_vf_mappings(struct ice_vf *vf)
*/
reg = (((vsi->rxq_map[0] << VPLAN_RX_QBASE_VFFIRSTQ_S) &
VPLAN_RX_QBASE_VFFIRSTQ_M) |
(((vsi->alloc_txq - 1) << VPLAN_RX_QBASE_VFNUMQ_S) &
(((max_rxq - 1) << VPLAN_RX_QBASE_VFNUMQ_S) &
VPLAN_RX_QBASE_VFNUMQ_M));
wr32(hw, VPLAN_RX_QBASE(vf->vf_id), reg);
} else {
......@@ -737,6 +766,18 @@ static void ice_ena_vf_mappings(struct ice_vf *vf)
}
}
/**
* ice_ena_vf_mappings - enable VF MSIX and queue mapping
* @vf: pointer to the VF structure
*/
static void ice_ena_vf_mappings(struct ice_vf *vf)
{
struct ice_vsi *vsi = vf->pf->vsi[vf->lan_vsi_idx];
ice_ena_vf_msix_mappings(vf);
ice_ena_vf_q_mappings(vf, vsi->alloc_txq, vsi->alloc_rxq);
}
/**
* ice_determine_res
* @pf: pointer to the PF structure
......@@ -935,51 +976,18 @@ static int ice_set_per_vf_res(struct ice_pf *pf)
}
/**
* ice_cleanup_and_realloc_vf - Clean up VF and reallocate resources after reset
* @vf: pointer to the VF structure
*
* Cleanup a VF after the hardware reset is finished. Expects the caller to
* have verified whether the reset is finished properly, and ensure the
* minimum amount of wait time has passed. Reallocate VF resources back to make
* VF state active
* ice_clear_vf_reset_trigger - enable VF to access hardware
* @vf: VF to enabled hardware access for
*/
static void ice_cleanup_and_realloc_vf(struct ice_vf *vf)
static void ice_clear_vf_reset_trigger(struct ice_vf *vf)
{
struct ice_pf *pf = vf->pf;
struct ice_hw *hw;
struct ice_hw *hw = &vf->pf->hw;
u32 reg;
hw = &pf->hw;
/* PF software completes the flow by notifying VF that reset flow is
* completed. This is done by enabling hardware by clearing the reset
* bit in the VPGEN_VFRTRIG reg and setting VFR_STATE in the VFGEN_RSTAT
* register to VFR completed (done at the end of this function)
* By doing this we allow HW to access VF memory at any point. If we
* did it any sooner, HW could access memory while it was being freed
* in ice_free_vf_res(), causing an IOMMU fault.
*
* On the other hand, this needs to be done ASAP, because the VF driver
* is waiting for this to happen and may report a timeout. It's
* harmless, but it gets logged into Guest OS kernel log, so best avoid
* it.
*/
reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id));
reg &= ~VPGEN_VFRTRIG_VFSWR_M;
wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg);
/* reallocate VF resources to finish resetting the VSI state */
if (!ice_alloc_vf_res(vf)) {
ice_ena_vf_mappings(vf);
set_bit(ICE_VF_STATE_ACTIVE, vf->vf_states);
clear_bit(ICE_VF_STATE_DIS, vf->vf_states);
}
/* Tell the VF driver the reset is done. This needs to be done only
* after VF has been fully initialized, because the VF driver may
* request resources immediately after setting this flag.
*/
wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE);
ice_flush(hw);
}
/**
......@@ -1023,44 +1031,124 @@ ice_vf_set_vsi_promisc(struct ice_vf *vf, struct ice_vsi *vsi, u8 promisc_m,
return status;
}
static void ice_vf_clear_counters(struct ice_vf *vf)
{
struct ice_vsi *vsi = vf->pf->vsi[vf->lan_vsi_idx];
vf->num_mac = 0;
vsi->num_vlan = 0;
memset(&vf->mdd_tx_events, 0, sizeof(vf->mdd_tx_events));
memset(&vf->mdd_rx_events, 0, sizeof(vf->mdd_rx_events));
}
/**
* ice_config_res_vfs - Finalize allocation of VFs resources in one go
* @pf: pointer to the PF structure
* ice_vf_pre_vsi_rebuild - tasks to be done prior to VSI rebuild
* @vf: VF to perform pre VSI rebuild tasks
*
* This function is being called as last part of resetting all VFs, or when
* configuring VFs for the first time, where there is no resource to be freed
* Returns true if resources were properly allocated for all VFs, and false
* otherwise.
* These tasks are items that don't need to be amortized since they are most
* likely called in a for loop with all VF(s) in the reset_all_vfs() case.
*/
static bool ice_config_res_vfs(struct ice_pf *pf)
static void ice_vf_pre_vsi_rebuild(struct ice_vf *vf)
{
struct device *dev = ice_pf_to_dev(pf);
struct ice_hw *hw = &pf->hw;
int v;
ice_vf_clear_counters(vf);
ice_clear_vf_reset_trigger(vf);
}
if (ice_set_per_vf_res(pf)) {
dev_err(dev, "Cannot allocate VF resources, try with fewer number of VFs\n");
return false;
}
/**
* ice_vf_rebuild_host_cfg - host admin configuration is persistent across reset
* @vf: VF to rebuild host configuration on
*/
static void ice_vf_rebuild_host_cfg(struct ice_vf *vf)
{
struct device *dev = ice_pf_to_dev(vf->pf);
/* rearm global interrupts */
if (test_and_clear_bit(__ICE_OICR_INTR_DIS, pf->state))
ice_irq_dynamic_ena(hw, NULL, NULL);
ice_vf_set_host_trust_cfg(vf);
/* Finish resetting each VF and allocate resources */
ice_for_each_vf(pf, v) {
struct ice_vf *vf = &pf->vf[v];
if (ice_vf_rebuild_host_mac_cfg(vf))
dev_err(dev, "failed to rebuild default MAC configuration for VF %d\n",
vf->vf_id);
vf->num_vf_qs = pf->num_qps_per_vf;
dev_dbg(dev, "VF-id %d has %d queues configured\n", vf->vf_id,
vf->num_vf_qs);
ice_cleanup_and_realloc_vf(vf);
if (ice_vf_rebuild_host_vlan_cfg(vf))
dev_err(dev, "failed to rebuild VLAN configuration for VF %u\n",
vf->vf_id);
}
/**
* ice_vf_rebuild_vsi_with_release - release and setup the VF's VSI
* @vf: VF to release and setup the VSI for
*
* This is only called when a single VF is being reset (i.e. VFR, VFLR, host VF
* configuration change, etc.).
*/
static int ice_vf_rebuild_vsi_with_release(struct ice_vf *vf)
{
ice_vf_vsi_release(vf);
if (!ice_vf_vsi_setup(vf))
return -ENOMEM;
return 0;
}
/**
* ice_vf_rebuild_vsi - rebuild the VF's VSI
* @vf: VF to rebuild the VSI for
*
* This is only called when all VF(s) are being reset (i.e. PCIe Reset on the
* host, PFR, CORER, etc.).
*/
static int ice_vf_rebuild_vsi(struct ice_vf *vf)
{
struct ice_pf *pf = vf->pf;
struct ice_vsi *vsi;
vsi = pf->vsi[vf->lan_vsi_idx];
if (ice_vsi_rebuild(vsi, true)) {
dev_err(ice_pf_to_dev(pf), "failed to rebuild VF %d VSI\n",
vf->vf_id);
return -EIO;
}
/* vsi->idx will remain the same in this case so don't update
* vf->lan_vsi_idx
*/
vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
vf->lan_vsi_num = vsi->vsi_num;
ice_flush(hw);
clear_bit(__ICE_VF_DIS, pf->state);
return 0;
}
return true;
/**
* ice_vf_set_initialized - VF is ready for VIRTCHNL communication
* @vf: VF to set in initialized state
*
* After this function the VF will be ready to receive/handle the
* VIRTCHNL_OP_GET_VF_RESOURCES message
*/
static void ice_vf_set_initialized(struct ice_vf *vf)
{
ice_set_vf_state_qs_dis(vf);
clear_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states);
clear_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states);
clear_bit(ICE_VF_STATE_DIS, vf->vf_states);
set_bit(ICE_VF_STATE_INIT, vf->vf_states);
}
/**
* ice_vf_post_vsi_rebuild - tasks to do after the VF's VSI have been rebuilt
* @vf: VF to perform tasks on
*/
static void ice_vf_post_vsi_rebuild(struct ice_vf *vf)
{
struct ice_pf *pf = vf->pf;
struct ice_hw *hw;
hw = &pf->hw;
ice_vf_rebuild_host_cfg(vf);
ice_vf_set_initialized(vf);
ice_ena_vf_mappings(vf);
wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE);
}
/**
......@@ -1094,17 +1182,6 @@ bool ice_reset_all_vfs(struct ice_pf *pf, bool is_vflr)
ice_for_each_vf(pf, v)
ice_trigger_vf_reset(&pf->vf[v], is_vflr, true);
ice_for_each_vf(pf, v) {
struct ice_vsi *vsi;
vf = &pf->vf[v];
vsi = pf->vsi[vf->lan_vsi_idx];
if (test_bit(ICE_VF_STATE_QS_ENA, vf->vf_states))
ice_dis_vf_qs(vf);
ice_dis_vsi_txq(vsi->port_info, vsi->idx, 0, 0, NULL, NULL,
NULL, ICE_VF_RESET, vf->vf_id, NULL);
}
/* HW requires some time to make sure it can flush the FIFO for a VF
* when it resets it. Poll the VPGEN_VFRSTAT register for each VF in
* sequence to make sure that it has completed. We'll keep track of
......@@ -1141,21 +1218,13 @@ bool ice_reset_all_vfs(struct ice_pf *pf, bool is_vflr)
ice_for_each_vf(pf, v) {
vf = &pf->vf[v];
ice_free_vf_res(vf);
/* Free VF queues as well, and reallocate later.
* If a given VF has different number of queues
* configured, the request for update will come
* via mailbox communication.
*/
vf->num_vf_qs = 0;
ice_vf_pre_vsi_rebuild(vf);
ice_vf_rebuild_vsi(vf);
ice_vf_post_vsi_rebuild(vf);
}
if (ice_sriov_free_msix_res(pf))
dev_err(dev, "Failed to free MSIX resources used by SR-IOV\n");
if (!ice_config_res_vfs(pf))
return false;
ice_flush(hw);
clear_bit(__ICE_VF_DIS, pf->state);
return true;
}
......@@ -1267,12 +1336,9 @@ bool ice_reset_vf(struct ice_vf *vf, bool is_vflr)
dev_err(dev, "disabling promiscuous mode failed\n");
}
/* free VF resources to begin resetting the VSI state */
ice_free_vf_res(vf);
ice_cleanup_and_realloc_vf(vf);
ice_flush(hw);
ice_vf_pre_vsi_rebuild(vf);
ice_vf_rebuild_vsi_with_release(vf);
ice_vf_post_vsi_rebuild(vf);
return true;
}
......@@ -1340,16 +1406,144 @@ static void ice_vc_notify_vf_reset(struct ice_vf *vf)
}
/**
* ice_alloc_vfs - Allocate and set up VFs resources
* ice_init_vf_vsi_res - initialize/setup VF VSI resources
* @vf: VF to initialize/setup the VSI for
*
* This function creates a VSI for the VF, adds a VLAN 0 filter, and sets up the
* VF VSI's broadcast filter and is only used during initial VF creation.
*/
static int ice_init_vf_vsi_res(struct ice_vf *vf)
{
struct ice_pf *pf = vf->pf;
u8 broadcast[ETH_ALEN];
enum ice_status status;
struct ice_vsi *vsi;
struct device *dev;
int err;
vf->first_vector_idx = ice_calc_vf_first_vector_idx(pf, vf);
dev = ice_pf_to_dev(pf);
vsi = ice_vf_vsi_setup(vf);
if (!vsi)
return -ENOMEM;
err = ice_vsi_add_vlan(vsi, 0, ICE_FWD_TO_VSI);
if (err) {
dev_warn(dev, "Failed to add VLAN 0 filter for VF %d\n",
vf->vf_id);
goto release_vsi;
}
eth_broadcast_addr(broadcast);
status = ice_fltr_add_mac(vsi, broadcast, ICE_FWD_TO_VSI);
if (status) {
dev_err(dev, "Failed to add broadcast MAC filter for VF %d, status %s\n",
vf->vf_id, ice_stat_str(status));
err = ice_status_to_errno(status);
goto release_vsi;
}
vf->num_mac = 1;
return 0;
release_vsi:
ice_vf_vsi_release(vf);
return err;
}
/**
* ice_start_vfs - start VFs so they are ready to be used by SR-IOV
* @pf: PF the VFs are associated with
*/
static int ice_start_vfs(struct ice_pf *pf)
{
struct ice_hw *hw = &pf->hw;
int retval, i;
ice_for_each_vf(pf, i) {
struct ice_vf *vf = &pf->vf[i];
ice_clear_vf_reset_trigger(vf);
retval = ice_init_vf_vsi_res(vf);
if (retval) {
dev_err(ice_pf_to_dev(pf), "Failed to initialize VSI resources for VF %d, error %d\n",
vf->vf_id, retval);
goto teardown;
}
set_bit(ICE_VF_STATE_INIT, vf->vf_states);
ice_ena_vf_mappings(vf);
wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE);
}
ice_flush(hw);
return 0;
teardown:
for (i = i - 1; i >= 0; i--) {
struct ice_vf *vf = &pf->vf[i];
ice_dis_vf_mappings(vf);
ice_vf_vsi_release(vf);
}
return retval;
}
/**
* ice_set_dflt_settings - set VF defaults during initialization/creation
* @pf: PF holding reference to all VFs for default configuration
*/
static void ice_set_dflt_settings_vfs(struct ice_pf *pf)
{
int i;
ice_for_each_vf(pf, i) {
struct ice_vf *vf = &pf->vf[i];
vf->pf = pf;
vf->vf_id = i;
vf->vf_sw_id = pf->first_sw;
/* assign default capabilities */
set_bit(ICE_VIRTCHNL_VF_CAP_L2, &vf->vf_caps);
vf->spoofchk = true;
vf->num_vf_qs = pf->num_qps_per_vf;
}
}
/**
* ice_alloc_vfs - allocate num_vfs in the PF structure
* @pf: PF to store the allocated VFs in
* @num_vfs: number of VFs to allocate
*/
static int ice_alloc_vfs(struct ice_pf *pf, int num_vfs)
{
struct ice_vf *vfs;
vfs = devm_kcalloc(ice_pf_to_dev(pf), num_vfs, sizeof(*vfs),
GFP_KERNEL);
if (!vfs)
return -ENOMEM;
pf->vf = vfs;
pf->num_alloc_vfs = num_vfs;
return 0;
}
/**
* ice_ena_vfs - enable VFs so they are ready to be used
* @pf: pointer to the PF structure
* @num_alloc_vfs: number of VFs to allocate
* @num_vfs: number of VFs to enable
*/
static int ice_alloc_vfs(struct ice_pf *pf, u16 num_alloc_vfs)
static int ice_ena_vfs(struct ice_pf *pf, u16 num_vfs)
{
struct device *dev = ice_pf_to_dev(pf);
struct ice_hw *hw = &pf->hw;
struct ice_vf *vfs;
int i, ret;
int ret;
/* Disable global interrupt 0 so we don't try to handle the VFLR. */
wr32(hw, GLINT_DYN_CTL(pf->oicr_idx),
......@@ -1357,43 +1551,37 @@ static int ice_alloc_vfs(struct ice_pf *pf, u16 num_alloc_vfs)
set_bit(__ICE_OICR_INTR_DIS, pf->state);
ice_flush(hw);
ret = pci_enable_sriov(pf->pdev, num_alloc_vfs);
ret = pci_enable_sriov(pf->pdev, num_vfs);
if (ret) {
pf->num_alloc_vfs = 0;
goto err_unroll_intr;
}
/* allocate memory */
vfs = devm_kcalloc(dev, num_alloc_vfs, sizeof(*vfs), GFP_KERNEL);
if (!vfs) {
ret = -ENOMEM;
goto err_pci_disable_sriov;
}
pf->vf = vfs;
pf->num_alloc_vfs = num_alloc_vfs;
/* apply default profile */
ice_for_each_vf(pf, i) {
vfs[i].pf = pf;
vfs[i].vf_sw_id = pf->first_sw;
vfs[i].vf_id = i;
ret = ice_alloc_vfs(pf, num_vfs);
if (ret)
goto err_pci_disable_sriov;
/* assign default capabilities */
set_bit(ICE_VIRTCHNL_VF_CAP_L2, &vfs[i].vf_caps);
vfs[i].spoofchk = true;
if (ice_set_per_vf_res(pf)) {
dev_err(dev, "Not enough resources for %d VFs, try with fewer number of VFs\n",
num_vfs);
ret = -ENOSPC;
goto err_unroll_sriov;
}
/* VF resources get allocated with initialization */
if (!ice_config_res_vfs(pf)) {
ret = -EIO;
ice_set_dflt_settings_vfs(pf);
if (ice_start_vfs(pf)) {
dev_err(dev, "Failed to start VF(s)\n");
ret = -EAGAIN;
goto err_unroll_sriov;
}
return ret;
clear_bit(__ICE_VF_DIS, pf->state);
return 0;
err_unroll_sriov:
devm_kfree(dev, pf->vf);
pf->vf = NULL;
devm_kfree(dev, vfs);
vfs = NULL;
pf->num_alloc_vfs = 0;
err_pci_disable_sriov:
pci_disable_sriov(pf->pdev);
......@@ -1433,6 +1621,8 @@ static bool ice_pf_state_is_nominal(struct ice_pf *pf)
* ice_pci_sriov_ena - Enable or change number of VFs
* @pf: pointer to the PF structure
* @num_vfs: number of VFs to allocate
*
* Returns 0 on success and negative on failure
*/
static int ice_pci_sriov_ena(struct ice_pf *pf, int num_vfs)
{
......@@ -1440,20 +1630,10 @@ static int ice_pci_sriov_ena(struct ice_pf *pf, int num_vfs)
struct device *dev = ice_pf_to_dev(pf);
int err;
if (!ice_pf_state_is_nominal(pf)) {
dev_err(dev, "Cannot enable SR-IOV, device not ready\n");
return -EBUSY;
}
if (!test_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags)) {
dev_err(dev, "This device is not capable of SR-IOV\n");
return -EOPNOTSUPP;
}
if (pre_existing_vfs && pre_existing_vfs != num_vfs)
ice_free_vfs(pf);
else if (pre_existing_vfs && pre_existing_vfs == num_vfs)
return num_vfs;
return 0;
if (num_vfs > pf->num_vfs_supported) {
dev_err(dev, "Can't enable %d VFs, max VFs supported is %d\n",
......@@ -1461,45 +1641,77 @@ static int ice_pci_sriov_ena(struct ice_pf *pf, int num_vfs)
return -EOPNOTSUPP;
}
dev_info(dev, "Allocating %d VFs\n", num_vfs);
err = ice_alloc_vfs(pf, num_vfs);
dev_info(dev, "Enabling %d VFs\n", num_vfs);
err = ice_ena_vfs(pf, num_vfs);
if (err) {
dev_err(dev, "Failed to enable SR-IOV: %d\n", err);
return err;
}
set_bit(ICE_FLAG_SRIOV_ENA, pf->flags);
return num_vfs;
return 0;
}
/**
* ice_sriov_configure - Enable or change number of VFs via sysfs
* @pdev: pointer to a pci_dev structure
* @num_vfs: number of VFs to allocate
*
* This function is called when the user updates the number of VFs in sysfs.
* ice_check_sriov_allowed - check if SR-IOV is allowed based on various checks
* @pf: PF to enabled SR-IOV on
*/
int ice_sriov_configure(struct pci_dev *pdev, int num_vfs)
static int ice_check_sriov_allowed(struct ice_pf *pf)
{
struct ice_pf *pf = pci_get_drvdata(pdev);
struct device *dev = ice_pf_to_dev(pf);
if (!test_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags)) {
dev_err(dev, "This device is not capable of SR-IOV\n");
return -EOPNOTSUPP;
}
if (ice_is_safe_mode(pf)) {
dev_err(dev, "SR-IOV cannot be configured - Device is in Safe Mode\n");
return -EOPNOTSUPP;
}
if (num_vfs)
return ice_pci_sriov_ena(pf, num_vfs);
if (!ice_pf_state_is_nominal(pf)) {
dev_err(dev, "Cannot enable SR-IOV, device not ready\n");
return -EBUSY;
}
return 0;
}
/**
* ice_sriov_configure - Enable or change number of VFs via sysfs
* @pdev: pointer to a pci_dev structure
* @num_vfs: number of VFs to allocate or 0 to free VFs
*
* This function is called when the user updates the number of VFs in sysfs. On
* success return whatever num_vfs was set to by the caller. Return negative on
* failure.
*/
int ice_sriov_configure(struct pci_dev *pdev, int num_vfs)
{
struct ice_pf *pf = pci_get_drvdata(pdev);
struct device *dev = ice_pf_to_dev(pf);
int err;
err = ice_check_sriov_allowed(pf);
if (err)
return err;
if (!num_vfs) {
if (!pci_vfs_assigned(pdev)) {
ice_free_vfs(pf);
} else {
return 0;
}
dev_err(dev, "can't free VFs because some are assigned to VMs.\n");
return -EBUSY;
}
return 0;
err = ice_pci_sriov_ena(pf, num_vfs);
if (err)
return err;
return num_vfs;
}
/**
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment