Commit dcded10f authored by Linus Torvalds's avatar Linus Torvalds

Merge branch 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/djbw/async_tx

* 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/djbw/async_tx: (30 commits)
  DMAENGINE: at_hdmac: locking fixlet
  DMAENGINE: pch_dma: kill another usage of __raw_{read|write}l
  dma: dmatest: fix potential sign bug
  ioat2: catch and recover from broken vtd configurations v6
  DMAENGINE: add runtime slave control to COH 901 318 v3
  DMAENGINE: add runtime slave config to DMA40 v3
  DMAENGINE: generic slave channel control v3
  dmaengine: Driver for Topcliff PCH DMA controller
  intel_mid: Add Mrst & Mfld DMA Drivers
  drivers/dma: Eliminate a NULL pointer dereference
  dma/timb_dma: compile warning on 32 bit
  DMAENGINE: ste_dma40: support older silicon
  DMAENGINE: ste_dma40: support disabling physical channels
  DMAENGINE: ste_dma40: no disabled phy channels on ux500
  DMAENGINE: ste_dma40: fix suspend bug
  DMAENGINE: ste_dma40: add DB8500 memcpy channels
  DMAENGINE: ste_dma40: no flow control on memcpy
  DMAENGINE: ste_dma40: arch updates for LCLA and LCPA
  DMAENGINE: ste_dma40: allocate LCLA dynamically
  DMAENGINE: ste_dma40: no premature stop
  ...

Fix up trivial conflicts in arch/arm/mach-ux500/devices-db8500.c
parents 9e0ba741 b0ebeb9c
...@@ -119,20 +119,15 @@ static struct resource dma40_resources[] = { ...@@ -119,20 +119,15 @@ static struct resource dma40_resources[] = {
}, },
[1] = { [1] = {
.start = U8500_DMA_LCPA_BASE, .start = U8500_DMA_LCPA_BASE,
.end = U8500_DMA_LCPA_BASE + SZ_4K - 1, .end = U8500_DMA_LCPA_BASE + 2 * SZ_1K - 1,
.flags = IORESOURCE_MEM, .flags = IORESOURCE_MEM,
.name = "lcpa", .name = "lcpa",
}, },
[2] = { [2] = {
.start = U8500_DMA_LCLA_BASE,
.end = U8500_DMA_LCLA_BASE + 16 * 1024 - 1,
.flags = IORESOURCE_MEM,
.name = "lcla",
},
[3] = {
.start = IRQ_DB8500_DMA, .start = IRQ_DB8500_DMA,
.end = IRQ_DB8500_DMA, .end = IRQ_DB8500_DMA,
.flags = IORESOURCE_IRQ} .flags = IORESOURCE_IRQ,
}
}; };
/* Default configuration for physcial memcpy */ /* Default configuration for physcial memcpy */
...@@ -145,11 +140,12 @@ struct stedma40_chan_cfg dma40_memcpy_conf_phy = { ...@@ -145,11 +140,12 @@ struct stedma40_chan_cfg dma40_memcpy_conf_phy = {
.src_info.endianess = STEDMA40_LITTLE_ENDIAN, .src_info.endianess = STEDMA40_LITTLE_ENDIAN,
.src_info.data_width = STEDMA40_BYTE_WIDTH, .src_info.data_width = STEDMA40_BYTE_WIDTH,
.src_info.psize = STEDMA40_PSIZE_PHY_1, .src_info.psize = STEDMA40_PSIZE_PHY_1,
.src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
.dst_info.endianess = STEDMA40_LITTLE_ENDIAN, .dst_info.endianess = STEDMA40_LITTLE_ENDIAN,
.dst_info.data_width = STEDMA40_BYTE_WIDTH, .dst_info.data_width = STEDMA40_BYTE_WIDTH,
.dst_info.psize = STEDMA40_PSIZE_PHY_1, .dst_info.psize = STEDMA40_PSIZE_PHY_1,
.dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
}; };
/* Default configuration for logical memcpy */ /* Default configuration for logical memcpy */
struct stedma40_chan_cfg dma40_memcpy_conf_log = { struct stedma40_chan_cfg dma40_memcpy_conf_log = {
...@@ -162,11 +158,12 @@ struct stedma40_chan_cfg dma40_memcpy_conf_log = { ...@@ -162,11 +158,12 @@ struct stedma40_chan_cfg dma40_memcpy_conf_log = {
.src_info.endianess = STEDMA40_LITTLE_ENDIAN, .src_info.endianess = STEDMA40_LITTLE_ENDIAN,
.src_info.data_width = STEDMA40_BYTE_WIDTH, .src_info.data_width = STEDMA40_BYTE_WIDTH,
.src_info.psize = STEDMA40_PSIZE_LOG_1, .src_info.psize = STEDMA40_PSIZE_LOG_1,
.src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
.dst_info.endianess = STEDMA40_LITTLE_ENDIAN, .dst_info.endianess = STEDMA40_LITTLE_ENDIAN,
.dst_info.data_width = STEDMA40_BYTE_WIDTH, .dst_info.data_width = STEDMA40_BYTE_WIDTH,
.dst_info.psize = STEDMA40_PSIZE_LOG_1, .dst_info.psize = STEDMA40_PSIZE_LOG_1,
.dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
}; };
/* /*
...@@ -180,10 +177,12 @@ static const dma_addr_t dma40_rx_map[STEDMA40_NR_DEV]; ...@@ -180,10 +177,12 @@ static const dma_addr_t dma40_rx_map[STEDMA40_NR_DEV];
/* Reserved event lines for memcpy only */ /* Reserved event lines for memcpy only */
static int dma40_memcpy_event[] = { static int dma40_memcpy_event[] = {
STEDMA40_MEMCPY_TX_0,
STEDMA40_MEMCPY_TX_1, STEDMA40_MEMCPY_TX_1,
STEDMA40_MEMCPY_TX_2, STEDMA40_MEMCPY_TX_2,
STEDMA40_MEMCPY_TX_3, STEDMA40_MEMCPY_TX_3,
STEDMA40_MEMCPY_TX_4, STEDMA40_MEMCPY_TX_4,
STEDMA40_MEMCPY_TX_5,
}; };
static struct stedma40_platform_data dma40_plat_data = { static struct stedma40_platform_data dma40_plat_data = {
...@@ -195,6 +194,7 @@ static struct stedma40_platform_data dma40_plat_data = { ...@@ -195,6 +194,7 @@ static struct stedma40_platform_data dma40_plat_data = {
.memcpy_conf_phy = &dma40_memcpy_conf_phy, .memcpy_conf_phy = &dma40_memcpy_conf_phy,
.memcpy_conf_log = &dma40_memcpy_conf_log, .memcpy_conf_log = &dma40_memcpy_conf_log,
.llis_per_log = 8, .llis_per_log = 8,
.disabled_channels = {-1},
}; };
struct platform_device u8500_dma40_device = { struct platform_device u8500_dma40_device = {
...@@ -213,4 +213,6 @@ void dma40_u8500ed_fixup(void) ...@@ -213,4 +213,6 @@ void dma40_u8500ed_fixup(void)
dma40_plat_data.memcpy_len = 0; dma40_plat_data.memcpy_len = 0;
dma40_resources[0].start = U8500_DMA_BASE_ED; dma40_resources[0].start = U8500_DMA_BASE_ED;
dma40_resources[0].end = U8500_DMA_BASE_ED + SZ_4K - 1; dma40_resources[0].end = U8500_DMA_BASE_ED + SZ_4K - 1;
dma40_resources[1].start = U8500_DMA_LCPA_BASE_ED;
dma40_resources[1].end = U8500_DMA_LCPA_BASE_ED + 2 * SZ_1K - 1;
} }
...@@ -15,9 +15,9 @@ ...@@ -15,9 +15,9 @@
#define U8500_ESRAM_BANK2 (U8500_ESRAM_BANK1 + U8500_ESRAM_BANK_SIZE) #define U8500_ESRAM_BANK2 (U8500_ESRAM_BANK1 + U8500_ESRAM_BANK_SIZE)
#define U8500_ESRAM_BANK3 (U8500_ESRAM_BANK2 + U8500_ESRAM_BANK_SIZE) #define U8500_ESRAM_BANK3 (U8500_ESRAM_BANK2 + U8500_ESRAM_BANK_SIZE)
#define U8500_ESRAM_BANK4 (U8500_ESRAM_BANK3 + U8500_ESRAM_BANK_SIZE) #define U8500_ESRAM_BANK4 (U8500_ESRAM_BANK3 + U8500_ESRAM_BANK_SIZE)
/* Use bank 4 for DMA LCLA and LCPA */ /* Use bank 4 for DMA LCPA */
#define U8500_DMA_LCLA_BASE U8500_ESRAM_BANK4 #define U8500_DMA_LCPA_BASE U8500_ESRAM_BANK4
#define U8500_DMA_LCPA_BASE (U8500_ESRAM_BANK4 + 0x4000) #define U8500_DMA_LCPA_BASE_ED (U8500_ESRAM_BANK4 + 0x4000)
#define U8500_PER3_BASE 0x80000000 #define U8500_PER3_BASE 0x80000000
#define U8500_STM_BASE 0x80100000 #define U8500_STM_BASE 0x80100000
......
...@@ -136,7 +136,7 @@ enum dma_dest_dev_type { ...@@ -136,7 +136,7 @@ enum dma_dest_dev_type {
STEDMA40_DEV_CAC1_TX = 48, STEDMA40_DEV_CAC1_TX = 48,
STEDMA40_DEV_CAC1_TX_HAC1_TX = 49, STEDMA40_DEV_CAC1_TX_HAC1_TX = 49,
STEDMA40_DEV_HAC1_TX = 50, STEDMA40_DEV_HAC1_TX = 50,
STEDMA40_MEMXCPY_TX_0 = 51, STEDMA40_MEMCPY_TX_0 = 51,
STEDMA40_DEV_SLIM1_CH0_TX_HSI_TX_CH4 = 52, STEDMA40_DEV_SLIM1_CH0_TX_HSI_TX_CH4 = 52,
STEDMA40_DEV_SLIM1_CH1_TX_HSI_TX_CH5 = 53, STEDMA40_DEV_SLIM1_CH1_TX_HSI_TX_CH5 = 53,
STEDMA40_DEV_SLIM1_CH2_TX_HSI_TX_CH6 = 54, STEDMA40_DEV_SLIM1_CH2_TX_HSI_TX_CH6 = 54,
......
...@@ -148,7 +148,8 @@ struct stedma40_chan_cfg { ...@@ -148,7 +148,8 @@ struct stedma40_chan_cfg {
* @memcpy_conf_phy: default configuration of physical channel memcpy * @memcpy_conf_phy: default configuration of physical channel memcpy
* @memcpy_conf_log: default configuration of logical channel memcpy * @memcpy_conf_log: default configuration of logical channel memcpy
* @llis_per_log: number of max linked list items per logical channel * @llis_per_log: number of max linked list items per logical channel
* * @disabled_channels: A vector, ending with -1, that marks physical channels
* that are for different reasons not available for the driver.
*/ */
struct stedma40_platform_data { struct stedma40_platform_data {
u32 dev_len; u32 dev_len;
...@@ -159,6 +160,7 @@ struct stedma40_platform_data { ...@@ -159,6 +160,7 @@ struct stedma40_platform_data {
struct stedma40_chan_cfg *memcpy_conf_phy; struct stedma40_chan_cfg *memcpy_conf_phy;
struct stedma40_chan_cfg *memcpy_conf_log; struct stedma40_chan_cfg *memcpy_conf_log;
unsigned int llis_per_log; unsigned int llis_per_log;
int disabled_channels[8];
}; };
/** /**
......
...@@ -33,6 +33,19 @@ if DMADEVICES ...@@ -33,6 +33,19 @@ if DMADEVICES
comment "DMA Devices" comment "DMA Devices"
config INTEL_MID_DMAC
tristate "Intel MID DMA support for Peripheral DMA controllers"
depends on PCI && X86
select DMA_ENGINE
default n
help
Enable support for the Intel(R) MID DMA engine present
in Intel MID chipsets.
Say Y here if you have such a chipset.
If unsure, say N.
config ASYNC_TX_DISABLE_CHANNEL_SWITCH config ASYNC_TX_DISABLE_CHANNEL_SWITCH
bool bool
...@@ -175,6 +188,13 @@ config PL330_DMA ...@@ -175,6 +188,13 @@ config PL330_DMA
You need to provide platform specific settings via You need to provide platform specific settings via
platform_data for a dma-pl330 device. platform_data for a dma-pl330 device.
config PCH_DMA
tristate "Topcliff PCH DMA support"
depends on PCI && X86
select DMA_ENGINE
help
Enable support for the Topcliff PCH DMA engine.
config DMA_ENGINE config DMA_ENGINE
bool bool
......
...@@ -7,6 +7,7 @@ endif ...@@ -7,6 +7,7 @@ endif
obj-$(CONFIG_DMA_ENGINE) += dmaengine.o obj-$(CONFIG_DMA_ENGINE) += dmaengine.o
obj-$(CONFIG_NET_DMA) += iovlock.o obj-$(CONFIG_NET_DMA) += iovlock.o
obj-$(CONFIG_INTEL_MID_DMAC) += intel_mid_dma.o
obj-$(CONFIG_DMATEST) += dmatest.o obj-$(CONFIG_DMATEST) += dmatest.o
obj-$(CONFIG_INTEL_IOATDMA) += ioat/ obj-$(CONFIG_INTEL_IOATDMA) += ioat/
obj-$(CONFIG_INTEL_IOP_ADMA) += iop-adma.o obj-$(CONFIG_INTEL_IOP_ADMA) += iop-adma.o
...@@ -23,3 +24,4 @@ obj-$(CONFIG_AMCC_PPC440SPE_ADMA) += ppc4xx/ ...@@ -23,3 +24,4 @@ obj-$(CONFIG_AMCC_PPC440SPE_ADMA) += ppc4xx/
obj-$(CONFIG_TIMB_DMA) += timb_dma.o obj-$(CONFIG_TIMB_DMA) += timb_dma.o
obj-$(CONFIG_STE_DMA40) += ste_dma40.o ste_dma40_ll.o obj-$(CONFIG_STE_DMA40) += ste_dma40.o ste_dma40_ll.o
obj-$(CONFIG_PL330_DMA) += pl330.o obj-$(CONFIG_PL330_DMA) += pl330.o
obj-$(CONFIG_PCH_DMA) += pch_dma.o
...@@ -790,12 +790,12 @@ static int atc_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd, ...@@ -790,12 +790,12 @@ static int atc_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
list_splice_init(&atchan->queue, &list); list_splice_init(&atchan->queue, &list);
list_splice_init(&atchan->active_list, &list); list_splice_init(&atchan->active_list, &list);
spin_unlock_bh(&atchan->lock);
/* Flush all pending and queued descriptors */ /* Flush all pending and queued descriptors */
list_for_each_entry_safe(desc, _desc, &list, desc_node) list_for_each_entry_safe(desc, _desc, &list, desc_node)
atc_chain_complete(atchan, desc); atc_chain_complete(atchan, desc);
spin_unlock_bh(&atchan->lock);
return 0; return 0;
} }
......
...@@ -72,6 +72,9 @@ struct coh901318_chan { ...@@ -72,6 +72,9 @@ struct coh901318_chan {
unsigned long nbr_active_done; unsigned long nbr_active_done;
unsigned long busy; unsigned long busy;
u32 runtime_addr;
u32 runtime_ctrl;
struct coh901318_base *base; struct coh901318_base *base;
}; };
...@@ -190,6 +193,9 @@ static inline struct coh901318_chan *to_coh901318_chan(struct dma_chan *chan) ...@@ -190,6 +193,9 @@ static inline struct coh901318_chan *to_coh901318_chan(struct dma_chan *chan)
static inline dma_addr_t static inline dma_addr_t
cohc_dev_addr(struct coh901318_chan *cohc) cohc_dev_addr(struct coh901318_chan *cohc)
{ {
/* Runtime supplied address will take precedence */
if (cohc->runtime_addr)
return cohc->runtime_addr;
return cohc->base->platform->chan_conf[cohc->id].dev_addr; return cohc->base->platform->chan_conf[cohc->id].dev_addr;
} }
...@@ -1055,6 +1061,14 @@ coh901318_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl, ...@@ -1055,6 +1061,14 @@ coh901318_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
params = cohc_chan_param(cohc); params = cohc_chan_param(cohc);
config = params->config; config = params->config;
/*
* Add runtime-specific control on top, make
* sure the bits you set per peripheral channel are
* cleared in the default config from the platform.
*/
ctrl_chained |= cohc->runtime_ctrl;
ctrl_last |= cohc->runtime_ctrl;
ctrl |= cohc->runtime_ctrl;
if (direction == DMA_TO_DEVICE) { if (direction == DMA_TO_DEVICE) {
u32 tx_flags = COH901318_CX_CTRL_PRDD_SOURCE | u32 tx_flags = COH901318_CX_CTRL_PRDD_SOURCE |
...@@ -1113,6 +1127,12 @@ coh901318_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl, ...@@ -1113,6 +1127,12 @@ coh901318_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
if (ret) if (ret)
goto err_lli_fill; goto err_lli_fill;
/*
* Set the default ctrl for the channel to the one from the lli,
* things may have changed due to odd buffer alignment etc.
*/
coh901318_set_ctrl(cohc, lli->control);
COH_DBG(coh901318_list_print(cohc, lli)); COH_DBG(coh901318_list_print(cohc, lli));
/* Pick a descriptor to handle this transfer */ /* Pick a descriptor to handle this transfer */
...@@ -1175,6 +1195,146 @@ coh901318_issue_pending(struct dma_chan *chan) ...@@ -1175,6 +1195,146 @@ coh901318_issue_pending(struct dma_chan *chan)
spin_unlock_irqrestore(&cohc->lock, flags); spin_unlock_irqrestore(&cohc->lock, flags);
} }
/*
* Here we wrap in the runtime dma control interface
*/
struct burst_table {
int burst_8bit;
int burst_16bit;
int burst_32bit;
u32 reg;
};
static const struct burst_table burst_sizes[] = {
{
.burst_8bit = 64,
.burst_16bit = 32,
.burst_32bit = 16,
.reg = COH901318_CX_CTRL_BURST_COUNT_64_BYTES,
},
{
.burst_8bit = 48,
.burst_16bit = 24,
.burst_32bit = 12,
.reg = COH901318_CX_CTRL_BURST_COUNT_48_BYTES,
},
{
.burst_8bit = 32,
.burst_16bit = 16,
.burst_32bit = 8,
.reg = COH901318_CX_CTRL_BURST_COUNT_32_BYTES,
},
{
.burst_8bit = 16,
.burst_16bit = 8,
.burst_32bit = 4,
.reg = COH901318_CX_CTRL_BURST_COUNT_16_BYTES,
},
{
.burst_8bit = 8,
.burst_16bit = 4,
.burst_32bit = 2,
.reg = COH901318_CX_CTRL_BURST_COUNT_8_BYTES,
},
{
.burst_8bit = 4,
.burst_16bit = 2,
.burst_32bit = 1,
.reg = COH901318_CX_CTRL_BURST_COUNT_4_BYTES,
},
{
.burst_8bit = 2,
.burst_16bit = 1,
.burst_32bit = 0,
.reg = COH901318_CX_CTRL_BURST_COUNT_2_BYTES,
},
{
.burst_8bit = 1,
.burst_16bit = 0,
.burst_32bit = 0,
.reg = COH901318_CX_CTRL_BURST_COUNT_1_BYTE,
},
};
static void coh901318_dma_set_runtimeconfig(struct dma_chan *chan,
struct dma_slave_config *config)
{
struct coh901318_chan *cohc = to_coh901318_chan(chan);
dma_addr_t addr;
enum dma_slave_buswidth addr_width;
u32 maxburst;
u32 runtime_ctrl = 0;
int i = 0;
/* We only support mem to per or per to mem transfers */
if (config->direction == DMA_FROM_DEVICE) {
addr = config->src_addr;
addr_width = config->src_addr_width;
maxburst = config->src_maxburst;
} else if (config->direction == DMA_TO_DEVICE) {
addr = config->dst_addr;
addr_width = config->dst_addr_width;
maxburst = config->dst_maxburst;
} else {
dev_err(COHC_2_DEV(cohc), "illegal channel mode\n");
return;
}
dev_dbg(COHC_2_DEV(cohc), "configure channel for %d byte transfers\n",
addr_width);
switch (addr_width) {
case DMA_SLAVE_BUSWIDTH_1_BYTE:
runtime_ctrl |=
COH901318_CX_CTRL_SRC_BUS_SIZE_8_BITS |
COH901318_CX_CTRL_DST_BUS_SIZE_8_BITS;
while (i < ARRAY_SIZE(burst_sizes)) {
if (burst_sizes[i].burst_8bit <= maxburst)
break;
i++;
}
break;
case DMA_SLAVE_BUSWIDTH_2_BYTES:
runtime_ctrl |=
COH901318_CX_CTRL_SRC_BUS_SIZE_16_BITS |
COH901318_CX_CTRL_DST_BUS_SIZE_16_BITS;
while (i < ARRAY_SIZE(burst_sizes)) {
if (burst_sizes[i].burst_16bit <= maxburst)
break;
i++;
}
break;
case DMA_SLAVE_BUSWIDTH_4_BYTES:
/* Direction doesn't matter here, it's 32/32 bits */
runtime_ctrl |=
COH901318_CX_CTRL_SRC_BUS_SIZE_32_BITS |
COH901318_CX_CTRL_DST_BUS_SIZE_32_BITS;
while (i < ARRAY_SIZE(burst_sizes)) {
if (burst_sizes[i].burst_32bit <= maxburst)
break;
i++;
}
break;
default:
dev_err(COHC_2_DEV(cohc),
"bad runtimeconfig: alien address width\n");
return;
}
runtime_ctrl |= burst_sizes[i].reg;
dev_dbg(COHC_2_DEV(cohc),
"selected burst size %d bytes for address width %d bytes, maxburst %d\n",
burst_sizes[i].burst_8bit, addr_width, maxburst);
cohc->runtime_addr = addr;
cohc->runtime_ctrl = runtime_ctrl;
}
static int static int
coh901318_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd, coh901318_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
unsigned long arg) unsigned long arg)
...@@ -1184,6 +1344,14 @@ coh901318_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd, ...@@ -1184,6 +1344,14 @@ coh901318_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
struct coh901318_desc *cohd; struct coh901318_desc *cohd;
void __iomem *virtbase = cohc->base->virtbase; void __iomem *virtbase = cohc->base->virtbase;
if (cmd == DMA_SLAVE_CONFIG) {
struct dma_slave_config *config =
(struct dma_slave_config *) arg;
coh901318_dma_set_runtimeconfig(chan, config);
return 0;
}
if (cmd == DMA_PAUSE) { if (cmd == DMA_PAUSE) {
coh901318_pause(chan); coh901318_pause(chan);
return 0; return 0;
...@@ -1240,6 +1408,7 @@ coh901318_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd, ...@@ -1240,6 +1408,7 @@ coh901318_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
return 0; return 0;
} }
void coh901318_base_init(struct dma_device *dma, const int *pick_chans, void coh901318_base_init(struct dma_device *dma, const int *pick_chans,
struct coh901318_base *base) struct coh901318_base *base)
{ {
......
...@@ -540,7 +540,7 @@ static int dmatest_add_channel(struct dma_chan *chan) ...@@ -540,7 +540,7 @@ static int dmatest_add_channel(struct dma_chan *chan)
struct dmatest_chan *dtc; struct dmatest_chan *dtc;
struct dma_device *dma_dev = chan->device; struct dma_device *dma_dev = chan->device;
unsigned int thread_count = 0; unsigned int thread_count = 0;
unsigned int cnt; int cnt;
dtc = kmalloc(sizeof(struct dmatest_chan), GFP_KERNEL); dtc = kmalloc(sizeof(struct dmatest_chan), GFP_KERNEL);
if (!dtc) { if (!dtc) {
......
/*
* intel_mid_dma.c - Intel Langwell DMA Drivers
*
* Copyright (C) 2008-10 Intel Corp
* Author: Vinod Koul <vinod.koul@intel.com>
* The driver design is based on dw_dmac driver
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
*
*/
#include <linux/pci.h>
#include <linux/interrupt.h>
#include <linux/intel_mid_dma.h>
#define MAX_CHAN 4 /*max ch across controllers*/
#include "intel_mid_dma_regs.h"
#define INTEL_MID_DMAC1_ID 0x0814
#define INTEL_MID_DMAC2_ID 0x0813
#define INTEL_MID_GP_DMAC2_ID 0x0827
#define INTEL_MFLD_DMAC1_ID 0x0830
#define LNW_PERIPHRAL_MASK_BASE 0xFFAE8008
#define LNW_PERIPHRAL_MASK_SIZE 0x10
#define LNW_PERIPHRAL_STATUS 0x0
#define LNW_PERIPHRAL_MASK 0x8
struct intel_mid_dma_probe_info {
u8 max_chan;
u8 ch_base;
u16 block_size;
u32 pimr_mask;
};
#define INFO(_max_chan, _ch_base, _block_size, _pimr_mask) \
((kernel_ulong_t)&(struct intel_mid_dma_probe_info) { \
.max_chan = (_max_chan), \
.ch_base = (_ch_base), \
.block_size = (_block_size), \
.pimr_mask = (_pimr_mask), \
})
/*****************************************************************************
Utility Functions*/
/**
* get_ch_index - convert status to channel
* @status: status mask
* @base: dma ch base value
*
* Modify the status mask and return the channel index needing
* attention (or -1 if neither)
*/
static int get_ch_index(int *status, unsigned int base)
{
int i;
for (i = 0; i < MAX_CHAN; i++) {
if (*status & (1 << (i + base))) {
*status = *status & ~(1 << (i + base));
pr_debug("MDMA: index %d New status %x\n", i, *status);
return i;
}
}
return -1;
}
/**
* get_block_ts - calculates dma transaction length
* @len: dma transfer length
* @tx_width: dma transfer src width
* @block_size: dma controller max block size
*
* Based on src width calculate the DMA trsaction length in data items
* return data items or FFFF if exceeds max length for block
*/
static int get_block_ts(int len, int tx_width, int block_size)
{
int byte_width = 0, block_ts = 0;
switch (tx_width) {
case LNW_DMA_WIDTH_8BIT:
byte_width = 1;
break;
case LNW_DMA_WIDTH_16BIT:
byte_width = 2;
break;
case LNW_DMA_WIDTH_32BIT:
default:
byte_width = 4;
break;
}
block_ts = len/byte_width;
if (block_ts > block_size)
block_ts = 0xFFFF;
return block_ts;
}
/*****************************************************************************
DMAC1 interrupt Functions*/
/**
* dmac1_mask_periphral_intr - mask the periphral interrupt
* @midc: dma channel for which masking is required
*
* Masks the DMA periphral interrupt
* this is valid for DMAC1 family controllers only
* This controller should have periphral mask registers already mapped
*/
static void dmac1_mask_periphral_intr(struct intel_mid_dma_chan *midc)
{
u32 pimr;
struct middma_device *mid = to_middma_device(midc->chan.device);
if (mid->pimr_mask) {
pimr = readl(mid->mask_reg + LNW_PERIPHRAL_MASK);
pimr |= mid->pimr_mask;
writel(pimr, mid->mask_reg + LNW_PERIPHRAL_MASK);
}
return;
}
/**
* dmac1_unmask_periphral_intr - unmask the periphral interrupt
* @midc: dma channel for which masking is required
*
* UnMasks the DMA periphral interrupt,
* this is valid for DMAC1 family controllers only
* This controller should have periphral mask registers already mapped
*/
static void dmac1_unmask_periphral_intr(struct intel_mid_dma_chan *midc)
{
u32 pimr;
struct middma_device *mid = to_middma_device(midc->chan.device);
if (mid->pimr_mask) {
pimr = readl(mid->mask_reg + LNW_PERIPHRAL_MASK);
pimr &= ~mid->pimr_mask;
writel(pimr, mid->mask_reg + LNW_PERIPHRAL_MASK);
}
return;
}
/**
* enable_dma_interrupt - enable the periphral interrupt
* @midc: dma channel for which enable interrupt is required
*
* Enable the DMA periphral interrupt,
* this is valid for DMAC1 family controllers only
* This controller should have periphral mask registers already mapped
*/
static void enable_dma_interrupt(struct intel_mid_dma_chan *midc)
{
dmac1_unmask_periphral_intr(midc);
/*en ch interrupts*/
iowrite32(UNMASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_TFR);
iowrite32(UNMASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_ERR);
return;
}
/**
* disable_dma_interrupt - disable the periphral interrupt
* @midc: dma channel for which disable interrupt is required
*
* Disable the DMA periphral interrupt,
* this is valid for DMAC1 family controllers only
* This controller should have periphral mask registers already mapped
*/
static void disable_dma_interrupt(struct intel_mid_dma_chan *midc)
{
/*Check LPE PISR, make sure fwd is disabled*/
dmac1_mask_periphral_intr(midc);
iowrite32(MASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_BLOCK);
iowrite32(MASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_TFR);
iowrite32(MASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_ERR);
return;
}
/*****************************************************************************
DMA channel helper Functions*/
/**
* mid_desc_get - get a descriptor
* @midc: dma channel for which descriptor is required
*
* Obtain a descriptor for the channel. Returns NULL if none are free.
* Once the descriptor is returned it is private until put on another
* list or freed
*/
static struct intel_mid_dma_desc *midc_desc_get(struct intel_mid_dma_chan *midc)
{
struct intel_mid_dma_desc *desc, *_desc;
struct intel_mid_dma_desc *ret = NULL;
spin_lock_bh(&midc->lock);
list_for_each_entry_safe(desc, _desc, &midc->free_list, desc_node) {
if (async_tx_test_ack(&desc->txd)) {
list_del(&desc->desc_node);
ret = desc;
break;
}
}
spin_unlock_bh(&midc->lock);
return ret;
}
/**
* mid_desc_put - put a descriptor
* @midc: dma channel for which descriptor is required
* @desc: descriptor to put
*
* Return a descriptor from lwn_desc_get back to the free pool
*/
static void midc_desc_put(struct intel_mid_dma_chan *midc,
struct intel_mid_dma_desc *desc)
{
if (desc) {
spin_lock_bh(&midc->lock);
list_add_tail(&desc->desc_node, &midc->free_list);
spin_unlock_bh(&midc->lock);
}
}
/**
* midc_dostart - begin a DMA transaction
* @midc: channel for which txn is to be started
* @first: first descriptor of series
*
* Load a transaction into the engine. This must be called with midc->lock
* held and bh disabled.
*/
static void midc_dostart(struct intel_mid_dma_chan *midc,
struct intel_mid_dma_desc *first)
{
struct middma_device *mid = to_middma_device(midc->chan.device);
/* channel is idle */
if (midc->in_use && test_ch_en(midc->dma_base, midc->ch_id)) {
/*error*/
pr_err("ERR_MDMA: channel is busy in start\n");
/* The tasklet will hopefully advance the queue... */
return;
}
/*write registers and en*/
iowrite32(first->sar, midc->ch_regs + SAR);
iowrite32(first->dar, midc->ch_regs + DAR);
iowrite32(first->cfg_hi, midc->ch_regs + CFG_HIGH);
iowrite32(first->cfg_lo, midc->ch_regs + CFG_LOW);
iowrite32(first->ctl_lo, midc->ch_regs + CTL_LOW);
iowrite32(first->ctl_hi, midc->ch_regs + CTL_HIGH);
pr_debug("MDMA:TX SAR %x,DAR %x,CFGL %x,CFGH %x,CTLH %x, CTLL %x\n",
(int)first->sar, (int)first->dar, first->cfg_hi,
first->cfg_lo, first->ctl_hi, first->ctl_lo);
iowrite32(ENABLE_CHANNEL(midc->ch_id), mid->dma_base + DMA_CHAN_EN);
first->status = DMA_IN_PROGRESS;
}
/**
* midc_descriptor_complete - process completed descriptor
* @midc: channel owning the descriptor
* @desc: the descriptor itself
*
* Process a completed descriptor and perform any callbacks upon
* the completion. The completion handling drops the lock during the
* callbacks but must be called with the lock held.
*/
static void midc_descriptor_complete(struct intel_mid_dma_chan *midc,
struct intel_mid_dma_desc *desc)
{
struct dma_async_tx_descriptor *txd = &desc->txd;
dma_async_tx_callback callback_txd = NULL;
void *param_txd = NULL;
midc->completed = txd->cookie;
callback_txd = txd->callback;
param_txd = txd->callback_param;
list_move(&desc->desc_node, &midc->free_list);
spin_unlock_bh(&midc->lock);
if (callback_txd) {
pr_debug("MDMA: TXD callback set ... calling\n");
callback_txd(param_txd);
spin_lock_bh(&midc->lock);
return;
}
spin_lock_bh(&midc->lock);
}
/**
* midc_scan_descriptors - check the descriptors in channel
* mark completed when tx is completete
* @mid: device
* @midc: channel to scan
*
* Walk the descriptor chain for the device and process any entries
* that are complete.
*/
static void midc_scan_descriptors(struct middma_device *mid,
struct intel_mid_dma_chan *midc)
{
struct intel_mid_dma_desc *desc = NULL, *_desc = NULL;
/*tx is complete*/
list_for_each_entry_safe(desc, _desc, &midc->active_list, desc_node) {
if (desc->status == DMA_IN_PROGRESS) {
desc->status = DMA_SUCCESS;
midc_descriptor_complete(midc, desc);
}
}
return;
}
/*****************************************************************************
DMA engine callback Functions*/
/**
* intel_mid_dma_tx_submit - callback to submit DMA transaction
* @tx: dma engine descriptor
*
* Submit the DMA trasaction for this descriptor, start if ch idle
*/
static dma_cookie_t intel_mid_dma_tx_submit(struct dma_async_tx_descriptor *tx)
{
struct intel_mid_dma_desc *desc = to_intel_mid_dma_desc(tx);
struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(tx->chan);
dma_cookie_t cookie;
spin_lock_bh(&midc->lock);
cookie = midc->chan.cookie;
if (++cookie < 0)
cookie = 1;
midc->chan.cookie = cookie;
desc->txd.cookie = cookie;
if (list_empty(&midc->active_list)) {
midc_dostart(midc, desc);
list_add_tail(&desc->desc_node, &midc->active_list);
} else {
list_add_tail(&desc->desc_node, &midc->queue);
}
spin_unlock_bh(&midc->lock);
return cookie;
}
/**
* intel_mid_dma_issue_pending - callback to issue pending txn
* @chan: chan where pending trascation needs to be checked and submitted
*
* Call for scan to issue pending descriptors
*/
static void intel_mid_dma_issue_pending(struct dma_chan *chan)
{
struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(chan);
spin_lock_bh(&midc->lock);
if (!list_empty(&midc->queue))
midc_scan_descriptors(to_middma_device(chan->device), midc);
spin_unlock_bh(&midc->lock);
}
/**
* intel_mid_dma_tx_status - Return status of txn
* @chan: chan for where status needs to be checked
* @cookie: cookie for txn
* @txstate: DMA txn state
*
* Return status of DMA txn
*/
static enum dma_status intel_mid_dma_tx_status(struct dma_chan *chan,
dma_cookie_t cookie,
struct dma_tx_state *txstate)
{
struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(chan);
dma_cookie_t last_used;
dma_cookie_t last_complete;
int ret;
last_complete = midc->completed;
last_used = chan->cookie;
ret = dma_async_is_complete(cookie, last_complete, last_used);
if (ret != DMA_SUCCESS) {
midc_scan_descriptors(to_middma_device(chan->device), midc);
last_complete = midc->completed;
last_used = chan->cookie;
ret = dma_async_is_complete(cookie, last_complete, last_used);
}
if (txstate) {
txstate->last = last_complete;
txstate->used = last_used;
txstate->residue = 0;
}
return ret;
}
/**
* intel_mid_dma_device_control - DMA device control
* @chan: chan for DMA control
* @cmd: control cmd
* @arg: cmd arg value
*
* Perform DMA control command
*/
static int intel_mid_dma_device_control(struct dma_chan *chan,
enum dma_ctrl_cmd cmd, unsigned long arg)
{
struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(chan);
struct middma_device *mid = to_middma_device(chan->device);
struct intel_mid_dma_desc *desc, *_desc;
LIST_HEAD(list);
if (cmd != DMA_TERMINATE_ALL)
return -ENXIO;
spin_lock_bh(&midc->lock);
if (midc->in_use == false) {
spin_unlock_bh(&midc->lock);
return 0;
}
list_splice_init(&midc->free_list, &list);
midc->descs_allocated = 0;
midc->slave = NULL;
/* Disable interrupts */
disable_dma_interrupt(midc);
spin_unlock_bh(&midc->lock);
list_for_each_entry_safe(desc, _desc, &list, desc_node) {
pr_debug("MDMA: freeing descriptor %p\n", desc);
pci_pool_free(mid->dma_pool, desc, desc->txd.phys);
}
return 0;
}
/**
* intel_mid_dma_prep_slave_sg - Prep slave sg txn
* @chan: chan for DMA transfer
* @sgl: scatter gather list
* @sg_len: length of sg txn
* @direction: DMA transfer dirtn
* @flags: DMA flags
*
* Do DMA sg txn: NOT supported now
*/
static struct dma_async_tx_descriptor *intel_mid_dma_prep_slave_sg(
struct dma_chan *chan, struct scatterlist *sgl,
unsigned int sg_len, enum dma_data_direction direction,
unsigned long flags)
{
/*not supported now*/
return NULL;
}
/**
* intel_mid_dma_prep_memcpy - Prep memcpy txn
* @chan: chan for DMA transfer
* @dest: destn address
* @src: src address
* @len: DMA transfer len
* @flags: DMA flags
*
* Perform a DMA memcpy. Note we support slave periphral DMA transfers only
* The periphral txn details should be filled in slave structure properly
* Returns the descriptor for this txn
*/
static struct dma_async_tx_descriptor *intel_mid_dma_prep_memcpy(
struct dma_chan *chan, dma_addr_t dest,
dma_addr_t src, size_t len, unsigned long flags)
{
struct intel_mid_dma_chan *midc;
struct intel_mid_dma_desc *desc = NULL;
struct intel_mid_dma_slave *mids;
union intel_mid_dma_ctl_lo ctl_lo;
union intel_mid_dma_ctl_hi ctl_hi;
union intel_mid_dma_cfg_lo cfg_lo;
union intel_mid_dma_cfg_hi cfg_hi;
enum intel_mid_dma_width width = 0;
pr_debug("MDMA: Prep for memcpy\n");
WARN_ON(!chan);
if (!len)
return NULL;
mids = chan->private;
WARN_ON(!mids);
midc = to_intel_mid_dma_chan(chan);
WARN_ON(!midc);
pr_debug("MDMA:called for DMA %x CH %d Length %zu\n",
midc->dma->pci_id, midc->ch_id, len);
pr_debug("MDMA:Cfg passed Mode %x, Dirn %x, HS %x, Width %x\n",
mids->cfg_mode, mids->dirn, mids->hs_mode, mids->src_width);
/*calculate CFG_LO*/
if (mids->hs_mode == LNW_DMA_SW_HS) {
cfg_lo.cfg_lo = 0;
cfg_lo.cfgx.hs_sel_dst = 1;
cfg_lo.cfgx.hs_sel_src = 1;
} else if (mids->hs_mode == LNW_DMA_HW_HS)
cfg_lo.cfg_lo = 0x00000;
/*calculate CFG_HI*/
if (mids->cfg_mode == LNW_DMA_MEM_TO_MEM) {
/*SW HS only*/
cfg_hi.cfg_hi = 0;
} else {
cfg_hi.cfg_hi = 0;
if (midc->dma->pimr_mask) {
cfg_hi.cfgx.protctl = 0x0; /*default value*/
cfg_hi.cfgx.fifo_mode = 1;
if (mids->dirn == DMA_TO_DEVICE) {
cfg_hi.cfgx.src_per = 0;
if (mids->device_instance == 0)
cfg_hi.cfgx.dst_per = 3;
if (mids->device_instance == 1)
cfg_hi.cfgx.dst_per = 1;
} else if (mids->dirn == DMA_FROM_DEVICE) {
if (mids->device_instance == 0)
cfg_hi.cfgx.src_per = 2;
if (mids->device_instance == 1)
cfg_hi.cfgx.src_per = 0;
cfg_hi.cfgx.dst_per = 0;
}
} else {
cfg_hi.cfgx.protctl = 0x1; /*default value*/
cfg_hi.cfgx.src_per = cfg_hi.cfgx.dst_per =
midc->ch_id - midc->dma->chan_base;
}
}
/*calculate CTL_HI*/
ctl_hi.ctlx.reser = 0;
width = mids->src_width;
ctl_hi.ctlx.block_ts = get_block_ts(len, width, midc->dma->block_size);
pr_debug("MDMA:calc len %d for block size %d\n",
ctl_hi.ctlx.block_ts, midc->dma->block_size);
/*calculate CTL_LO*/
ctl_lo.ctl_lo = 0;
ctl_lo.ctlx.int_en = 1;
ctl_lo.ctlx.dst_tr_width = mids->dst_width;
ctl_lo.ctlx.src_tr_width = mids->src_width;
ctl_lo.ctlx.dst_msize = mids->src_msize;
ctl_lo.ctlx.src_msize = mids->dst_msize;
if (mids->cfg_mode == LNW_DMA_MEM_TO_MEM) {
ctl_lo.ctlx.tt_fc = 0;
ctl_lo.ctlx.sinc = 0;
ctl_lo.ctlx.dinc = 0;
} else {
if (mids->dirn == DMA_TO_DEVICE) {
ctl_lo.ctlx.sinc = 0;
ctl_lo.ctlx.dinc = 2;
ctl_lo.ctlx.tt_fc = 1;
} else if (mids->dirn == DMA_FROM_DEVICE) {
ctl_lo.ctlx.sinc = 2;
ctl_lo.ctlx.dinc = 0;
ctl_lo.ctlx.tt_fc = 2;
}
}
pr_debug("MDMA:Calc CTL LO %x, CTL HI %x, CFG LO %x, CFG HI %x\n",
ctl_lo.ctl_lo, ctl_hi.ctl_hi, cfg_lo.cfg_lo, cfg_hi.cfg_hi);
enable_dma_interrupt(midc);
desc = midc_desc_get(midc);
if (desc == NULL)
goto err_desc_get;
desc->sar = src;
desc->dar = dest ;
desc->len = len;
desc->cfg_hi = cfg_hi.cfg_hi;
desc->cfg_lo = cfg_lo.cfg_lo;
desc->ctl_lo = ctl_lo.ctl_lo;
desc->ctl_hi = ctl_hi.ctl_hi;
desc->width = width;
desc->dirn = mids->dirn;
return &desc->txd;
err_desc_get:
pr_err("ERR_MDMA: Failed to get desc\n");
midc_desc_put(midc, desc);
return NULL;
}
/**
* intel_mid_dma_free_chan_resources - Frees dma resources
* @chan: chan requiring attention
*
* Frees the allocated resources on this DMA chan
*/
static void intel_mid_dma_free_chan_resources(struct dma_chan *chan)
{
struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(chan);
struct middma_device *mid = to_middma_device(chan->device);
struct intel_mid_dma_desc *desc, *_desc;
if (true == midc->in_use) {
/*trying to free ch in use!!!!!*/
pr_err("ERR_MDMA: trying to free ch in use\n");
}
spin_lock_bh(&midc->lock);
midc->descs_allocated = 0;
list_for_each_entry_safe(desc, _desc, &midc->active_list, desc_node) {
list_del(&desc->desc_node);
pci_pool_free(mid->dma_pool, desc, desc->txd.phys);
}
list_for_each_entry_safe(desc, _desc, &midc->free_list, desc_node) {
list_del(&desc->desc_node);
pci_pool_free(mid->dma_pool, desc, desc->txd.phys);
}
list_for_each_entry_safe(desc, _desc, &midc->queue, desc_node) {
list_del(&desc->desc_node);
pci_pool_free(mid->dma_pool, desc, desc->txd.phys);
}
spin_unlock_bh(&midc->lock);
midc->in_use = false;
/* Disable CH interrupts */
iowrite32(MASK_INTR_REG(midc->ch_id), mid->dma_base + MASK_BLOCK);
iowrite32(MASK_INTR_REG(midc->ch_id), mid->dma_base + MASK_ERR);
}
/**
* intel_mid_dma_alloc_chan_resources - Allocate dma resources
* @chan: chan requiring attention
*
* Allocates DMA resources on this chan
* Return the descriptors allocated
*/
static int intel_mid_dma_alloc_chan_resources(struct dma_chan *chan)
{
struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(chan);
struct middma_device *mid = to_middma_device(chan->device);
struct intel_mid_dma_desc *desc;
dma_addr_t phys;
int i = 0;
/* ASSERT: channel is idle */
if (test_ch_en(mid->dma_base, midc->ch_id)) {
/*ch is not idle*/
pr_err("ERR_MDMA: ch not idle\n");
return -EIO;
}
midc->completed = chan->cookie = 1;
spin_lock_bh(&midc->lock);
while (midc->descs_allocated < DESCS_PER_CHANNEL) {
spin_unlock_bh(&midc->lock);
desc = pci_pool_alloc(mid->dma_pool, GFP_KERNEL, &phys);
if (!desc) {
pr_err("ERR_MDMA: desc failed\n");
return -ENOMEM;
/*check*/
}
dma_async_tx_descriptor_init(&desc->txd, chan);
desc->txd.tx_submit = intel_mid_dma_tx_submit;
desc->txd.flags = DMA_CTRL_ACK;
desc->txd.phys = phys;
spin_lock_bh(&midc->lock);
i = ++midc->descs_allocated;
list_add_tail(&desc->desc_node, &midc->free_list);
}
spin_unlock_bh(&midc->lock);
midc->in_use = false;
pr_debug("MID_DMA: Desc alloc done ret: %d desc\n", i);
return i;
}
/**
* midc_handle_error - Handle DMA txn error
* @mid: controller where error occured
* @midc: chan where error occured
*
* Scan the descriptor for error
*/
static void midc_handle_error(struct middma_device *mid,
struct intel_mid_dma_chan *midc)
{
midc_scan_descriptors(mid, midc);
}
/**
* dma_tasklet - DMA interrupt tasklet
* @data: tasklet arg (the controller structure)
*
* Scan the controller for interrupts for completion/error
* Clear the interrupt and call for handling completion/error
*/
static void dma_tasklet(unsigned long data)
{
struct middma_device *mid = NULL;
struct intel_mid_dma_chan *midc = NULL;
u32 status;
int i;
mid = (struct middma_device *)data;
if (mid == NULL) {
pr_err("ERR_MDMA: tasklet Null param\n");
return;
}
pr_debug("MDMA: in tasklet for device %x\n", mid->pci_id);
status = ioread32(mid->dma_base + RAW_TFR);
pr_debug("MDMA:RAW_TFR %x\n", status);
status &= mid->intr_mask;
while (status) {
/*txn interrupt*/
i = get_ch_index(&status, mid->chan_base);
if (i < 0) {
pr_err("ERR_MDMA:Invalid ch index %x\n", i);
return;
}
midc = &mid->ch[i];
if (midc == NULL) {
pr_err("ERR_MDMA:Null param midc\n");
return;
}
pr_debug("MDMA:Tx complete interrupt %x, Ch No %d Index %d\n",
status, midc->ch_id, i);
/*clearing this interrupts first*/
iowrite32((1 << midc->ch_id), mid->dma_base + CLEAR_TFR);
iowrite32((1 << midc->ch_id), mid->dma_base + CLEAR_BLOCK);
spin_lock_bh(&midc->lock);
midc_scan_descriptors(mid, midc);
pr_debug("MDMA:Scan of desc... complete, unmasking\n");
iowrite32(UNMASK_INTR_REG(midc->ch_id),
mid->dma_base + MASK_TFR);
spin_unlock_bh(&midc->lock);
}
status = ioread32(mid->dma_base + RAW_ERR);
status &= mid->intr_mask;
while (status) {
/*err interrupt*/
i = get_ch_index(&status, mid->chan_base);
if (i < 0) {
pr_err("ERR_MDMA:Invalid ch index %x\n", i);
return;
}
midc = &mid->ch[i];
if (midc == NULL) {
pr_err("ERR_MDMA:Null param midc\n");
return;
}
pr_debug("MDMA:Tx complete interrupt %x, Ch No %d Index %d\n",
status, midc->ch_id, i);
iowrite32((1 << midc->ch_id), mid->dma_base + CLEAR_ERR);
spin_lock_bh(&midc->lock);
midc_handle_error(mid, midc);
iowrite32(UNMASK_INTR_REG(midc->ch_id),
mid->dma_base + MASK_ERR);
spin_unlock_bh(&midc->lock);
}
pr_debug("MDMA:Exiting takslet...\n");
return;
}
static void dma_tasklet1(unsigned long data)
{
pr_debug("MDMA:in takslet1...\n");
return dma_tasklet(data);
}
static void dma_tasklet2(unsigned long data)
{
pr_debug("MDMA:in takslet2...\n");
return dma_tasklet(data);
}
/**
* intel_mid_dma_interrupt - DMA ISR
* @irq: IRQ where interrupt occurred
* @data: ISR cllback data (the controller structure)
*
* See if this is our interrupt if so then schedule the tasklet
* otherwise ignore
*/
static irqreturn_t intel_mid_dma_interrupt(int irq, void *data)
{
struct middma_device *mid = data;
u32 status;
int call_tasklet = 0;
/*DMA Interrupt*/
pr_debug("MDMA:Got an interrupt on irq %d\n", irq);
if (!mid) {
pr_err("ERR_MDMA:null pointer mid\n");
return -EINVAL;
}
status = ioread32(mid->dma_base + RAW_TFR);
pr_debug("MDMA: Status %x, Mask %x\n", status, mid->intr_mask);
status &= mid->intr_mask;
if (status) {
/*need to disable intr*/
iowrite32((status << 8), mid->dma_base + MASK_TFR);
pr_debug("MDMA: Calling tasklet %x\n", status);
call_tasklet = 1;
}
status = ioread32(mid->dma_base + RAW_ERR);
status &= mid->intr_mask;
if (status) {
iowrite32(MASK_INTR_REG(status), mid->dma_base + MASK_ERR);
call_tasklet = 1;
}
if (call_tasklet)
tasklet_schedule(&mid->tasklet);
return IRQ_HANDLED;
}
static irqreturn_t intel_mid_dma_interrupt1(int irq, void *data)
{
return intel_mid_dma_interrupt(irq, data);
}
static irqreturn_t intel_mid_dma_interrupt2(int irq, void *data)
{
return intel_mid_dma_interrupt(irq, data);
}
/**
* mid_setup_dma - Setup the DMA controller
* @pdev: Controller PCI device structure
*
* Initilize the DMA controller, channels, registers with DMA engine,
* ISR. Initilize DMA controller channels.
*/
static int mid_setup_dma(struct pci_dev *pdev)
{
struct middma_device *dma = pci_get_drvdata(pdev);
int err, i;
unsigned int irq_level;
/* DMA coherent memory pool for DMA descriptor allocations */
dma->dma_pool = pci_pool_create("intel_mid_dma_desc_pool", pdev,
sizeof(struct intel_mid_dma_desc),
32, 0);
if (NULL == dma->dma_pool) {
pr_err("ERR_MDMA:pci_pool_create failed\n");
err = -ENOMEM;
kfree(dma);
goto err_dma_pool;
}
INIT_LIST_HEAD(&dma->common.channels);
dma->pci_id = pdev->device;
if (dma->pimr_mask) {
dma->mask_reg = ioremap(LNW_PERIPHRAL_MASK_BASE,
LNW_PERIPHRAL_MASK_SIZE);
if (dma->mask_reg == NULL) {
pr_err("ERR_MDMA:Cant map periphral intr space !!\n");
return -ENOMEM;
}
} else
dma->mask_reg = NULL;
pr_debug("MDMA:Adding %d channel for this controller\n", dma->max_chan);
/*init CH structures*/
dma->intr_mask = 0;
for (i = 0; i < dma->max_chan; i++) {
struct intel_mid_dma_chan *midch = &dma->ch[i];
midch->chan.device = &dma->common;
midch->chan.cookie = 1;
midch->chan.chan_id = i;
midch->ch_id = dma->chan_base + i;
pr_debug("MDMA:Init CH %d, ID %d\n", i, midch->ch_id);
midch->dma_base = dma->dma_base;
midch->ch_regs = dma->dma_base + DMA_CH_SIZE * midch->ch_id;
midch->dma = dma;
dma->intr_mask |= 1 << (dma->chan_base + i);
spin_lock_init(&midch->lock);
INIT_LIST_HEAD(&midch->active_list);
INIT_LIST_HEAD(&midch->queue);
INIT_LIST_HEAD(&midch->free_list);
/*mask interrupts*/
iowrite32(MASK_INTR_REG(midch->ch_id),
dma->dma_base + MASK_BLOCK);
iowrite32(MASK_INTR_REG(midch->ch_id),
dma->dma_base + MASK_SRC_TRAN);
iowrite32(MASK_INTR_REG(midch->ch_id),
dma->dma_base + MASK_DST_TRAN);
iowrite32(MASK_INTR_REG(midch->ch_id),
dma->dma_base + MASK_ERR);
iowrite32(MASK_INTR_REG(midch->ch_id),
dma->dma_base + MASK_TFR);
disable_dma_interrupt(midch);
list_add_tail(&midch->chan.device_node, &dma->common.channels);
}
pr_debug("MDMA: Calc Mask as %x for this controller\n", dma->intr_mask);
/*init dma structure*/
dma_cap_zero(dma->common.cap_mask);
dma_cap_set(DMA_MEMCPY, dma->common.cap_mask);
dma_cap_set(DMA_SLAVE, dma->common.cap_mask);
dma_cap_set(DMA_PRIVATE, dma->common.cap_mask);
dma->common.dev = &pdev->dev;
dma->common.chancnt = dma->max_chan;
dma->common.device_alloc_chan_resources =
intel_mid_dma_alloc_chan_resources;
dma->common.device_free_chan_resources =
intel_mid_dma_free_chan_resources;
dma->common.device_tx_status = intel_mid_dma_tx_status;
dma->common.device_prep_dma_memcpy = intel_mid_dma_prep_memcpy;
dma->common.device_issue_pending = intel_mid_dma_issue_pending;
dma->common.device_prep_slave_sg = intel_mid_dma_prep_slave_sg;
dma->common.device_control = intel_mid_dma_device_control;
/*enable dma cntrl*/
iowrite32(REG_BIT0, dma->dma_base + DMA_CFG);
/*register irq */
if (dma->pimr_mask) {
irq_level = IRQF_SHARED;
pr_debug("MDMA:Requesting irq shared for DMAC1\n");
err = request_irq(pdev->irq, intel_mid_dma_interrupt1,
IRQF_SHARED, "INTEL_MID_DMAC1", dma);
if (0 != err)
goto err_irq;
} else {
dma->intr_mask = 0x03;
irq_level = 0;
pr_debug("MDMA:Requesting irq for DMAC2\n");
err = request_irq(pdev->irq, intel_mid_dma_interrupt2,
0, "INTEL_MID_DMAC2", dma);
if (0 != err)
goto err_irq;
}
/*register device w/ engine*/
err = dma_async_device_register(&dma->common);
if (0 != err) {
pr_err("ERR_MDMA:device_register failed: %d\n", err);
goto err_engine;
}
if (dma->pimr_mask) {
pr_debug("setting up tasklet1 for DMAC1\n");
tasklet_init(&dma->tasklet, dma_tasklet1, (unsigned long)dma);
} else {
pr_debug("setting up tasklet2 for DMAC2\n");
tasklet_init(&dma->tasklet, dma_tasklet2, (unsigned long)dma);
}
return 0;
err_engine:
free_irq(pdev->irq, dma);
err_irq:
pci_pool_destroy(dma->dma_pool);
kfree(dma);
err_dma_pool:
pr_err("ERR_MDMA:setup_dma failed: %d\n", err);
return err;
}
/**
* middma_shutdown - Shutdown the DMA controller
* @pdev: Controller PCI device structure
*
* Called by remove
* Unregister DMa controller, clear all structures and free interrupt
*/
static void middma_shutdown(struct pci_dev *pdev)
{
struct middma_device *device = pci_get_drvdata(pdev);
dma_async_device_unregister(&device->common);
pci_pool_destroy(device->dma_pool);
if (device->mask_reg)
iounmap(device->mask_reg);
if (device->dma_base)
iounmap(device->dma_base);
free_irq(pdev->irq, device);
return;
}
/**
* intel_mid_dma_probe - PCI Probe
* @pdev: Controller PCI device structure
* @id: pci device id structure
*
* Initilize the PCI device, map BARs, query driver data.
* Call setup_dma to complete contoller and chan initilzation
*/
static int __devinit intel_mid_dma_probe(struct pci_dev *pdev,
const struct pci_device_id *id)
{
struct middma_device *device;
u32 base_addr, bar_size;
struct intel_mid_dma_probe_info *info;
int err;
pr_debug("MDMA: probe for %x\n", pdev->device);
info = (void *)id->driver_data;
pr_debug("MDMA: CH %d, base %d, block len %d, Periphral mask %x\n",
info->max_chan, info->ch_base,
info->block_size, info->pimr_mask);
err = pci_enable_device(pdev);
if (err)
goto err_enable_device;
err = pci_request_regions(pdev, "intel_mid_dmac");
if (err)
goto err_request_regions;
err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
if (err)
goto err_set_dma_mask;
err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
if (err)
goto err_set_dma_mask;
device = kzalloc(sizeof(*device), GFP_KERNEL);
if (!device) {
pr_err("ERR_MDMA:kzalloc failed probe\n");
err = -ENOMEM;
goto err_kzalloc;
}
device->pdev = pci_dev_get(pdev);
base_addr = pci_resource_start(pdev, 0);
bar_size = pci_resource_len(pdev, 0);
device->dma_base = ioremap_nocache(base_addr, DMA_REG_SIZE);
if (!device->dma_base) {
pr_err("ERR_MDMA:ioremap failed\n");
err = -ENOMEM;
goto err_ioremap;
}
pci_set_drvdata(pdev, device);
pci_set_master(pdev);
device->max_chan = info->max_chan;
device->chan_base = info->ch_base;
device->block_size = info->block_size;
device->pimr_mask = info->pimr_mask;
err = mid_setup_dma(pdev);
if (err)
goto err_dma;
return 0;
err_dma:
iounmap(device->dma_base);
err_ioremap:
pci_dev_put(pdev);
kfree(device);
err_kzalloc:
err_set_dma_mask:
pci_release_regions(pdev);
pci_disable_device(pdev);
err_request_regions:
err_enable_device:
pr_err("ERR_MDMA:Probe failed %d\n", err);
return err;
}
/**
* intel_mid_dma_remove - PCI remove
* @pdev: Controller PCI device structure
*
* Free up all resources and data
* Call shutdown_dma to complete contoller and chan cleanup
*/
static void __devexit intel_mid_dma_remove(struct pci_dev *pdev)
{
struct middma_device *device = pci_get_drvdata(pdev);
middma_shutdown(pdev);
pci_dev_put(pdev);
kfree(device);
pci_release_regions(pdev);
pci_disable_device(pdev);
}
/******************************************************************************
* PCI stuff
*/
static struct pci_device_id intel_mid_dma_ids[] = {
{ PCI_VDEVICE(INTEL, INTEL_MID_DMAC1_ID), INFO(2, 6, 4095, 0x200020)},
{ PCI_VDEVICE(INTEL, INTEL_MID_DMAC2_ID), INFO(2, 0, 2047, 0)},
{ PCI_VDEVICE(INTEL, INTEL_MID_GP_DMAC2_ID), INFO(2, 0, 2047, 0)},
{ PCI_VDEVICE(INTEL, INTEL_MFLD_DMAC1_ID), INFO(4, 0, 4095, 0x400040)},
{ 0, }
};
MODULE_DEVICE_TABLE(pci, intel_mid_dma_ids);
static struct pci_driver intel_mid_dma_pci = {
.name = "Intel MID DMA",
.id_table = intel_mid_dma_ids,
.probe = intel_mid_dma_probe,
.remove = __devexit_p(intel_mid_dma_remove),
};
static int __init intel_mid_dma_init(void)
{
pr_debug("INFO_MDMA: LNW DMA Driver Version %s\n",
INTEL_MID_DMA_DRIVER_VERSION);
return pci_register_driver(&intel_mid_dma_pci);
}
fs_initcall(intel_mid_dma_init);
static void __exit intel_mid_dma_exit(void)
{
pci_unregister_driver(&intel_mid_dma_pci);
}
module_exit(intel_mid_dma_exit);
MODULE_AUTHOR("Vinod Koul <vinod.koul@intel.com>");
MODULE_DESCRIPTION("Intel (R) MID DMAC Driver");
MODULE_LICENSE("GPL v2");
MODULE_VERSION(INTEL_MID_DMA_DRIVER_VERSION);
/*
* intel_mid_dma_regs.h - Intel MID DMA Drivers
*
* Copyright (C) 2008-10 Intel Corp
* Author: Vinod Koul <vinod.koul@intel.com>
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
*
*/
#ifndef __INTEL_MID_DMAC_REGS_H__
#define __INTEL_MID_DMAC_REGS_H__
#include <linux/dmaengine.h>
#include <linux/dmapool.h>
#include <linux/pci_ids.h>
#define INTEL_MID_DMA_DRIVER_VERSION "1.0.5"
#define REG_BIT0 0x00000001
#define REG_BIT8 0x00000100
#define UNMASK_INTR_REG(chan_num) \
((REG_BIT0 << chan_num) | (REG_BIT8 << chan_num))
#define MASK_INTR_REG(chan_num) (REG_BIT8 << chan_num)
#define ENABLE_CHANNEL(chan_num) \
((REG_BIT0 << chan_num) | (REG_BIT8 << chan_num))
#define DESCS_PER_CHANNEL 16
/*DMA Registers*/
/*registers associated with channel programming*/
#define DMA_REG_SIZE 0x400
#define DMA_CH_SIZE 0x58
/*CH X REG = (DMA_CH_SIZE)*CH_NO + REG*/
#define SAR 0x00 /* Source Address Register*/
#define DAR 0x08 /* Destination Address Register*/
#define CTL_LOW 0x18 /* Control Register*/
#define CTL_HIGH 0x1C /* Control Register*/
#define CFG_LOW 0x40 /* Configuration Register Low*/
#define CFG_HIGH 0x44 /* Configuration Register high*/
#define STATUS_TFR 0x2E8
#define STATUS_BLOCK 0x2F0
#define STATUS_ERR 0x308
#define RAW_TFR 0x2C0
#define RAW_BLOCK 0x2C8
#define RAW_ERR 0x2E0
#define MASK_TFR 0x310
#define MASK_BLOCK 0x318
#define MASK_SRC_TRAN 0x320
#define MASK_DST_TRAN 0x328
#define MASK_ERR 0x330
#define CLEAR_TFR 0x338
#define CLEAR_BLOCK 0x340
#define CLEAR_SRC_TRAN 0x348
#define CLEAR_DST_TRAN 0x350
#define CLEAR_ERR 0x358
#define INTR_STATUS 0x360
#define DMA_CFG 0x398
#define DMA_CHAN_EN 0x3A0
/*DMA channel control registers*/
union intel_mid_dma_ctl_lo {
struct {
u32 int_en:1; /*enable or disable interrupts*/
/*should be 0*/
u32 dst_tr_width:3; /*destination transfer width*/
/*usually 32 bits = 010*/
u32 src_tr_width:3; /*source transfer width*/
/*usually 32 bits = 010*/
u32 dinc:2; /*destination address inc/dec*/
/*For mem:INC=00, Periphral NoINC=11*/
u32 sinc:2; /*source address inc or dec, as above*/
u32 dst_msize:3; /*destination burst transaction length*/
/*always = 16 ie 011*/
u32 src_msize:3; /*source burst transaction length*/
/*always = 16 ie 011*/
u32 reser1:3;
u32 tt_fc:3; /*transfer type and flow controller*/
/*M-M = 000
P-M = 010
M-P = 001*/
u32 dms:2; /*destination master select = 0*/
u32 sms:2; /*source master select = 0*/
u32 llp_dst_en:1; /*enable/disable destination LLP = 0*/
u32 llp_src_en:1; /*enable/disable source LLP = 0*/
u32 reser2:3;
} ctlx;
u32 ctl_lo;
};
union intel_mid_dma_ctl_hi {
struct {
u32 block_ts:12; /*block transfer size*/
/*configured by DMAC*/
u32 reser:20;
} ctlx;
u32 ctl_hi;
};
/*DMA channel configuration registers*/
union intel_mid_dma_cfg_lo {
struct {
u32 reser1:5;
u32 ch_prior:3; /*channel priority = 0*/
u32 ch_susp:1; /*channel suspend = 0*/
u32 fifo_empty:1; /*FIFO empty or not R bit = 0*/
u32 hs_sel_dst:1; /*select HW/SW destn handshaking*/
/*HW = 0, SW = 1*/
u32 hs_sel_src:1; /*select HW/SW src handshaking*/
u32 reser2:6;
u32 dst_hs_pol:1; /*dest HS interface polarity*/
u32 src_hs_pol:1; /*src HS interface polarity*/
u32 max_abrst:10; /*max AMBA burst len = 0 (no sw limit*/
u32 reload_src:1; /*auto reload src addr =1 if src is P*/
u32 reload_dst:1; /*AR destn addr =1 if dstn is P*/
} cfgx;
u32 cfg_lo;
};
union intel_mid_dma_cfg_hi {
struct {
u32 fcmode:1; /*flow control mode = 1*/
u32 fifo_mode:1; /*FIFO mode select = 1*/
u32 protctl:3; /*protection control = 0*/
u32 rsvd:2;
u32 src_per:4; /*src hw HS interface*/
u32 dst_per:4; /*dstn hw HS interface*/
u32 reser2:17;
} cfgx;
u32 cfg_hi;
};
/**
* struct intel_mid_dma_chan - internal mid representation of a DMA channel
* @chan: dma_chan strcture represetation for mid chan
* @ch_regs: MMIO register space pointer to channel register
* @dma_base: MMIO register space DMA engine base pointer
* @ch_id: DMA channel id
* @lock: channel spinlock
* @completed: DMA cookie
* @active_list: current active descriptors
* @queue: current queued up descriptors
* @free_list: current free descriptors
* @slave: dma slave struture
* @descs_allocated: total number of decsiptors allocated
* @dma: dma device struture pointer
* @in_use: bool representing if ch is in use or not
*/
struct intel_mid_dma_chan {
struct dma_chan chan;
void __iomem *ch_regs;
void __iomem *dma_base;
int ch_id;
spinlock_t lock;
dma_cookie_t completed;
struct list_head active_list;
struct list_head queue;
struct list_head free_list;
struct intel_mid_dma_slave *slave;
unsigned int descs_allocated;
struct middma_device *dma;
bool in_use;
};
static inline struct intel_mid_dma_chan *to_intel_mid_dma_chan(
struct dma_chan *chan)
{
return container_of(chan, struct intel_mid_dma_chan, chan);
}
/**
* struct middma_device - internal representation of a DMA device
* @pdev: PCI device
* @dma_base: MMIO register space pointer of DMA
* @dma_pool: for allocating DMA descriptors
* @common: embedded struct dma_device
* @tasklet: dma tasklet for processing interrupts
* @ch: per channel data
* @pci_id: DMA device PCI ID
* @intr_mask: Interrupt mask to be used
* @mask_reg: MMIO register for periphral mask
* @chan_base: Base ch index (read from driver data)
* @max_chan: max number of chs supported (from drv_data)
* @block_size: Block size of DMA transfer supported (from drv_data)
* @pimr_mask: MMIO register addr for periphral interrupt (from drv_data)
*/
struct middma_device {
struct pci_dev *pdev;
void __iomem *dma_base;
struct pci_pool *dma_pool;
struct dma_device common;
struct tasklet_struct tasklet;
struct intel_mid_dma_chan ch[MAX_CHAN];
unsigned int pci_id;
unsigned int intr_mask;
void __iomem *mask_reg;
int chan_base;
int max_chan;
int block_size;
unsigned int pimr_mask;
};
static inline struct middma_device *to_middma_device(struct dma_device *common)
{
return container_of(common, struct middma_device, common);
}
struct intel_mid_dma_desc {
void __iomem *block; /*ch ptr*/
struct list_head desc_node;
struct dma_async_tx_descriptor txd;
size_t len;
dma_addr_t sar;
dma_addr_t dar;
u32 cfg_hi;
u32 cfg_lo;
u32 ctl_lo;
u32 ctl_hi;
dma_addr_t next;
enum dma_data_direction dirn;
enum dma_status status;
enum intel_mid_dma_width width; /*width of DMA txn*/
enum intel_mid_dma_mode cfg_mode; /*mode configuration*/
};
static inline int test_ch_en(void __iomem *dma, u32 ch_no)
{
u32 en_reg = ioread32(dma + DMA_CHAN_EN);
return (en_reg >> ch_no) & 0x1;
}
static inline struct intel_mid_dma_desc *to_intel_mid_dma_desc
(struct dma_async_tx_descriptor *txd)
{
return container_of(txd, struct intel_mid_dma_desc, txd);
}
#endif /*__INTEL_MID_DMAC_REGS_H__*/
...@@ -97,6 +97,7 @@ struct ioat_chan_common { ...@@ -97,6 +97,7 @@ struct ioat_chan_common {
#define IOAT_RESET_PENDING 2 #define IOAT_RESET_PENDING 2
#define IOAT_KOBJ_INIT_FAIL 3 #define IOAT_KOBJ_INIT_FAIL 3
#define IOAT_RESHAPE_PENDING 4 #define IOAT_RESHAPE_PENDING 4
#define IOAT_RUN 5
struct timer_list timer; struct timer_list timer;
#define COMPLETION_TIMEOUT msecs_to_jiffies(100) #define COMPLETION_TIMEOUT msecs_to_jiffies(100)
#define IDLE_TIMEOUT msecs_to_jiffies(2000) #define IDLE_TIMEOUT msecs_to_jiffies(2000)
......
...@@ -287,7 +287,10 @@ void ioat2_timer_event(unsigned long data) ...@@ -287,7 +287,10 @@ void ioat2_timer_event(unsigned long data)
chanerr = readl(chan->reg_base + IOAT_CHANERR_OFFSET); chanerr = readl(chan->reg_base + IOAT_CHANERR_OFFSET);
dev_err(to_dev(chan), "%s: Channel halted (%x)\n", dev_err(to_dev(chan), "%s: Channel halted (%x)\n",
__func__, chanerr); __func__, chanerr);
if (test_bit(IOAT_RUN, &chan->state))
BUG_ON(is_ioat_bug(chanerr)); BUG_ON(is_ioat_bug(chanerr));
else /* we never got off the ground */
return;
} }
/* if we haven't made progress and we have already /* if we haven't made progress and we have already
...@@ -492,6 +495,8 @@ static struct ioat_ring_ent **ioat2_alloc_ring(struct dma_chan *c, int order, gf ...@@ -492,6 +495,8 @@ static struct ioat_ring_ent **ioat2_alloc_ring(struct dma_chan *c, int order, gf
return ring; return ring;
} }
void ioat2_free_chan_resources(struct dma_chan *c);
/* ioat2_alloc_chan_resources - allocate/initialize ioat2 descriptor ring /* ioat2_alloc_chan_resources - allocate/initialize ioat2 descriptor ring
* @chan: channel to be initialized * @chan: channel to be initialized
*/ */
...@@ -500,6 +505,7 @@ int ioat2_alloc_chan_resources(struct dma_chan *c) ...@@ -500,6 +505,7 @@ int ioat2_alloc_chan_resources(struct dma_chan *c)
struct ioat2_dma_chan *ioat = to_ioat2_chan(c); struct ioat2_dma_chan *ioat = to_ioat2_chan(c);
struct ioat_chan_common *chan = &ioat->base; struct ioat_chan_common *chan = &ioat->base;
struct ioat_ring_ent **ring; struct ioat_ring_ent **ring;
u64 status;
int order; int order;
/* have we already been set up? */ /* have we already been set up? */
...@@ -540,7 +546,20 @@ int ioat2_alloc_chan_resources(struct dma_chan *c) ...@@ -540,7 +546,20 @@ int ioat2_alloc_chan_resources(struct dma_chan *c)
tasklet_enable(&chan->cleanup_task); tasklet_enable(&chan->cleanup_task);
ioat2_start_null_desc(ioat); ioat2_start_null_desc(ioat);
/* check that we got off the ground */
udelay(5);
status = ioat_chansts(chan);
if (is_ioat_active(status) || is_ioat_idle(status)) {
set_bit(IOAT_RUN, &chan->state);
return 1 << ioat->alloc_order; return 1 << ioat->alloc_order;
} else {
u32 chanerr = readl(chan->reg_base + IOAT_CHANERR_OFFSET);
dev_WARN(to_dev(chan),
"failed to start channel chanerr: %#x\n", chanerr);
ioat2_free_chan_resources(c);
return -EFAULT;
}
} }
bool reshape_ring(struct ioat2_dma_chan *ioat, int order) bool reshape_ring(struct ioat2_dma_chan *ioat, int order)
...@@ -778,6 +797,7 @@ void ioat2_free_chan_resources(struct dma_chan *c) ...@@ -778,6 +797,7 @@ void ioat2_free_chan_resources(struct dma_chan *c)
del_timer_sync(&chan->timer); del_timer_sync(&chan->timer);
device->cleanup_fn((unsigned long) c); device->cleanup_fn((unsigned long) c);
device->reset_hw(chan); device->reset_hw(chan);
clear_bit(IOAT_RUN, &chan->state);
spin_lock_bh(&chan->cleanup_lock); spin_lock_bh(&chan->cleanup_lock);
spin_lock_bh(&ioat->prep_lock); spin_lock_bh(&ioat->prep_lock);
......
...@@ -361,7 +361,10 @@ static void ioat3_timer_event(unsigned long data) ...@@ -361,7 +361,10 @@ static void ioat3_timer_event(unsigned long data)
chanerr = readl(chan->reg_base + IOAT_CHANERR_OFFSET); chanerr = readl(chan->reg_base + IOAT_CHANERR_OFFSET);
dev_err(to_dev(chan), "%s: Channel halted (%x)\n", dev_err(to_dev(chan), "%s: Channel halted (%x)\n",
__func__, chanerr); __func__, chanerr);
if (test_bit(IOAT_RUN, &chan->state))
BUG_ON(is_ioat_bug(chanerr)); BUG_ON(is_ioat_bug(chanerr));
else /* we never got off the ground */
return;
} }
/* if we haven't made progress and we have already /* if we haven't made progress and we have already
......
/*
* Topcliff PCH DMA controller driver
* Copyright (c) 2010 Intel Corporation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/pch_dma.h>
#define DRV_NAME "pch-dma"
#define DMA_CTL0_DISABLE 0x0
#define DMA_CTL0_SG 0x1
#define DMA_CTL0_ONESHOT 0x2
#define DMA_CTL0_MODE_MASK_BITS 0x3
#define DMA_CTL0_DIR_SHIFT_BITS 2
#define DMA_CTL0_BITS_PER_CH 4
#define DMA_CTL2_START_SHIFT_BITS 8
#define DMA_CTL2_IRQ_ENABLE_MASK ((1UL << DMA_CTL2_START_SHIFT_BITS) - 1)
#define DMA_STATUS_IDLE 0x0
#define DMA_STATUS_DESC_READ 0x1
#define DMA_STATUS_WAIT 0x2
#define DMA_STATUS_ACCESS 0x3
#define DMA_STATUS_BITS_PER_CH 2
#define DMA_STATUS_MASK_BITS 0x3
#define DMA_STATUS_SHIFT_BITS 16
#define DMA_STATUS_IRQ(x) (0x1 << (x))
#define DMA_STATUS_ERR(x) (0x1 << ((x) + 8))
#define DMA_DESC_WIDTH_SHIFT_BITS 12
#define DMA_DESC_WIDTH_1_BYTE (0x3 << DMA_DESC_WIDTH_SHIFT_BITS)
#define DMA_DESC_WIDTH_2_BYTES (0x2 << DMA_DESC_WIDTH_SHIFT_BITS)
#define DMA_DESC_WIDTH_4_BYTES (0x0 << DMA_DESC_WIDTH_SHIFT_BITS)
#define DMA_DESC_MAX_COUNT_1_BYTE 0x3FF
#define DMA_DESC_MAX_COUNT_2_BYTES 0x3FF
#define DMA_DESC_MAX_COUNT_4_BYTES 0x7FF
#define DMA_DESC_END_WITHOUT_IRQ 0x0
#define DMA_DESC_END_WITH_IRQ 0x1
#define DMA_DESC_FOLLOW_WITHOUT_IRQ 0x2
#define DMA_DESC_FOLLOW_WITH_IRQ 0x3
#define MAX_CHAN_NR 8
static unsigned int init_nr_desc_per_channel = 64;
module_param(init_nr_desc_per_channel, uint, 0644);
MODULE_PARM_DESC(init_nr_desc_per_channel,
"initial descriptors per channel (default: 64)");
struct pch_dma_desc_regs {
u32 dev_addr;
u32 mem_addr;
u32 size;
u32 next;
};
struct pch_dma_regs {
u32 dma_ctl0;
u32 dma_ctl1;
u32 dma_ctl2;
u32 reserved1;
u32 dma_sts0;
u32 dma_sts1;
u32 reserved2;
u32 reserved3;
struct pch_dma_desc_regs desc[0];
};
struct pch_dma_desc {
struct pch_dma_desc_regs regs;
struct dma_async_tx_descriptor txd;
struct list_head desc_node;
struct list_head tx_list;
};
struct pch_dma_chan {
struct dma_chan chan;
void __iomem *membase;
enum dma_data_direction dir;
struct tasklet_struct tasklet;
unsigned long err_status;
spinlock_t lock;
dma_cookie_t completed_cookie;
struct list_head active_list;
struct list_head queue;
struct list_head free_list;
unsigned int descs_allocated;
};
#define PDC_DEV_ADDR 0x00
#define PDC_MEM_ADDR 0x04
#define PDC_SIZE 0x08
#define PDC_NEXT 0x0C
#define channel_readl(pdc, name) \
readl((pdc)->membase + PDC_##name)
#define channel_writel(pdc, name, val) \
writel((val), (pdc)->membase + PDC_##name)
struct pch_dma {
struct dma_device dma;
void __iomem *membase;
struct pci_pool *pool;
struct pch_dma_regs regs;
struct pch_dma_desc_regs ch_regs[MAX_CHAN_NR];
struct pch_dma_chan channels[0];
};
#define PCH_DMA_CTL0 0x00
#define PCH_DMA_CTL1 0x04
#define PCH_DMA_CTL2 0x08
#define PCH_DMA_STS0 0x10
#define PCH_DMA_STS1 0x14
#define dma_readl(pd, name) \
readl((pd)->membase + PCH_DMA_##name)
#define dma_writel(pd, name, val) \
writel((val), (pd)->membase + PCH_DMA_##name)
static inline struct pch_dma_desc *to_pd_desc(struct dma_async_tx_descriptor *txd)
{
return container_of(txd, struct pch_dma_desc, txd);
}
static inline struct pch_dma_chan *to_pd_chan(struct dma_chan *chan)
{
return container_of(chan, struct pch_dma_chan, chan);
}
static inline struct pch_dma *to_pd(struct dma_device *ddev)
{
return container_of(ddev, struct pch_dma, dma);
}
static inline struct device *chan2dev(struct dma_chan *chan)
{
return &chan->dev->device;
}
static inline struct device *chan2parent(struct dma_chan *chan)
{
return chan->dev->device.parent;
}
static inline struct pch_dma_desc *pdc_first_active(struct pch_dma_chan *pd_chan)
{
return list_first_entry(&pd_chan->active_list,
struct pch_dma_desc, desc_node);
}
static inline struct pch_dma_desc *pdc_first_queued(struct pch_dma_chan *pd_chan)
{
return list_first_entry(&pd_chan->queue,
struct pch_dma_desc, desc_node);
}
static void pdc_enable_irq(struct dma_chan *chan, int enable)
{
struct pch_dma *pd = to_pd(chan->device);
u32 val;
val = dma_readl(pd, CTL2);
if (enable)
val |= 0x1 << chan->chan_id;
else
val &= ~(0x1 << chan->chan_id);
dma_writel(pd, CTL2, val);
dev_dbg(chan2dev(chan), "pdc_enable_irq: chan %d -> %x\n",
chan->chan_id, val);
}
static void pdc_set_dir(struct dma_chan *chan)
{
struct pch_dma_chan *pd_chan = to_pd_chan(chan);
struct pch_dma *pd = to_pd(chan->device);
u32 val;
val = dma_readl(pd, CTL0);
if (pd_chan->dir == DMA_TO_DEVICE)
val |= 0x1 << (DMA_CTL0_BITS_PER_CH * chan->chan_id +
DMA_CTL0_DIR_SHIFT_BITS);
else
val &= ~(0x1 << (DMA_CTL0_BITS_PER_CH * chan->chan_id +
DMA_CTL0_DIR_SHIFT_BITS));
dma_writel(pd, CTL0, val);
dev_dbg(chan2dev(chan), "pdc_set_dir: chan %d -> %x\n",
chan->chan_id, val);
}
static void pdc_set_mode(struct dma_chan *chan, u32 mode)
{
struct pch_dma *pd = to_pd(chan->device);
u32 val;
val = dma_readl(pd, CTL0);
val &= ~(DMA_CTL0_MODE_MASK_BITS <<
(DMA_CTL0_BITS_PER_CH * chan->chan_id));
val |= mode << (DMA_CTL0_BITS_PER_CH * chan->chan_id);
dma_writel(pd, CTL0, val);
dev_dbg(chan2dev(chan), "pdc_set_mode: chan %d -> %x\n",
chan->chan_id, val);
}
static u32 pdc_get_status(struct pch_dma_chan *pd_chan)
{
struct pch_dma *pd = to_pd(pd_chan->chan.device);
u32 val;
val = dma_readl(pd, STS0);
return DMA_STATUS_MASK_BITS & (val >> (DMA_STATUS_SHIFT_BITS +
DMA_STATUS_BITS_PER_CH * pd_chan->chan.chan_id));
}
static bool pdc_is_idle(struct pch_dma_chan *pd_chan)
{
if (pdc_get_status(pd_chan) == DMA_STATUS_IDLE)
return true;
else
return false;
}
static void pdc_dostart(struct pch_dma_chan *pd_chan, struct pch_dma_desc* desc)
{
struct pch_dma *pd = to_pd(pd_chan->chan.device);
u32 val;
if (!pdc_is_idle(pd_chan)) {
dev_err(chan2dev(&pd_chan->chan),
"BUG: Attempt to start non-idle channel\n");
return;
}
channel_writel(pd_chan, DEV_ADDR, desc->regs.dev_addr);
channel_writel(pd_chan, MEM_ADDR, desc->regs.mem_addr);
channel_writel(pd_chan, SIZE, desc->regs.size);
channel_writel(pd_chan, NEXT, desc->regs.next);
dev_dbg(chan2dev(&pd_chan->chan), "chan %d -> dev_addr: %x\n",
pd_chan->chan.chan_id, desc->regs.dev_addr);
dev_dbg(chan2dev(&pd_chan->chan), "chan %d -> mem_addr: %x\n",
pd_chan->chan.chan_id, desc->regs.mem_addr);
dev_dbg(chan2dev(&pd_chan->chan), "chan %d -> size: %x\n",
pd_chan->chan.chan_id, desc->regs.size);
dev_dbg(chan2dev(&pd_chan->chan), "chan %d -> next: %x\n",
pd_chan->chan.chan_id, desc->regs.next);
if (list_empty(&desc->tx_list))
pdc_set_mode(&pd_chan->chan, DMA_CTL0_ONESHOT);
else
pdc_set_mode(&pd_chan->chan, DMA_CTL0_SG);
val = dma_readl(pd, CTL2);
val |= 1 << (DMA_CTL2_START_SHIFT_BITS + pd_chan->chan.chan_id);
dma_writel(pd, CTL2, val);
}
static void pdc_chain_complete(struct pch_dma_chan *pd_chan,
struct pch_dma_desc *desc)
{
struct dma_async_tx_descriptor *txd = &desc->txd;
dma_async_tx_callback callback = txd->callback;
void *param = txd->callback_param;
list_splice_init(&desc->tx_list, &pd_chan->free_list);
list_move(&desc->desc_node, &pd_chan->free_list);
if (callback)
callback(param);
}
static void pdc_complete_all(struct pch_dma_chan *pd_chan)
{
struct pch_dma_desc *desc, *_d;
LIST_HEAD(list);
BUG_ON(!pdc_is_idle(pd_chan));
if (!list_empty(&pd_chan->queue))
pdc_dostart(pd_chan, pdc_first_queued(pd_chan));
list_splice_init(&pd_chan->active_list, &list);
list_splice_init(&pd_chan->queue, &pd_chan->active_list);
list_for_each_entry_safe(desc, _d, &list, desc_node)
pdc_chain_complete(pd_chan, desc);
}
static void pdc_handle_error(struct pch_dma_chan *pd_chan)
{
struct pch_dma_desc *bad_desc;
bad_desc = pdc_first_active(pd_chan);
list_del(&bad_desc->desc_node);
list_splice_init(&pd_chan->queue, pd_chan->active_list.prev);
if (!list_empty(&pd_chan->active_list))
pdc_dostart(pd_chan, pdc_first_active(pd_chan));
dev_crit(chan2dev(&pd_chan->chan), "Bad descriptor submitted\n");
dev_crit(chan2dev(&pd_chan->chan), "descriptor cookie: %d\n",
bad_desc->txd.cookie);
pdc_chain_complete(pd_chan, bad_desc);
}
static void pdc_advance_work(struct pch_dma_chan *pd_chan)
{
if (list_empty(&pd_chan->active_list) ||
list_is_singular(&pd_chan->active_list)) {
pdc_complete_all(pd_chan);
} else {
pdc_chain_complete(pd_chan, pdc_first_active(pd_chan));
pdc_dostart(pd_chan, pdc_first_active(pd_chan));
}
}
static dma_cookie_t pdc_assign_cookie(struct pch_dma_chan *pd_chan,
struct pch_dma_desc *desc)
{
dma_cookie_t cookie = pd_chan->chan.cookie;
if (++cookie < 0)
cookie = 1;
pd_chan->chan.cookie = cookie;
desc->txd.cookie = cookie;
return cookie;
}
static dma_cookie_t pd_tx_submit(struct dma_async_tx_descriptor *txd)
{
struct pch_dma_desc *desc = to_pd_desc(txd);
struct pch_dma_chan *pd_chan = to_pd_chan(txd->chan);
dma_cookie_t cookie;
spin_lock_bh(&pd_chan->lock);
cookie = pdc_assign_cookie(pd_chan, desc);
if (list_empty(&pd_chan->active_list)) {
list_add_tail(&desc->desc_node, &pd_chan->active_list);
pdc_dostart(pd_chan, desc);
} else {
list_add_tail(&desc->desc_node, &pd_chan->queue);
}
spin_unlock_bh(&pd_chan->lock);
return 0;
}
static struct pch_dma_desc *pdc_alloc_desc(struct dma_chan *chan, gfp_t flags)
{
struct pch_dma_desc *desc = NULL;
struct pch_dma *pd = to_pd(chan->device);
dma_addr_t addr;
desc = pci_pool_alloc(pd->pool, GFP_KERNEL, &addr);
if (desc) {
memset(desc, 0, sizeof(struct pch_dma_desc));
INIT_LIST_HEAD(&desc->tx_list);
dma_async_tx_descriptor_init(&desc->txd, chan);
desc->txd.tx_submit = pd_tx_submit;
desc->txd.flags = DMA_CTRL_ACK;
desc->txd.phys = addr;
}
return desc;
}
static struct pch_dma_desc *pdc_desc_get(struct pch_dma_chan *pd_chan)
{
struct pch_dma_desc *desc, *_d;
struct pch_dma_desc *ret = NULL;
int i;
spin_lock_bh(&pd_chan->lock);
list_for_each_entry_safe(desc, _d, &pd_chan->free_list, desc_node) {
i++;
if (async_tx_test_ack(&desc->txd)) {
list_del(&desc->desc_node);
ret = desc;
break;
}
dev_dbg(chan2dev(&pd_chan->chan), "desc %p not ACKed\n", desc);
}
spin_unlock_bh(&pd_chan->lock);
dev_dbg(chan2dev(&pd_chan->chan), "scanned %d descriptors\n", i);
if (!ret) {
ret = pdc_alloc_desc(&pd_chan->chan, GFP_NOIO);
if (ret) {
spin_lock_bh(&pd_chan->lock);
pd_chan->descs_allocated++;
spin_unlock_bh(&pd_chan->lock);
} else {
dev_err(chan2dev(&pd_chan->chan),
"failed to alloc desc\n");
}
}
return ret;
}
static void pdc_desc_put(struct pch_dma_chan *pd_chan,
struct pch_dma_desc *desc)
{
if (desc) {
spin_lock_bh(&pd_chan->lock);
list_splice_init(&desc->tx_list, &pd_chan->free_list);
list_add(&desc->desc_node, &pd_chan->free_list);
spin_unlock_bh(&pd_chan->lock);
}
}
static int pd_alloc_chan_resources(struct dma_chan *chan)
{
struct pch_dma_chan *pd_chan = to_pd_chan(chan);
struct pch_dma_desc *desc;
LIST_HEAD(tmp_list);
int i;
if (!pdc_is_idle(pd_chan)) {
dev_dbg(chan2dev(chan), "DMA channel not idle ?\n");
return -EIO;
}
if (!list_empty(&pd_chan->free_list))
return pd_chan->descs_allocated;
for (i = 0; i < init_nr_desc_per_channel; i++) {
desc = pdc_alloc_desc(chan, GFP_KERNEL);
if (!desc) {
dev_warn(chan2dev(chan),
"Only allocated %d initial descriptors\n", i);
break;
}
list_add_tail(&desc->desc_node, &tmp_list);
}
spin_lock_bh(&pd_chan->lock);
list_splice(&tmp_list, &pd_chan->free_list);
pd_chan->descs_allocated = i;
pd_chan->completed_cookie = chan->cookie = 1;
spin_unlock_bh(&pd_chan->lock);
pdc_enable_irq(chan, 1);
pdc_set_dir(chan);
return pd_chan->descs_allocated;
}
static void pd_free_chan_resources(struct dma_chan *chan)
{
struct pch_dma_chan *pd_chan = to_pd_chan(chan);
struct pch_dma *pd = to_pd(chan->device);
struct pch_dma_desc *desc, *_d;
LIST_HEAD(tmp_list);
BUG_ON(!pdc_is_idle(pd_chan));
BUG_ON(!list_empty(&pd_chan->active_list));
BUG_ON(!list_empty(&pd_chan->queue));
spin_lock_bh(&pd_chan->lock);
list_splice_init(&pd_chan->free_list, &tmp_list);
pd_chan->descs_allocated = 0;
spin_unlock_bh(&pd_chan->lock);
list_for_each_entry_safe(desc, _d, &tmp_list, desc_node)
pci_pool_free(pd->pool, desc, desc->txd.phys);
pdc_enable_irq(chan, 0);
}
static enum dma_status pd_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
struct dma_tx_state *txstate)
{
struct pch_dma_chan *pd_chan = to_pd_chan(chan);
dma_cookie_t last_used;
dma_cookie_t last_completed;
int ret;
spin_lock_bh(&pd_chan->lock);
last_completed = pd_chan->completed_cookie;
last_used = chan->cookie;
spin_unlock_bh(&pd_chan->lock);
ret = dma_async_is_complete(cookie, last_completed, last_used);
dma_set_tx_state(txstate, last_completed, last_used, 0);
return ret;
}
static void pd_issue_pending(struct dma_chan *chan)
{
struct pch_dma_chan *pd_chan = to_pd_chan(chan);
if (pdc_is_idle(pd_chan)) {
spin_lock_bh(&pd_chan->lock);
pdc_advance_work(pd_chan);
spin_unlock_bh(&pd_chan->lock);
}
}
static struct dma_async_tx_descriptor *pd_prep_slave_sg(struct dma_chan *chan,
struct scatterlist *sgl, unsigned int sg_len,
enum dma_data_direction direction, unsigned long flags)
{
struct pch_dma_chan *pd_chan = to_pd_chan(chan);
struct pch_dma_slave *pd_slave = chan->private;
struct pch_dma_desc *first = NULL;
struct pch_dma_desc *prev = NULL;
struct pch_dma_desc *desc = NULL;
struct scatterlist *sg;
dma_addr_t reg;
int i;
if (unlikely(!sg_len)) {
dev_info(chan2dev(chan), "prep_slave_sg: length is zero!\n");
return NULL;
}
if (direction == DMA_FROM_DEVICE)
reg = pd_slave->rx_reg;
else if (direction == DMA_TO_DEVICE)
reg = pd_slave->tx_reg;
else
return NULL;
for_each_sg(sgl, sg, sg_len, i) {
desc = pdc_desc_get(pd_chan);
if (!desc)
goto err_desc_get;
desc->regs.dev_addr = reg;
desc->regs.mem_addr = sg_phys(sg);
desc->regs.size = sg_dma_len(sg);
desc->regs.next = DMA_DESC_FOLLOW_WITHOUT_IRQ;
switch (pd_slave->width) {
case PCH_DMA_WIDTH_1_BYTE:
if (desc->regs.size > DMA_DESC_MAX_COUNT_1_BYTE)
goto err_desc_get;
desc->regs.size |= DMA_DESC_WIDTH_1_BYTE;
break;
case PCH_DMA_WIDTH_2_BYTES:
if (desc->regs.size > DMA_DESC_MAX_COUNT_2_BYTES)
goto err_desc_get;
desc->regs.size |= DMA_DESC_WIDTH_2_BYTES;
break;
case PCH_DMA_WIDTH_4_BYTES:
if (desc->regs.size > DMA_DESC_MAX_COUNT_4_BYTES)
goto err_desc_get;
desc->regs.size |= DMA_DESC_WIDTH_4_BYTES;
break;
default:
goto err_desc_get;
}
if (!first) {
first = desc;
} else {
prev->regs.next |= desc->txd.phys;
list_add_tail(&desc->desc_node, &first->tx_list);
}
prev = desc;
}
if (flags & DMA_PREP_INTERRUPT)
desc->regs.next = DMA_DESC_END_WITH_IRQ;
else
desc->regs.next = DMA_DESC_END_WITHOUT_IRQ;
first->txd.cookie = -EBUSY;
desc->txd.flags = flags;
return &first->txd;
err_desc_get:
dev_err(chan2dev(chan), "failed to get desc or wrong parameters\n");
pdc_desc_put(pd_chan, first);
return NULL;
}
static int pd_device_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
unsigned long arg)
{
struct pch_dma_chan *pd_chan = to_pd_chan(chan);
struct pch_dma_desc *desc, *_d;
LIST_HEAD(list);
if (cmd != DMA_TERMINATE_ALL)
return -ENXIO;
spin_lock_bh(&pd_chan->lock);
pdc_set_mode(&pd_chan->chan, DMA_CTL0_DISABLE);
list_splice_init(&pd_chan->active_list, &list);
list_splice_init(&pd_chan->queue, &list);
list_for_each_entry_safe(desc, _d, &list, desc_node)
pdc_chain_complete(pd_chan, desc);
spin_unlock_bh(&pd_chan->lock);
return 0;
}
static void pdc_tasklet(unsigned long data)
{
struct pch_dma_chan *pd_chan = (struct pch_dma_chan *)data;
if (!pdc_is_idle(pd_chan)) {
dev_err(chan2dev(&pd_chan->chan),
"BUG: handle non-idle channel in tasklet\n");
return;
}
spin_lock_bh(&pd_chan->lock);
if (test_and_clear_bit(0, &pd_chan->err_status))
pdc_handle_error(pd_chan);
else
pdc_advance_work(pd_chan);
spin_unlock_bh(&pd_chan->lock);
}
static irqreturn_t pd_irq(int irq, void *devid)
{
struct pch_dma *pd = (struct pch_dma *)devid;
struct pch_dma_chan *pd_chan;
u32 sts0;
int i;
int ret = IRQ_NONE;
sts0 = dma_readl(pd, STS0);
dev_dbg(pd->dma.dev, "pd_irq sts0: %x\n", sts0);
for (i = 0; i < pd->dma.chancnt; i++) {
pd_chan = &pd->channels[i];
if (sts0 & DMA_STATUS_IRQ(i)) {
if (sts0 & DMA_STATUS_ERR(i))
set_bit(0, &pd_chan->err_status);
tasklet_schedule(&pd_chan->tasklet);
ret = IRQ_HANDLED;
}
}
/* clear interrupt bits in status register */
dma_writel(pd, STS0, sts0);
return ret;
}
static void pch_dma_save_regs(struct pch_dma *pd)
{
struct pch_dma_chan *pd_chan;
struct dma_chan *chan, *_c;
int i = 0;
pd->regs.dma_ctl0 = dma_readl(pd, CTL0);
pd->regs.dma_ctl1 = dma_readl(pd, CTL1);
pd->regs.dma_ctl2 = dma_readl(pd, CTL2);
list_for_each_entry_safe(chan, _c, &pd->dma.channels, device_node) {
pd_chan = to_pd_chan(chan);
pd->ch_regs[i].dev_addr = channel_readl(pd_chan, DEV_ADDR);
pd->ch_regs[i].mem_addr = channel_readl(pd_chan, MEM_ADDR);
pd->ch_regs[i].size = channel_readl(pd_chan, SIZE);
pd->ch_regs[i].next = channel_readl(pd_chan, NEXT);
i++;
}
}
static void pch_dma_restore_regs(struct pch_dma *pd)
{
struct pch_dma_chan *pd_chan;
struct dma_chan *chan, *_c;
int i = 0;
dma_writel(pd, CTL0, pd->regs.dma_ctl0);
dma_writel(pd, CTL1, pd->regs.dma_ctl1);
dma_writel(pd, CTL2, pd->regs.dma_ctl2);
list_for_each_entry_safe(chan, _c, &pd->dma.channels, device_node) {
pd_chan = to_pd_chan(chan);
channel_writel(pd_chan, DEV_ADDR, pd->ch_regs[i].dev_addr);
channel_writel(pd_chan, MEM_ADDR, pd->ch_regs[i].mem_addr);
channel_writel(pd_chan, SIZE, pd->ch_regs[i].size);
channel_writel(pd_chan, NEXT, pd->ch_regs[i].next);
i++;
}
}
static int pch_dma_suspend(struct pci_dev *pdev, pm_message_t state)
{
struct pch_dma *pd = pci_get_drvdata(pdev);
if (pd)
pch_dma_save_regs(pd);
pci_save_state(pdev);
pci_disable_device(pdev);
pci_set_power_state(pdev, pci_choose_state(pdev, state));
return 0;
}
static int pch_dma_resume(struct pci_dev *pdev)
{
struct pch_dma *pd = pci_get_drvdata(pdev);
int err;
pci_set_power_state(pdev, PCI_D0);
pci_restore_state(pdev);
err = pci_enable_device(pdev);
if (err) {
dev_dbg(&pdev->dev, "failed to enable device\n");
return err;
}
if (pd)
pch_dma_restore_regs(pd);
return 0;
}
static int __devinit pch_dma_probe(struct pci_dev *pdev,
const struct pci_device_id *id)
{
struct pch_dma *pd;
struct pch_dma_regs *regs;
unsigned int nr_channels;
int err;
int i;
nr_channels = id->driver_data;
pd = kzalloc(sizeof(struct pch_dma)+
sizeof(struct pch_dma_chan) * nr_channels, GFP_KERNEL);
if (!pd)
return -ENOMEM;
pci_set_drvdata(pdev, pd);
err = pci_enable_device(pdev);
if (err) {
dev_err(&pdev->dev, "Cannot enable PCI device\n");
goto err_free_mem;
}
if (!(pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
dev_err(&pdev->dev, "Cannot find proper base address\n");
goto err_disable_pdev;
}
err = pci_request_regions(pdev, DRV_NAME);
if (err) {
dev_err(&pdev->dev, "Cannot obtain PCI resources\n");
goto err_disable_pdev;
}
err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
if (err) {
dev_err(&pdev->dev, "Cannot set proper DMA config\n");
goto err_free_res;
}
regs = pd->membase = pci_iomap(pdev, 1, 0);
if (!pd->membase) {
dev_err(&pdev->dev, "Cannot map MMIO registers\n");
err = -ENOMEM;
goto err_free_res;
}
pci_set_master(pdev);
err = request_irq(pdev->irq, pd_irq, IRQF_SHARED, DRV_NAME, pd);
if (err) {
dev_err(&pdev->dev, "Failed to request IRQ\n");
goto err_iounmap;
}
pd->pool = pci_pool_create("pch_dma_desc_pool", pdev,
sizeof(struct pch_dma_desc), 4, 0);
if (!pd->pool) {
dev_err(&pdev->dev, "Failed to alloc DMA descriptors\n");
err = -ENOMEM;
goto err_free_irq;
}
pd->dma.dev = &pdev->dev;
pd->dma.chancnt = nr_channels;
INIT_LIST_HEAD(&pd->dma.channels);
for (i = 0; i < nr_channels; i++) {
struct pch_dma_chan *pd_chan = &pd->channels[i];
pd_chan->chan.device = &pd->dma;
pd_chan->chan.cookie = 1;
pd_chan->chan.chan_id = i;
pd_chan->membase = &regs->desc[i];
pd_chan->dir = (i % 2) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
spin_lock_init(&pd_chan->lock);
INIT_LIST_HEAD(&pd_chan->active_list);
INIT_LIST_HEAD(&pd_chan->queue);
INIT_LIST_HEAD(&pd_chan->free_list);
tasklet_init(&pd_chan->tasklet, pdc_tasklet,
(unsigned long)pd_chan);
list_add_tail(&pd_chan->chan.device_node, &pd->dma.channels);
}
dma_cap_zero(pd->dma.cap_mask);
dma_cap_set(DMA_PRIVATE, pd->dma.cap_mask);
dma_cap_set(DMA_SLAVE, pd->dma.cap_mask);
pd->dma.device_alloc_chan_resources = pd_alloc_chan_resources;
pd->dma.device_free_chan_resources = pd_free_chan_resources;
pd->dma.device_tx_status = pd_tx_status;
pd->dma.device_issue_pending = pd_issue_pending;
pd->dma.device_prep_slave_sg = pd_prep_slave_sg;
pd->dma.device_control = pd_device_control;
err = dma_async_device_register(&pd->dma);
if (err) {
dev_err(&pdev->dev, "Failed to register DMA device\n");
goto err_free_pool;
}
return 0;
err_free_pool:
pci_pool_destroy(pd->pool);
err_free_irq:
free_irq(pdev->irq, pd);
err_iounmap:
pci_iounmap(pdev, pd->membase);
err_free_res:
pci_release_regions(pdev);
err_disable_pdev:
pci_disable_device(pdev);
err_free_mem:
return err;
}
static void __devexit pch_dma_remove(struct pci_dev *pdev)
{
struct pch_dma *pd = pci_get_drvdata(pdev);
struct pch_dma_chan *pd_chan;
struct dma_chan *chan, *_c;
if (pd) {
dma_async_device_unregister(&pd->dma);
list_for_each_entry_safe(chan, _c, &pd->dma.channels,
device_node) {
pd_chan = to_pd_chan(chan);
tasklet_disable(&pd_chan->tasklet);
tasklet_kill(&pd_chan->tasklet);
}
pci_pool_destroy(pd->pool);
free_irq(pdev->irq, pd);
pci_iounmap(pdev, pd->membase);
pci_release_regions(pdev);
pci_disable_device(pdev);
kfree(pd);
}
}
/* PCI Device ID of DMA device */
#define PCI_DEVICE_ID_PCH_DMA_8CH 0x8810
#define PCI_DEVICE_ID_PCH_DMA_4CH 0x8815
static const struct pci_device_id pch_dma_id_table[] = {
{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_PCH_DMA_8CH), 8 },
{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_PCH_DMA_4CH), 4 },
};
static struct pci_driver pch_dma_driver = {
.name = DRV_NAME,
.id_table = pch_dma_id_table,
.probe = pch_dma_probe,
.remove = __devexit_p(pch_dma_remove),
#ifdef CONFIG_PM
.suspend = pch_dma_suspend,
.resume = pch_dma_resume,
#endif
};
static int __init pch_dma_init(void)
{
return pci_register_driver(&pch_dma_driver);
}
static void __exit pch_dma_exit(void)
{
pci_unregister_driver(&pch_dma_driver);
}
module_init(pch_dma_init);
module_exit(pch_dma_exit);
MODULE_DESCRIPTION("Topcliff PCH DMA controller driver");
MODULE_AUTHOR("Yong Wang <yong.y.wang@intel.com>");
MODULE_LICENSE("GPL v2");
...@@ -30,14 +30,16 @@ ...@@ -30,14 +30,16 @@
/* Maximum iterations taken before giving up suspending a channel */ /* Maximum iterations taken before giving up suspending a channel */
#define D40_SUSPEND_MAX_IT 500 #define D40_SUSPEND_MAX_IT 500
/* Hardware requirement on LCLA alignment */
#define LCLA_ALIGNMENT 0x40000
/* Attempts before giving up to trying to get pages that are aligned */
#define MAX_LCLA_ALLOC_ATTEMPTS 256
/* Bit markings for allocation map */
#define D40_ALLOC_FREE (1 << 31) #define D40_ALLOC_FREE (1 << 31)
#define D40_ALLOC_PHY (1 << 30) #define D40_ALLOC_PHY (1 << 30)
#define D40_ALLOC_LOG_FREE 0 #define D40_ALLOC_LOG_FREE 0
/* The number of free d40_desc to keep in memory before starting
* to kfree() them */
#define D40_DESC_CACHE_SIZE 50
/* Hardware designer of the block */ /* Hardware designer of the block */
#define D40_PERIPHID2_DESIGNER 0x8 #define D40_PERIPHID2_DESIGNER 0x8
...@@ -81,9 +83,10 @@ struct d40_lli_pool { ...@@ -81,9 +83,10 @@ struct d40_lli_pool {
* lli_len equals one. * lli_len equals one.
* @lli_log: Same as above but for logical channels. * @lli_log: Same as above but for logical channels.
* @lli_pool: The pool with two entries pre-allocated. * @lli_pool: The pool with two entries pre-allocated.
* @lli_len: Number of LLI's in lli_pool * @lli_len: Number of llis of current descriptor.
* @lli_tcount: Number of LLIs processed in the transfer. When equals lli_len * @lli_count: Number of transfered llis.
* then this transfer job is done. * @lli_tx_len: Max number of LLIs per transfer, there can be
* many transfer for one descriptor.
* @txd: DMA engine struct. Used for among other things for communication * @txd: DMA engine struct. Used for among other things for communication
* during a transfer. * during a transfer.
* @node: List entry. * @node: List entry.
...@@ -100,8 +103,9 @@ struct d40_desc { ...@@ -100,8 +103,9 @@ struct d40_desc {
struct d40_log_lli_bidir lli_log; struct d40_log_lli_bidir lli_log;
struct d40_lli_pool lli_pool; struct d40_lli_pool lli_pool;
u32 lli_len; int lli_len;
u32 lli_tcount; int lli_count;
u32 lli_tx_len;
struct dma_async_tx_descriptor txd; struct dma_async_tx_descriptor txd;
struct list_head node; struct list_head node;
...@@ -113,18 +117,20 @@ struct d40_desc { ...@@ -113,18 +117,20 @@ struct d40_desc {
/** /**
* struct d40_lcla_pool - LCLA pool settings and data. * struct d40_lcla_pool - LCLA pool settings and data.
* *
* @base: The virtual address of LCLA. * @base: The virtual address of LCLA. 18 bit aligned.
* @phy: Physical base address of LCLA. * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
* @base_size: size of lcla. * This pointer is only there for clean-up on error.
* @pages: The number of pages needed for all physical channels.
* Only used later for clean-up on error
* @lock: Lock to protect the content in this struct. * @lock: Lock to protect the content in this struct.
* @alloc_map: Mapping between physical channel and LCLA entries. * @alloc_map: Bitmap mapping between physical channel and LCLA entries.
* @num_blocks: The number of entries of alloc_map. Equals to the * @num_blocks: The number of entries of alloc_map. Equals to the
* number of physical channels. * number of physical channels.
*/ */
struct d40_lcla_pool { struct d40_lcla_pool {
void *base; void *base;
dma_addr_t phy; void *base_unaligned;
resource_size_t base_size; int pages;
spinlock_t lock; spinlock_t lock;
u32 *alloc_map; u32 *alloc_map;
int num_blocks; int num_blocks;
...@@ -163,15 +169,14 @@ struct d40_base; ...@@ -163,15 +169,14 @@ struct d40_base;
* @pending_tx: The number of pending transfers. Used between interrupt handler * @pending_tx: The number of pending transfers. Used between interrupt handler
* and tasklet. * and tasklet.
* @busy: Set to true when transfer is ongoing on this channel. * @busy: Set to true when transfer is ongoing on this channel.
* @phy_chan: Pointer to physical channel which this instance runs on. * @phy_chan: Pointer to physical channel which this instance runs on. If this
* point is NULL, then the channel is not allocated.
* @chan: DMA engine handle. * @chan: DMA engine handle.
* @tasklet: Tasklet that gets scheduled from interrupt context to complete a * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
* transfer and call client callback. * transfer and call client callback.
* @client: Cliented owned descriptor list. * @client: Cliented owned descriptor list.
* @active: Active descriptor. * @active: Active descriptor.
* @queue: Queued jobs. * @queue: Queued jobs.
* @free: List of free descripts, ready to be reused.
* @free_len: Number of descriptors in the free list.
* @dma_cfg: The client configuration of this dma channel. * @dma_cfg: The client configuration of this dma channel.
* @base: Pointer to the device instance struct. * @base: Pointer to the device instance struct.
* @src_def_cfg: Default cfg register setting for src. * @src_def_cfg: Default cfg register setting for src.
...@@ -195,8 +200,6 @@ struct d40_chan { ...@@ -195,8 +200,6 @@ struct d40_chan {
struct list_head client; struct list_head client;
struct list_head active; struct list_head active;
struct list_head queue; struct list_head queue;
struct list_head free;
int free_len;
struct stedma40_chan_cfg dma_cfg; struct stedma40_chan_cfg dma_cfg;
struct d40_base *base; struct d40_base *base;
/* Default register configurations */ /* Default register configurations */
...@@ -205,6 +208,9 @@ struct d40_chan { ...@@ -205,6 +208,9 @@ struct d40_chan {
struct d40_def_lcsp log_def; struct d40_def_lcsp log_def;
struct d40_lcla_elem lcla; struct d40_lcla_elem lcla;
struct d40_log_lli_full *lcpa; struct d40_log_lli_full *lcpa;
/* Runtime reconfiguration */
dma_addr_t runtime_addr;
enum dma_data_direction runtime_direction;
}; };
/** /**
...@@ -215,6 +221,7 @@ struct d40_chan { ...@@ -215,6 +221,7 @@ struct d40_chan {
* the same physical register. * the same physical register.
* @dev: The device structure. * @dev: The device structure.
* @virtbase: The virtual base address of the DMA's register. * @virtbase: The virtual base address of the DMA's register.
* @rev: silicon revision detected.
* @clk: Pointer to the DMA clock structure. * @clk: Pointer to the DMA clock structure.
* @phy_start: Physical memory start of the DMA registers. * @phy_start: Physical memory start of the DMA registers.
* @phy_size: Size of the DMA register map. * @phy_size: Size of the DMA register map.
...@@ -240,12 +247,14 @@ struct d40_chan { ...@@ -240,12 +247,14 @@ struct d40_chan {
* @lcpa_base: The virtual mapped address of LCPA. * @lcpa_base: The virtual mapped address of LCPA.
* @phy_lcpa: The physical address of the LCPA. * @phy_lcpa: The physical address of the LCPA.
* @lcpa_size: The size of the LCPA area. * @lcpa_size: The size of the LCPA area.
* @desc_slab: cache for descriptors.
*/ */
struct d40_base { struct d40_base {
spinlock_t interrupt_lock; spinlock_t interrupt_lock;
spinlock_t execmd_lock; spinlock_t execmd_lock;
struct device *dev; struct device *dev;
void __iomem *virtbase; void __iomem *virtbase;
u8 rev:4;
struct clk *clk; struct clk *clk;
phys_addr_t phy_start; phys_addr_t phy_start;
resource_size_t phy_size; resource_size_t phy_size;
...@@ -266,6 +275,7 @@ struct d40_base { ...@@ -266,6 +275,7 @@ struct d40_base {
void *lcpa_base; void *lcpa_base;
dma_addr_t phy_lcpa; dma_addr_t phy_lcpa;
resource_size_t lcpa_size; resource_size_t lcpa_size;
struct kmem_cache *desc_slab;
}; };
/** /**
...@@ -365,11 +375,6 @@ static dma_cookie_t d40_assign_cookie(struct d40_chan *d40c, ...@@ -365,11 +375,6 @@ static dma_cookie_t d40_assign_cookie(struct d40_chan *d40c,
return cookie; return cookie;
} }
static void d40_desc_reset(struct d40_desc *d40d)
{
d40d->lli_tcount = 0;
}
static void d40_desc_remove(struct d40_desc *d40d) static void d40_desc_remove(struct d40_desc *d40d)
{ {
list_del(&d40d->node); list_del(&d40d->node);
...@@ -377,7 +382,6 @@ static void d40_desc_remove(struct d40_desc *d40d) ...@@ -377,7 +382,6 @@ static void d40_desc_remove(struct d40_desc *d40d)
static struct d40_desc *d40_desc_get(struct d40_chan *d40c) static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
{ {
struct d40_desc *desc;
struct d40_desc *d; struct d40_desc *d;
struct d40_desc *_d; struct d40_desc *_d;
...@@ -386,36 +390,21 @@ static struct d40_desc *d40_desc_get(struct d40_chan *d40c) ...@@ -386,36 +390,21 @@ static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
if (async_tx_test_ack(&d->txd)) { if (async_tx_test_ack(&d->txd)) {
d40_pool_lli_free(d); d40_pool_lli_free(d);
d40_desc_remove(d); d40_desc_remove(d);
desc = d; break;
goto out;
}
} }
if (list_empty(&d40c->free)) {
/* Alloc new desc because we're out of used ones */
desc = kzalloc(sizeof(struct d40_desc), GFP_NOWAIT);
if (desc == NULL)
goto out;
INIT_LIST_HEAD(&desc->node);
} else { } else {
/* Reuse an old desc. */ d = kmem_cache_alloc(d40c->base->desc_slab, GFP_NOWAIT);
desc = list_first_entry(&d40c->free, if (d != NULL) {
struct d40_desc, memset(d, 0, sizeof(struct d40_desc));
node); INIT_LIST_HEAD(&d->node);
list_del(&desc->node);
d40c->free_len--;
} }
out: }
return desc; return d;
} }
static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d) static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
{ {
if (d40c->free_len < D40_DESC_CACHE_SIZE) { kmem_cache_free(d40c->base->desc_slab, d40d);
list_add_tail(&d40d->node, &d40c->free);
d40c->free_len++;
} else
kfree(d40d);
} }
static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc) static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
...@@ -456,37 +445,41 @@ static struct d40_desc *d40_first_queued(struct d40_chan *d40c) ...@@ -456,37 +445,41 @@ static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
/* Support functions for logical channels */ /* Support functions for logical channels */
static int d40_lcla_id_get(struct d40_chan *d40c, static int d40_lcla_id_get(struct d40_chan *d40c)
struct d40_lcla_pool *pool)
{ {
int src_id = 0; int src_id = 0;
int dst_id = 0; int dst_id = 0;
struct d40_log_lli *lcla_lidx_base = struct d40_log_lli *lcla_lidx_base =
pool->base + d40c->phy_chan->num * 1024; d40c->base->lcla_pool.base + d40c->phy_chan->num * 1024;
int i; int i;
int lli_per_log = d40c->base->plat_data->llis_per_log; int lli_per_log = d40c->base->plat_data->llis_per_log;
unsigned long flags;
if (d40c->lcla.src_id >= 0 && d40c->lcla.dst_id >= 0) if (d40c->lcla.src_id >= 0 && d40c->lcla.dst_id >= 0)
return 0; return 0;
if (pool->num_blocks > 32) if (d40c->base->lcla_pool.num_blocks > 32)
return -EINVAL; return -EINVAL;
spin_lock(&pool->lock); spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
for (i = 0; i < pool->num_blocks; i++) { for (i = 0; i < d40c->base->lcla_pool.num_blocks; i++) {
if (!(pool->alloc_map[d40c->phy_chan->num] & (0x1 << i))) { if (!(d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num] &
pool->alloc_map[d40c->phy_chan->num] |= (0x1 << i); (0x1 << i))) {
d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num] |=
(0x1 << i);
break; break;
} }
} }
src_id = i; src_id = i;
if (src_id >= pool->num_blocks) if (src_id >= d40c->base->lcla_pool.num_blocks)
goto err; goto err;
for (; i < pool->num_blocks; i++) { for (; i < d40c->base->lcla_pool.num_blocks; i++) {
if (!(pool->alloc_map[d40c->phy_chan->num] & (0x1 << i))) { if (!(d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num] &
pool->alloc_map[d40c->phy_chan->num] |= (0x1 << i); (0x1 << i))) {
d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num] |=
(0x1 << i);
break; break;
} }
} }
...@@ -500,28 +493,13 @@ static int d40_lcla_id_get(struct d40_chan *d40c, ...@@ -500,28 +493,13 @@ static int d40_lcla_id_get(struct d40_chan *d40c,
d40c->lcla.dst = lcla_lidx_base + dst_id * lli_per_log + 1; d40c->lcla.dst = lcla_lidx_base + dst_id * lli_per_log + 1;
d40c->lcla.src = lcla_lidx_base + src_id * lli_per_log + 1; d40c->lcla.src = lcla_lidx_base + src_id * lli_per_log + 1;
spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
spin_unlock(&pool->lock);
return 0; return 0;
err: err:
spin_unlock(&pool->lock); spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
return -EINVAL; return -EINVAL;
} }
static void d40_lcla_id_put(struct d40_chan *d40c,
struct d40_lcla_pool *pool,
int id)
{
if (id < 0)
return;
d40c->lcla.src_id = -1;
d40c->lcla.dst_id = -1;
spin_lock(&pool->lock);
pool->alloc_map[d40c->phy_chan->num] &= (~(0x1 << id));
spin_unlock(&pool->lock);
}
static int d40_channel_execute_command(struct d40_chan *d40c, static int d40_channel_execute_command(struct d40_chan *d40c,
enum d40_command command) enum d40_command command)
...@@ -530,6 +508,7 @@ static int d40_channel_execute_command(struct d40_chan *d40c, ...@@ -530,6 +508,7 @@ static int d40_channel_execute_command(struct d40_chan *d40c,
void __iomem *active_reg; void __iomem *active_reg;
int ret = 0; int ret = 0;
unsigned long flags; unsigned long flags;
u32 wmask;
spin_lock_irqsave(&d40c->base->execmd_lock, flags); spin_lock_irqsave(&d40c->base->execmd_lock, flags);
...@@ -547,7 +526,9 @@ static int d40_channel_execute_command(struct d40_chan *d40c, ...@@ -547,7 +526,9 @@ static int d40_channel_execute_command(struct d40_chan *d40c,
goto done; goto done;
} }
writel(command << D40_CHAN_POS(d40c->phy_chan->num), active_reg); wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
active_reg);
if (command == D40_DMA_SUSPEND_REQ) { if (command == D40_DMA_SUSPEND_REQ) {
...@@ -586,8 +567,7 @@ static int d40_channel_execute_command(struct d40_chan *d40c, ...@@ -586,8 +567,7 @@ static int d40_channel_execute_command(struct d40_chan *d40c,
static void d40_term_all(struct d40_chan *d40c) static void d40_term_all(struct d40_chan *d40c)
{ {
struct d40_desc *d40d; struct d40_desc *d40d;
struct d40_desc *d; unsigned long flags;
struct d40_desc *_d;
/* Release active descriptors */ /* Release active descriptors */
while ((d40d = d40_first_active_get(d40c))) { while ((d40d = d40_first_active_get(d40c))) {
...@@ -605,19 +585,17 @@ static void d40_term_all(struct d40_chan *d40c) ...@@ -605,19 +585,17 @@ static void d40_term_all(struct d40_chan *d40c)
d40_desc_free(d40c, d40d); d40_desc_free(d40c, d40d);
} }
/* Release client owned descriptors */ spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
if (!list_empty(&d40c->client))
list_for_each_entry_safe(d, _d, &d40c->client, node) { d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num] &=
d40_pool_lli_free(d); (~(0x1 << d40c->lcla.dst_id));
d40_desc_remove(d); d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num] &=
/* Return desc to free-list */ (~(0x1 << d40c->lcla.src_id));
d40_desc_free(d40c, d40d);
}
d40_lcla_id_put(d40c, &d40c->base->lcla_pool, d40c->lcla.src_id = -1;
d40c->lcla.src_id); d40c->lcla.dst_id = -1;
d40_lcla_id_put(d40c, &d40c->base->lcla_pool,
d40c->lcla.dst_id); spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
d40c->pending_tx = 0; d40c->pending_tx = 0;
d40c->busy = false; d40c->busy = false;
...@@ -628,6 +606,7 @@ static void d40_config_set_event(struct d40_chan *d40c, bool do_enable) ...@@ -628,6 +606,7 @@ static void d40_config_set_event(struct d40_chan *d40c, bool do_enable)
u32 val; u32 val;
unsigned long flags; unsigned long flags;
/* Notice, that disable requires the physical channel to be stopped */
if (do_enable) if (do_enable)
val = D40_ACTIVATE_EVENTLINE; val = D40_ACTIVATE_EVENTLINE;
else else
...@@ -732,31 +711,34 @@ static int d40_config_write(struct d40_chan *d40c) ...@@ -732,31 +711,34 @@ static int d40_config_write(struct d40_chan *d40c)
static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d) static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
{ {
if (d40d->lli_phy.dst && d40d->lli_phy.src) { if (d40d->lli_phy.dst && d40d->lli_phy.src) {
d40_phy_lli_write(d40c->base->virtbase, d40_phy_lli_write(d40c->base->virtbase,
d40c->phy_chan->num, d40c->phy_chan->num,
d40d->lli_phy.dst, d40d->lli_phy.dst,
d40d->lli_phy.src); d40d->lli_phy.src);
d40d->lli_tcount = d40d->lli_len;
} else if (d40d->lli_log.dst && d40d->lli_log.src) { } else if (d40d->lli_log.dst && d40d->lli_log.src) {
u32 lli_len;
struct d40_log_lli *src = d40d->lli_log.src; struct d40_log_lli *src = d40d->lli_log.src;
struct d40_log_lli *dst = d40d->lli_log.dst; struct d40_log_lli *dst = d40d->lli_log.dst;
int s;
src += d40d->lli_tcount; src += d40d->lli_count;
dst += d40d->lli_tcount; dst += d40d->lli_count;
s = d40_log_lli_write(d40c->lcpa,
if (d40d->lli_len <= d40c->base->plat_data->llis_per_log) d40c->lcla.src, d40c->lcla.dst,
lli_len = d40d->lli_len;
else
lli_len = d40c->base->plat_data->llis_per_log;
d40d->lli_tcount += lli_len;
d40_log_lli_write(d40c->lcpa, d40c->lcla.src,
d40c->lcla.dst,
dst, src, dst, src,
d40c->base->plat_data->llis_per_log); d40c->base->plat_data->llis_per_log);
/* If s equals to zero, the job is not linked */
if (s > 0) {
(void) dma_map_single(d40c->base->dev, d40c->lcla.src,
s * sizeof(struct d40_log_lli),
DMA_TO_DEVICE);
(void) dma_map_single(d40c->base->dev, d40c->lcla.dst,
s * sizeof(struct d40_log_lli),
DMA_TO_DEVICE);
}
} }
d40d->lli_count += d40d->lli_tx_len;
} }
static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx) static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
...@@ -780,18 +762,21 @@ static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx) ...@@ -780,18 +762,21 @@ static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
static int d40_start(struct d40_chan *d40c) static int d40_start(struct d40_chan *d40c)
{ {
if (d40c->base->rev == 0) {
int err; int err;
if (d40c->log_num != D40_PHY_CHAN) { if (d40c->log_num != D40_PHY_CHAN) {
err = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ); err = d40_channel_execute_command(d40c,
D40_DMA_SUSPEND_REQ);
if (err) if (err)
return err; return err;
d40_config_set_event(d40c, true); }
} }
err = d40_channel_execute_command(d40c, D40_DMA_RUN); if (d40c->log_num != D40_PHY_CHAN)
d40_config_set_event(d40c, true);
return err; return d40_channel_execute_command(d40c, D40_DMA_RUN);
} }
static struct d40_desc *d40_queue_start(struct d40_chan *d40c) static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
...@@ -838,7 +823,7 @@ static void dma_tc_handle(struct d40_chan *d40c) ...@@ -838,7 +823,7 @@ static void dma_tc_handle(struct d40_chan *d40c)
if (d40d == NULL) if (d40d == NULL)
return; return;
if (d40d->lli_tcount < d40d->lli_len) { if (d40d->lli_count < d40d->lli_len) {
d40_desc_load(d40c, d40d); d40_desc_load(d40c, d40d);
/* Start dma job */ /* Start dma job */
...@@ -891,7 +876,6 @@ static void dma_tasklet(unsigned long data) ...@@ -891,7 +876,6 @@ static void dma_tasklet(unsigned long data)
/* Return desc to free-list */ /* Return desc to free-list */
d40_desc_free(d40c, d40d_fin); d40_desc_free(d40c, d40d_fin);
} else { } else {
d40_desc_reset(d40d_fin);
if (!d40d_fin->is_in_client_list) { if (!d40d_fin->is_in_client_list) {
d40_desc_remove(d40d_fin); d40_desc_remove(d40d_fin);
list_add_tail(&d40d_fin->node, &d40c->client); list_add_tail(&d40d_fin->node, &d40c->client);
...@@ -975,7 +959,8 @@ static irqreturn_t d40_handle_interrupt(int irq, void *data) ...@@ -975,7 +959,8 @@ static irqreturn_t d40_handle_interrupt(int irq, void *data)
if (!il[row].is_error) if (!il[row].is_error)
dma_tc_handle(d40c); dma_tc_handle(d40c);
else else
dev_err(base->dev, "[%s] IRQ chan: %ld offset %d idx %d\n", dev_err(base->dev,
"[%s] IRQ chan: %ld offset %d idx %d\n",
__func__, chan, il[row].offset, idx); __func__, chan, il[row].offset, idx);
spin_unlock(&d40c->lock); spin_unlock(&d40c->lock);
...@@ -1134,7 +1119,8 @@ static int d40_allocate_channel(struct d40_chan *d40c) ...@@ -1134,7 +1119,8 @@ static int d40_allocate_channel(struct d40_chan *d40c)
int j; int j;
int log_num; int log_num;
bool is_src; bool is_src;
bool is_log = (d40c->dma_cfg.channel_type & STEDMA40_CHANNEL_IN_OPER_MODE) bool is_log = (d40c->dma_cfg.channel_type &
STEDMA40_CHANNEL_IN_OPER_MODE)
== STEDMA40_CHANNEL_IN_LOG_MODE; == STEDMA40_CHANNEL_IN_LOG_MODE;
...@@ -1169,8 +1155,10 @@ static int d40_allocate_channel(struct d40_chan *d40c) ...@@ -1169,8 +1155,10 @@ static int d40_allocate_channel(struct d40_chan *d40c)
for (j = 0; j < d40c->base->num_phy_chans; j += 8) { for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
int phy_num = j + event_group * 2; int phy_num = j + event_group * 2;
for (i = phy_num; i < phy_num + 2; i++) { for (i = phy_num; i < phy_num + 2; i++) {
if (d40_alloc_mask_set(&phys[i], is_src, if (d40_alloc_mask_set(&phys[i],
0, is_log)) is_src,
0,
is_log))
goto found_phy; goto found_phy;
} }
} }
...@@ -1221,30 +1209,6 @@ static int d40_allocate_channel(struct d40_chan *d40c) ...@@ -1221,30 +1209,6 @@ static int d40_allocate_channel(struct d40_chan *d40c)
} }
static int d40_config_chan(struct d40_chan *d40c,
struct stedma40_chan_cfg *info)
{
/* Fill in basic CFG register values */
d40_phy_cfg(&d40c->dma_cfg, &d40c->src_def_cfg,
&d40c->dst_def_cfg, d40c->log_num != D40_PHY_CHAN);
if (d40c->log_num != D40_PHY_CHAN) {
d40_log_cfg(&d40c->dma_cfg,
&d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
d40c->lcpa = d40c->base->lcpa_base +
d40c->dma_cfg.src_dev_type * 32;
else
d40c->lcpa = d40c->base->lcpa_base +
d40c->dma_cfg.dst_dev_type * 32 + 16;
}
/* Write channel configuration to the DMA */
return d40_config_write(d40c);
}
static int d40_config_memcpy(struct d40_chan *d40c) static int d40_config_memcpy(struct d40_chan *d40c)
{ {
dma_cap_mask_t cap = d40c->chan.device->cap_mask; dma_cap_mask_t cap = d40c->chan.device->cap_mask;
...@@ -1272,13 +1236,25 @@ static int d40_free_dma(struct d40_chan *d40c) ...@@ -1272,13 +1236,25 @@ static int d40_free_dma(struct d40_chan *d40c)
{ {
int res = 0; int res = 0;
u32 event, dir; u32 event;
struct d40_phy_res *phy = d40c->phy_chan; struct d40_phy_res *phy = d40c->phy_chan;
bool is_src; bool is_src;
struct d40_desc *d;
struct d40_desc *_d;
/* Terminate all queued and active transfers */ /* Terminate all queued and active transfers */
d40_term_all(d40c); d40_term_all(d40c);
/* Release client owned descriptors */
if (!list_empty(&d40c->client))
list_for_each_entry_safe(d, _d, &d40c->client, node) {
d40_pool_lli_free(d);
d40_desc_remove(d);
/* Return desc to free-list */
d40_desc_free(d40c, d);
}
if (phy == NULL) { if (phy == NULL) {
dev_err(&d40c->chan.dev->device, "[%s] phy == null\n", dev_err(&d40c->chan.dev->device, "[%s] phy == null\n",
__func__); __func__);
...@@ -1292,22 +1268,12 @@ static int d40_free_dma(struct d40_chan *d40c) ...@@ -1292,22 +1268,12 @@ static int d40_free_dma(struct d40_chan *d40c)
return -EINVAL; return -EINVAL;
} }
res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
if (res) {
dev_err(&d40c->chan.dev->device, "[%s] suspend\n",
__func__);
return res;
}
if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH || if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) { d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type); event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
dir = D40_CHAN_REG_SDLNK;
is_src = false; is_src = false;
} else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) { } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type); event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
dir = D40_CHAN_REG_SSLNK;
is_src = true; is_src = true;
} else { } else {
dev_err(&d40c->chan.dev->device, dev_err(&d40c->chan.dev->device,
...@@ -1315,16 +1281,17 @@ static int d40_free_dma(struct d40_chan *d40c) ...@@ -1315,16 +1281,17 @@ static int d40_free_dma(struct d40_chan *d40c)
return -EINVAL; return -EINVAL;
} }
res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
if (res) {
dev_err(&d40c->chan.dev->device, "[%s] suspend failed\n",
__func__);
return res;
}
if (d40c->log_num != D40_PHY_CHAN) { if (d40c->log_num != D40_PHY_CHAN) {
/* /* Release logical channel, deactivate the event line */
* Release logical channel, deactivate the event line during
* the time physical res is suspended.
*/
writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event)) &
D40_EVENTLINE_MASK(event),
d40c->base->virtbase + D40_DREG_PCBASE +
phy->num * D40_DREG_PCDELTA + dir);
d40_config_set_event(d40c, false);
d40c->base->lookup_log_chans[d40c->log_num] = NULL; d40c->base->lookup_log_chans[d40c->log_num] = NULL;
/* /*
...@@ -1345,8 +1312,9 @@ static int d40_free_dma(struct d40_chan *d40c) ...@@ -1345,8 +1312,9 @@ static int d40_free_dma(struct d40_chan *d40c)
} }
return 0; return 0;
} }
} else } else {
d40_alloc_mask_free(phy, is_src, 0); (void) d40_alloc_mask_free(phy, is_src, 0);
}
/* Release physical channel */ /* Release physical channel */
res = d40_channel_execute_command(d40c, D40_DMA_STOP); res = d40_channel_execute_command(d40c, D40_DMA_STOP);
...@@ -1361,8 +1329,6 @@ static int d40_free_dma(struct d40_chan *d40c) ...@@ -1361,8 +1329,6 @@ static int d40_free_dma(struct d40_chan *d40c)
d40c->base->lookup_phy_chans[phy->num] = NULL; d40c->base->lookup_phy_chans[phy->num] = NULL;
return 0; return 0;
} }
static int d40_pause(struct dma_chan *chan) static int d40_pause(struct dma_chan *chan)
...@@ -1370,7 +1336,6 @@ static int d40_pause(struct dma_chan *chan) ...@@ -1370,7 +1336,6 @@ static int d40_pause(struct dma_chan *chan)
struct d40_chan *d40c = struct d40_chan *d40c =
container_of(chan, struct d40_chan, chan); container_of(chan, struct d40_chan, chan);
int res; int res;
unsigned long flags; unsigned long flags;
spin_lock_irqsave(&d40c->lock, flags); spin_lock_irqsave(&d40c->lock, flags);
...@@ -1397,7 +1362,6 @@ static bool d40_is_paused(struct d40_chan *d40c) ...@@ -1397,7 +1362,6 @@ static bool d40_is_paused(struct d40_chan *d40c)
void __iomem *active_reg; void __iomem *active_reg;
u32 status; u32 status;
u32 event; u32 event;
int res;
spin_lock_irqsave(&d40c->lock, flags); spin_lock_irqsave(&d40c->lock, flags);
...@@ -1416,10 +1380,6 @@ static bool d40_is_paused(struct d40_chan *d40c) ...@@ -1416,10 +1380,6 @@ static bool d40_is_paused(struct d40_chan *d40c)
goto _exit; goto _exit;
} }
res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
if (res != 0)
goto _exit;
if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH || if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM)
event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type); event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
...@@ -1436,12 +1396,6 @@ static bool d40_is_paused(struct d40_chan *d40c) ...@@ -1436,12 +1396,6 @@ static bool d40_is_paused(struct d40_chan *d40c)
if (status != D40_DMA_RUN) if (status != D40_DMA_RUN)
is_paused = true; is_paused = true;
/* Resume the other logical channels if any */
if (d40_chan_has_events(d40c))
res = d40_channel_execute_command(d40c,
D40_DMA_RUN);
_exit: _exit:
spin_unlock_irqrestore(&d40c->lock, flags); spin_unlock_irqrestore(&d40c->lock, flags);
return is_paused; return is_paused;
...@@ -1474,7 +1428,8 @@ static u32 d40_residue(struct d40_chan *d40c) ...@@ -1474,7 +1428,8 @@ static u32 d40_residue(struct d40_chan *d40c)
num_elt = (readl(d40c->base->virtbase + D40_DREG_PCBASE + num_elt = (readl(d40c->base->virtbase + D40_DREG_PCBASE +
d40c->phy_chan->num * D40_DREG_PCDELTA + d40c->phy_chan->num * D40_DREG_PCDELTA +
D40_CHAN_REG_SDELT) & D40_CHAN_REG_SDELT) &
D40_SREG_ELEM_PHY_ECNT_MASK) >> D40_SREG_ELEM_PHY_ECNT_POS; D40_SREG_ELEM_PHY_ECNT_MASK) >>
D40_SREG_ELEM_PHY_ECNT_POS;
return num_elt * (1 << d40c->dma_cfg.dst_info.data_width); return num_elt * (1 << d40c->dma_cfg.dst_info.data_width);
} }
...@@ -1487,20 +1442,21 @@ static int d40_resume(struct dma_chan *chan) ...@@ -1487,20 +1442,21 @@ static int d40_resume(struct dma_chan *chan)
spin_lock_irqsave(&d40c->lock, flags); spin_lock_irqsave(&d40c->lock, flags);
if (d40c->base->rev == 0)
if (d40c->log_num != D40_PHY_CHAN) { if (d40c->log_num != D40_PHY_CHAN) {
res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ); res = d40_channel_execute_command(d40c,
if (res) D40_DMA_SUSPEND_REQ);
goto out; goto no_suspend;
}
/* If bytes left to transfer or linked tx resume job */ /* If bytes left to transfer or linked tx resume job */
if (d40_residue(d40c) || d40_tx_is_linked(d40c)) { if (d40_residue(d40c) || d40_tx_is_linked(d40c)) {
if (d40c->log_num != D40_PHY_CHAN)
d40_config_set_event(d40c, true); d40_config_set_event(d40c, true);
res = d40_channel_execute_command(d40c, D40_DMA_RUN); res = d40_channel_execute_command(d40c, D40_DMA_RUN);
} }
} else if (d40_residue(d40c) || d40_tx_is_linked(d40c))
res = d40_channel_execute_command(d40c, D40_DMA_RUN);
out: no_suspend:
spin_unlock_irqrestore(&d40c->lock, flags); spin_unlock_irqrestore(&d40c->lock, flags);
return res; return res;
} }
...@@ -1534,8 +1490,10 @@ int stedma40_set_psize(struct dma_chan *chan, ...@@ -1534,8 +1490,10 @@ int stedma40_set_psize(struct dma_chan *chan,
if (d40c->log_num != D40_PHY_CHAN) { if (d40c->log_num != D40_PHY_CHAN) {
d40c->log_def.lcsp1 &= ~D40_MEM_LCSP1_SCFG_PSIZE_MASK; d40c->log_def.lcsp1 &= ~D40_MEM_LCSP1_SCFG_PSIZE_MASK;
d40c->log_def.lcsp3 &= ~D40_MEM_LCSP1_SCFG_PSIZE_MASK; d40c->log_def.lcsp3 &= ~D40_MEM_LCSP1_SCFG_PSIZE_MASK;
d40c->log_def.lcsp1 |= src_psize << D40_MEM_LCSP1_SCFG_PSIZE_POS; d40c->log_def.lcsp1 |= src_psize <<
d40c->log_def.lcsp3 |= dst_psize << D40_MEM_LCSP1_SCFG_PSIZE_POS; D40_MEM_LCSP1_SCFG_PSIZE_POS;
d40c->log_def.lcsp3 |= dst_psize <<
D40_MEM_LCSP1_SCFG_PSIZE_POS;
goto out; goto out;
} }
...@@ -1566,37 +1524,42 @@ struct dma_async_tx_descriptor *stedma40_memcpy_sg(struct dma_chan *chan, ...@@ -1566,37 +1524,42 @@ struct dma_async_tx_descriptor *stedma40_memcpy_sg(struct dma_chan *chan,
struct scatterlist *sgl_dst, struct scatterlist *sgl_dst,
struct scatterlist *sgl_src, struct scatterlist *sgl_src,
unsigned int sgl_len, unsigned int sgl_len,
unsigned long flags) unsigned long dma_flags)
{ {
int res; int res;
struct d40_desc *d40d; struct d40_desc *d40d;
struct d40_chan *d40c = container_of(chan, struct d40_chan, struct d40_chan *d40c = container_of(chan, struct d40_chan,
chan); chan);
unsigned long flg; unsigned long flags;
int lli_max = d40c->base->plat_data->llis_per_log;
if (d40c->phy_chan == NULL) {
dev_err(&d40c->chan.dev->device,
"[%s] Unallocated channel.\n", __func__);
return ERR_PTR(-EINVAL);
}
spin_lock_irqsave(&d40c->lock, flg); spin_lock_irqsave(&d40c->lock, flags);
d40d = d40_desc_get(d40c); d40d = d40_desc_get(d40c);
if (d40d == NULL) if (d40d == NULL)
goto err; goto err;
memset(d40d, 0, sizeof(struct d40_desc));
d40d->lli_len = sgl_len; d40d->lli_len = sgl_len;
d40d->lli_tx_len = d40d->lli_len;
d40d->txd.flags = flags; d40d->txd.flags = dma_flags;
if (d40c->log_num != D40_PHY_CHAN) { if (d40c->log_num != D40_PHY_CHAN) {
if (d40d->lli_len > d40c->base->plat_data->llis_per_log)
d40d->lli_tx_len = d40c->base->plat_data->llis_per_log;
if (sgl_len > 1) if (sgl_len > 1)
/* /*
* Check if there is space available in lcla. If not, * Check if there is space available in lcla. If not,
* split list into 1-length and run only in lcpa * split list into 1-length and run only in lcpa
* space. * space.
*/ */
if (d40_lcla_id_get(d40c, if (d40_lcla_id_get(d40c) != 0)
&d40c->base->lcla_pool) != 0) d40d->lli_tx_len = 1;
lli_max = 1;
if (d40_pool_lli_alloc(d40d, sgl_len, true) < 0) { if (d40_pool_lli_alloc(d40d, sgl_len, true) < 0) {
dev_err(&d40c->chan.dev->device, dev_err(&d40c->chan.dev->device,
...@@ -1610,7 +1573,8 @@ struct dma_async_tx_descriptor *stedma40_memcpy_sg(struct dma_chan *chan, ...@@ -1610,7 +1573,8 @@ struct dma_async_tx_descriptor *stedma40_memcpy_sg(struct dma_chan *chan,
d40d->lli_log.src, d40d->lli_log.src,
d40c->log_def.lcsp1, d40c->log_def.lcsp1,
d40c->dma_cfg.src_info.data_width, d40c->dma_cfg.src_info.data_width,
flags & DMA_PREP_INTERRUPT, lli_max, dma_flags & DMA_PREP_INTERRUPT,
d40d->lli_tx_len,
d40c->base->plat_data->llis_per_log); d40c->base->plat_data->llis_per_log);
(void) d40_log_sg_to_lli(d40c->lcla.dst_id, (void) d40_log_sg_to_lli(d40c->lcla.dst_id,
...@@ -1619,7 +1583,8 @@ struct dma_async_tx_descriptor *stedma40_memcpy_sg(struct dma_chan *chan, ...@@ -1619,7 +1583,8 @@ struct dma_async_tx_descriptor *stedma40_memcpy_sg(struct dma_chan *chan,
d40d->lli_log.dst, d40d->lli_log.dst,
d40c->log_def.lcsp3, d40c->log_def.lcsp3,
d40c->dma_cfg.dst_info.data_width, d40c->dma_cfg.dst_info.data_width,
flags & DMA_PREP_INTERRUPT, lli_max, dma_flags & DMA_PREP_INTERRUPT,
d40d->lli_tx_len,
d40c->base->plat_data->llis_per_log); d40c->base->plat_data->llis_per_log);
...@@ -1664,11 +1629,11 @@ struct dma_async_tx_descriptor *stedma40_memcpy_sg(struct dma_chan *chan, ...@@ -1664,11 +1629,11 @@ struct dma_async_tx_descriptor *stedma40_memcpy_sg(struct dma_chan *chan,
d40d->txd.tx_submit = d40_tx_submit; d40d->txd.tx_submit = d40_tx_submit;
spin_unlock_irqrestore(&d40c->lock, flg); spin_unlock_irqrestore(&d40c->lock, flags);
return &d40d->txd; return &d40d->txd;
err: err:
spin_unlock_irqrestore(&d40c->lock, flg); spin_unlock_irqrestore(&d40c->lock, flags);
return NULL; return NULL;
} }
EXPORT_SYMBOL(stedma40_memcpy_sg); EXPORT_SYMBOL(stedma40_memcpy_sg);
...@@ -1698,46 +1663,66 @@ static int d40_alloc_chan_resources(struct dma_chan *chan) ...@@ -1698,46 +1663,66 @@ static int d40_alloc_chan_resources(struct dma_chan *chan)
unsigned long flags; unsigned long flags;
struct d40_chan *d40c = struct d40_chan *d40c =
container_of(chan, struct d40_chan, chan); container_of(chan, struct d40_chan, chan);
bool is_free_phy;
spin_lock_irqsave(&d40c->lock, flags); spin_lock_irqsave(&d40c->lock, flags);
d40c->completed = chan->cookie = 1; d40c->completed = chan->cookie = 1;
/* /*
* If no dma configuration is set (channel_type == 0) * If no dma configuration is set (channel_type == 0)
* use default configuration * use default configuration (memcpy)
*/ */
if (d40c->dma_cfg.channel_type == 0) { if (d40c->dma_cfg.channel_type == 0) {
err = d40_config_memcpy(d40c); err = d40_config_memcpy(d40c);
if (err) if (err) {
goto err_alloc; dev_err(&d40c->chan.dev->device,
"[%s] Failed to configure memcpy channel\n",
__func__);
goto fail;
} }
}
is_free_phy = (d40c->phy_chan == NULL);
err = d40_allocate_channel(d40c); err = d40_allocate_channel(d40c);
if (err) { if (err) {
dev_err(&d40c->chan.dev->device, dev_err(&d40c->chan.dev->device,
"[%s] Failed to allocate channel\n", __func__); "[%s] Failed to allocate channel\n", __func__);
goto err_alloc; goto fail;
}
/* Fill in basic CFG register values */
d40_phy_cfg(&d40c->dma_cfg, &d40c->src_def_cfg,
&d40c->dst_def_cfg, d40c->log_num != D40_PHY_CHAN);
if (d40c->log_num != D40_PHY_CHAN) {
d40_log_cfg(&d40c->dma_cfg,
&d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
d40c->lcpa = d40c->base->lcpa_base +
d40c->dma_cfg.src_dev_type * D40_LCPA_CHAN_SIZE;
else
d40c->lcpa = d40c->base->lcpa_base +
d40c->dma_cfg.dst_dev_type *
D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
} }
err = d40_config_chan(d40c, &d40c->dma_cfg); /*
* Only write channel configuration to the DMA if the physical
* resource is free. In case of multiple logical channels
* on the same physical resource, only the first write is necessary.
*/
if (is_free_phy) {
err = d40_config_write(d40c);
if (err) { if (err) {
dev_err(&d40c->chan.dev->device, dev_err(&d40c->chan.dev->device,
"[%s] Failed to configure channel\n", "[%s] Failed to configure channel\n",
__func__); __func__);
goto err_config;
} }
}
spin_unlock_irqrestore(&d40c->lock, flags); fail:
return 0;
err_config:
(void) d40_free_dma(d40c);
err_alloc:
spin_unlock_irqrestore(&d40c->lock, flags); spin_unlock_irqrestore(&d40c->lock, flags);
dev_err(&d40c->chan.dev->device, return err;
"[%s] Channel allocation failed\n", __func__);
return -EINVAL;
} }
static void d40_free_chan_resources(struct dma_chan *chan) static void d40_free_chan_resources(struct dma_chan *chan)
...@@ -1747,6 +1732,13 @@ static void d40_free_chan_resources(struct dma_chan *chan) ...@@ -1747,6 +1732,13 @@ static void d40_free_chan_resources(struct dma_chan *chan)
int err; int err;
unsigned long flags; unsigned long flags;
if (d40c->phy_chan == NULL) {
dev_err(&d40c->chan.dev->device,
"[%s] Cannot free unallocated channel\n", __func__);
return;
}
spin_lock_irqsave(&d40c->lock, flags); spin_lock_irqsave(&d40c->lock, flags);
err = d40_free_dma(d40c); err = d40_free_dma(d40c);
...@@ -1761,15 +1753,21 @@ static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan, ...@@ -1761,15 +1753,21 @@ static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
dma_addr_t dst, dma_addr_t dst,
dma_addr_t src, dma_addr_t src,
size_t size, size_t size,
unsigned long flags) unsigned long dma_flags)
{ {
struct d40_desc *d40d; struct d40_desc *d40d;
struct d40_chan *d40c = container_of(chan, struct d40_chan, struct d40_chan *d40c = container_of(chan, struct d40_chan,
chan); chan);
unsigned long flg; unsigned long flags;
int err = 0; int err = 0;
spin_lock_irqsave(&d40c->lock, flg); if (d40c->phy_chan == NULL) {
dev_err(&d40c->chan.dev->device,
"[%s] Channel is not allocated.\n", __func__);
return ERR_PTR(-EINVAL);
}
spin_lock_irqsave(&d40c->lock, flags);
d40d = d40_desc_get(d40c); d40d = d40_desc_get(d40c);
if (d40d == NULL) { if (d40d == NULL) {
...@@ -1778,9 +1776,7 @@ static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan, ...@@ -1778,9 +1776,7 @@ static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
goto err; goto err;
} }
memset(d40d, 0, sizeof(struct d40_desc)); d40d->txd.flags = dma_flags;
d40d->txd.flags = flags;
dma_async_tx_descriptor_init(&d40d->txd, chan); dma_async_tx_descriptor_init(&d40d->txd, chan);
...@@ -1794,6 +1790,7 @@ static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan, ...@@ -1794,6 +1790,7 @@ static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
goto err; goto err;
} }
d40d->lli_len = 1; d40d->lli_len = 1;
d40d->lli_tx_len = 1;
d40_log_fill_lli(d40d->lli_log.src, d40_log_fill_lli(d40d->lli_log.src,
src, src,
...@@ -1801,7 +1798,7 @@ static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan, ...@@ -1801,7 +1798,7 @@ static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
0, 0,
d40c->log_def.lcsp1, d40c->log_def.lcsp1,
d40c->dma_cfg.src_info.data_width, d40c->dma_cfg.src_info.data_width,
true, true); false, true);
d40_log_fill_lli(d40d->lli_log.dst, d40_log_fill_lli(d40d->lli_log.dst,
dst, dst,
...@@ -1848,7 +1845,7 @@ static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan, ...@@ -1848,7 +1845,7 @@ static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
d40d->lli_pool.size, DMA_TO_DEVICE); d40d->lli_pool.size, DMA_TO_DEVICE);
} }
spin_unlock_irqrestore(&d40c->lock, flg); spin_unlock_irqrestore(&d40c->lock, flags);
return &d40d->txd; return &d40d->txd;
err_fill_lli: err_fill_lli:
...@@ -1856,7 +1853,7 @@ static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan, ...@@ -1856,7 +1853,7 @@ static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
"[%s] Failed filling in PHY LLI\n", __func__); "[%s] Failed filling in PHY LLI\n", __func__);
d40_pool_lli_free(d40d); d40_pool_lli_free(d40d);
err: err:
spin_unlock_irqrestore(&d40c->lock, flg); spin_unlock_irqrestore(&d40c->lock, flags);
return NULL; return NULL;
} }
...@@ -1865,11 +1862,10 @@ static int d40_prep_slave_sg_log(struct d40_desc *d40d, ...@@ -1865,11 +1862,10 @@ static int d40_prep_slave_sg_log(struct d40_desc *d40d,
struct scatterlist *sgl, struct scatterlist *sgl,
unsigned int sg_len, unsigned int sg_len,
enum dma_data_direction direction, enum dma_data_direction direction,
unsigned long flags) unsigned long dma_flags)
{ {
dma_addr_t dev_addr = 0; dma_addr_t dev_addr = 0;
int total_size; int total_size;
int lli_max = d40c->base->plat_data->llis_per_log;
if (d40_pool_lli_alloc(d40d, sg_len, true) < 0) { if (d40_pool_lli_alloc(d40d, sg_len, true) < 0) {
dev_err(&d40c->chan.dev->device, dev_err(&d40c->chan.dev->device,
...@@ -1878,7 +1874,10 @@ static int d40_prep_slave_sg_log(struct d40_desc *d40d, ...@@ -1878,7 +1874,10 @@ static int d40_prep_slave_sg_log(struct d40_desc *d40d,
} }
d40d->lli_len = sg_len; d40d->lli_len = sg_len;
d40d->lli_tcount = 0; if (d40d->lli_len <= d40c->base->plat_data->llis_per_log)
d40d->lli_tx_len = d40d->lli_len;
else
d40d->lli_tx_len = d40c->base->plat_data->llis_per_log;
if (sg_len > 1) if (sg_len > 1)
/* /*
...@@ -1886,23 +1885,23 @@ static int d40_prep_slave_sg_log(struct d40_desc *d40d, ...@@ -1886,23 +1885,23 @@ static int d40_prep_slave_sg_log(struct d40_desc *d40d,
* If not, split list into 1-length and run only * If not, split list into 1-length and run only
* in lcpa space. * in lcpa space.
*/ */
if (d40_lcla_id_get(d40c, &d40c->base->lcla_pool) != 0) if (d40_lcla_id_get(d40c) != 0)
lli_max = 1; d40d->lli_tx_len = 1;
if (direction == DMA_FROM_DEVICE) { if (direction == DMA_FROM_DEVICE)
if (d40c->runtime_addr)
dev_addr = d40c->runtime_addr;
else
dev_addr = d40c->base->plat_data->dev_rx[d40c->dma_cfg.src_dev_type]; dev_addr = d40c->base->plat_data->dev_rx[d40c->dma_cfg.src_dev_type];
total_size = d40_log_sg_to_dev(&d40c->lcla, else if (direction == DMA_TO_DEVICE)
sgl, sg_len, if (d40c->runtime_addr)
&d40d->lli_log, dev_addr = d40c->runtime_addr;
&d40c->log_def, else
d40c->dma_cfg.src_info.data_width,
d40c->dma_cfg.dst_info.data_width,
direction,
flags & DMA_PREP_INTERRUPT,
dev_addr, lli_max,
d40c->base->plat_data->llis_per_log);
} else if (direction == DMA_TO_DEVICE) {
dev_addr = d40c->base->plat_data->dev_tx[d40c->dma_cfg.dst_dev_type]; dev_addr = d40c->base->plat_data->dev_tx[d40c->dma_cfg.dst_dev_type];
else
return -EINVAL;
total_size = d40_log_sg_to_dev(&d40c->lcla, total_size = d40_log_sg_to_dev(&d40c->lcla,
sgl, sg_len, sgl, sg_len,
&d40d->lli_log, &d40d->lli_log,
...@@ -1910,11 +1909,10 @@ static int d40_prep_slave_sg_log(struct d40_desc *d40d, ...@@ -1910,11 +1909,10 @@ static int d40_prep_slave_sg_log(struct d40_desc *d40d,
d40c->dma_cfg.src_info.data_width, d40c->dma_cfg.src_info.data_width,
d40c->dma_cfg.dst_info.data_width, d40c->dma_cfg.dst_info.data_width,
direction, direction,
flags & DMA_PREP_INTERRUPT, dma_flags & DMA_PREP_INTERRUPT,
dev_addr, lli_max, dev_addr, d40d->lli_tx_len,
d40c->base->plat_data->llis_per_log); d40c->base->plat_data->llis_per_log);
} else
return -EINVAL;
if (total_size < 0) if (total_size < 0)
return -EINVAL; return -EINVAL;
...@@ -1926,7 +1924,7 @@ static int d40_prep_slave_sg_phy(struct d40_desc *d40d, ...@@ -1926,7 +1924,7 @@ static int d40_prep_slave_sg_phy(struct d40_desc *d40d,
struct scatterlist *sgl, struct scatterlist *sgl,
unsigned int sgl_len, unsigned int sgl_len,
enum dma_data_direction direction, enum dma_data_direction direction,
unsigned long flags) unsigned long dma_flags)
{ {
dma_addr_t src_dev_addr; dma_addr_t src_dev_addr;
dma_addr_t dst_dev_addr; dma_addr_t dst_dev_addr;
...@@ -1939,12 +1937,18 @@ static int d40_prep_slave_sg_phy(struct d40_desc *d40d, ...@@ -1939,12 +1937,18 @@ static int d40_prep_slave_sg_phy(struct d40_desc *d40d,
} }
d40d->lli_len = sgl_len; d40d->lli_len = sgl_len;
d40d->lli_tcount = 0; d40d->lli_tx_len = sgl_len;
if (direction == DMA_FROM_DEVICE) { if (direction == DMA_FROM_DEVICE) {
dst_dev_addr = 0; dst_dev_addr = 0;
if (d40c->runtime_addr)
src_dev_addr = d40c->runtime_addr;
else
src_dev_addr = d40c->base->plat_data->dev_rx[d40c->dma_cfg.src_dev_type]; src_dev_addr = d40c->base->plat_data->dev_rx[d40c->dma_cfg.src_dev_type];
} else if (direction == DMA_TO_DEVICE) { } else if (direction == DMA_TO_DEVICE) {
if (d40c->runtime_addr)
dst_dev_addr = d40c->runtime_addr;
else
dst_dev_addr = d40c->base->plat_data->dev_tx[d40c->dma_cfg.dst_dev_type]; dst_dev_addr = d40c->base->plat_data->dev_tx[d40c->dma_cfg.dst_dev_type];
src_dev_addr = 0; src_dev_addr = 0;
} else } else
...@@ -1983,34 +1987,38 @@ static struct dma_async_tx_descriptor *d40_prep_slave_sg(struct dma_chan *chan, ...@@ -1983,34 +1987,38 @@ static struct dma_async_tx_descriptor *d40_prep_slave_sg(struct dma_chan *chan,
struct scatterlist *sgl, struct scatterlist *sgl,
unsigned int sg_len, unsigned int sg_len,
enum dma_data_direction direction, enum dma_data_direction direction,
unsigned long flags) unsigned long dma_flags)
{ {
struct d40_desc *d40d; struct d40_desc *d40d;
struct d40_chan *d40c = container_of(chan, struct d40_chan, struct d40_chan *d40c = container_of(chan, struct d40_chan,
chan); chan);
unsigned long flg; unsigned long flags;
int err; int err;
if (d40c->phy_chan == NULL) {
dev_err(&d40c->chan.dev->device,
"[%s] Cannot prepare unallocated channel\n", __func__);
return ERR_PTR(-EINVAL);
}
if (d40c->dma_cfg.pre_transfer) if (d40c->dma_cfg.pre_transfer)
d40c->dma_cfg.pre_transfer(chan, d40c->dma_cfg.pre_transfer(chan,
d40c->dma_cfg.pre_transfer_data, d40c->dma_cfg.pre_transfer_data,
sg_dma_len(sgl)); sg_dma_len(sgl));
spin_lock_irqsave(&d40c->lock, flg); spin_lock_irqsave(&d40c->lock, flags);
d40d = d40_desc_get(d40c); d40d = d40_desc_get(d40c);
spin_unlock_irqrestore(&d40c->lock, flg); spin_unlock_irqrestore(&d40c->lock, flags);
if (d40d == NULL) if (d40d == NULL)
return NULL; return NULL;
memset(d40d, 0, sizeof(struct d40_desc));
if (d40c->log_num != D40_PHY_CHAN) if (d40c->log_num != D40_PHY_CHAN)
err = d40_prep_slave_sg_log(d40d, d40c, sgl, sg_len, err = d40_prep_slave_sg_log(d40d, d40c, sgl, sg_len,
direction, flags); direction, dma_flags);
else else
err = d40_prep_slave_sg_phy(d40d, d40c, sgl, sg_len, err = d40_prep_slave_sg_phy(d40d, d40c, sgl, sg_len,
direction, flags); direction, dma_flags);
if (err) { if (err) {
dev_err(&d40c->chan.dev->device, dev_err(&d40c->chan.dev->device,
"[%s] Failed to prepare %s slave sg job: %d\n", "[%s] Failed to prepare %s slave sg job: %d\n",
...@@ -2019,7 +2027,7 @@ static struct dma_async_tx_descriptor *d40_prep_slave_sg(struct dma_chan *chan, ...@@ -2019,7 +2027,7 @@ static struct dma_async_tx_descriptor *d40_prep_slave_sg(struct dma_chan *chan,
return NULL; return NULL;
} }
d40d->txd.flags = flags; d40d->txd.flags = dma_flags;
dma_async_tx_descriptor_init(&d40d->txd, chan); dma_async_tx_descriptor_init(&d40d->txd, chan);
...@@ -2037,6 +2045,13 @@ static enum dma_status d40_tx_status(struct dma_chan *chan, ...@@ -2037,6 +2045,13 @@ static enum dma_status d40_tx_status(struct dma_chan *chan,
dma_cookie_t last_complete; dma_cookie_t last_complete;
int ret; int ret;
if (d40c->phy_chan == NULL) {
dev_err(&d40c->chan.dev->device,
"[%s] Cannot read status of unallocated channel\n",
__func__);
return -EINVAL;
}
last_complete = d40c->completed; last_complete = d40c->completed;
last_used = chan->cookie; last_used = chan->cookie;
...@@ -2056,6 +2071,12 @@ static void d40_issue_pending(struct dma_chan *chan) ...@@ -2056,6 +2071,12 @@ static void d40_issue_pending(struct dma_chan *chan)
struct d40_chan *d40c = container_of(chan, struct d40_chan, chan); struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
unsigned long flags; unsigned long flags;
if (d40c->phy_chan == NULL) {
dev_err(&d40c->chan.dev->device,
"[%s] Channel is not allocated!\n", __func__);
return;
}
spin_lock_irqsave(&d40c->lock, flags); spin_lock_irqsave(&d40c->lock, flags);
/* Busy means that pending jobs are already being processed */ /* Busy means that pending jobs are already being processed */
...@@ -2065,12 +2086,129 @@ static void d40_issue_pending(struct dma_chan *chan) ...@@ -2065,12 +2086,129 @@ static void d40_issue_pending(struct dma_chan *chan)
spin_unlock_irqrestore(&d40c->lock, flags); spin_unlock_irqrestore(&d40c->lock, flags);
} }
/* Runtime reconfiguration extension */
static void d40_set_runtime_config(struct dma_chan *chan,
struct dma_slave_config *config)
{
struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
enum dma_slave_buswidth config_addr_width;
dma_addr_t config_addr;
u32 config_maxburst;
enum stedma40_periph_data_width addr_width;
int psize;
if (config->direction == DMA_FROM_DEVICE) {
dma_addr_t dev_addr_rx =
d40c->base->plat_data->dev_rx[cfg->src_dev_type];
config_addr = config->src_addr;
if (dev_addr_rx)
dev_dbg(d40c->base->dev,
"channel has a pre-wired RX address %08x "
"overriding with %08x\n",
dev_addr_rx, config_addr);
if (cfg->dir != STEDMA40_PERIPH_TO_MEM)
dev_dbg(d40c->base->dev,
"channel was not configured for peripheral "
"to memory transfer (%d) overriding\n",
cfg->dir);
cfg->dir = STEDMA40_PERIPH_TO_MEM;
config_addr_width = config->src_addr_width;
config_maxburst = config->src_maxburst;
} else if (config->direction == DMA_TO_DEVICE) {
dma_addr_t dev_addr_tx =
d40c->base->plat_data->dev_tx[cfg->dst_dev_type];
config_addr = config->dst_addr;
if (dev_addr_tx)
dev_dbg(d40c->base->dev,
"channel has a pre-wired TX address %08x "
"overriding with %08x\n",
dev_addr_tx, config_addr);
if (cfg->dir != STEDMA40_MEM_TO_PERIPH)
dev_dbg(d40c->base->dev,
"channel was not configured for memory "
"to peripheral transfer (%d) overriding\n",
cfg->dir);
cfg->dir = STEDMA40_MEM_TO_PERIPH;
config_addr_width = config->dst_addr_width;
config_maxburst = config->dst_maxburst;
} else {
dev_err(d40c->base->dev,
"unrecognized channel direction %d\n",
config->direction);
return;
}
switch (config_addr_width) {
case DMA_SLAVE_BUSWIDTH_1_BYTE:
addr_width = STEDMA40_BYTE_WIDTH;
break;
case DMA_SLAVE_BUSWIDTH_2_BYTES:
addr_width = STEDMA40_HALFWORD_WIDTH;
break;
case DMA_SLAVE_BUSWIDTH_4_BYTES:
addr_width = STEDMA40_WORD_WIDTH;
break;
case DMA_SLAVE_BUSWIDTH_8_BYTES:
addr_width = STEDMA40_DOUBLEWORD_WIDTH;
break;
default:
dev_err(d40c->base->dev,
"illegal peripheral address width "
"requested (%d)\n",
config->src_addr_width);
return;
}
if (config_maxburst >= 16)
psize = STEDMA40_PSIZE_LOG_16;
else if (config_maxburst >= 8)
psize = STEDMA40_PSIZE_LOG_8;
else if (config_maxburst >= 4)
psize = STEDMA40_PSIZE_LOG_4;
else
psize = STEDMA40_PSIZE_LOG_1;
/* Set up all the endpoint configs */
cfg->src_info.data_width = addr_width;
cfg->src_info.psize = psize;
cfg->src_info.endianess = STEDMA40_LITTLE_ENDIAN;
cfg->src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL;
cfg->dst_info.data_width = addr_width;
cfg->dst_info.psize = psize;
cfg->dst_info.endianess = STEDMA40_LITTLE_ENDIAN;
cfg->dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL;
/* These settings will take precedence later */
d40c->runtime_addr = config_addr;
d40c->runtime_direction = config->direction;
dev_dbg(d40c->base->dev,
"configured channel %s for %s, data width %d, "
"maxburst %d bytes, LE, no flow control\n",
dma_chan_name(chan),
(config->direction == DMA_FROM_DEVICE) ? "RX" : "TX",
config_addr_width,
config_maxburst);
}
static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd, static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
unsigned long arg) unsigned long arg)
{ {
unsigned long flags; unsigned long flags;
struct d40_chan *d40c = container_of(chan, struct d40_chan, chan); struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
if (d40c->phy_chan == NULL) {
dev_err(&d40c->chan.dev->device,
"[%s] Channel is not allocated!\n", __func__);
return -EINVAL;
}
switch (cmd) { switch (cmd) {
case DMA_TERMINATE_ALL: case DMA_TERMINATE_ALL:
spin_lock_irqsave(&d40c->lock, flags); spin_lock_irqsave(&d40c->lock, flags);
...@@ -2081,6 +2219,12 @@ static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd, ...@@ -2081,6 +2219,12 @@ static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
return d40_pause(chan); return d40_pause(chan);
case DMA_RESUME: case DMA_RESUME:
return d40_resume(chan); return d40_resume(chan);
case DMA_SLAVE_CONFIG:
d40_set_runtime_config(chan,
(struct dma_slave_config *) arg);
return 0;
default:
break;
} }
/* Other commands are unimplemented */ /* Other commands are unimplemented */
...@@ -2111,13 +2255,10 @@ static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma, ...@@ -2111,13 +2255,10 @@ static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
d40c->log_num = D40_PHY_CHAN; d40c->log_num = D40_PHY_CHAN;
INIT_LIST_HEAD(&d40c->free);
INIT_LIST_HEAD(&d40c->active); INIT_LIST_HEAD(&d40c->active);
INIT_LIST_HEAD(&d40c->queue); INIT_LIST_HEAD(&d40c->queue);
INIT_LIST_HEAD(&d40c->client); INIT_LIST_HEAD(&d40c->client);
d40c->free_len = 0;
tasklet_init(&d40c->tasklet, dma_tasklet, tasklet_init(&d40c->tasklet, dma_tasklet,
(unsigned long) d40c); (unsigned long) d40c);
...@@ -2243,6 +2384,14 @@ static int __init d40_phy_res_init(struct d40_base *base) ...@@ -2243,6 +2384,14 @@ static int __init d40_phy_res_init(struct d40_base *base)
} }
spin_lock_init(&base->phy_res[i].lock); spin_lock_init(&base->phy_res[i].lock);
} }
/* Mark disabled channels as occupied */
for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
base->phy_res[i].allocated_src = D40_ALLOC_PHY;
base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
num_phy_chans_avail--;
}
dev_info(base->dev, "%d of %d physical DMA channels available\n", dev_info(base->dev, "%d of %d physical DMA channels available\n",
num_phy_chans_avail, base->num_phy_chans); num_phy_chans_avail, base->num_phy_chans);
...@@ -2291,6 +2440,7 @@ static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev) ...@@ -2291,6 +2440,7 @@ static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
int num_log_chans = 0; int num_log_chans = 0;
int num_phy_chans; int num_phy_chans;
int i; int i;
u32 val;
clk = clk_get(&pdev->dev, NULL); clk = clk_get(&pdev->dev, NULL);
...@@ -2329,12 +2479,13 @@ static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev) ...@@ -2329,12 +2479,13 @@ static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
} }
} }
i = readl(virtbase + D40_DREG_PERIPHID2); /* Get silicon revision */
val = readl(virtbase + D40_DREG_PERIPHID2);
if ((i & 0xf) != D40_PERIPHID2_DESIGNER) { if ((val & 0xf) != D40_PERIPHID2_DESIGNER) {
dev_err(&pdev->dev, dev_err(&pdev->dev,
"[%s] Unknown designer! Got %x wanted %x\n", "[%s] Unknown designer! Got %x wanted %x\n",
__func__, i & 0xf, D40_PERIPHID2_DESIGNER); __func__, val & 0xf, D40_PERIPHID2_DESIGNER);
goto failure; goto failure;
} }
...@@ -2342,7 +2493,7 @@ static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev) ...@@ -2342,7 +2493,7 @@ static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4; num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
dev_info(&pdev->dev, "hardware revision: %d @ 0x%x\n", dev_info(&pdev->dev, "hardware revision: %d @ 0x%x\n",
(i >> 4) & 0xf, res->start); (val >> 4) & 0xf, res->start);
plat_data = pdev->dev.platform_data; plat_data = pdev->dev.platform_data;
...@@ -2364,6 +2515,7 @@ static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev) ...@@ -2364,6 +2515,7 @@ static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
goto failure; goto failure;
} }
base->rev = (val >> 4) & 0xf;
base->clk = clk; base->clk = clk;
base->num_phy_chans = num_phy_chans; base->num_phy_chans = num_phy_chans;
base->num_log_chans = num_log_chans; base->num_log_chans = num_log_chans;
...@@ -2402,6 +2554,12 @@ static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev) ...@@ -2402,6 +2554,12 @@ static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
if (!base->lcla_pool.alloc_map) if (!base->lcla_pool.alloc_map)
goto failure; goto failure;
base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
0, SLAB_HWCACHE_ALIGN,
NULL);
if (base->desc_slab == NULL)
goto failure;
return base; return base;
failure: failure:
...@@ -2495,6 +2653,78 @@ static void __init d40_hw_init(struct d40_base *base) ...@@ -2495,6 +2653,78 @@ static void __init d40_hw_init(struct d40_base *base)
} }
static int __init d40_lcla_allocate(struct d40_base *base)
{
unsigned long *page_list;
int i, j;
int ret = 0;
/*
* This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
* To full fill this hardware requirement without wasting 256 kb
* we allocate pages until we get an aligned one.
*/
page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS,
GFP_KERNEL);
if (!page_list) {
ret = -ENOMEM;
goto failure;
}
/* Calculating how many pages that are required */
base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
page_list[i] = __get_free_pages(GFP_KERNEL,
base->lcla_pool.pages);
if (!page_list[i]) {
dev_err(base->dev,
"[%s] Failed to allocate %d pages.\n",
__func__, base->lcla_pool.pages);
for (j = 0; j < i; j++)
free_pages(page_list[j], base->lcla_pool.pages);
goto failure;
}
if ((virt_to_phys((void *)page_list[i]) &
(LCLA_ALIGNMENT - 1)) == 0)
break;
}
for (j = 0; j < i; j++)
free_pages(page_list[j], base->lcla_pool.pages);
if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
base->lcla_pool.base = (void *)page_list[i];
} else {
/* After many attempts, no succees with finding the correct
* alignment try with allocating a big buffer */
dev_warn(base->dev,
"[%s] Failed to get %d pages @ 18 bit align.\n",
__func__, base->lcla_pool.pages);
base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
base->num_phy_chans +
LCLA_ALIGNMENT,
GFP_KERNEL);
if (!base->lcla_pool.base_unaligned) {
ret = -ENOMEM;
goto failure;
}
base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
LCLA_ALIGNMENT);
}
writel(virt_to_phys(base->lcla_pool.base),
base->virtbase + D40_DREG_LCLA);
failure:
kfree(page_list);
return ret;
}
static int __init d40_probe(struct platform_device *pdev) static int __init d40_probe(struct platform_device *pdev)
{ {
int err; int err;
...@@ -2554,41 +2784,11 @@ static int __init d40_probe(struct platform_device *pdev) ...@@ -2554,41 +2784,11 @@ static int __init d40_probe(struct platform_device *pdev)
__func__); __func__);
goto failure; goto failure;
} }
/* Get IO for logical channel link address */
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcla");
if (!res) {
ret = -ENOENT;
dev_err(&pdev->dev,
"[%s] No \"lcla\" resource defined\n",
__func__);
goto failure;
}
base->lcla_pool.base_size = resource_size(res);
base->lcla_pool.phy = res->start;
if (request_mem_region(res->start, resource_size(res), ret = d40_lcla_allocate(base);
D40_NAME " I/O lcla") == NULL) { if (ret) {
ret = -EBUSY; dev_err(&pdev->dev, "[%s] Failed to allocate LCLA area\n",
dev_err(&pdev->dev, __func__);
"[%s] Failed to request LCLA region 0x%x-0x%x\n",
__func__, res->start, res->end);
goto failure;
}
val = readl(base->virtbase + D40_DREG_LCLA);
if (res->start != val && val != 0) {
dev_warn(&pdev->dev,
"[%s] Mismatch LCLA dma 0x%x, def 0x%x\n",
__func__, val, res->start);
} else
writel(res->start, base->virtbase + D40_DREG_LCLA);
base->lcla_pool.base = ioremap(res->start, resource_size(res));
if (!base->lcla_pool.base) {
ret = -ENOMEM;
dev_err(&pdev->dev,
"[%s] Failed to ioremap LCLA 0x%x-0x%x\n",
__func__, res->start, res->end);
goto failure; goto failure;
} }
...@@ -2616,11 +2816,15 @@ static int __init d40_probe(struct platform_device *pdev) ...@@ -2616,11 +2816,15 @@ static int __init d40_probe(struct platform_device *pdev)
failure: failure:
if (base) { if (base) {
if (base->desc_slab)
kmem_cache_destroy(base->desc_slab);
if (base->virtbase) if (base->virtbase)
iounmap(base->virtbase); iounmap(base->virtbase);
if (base->lcla_pool.phy) if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
release_mem_region(base->lcla_pool.phy, free_pages((unsigned long)base->lcla_pool.base,
base->lcla_pool.base_size); base->lcla_pool.pages);
if (base->lcla_pool.base_unaligned)
kfree(base->lcla_pool.base_unaligned);
if (base->phy_lcpa) if (base->phy_lcpa)
release_mem_region(base->phy_lcpa, release_mem_region(base->phy_lcpa,
base->lcpa_size); base->lcpa_size);
......
...@@ -315,11 +315,8 @@ int d40_log_sg_to_dev(struct d40_lcla_elem *lcla, ...@@ -315,11 +315,8 @@ int d40_log_sg_to_dev(struct d40_lcla_elem *lcla,
int total_size = 0; int total_size = 0;
struct scatterlist *current_sg = sg; struct scatterlist *current_sg = sg;
int i; int i;
u32 next_lli_off_dst; u32 next_lli_off_dst = 0;
u32 next_lli_off_src; u32 next_lli_off_src = 0;
next_lli_off_src = 0;
next_lli_off_dst = 0;
for_each_sg(sg, current_sg, sg_len, i) { for_each_sg(sg, current_sg, sg_len, i) {
total_size += sg_dma_len(current_sg); total_size += sg_dma_len(current_sg);
...@@ -351,7 +348,7 @@ int d40_log_sg_to_dev(struct d40_lcla_elem *lcla, ...@@ -351,7 +348,7 @@ int d40_log_sg_to_dev(struct d40_lcla_elem *lcla,
sg_dma_len(current_sg), sg_dma_len(current_sg),
next_lli_off_src, next_lli_off_src,
lcsp->lcsp1, src_data_width, lcsp->lcsp1, src_data_width,
term_int && !next_lli_off_src, false,
true); true);
d40_log_fill_lli(&lli->dst[i], d40_log_fill_lli(&lli->dst[i],
dev_addr, dev_addr,
...@@ -375,7 +372,7 @@ int d40_log_sg_to_dev(struct d40_lcla_elem *lcla, ...@@ -375,7 +372,7 @@ int d40_log_sg_to_dev(struct d40_lcla_elem *lcla,
sg_dma_len(current_sg), sg_dma_len(current_sg),
next_lli_off_src, next_lli_off_src,
lcsp->lcsp1, src_data_width, lcsp->lcsp1, src_data_width,
term_int && !next_lli_off_src, false,
false); false);
} }
} }
...@@ -423,32 +420,35 @@ int d40_log_sg_to_lli(int lcla_id, ...@@ -423,32 +420,35 @@ int d40_log_sg_to_lli(int lcla_id,
return total_size; return total_size;
} }
void d40_log_lli_write(struct d40_log_lli_full *lcpa, int d40_log_lli_write(struct d40_log_lli_full *lcpa,
struct d40_log_lli *lcla_src, struct d40_log_lli *lcla_src,
struct d40_log_lli *lcla_dst, struct d40_log_lli *lcla_dst,
struct d40_log_lli *lli_dst, struct d40_log_lli *lli_dst,
struct d40_log_lli *lli_src, struct d40_log_lli *lli_src,
int llis_per_log) int llis_per_log)
{ {
u32 slos = 0; u32 slos;
u32 dlos = 0; u32 dlos;
int i; int i;
lcpa->lcsp0 = lli_src->lcsp02; writel(lli_src->lcsp02, &lcpa->lcsp0);
lcpa->lcsp1 = lli_src->lcsp13; writel(lli_src->lcsp13, &lcpa->lcsp1);
lcpa->lcsp2 = lli_dst->lcsp02; writel(lli_dst->lcsp02, &lcpa->lcsp2);
lcpa->lcsp3 = lli_dst->lcsp13; writel(lli_dst->lcsp13, &lcpa->lcsp3);
slos = lli_src->lcsp13 & D40_MEM_LCSP1_SLOS_MASK; slos = lli_src->lcsp13 & D40_MEM_LCSP1_SLOS_MASK;
dlos = lli_dst->lcsp13 & D40_MEM_LCSP3_DLOS_MASK; dlos = lli_dst->lcsp13 & D40_MEM_LCSP3_DLOS_MASK;
for (i = 0; (i < llis_per_log) && slos && dlos; i++) { for (i = 0; (i < llis_per_log) && slos && dlos; i++) {
writel(lli_src[i+1].lcsp02, &lcla_src[i].lcsp02); writel(lli_src[i + 1].lcsp02, &lcla_src[i].lcsp02);
writel(lli_src[i+1].lcsp13, &lcla_src[i].lcsp13); writel(lli_src[i + 1].lcsp13, &lcla_src[i].lcsp13);
writel(lli_dst[i+1].lcsp02, &lcla_dst[i].lcsp02); writel(lli_dst[i + 1].lcsp02, &lcla_dst[i].lcsp02);
writel(lli_dst[i+1].lcsp13, &lcla_dst[i].lcsp13); writel(lli_dst[i + 1].lcsp13, &lcla_dst[i].lcsp13);
slos = lli_src[i+1].lcsp13 & D40_MEM_LCSP1_SLOS_MASK; slos = lli_src[i + 1].lcsp13 & D40_MEM_LCSP1_SLOS_MASK;
dlos = lli_dst[i+1].lcsp13 & D40_MEM_LCSP3_DLOS_MASK; dlos = lli_dst[i + 1].lcsp13 & D40_MEM_LCSP3_DLOS_MASK;
} }
return i;
} }
...@@ -13,6 +13,9 @@ ...@@ -13,6 +13,9 @@
#define D40_DREG_PCDELTA (8 * 4) #define D40_DREG_PCDELTA (8 * 4)
#define D40_LLI_ALIGN 16 /* LLI alignment must be 16 bytes. */ #define D40_LLI_ALIGN 16 /* LLI alignment must be 16 bytes. */
#define D40_LCPA_CHAN_SIZE 32
#define D40_LCPA_CHAN_DST_DELTA 16
#define D40_TYPE_TO_GROUP(type) (type / 16) #define D40_TYPE_TO_GROUP(type) (type / 16)
#define D40_TYPE_TO_EVENT(type) (type % 16) #define D40_TYPE_TO_EVENT(type) (type % 16)
...@@ -336,7 +339,7 @@ int d40_log_sg_to_dev(struct d40_lcla_elem *lcla, ...@@ -336,7 +339,7 @@ int d40_log_sg_to_dev(struct d40_lcla_elem *lcla,
bool term_int, dma_addr_t dev_addr, int max_len, bool term_int, dma_addr_t dev_addr, int max_len,
int llis_per_log); int llis_per_log);
void d40_log_lli_write(struct d40_log_lli_full *lcpa, int d40_log_lli_write(struct d40_log_lli_full *lcpa,
struct d40_log_lli *lcla_src, struct d40_log_lli *lcla_src,
struct d40_log_lli *lcla_dst, struct d40_log_lli *lcla_dst,
struct d40_log_lli *lli_dst, struct d40_log_lli *lli_dst,
......
...@@ -200,8 +200,8 @@ static int td_fill_desc(struct timb_dma_chan *td_chan, u8 *dma_desc, ...@@ -200,8 +200,8 @@ static int td_fill_desc(struct timb_dma_chan *td_chan, u8 *dma_desc,
return -EINVAL; return -EINVAL;
} }
dev_dbg(chan2dev(&td_chan->chan), "desc: %p, addr: %p\n", dev_dbg(chan2dev(&td_chan->chan), "desc: %p, addr: 0x%llx\n",
dma_desc, (void *)sg_dma_address(sg)); dma_desc, (unsigned long long)sg_dma_address(sg));
dma_desc[7] = (sg_dma_address(sg) >> 24) & 0xff; dma_desc[7] = (sg_dma_address(sg) >> 24) & 0xff;
dma_desc[6] = (sg_dma_address(sg) >> 16) & 0xff; dma_desc[6] = (sg_dma_address(sg) >> 16) & 0xff;
...@@ -382,7 +382,7 @@ static struct timb_dma_desc *td_alloc_init_desc(struct timb_dma_chan *td_chan) ...@@ -382,7 +382,7 @@ static struct timb_dma_desc *td_alloc_init_desc(struct timb_dma_chan *td_chan)
td_desc = kzalloc(sizeof(struct timb_dma_desc), GFP_KERNEL); td_desc = kzalloc(sizeof(struct timb_dma_desc), GFP_KERNEL);
if (!td_desc) { if (!td_desc) {
dev_err(chan2dev(chan), "Failed to alloc descriptor\n"); dev_err(chan2dev(chan), "Failed to alloc descriptor\n");
goto err; goto out;
} }
td_desc->desc_list_len = td_chan->desc_elems * TIMB_DMA_DESC_SIZE; td_desc->desc_list_len = td_chan->desc_elems * TIMB_DMA_DESC_SIZE;
...@@ -410,7 +410,7 @@ static struct timb_dma_desc *td_alloc_init_desc(struct timb_dma_chan *td_chan) ...@@ -410,7 +410,7 @@ static struct timb_dma_desc *td_alloc_init_desc(struct timb_dma_chan *td_chan)
err: err:
kfree(td_desc->desc_list); kfree(td_desc->desc_list);
kfree(td_desc); kfree(td_desc);
out:
return NULL; return NULL;
} }
......
...@@ -3030,6 +3030,34 @@ static void __init iommu_exit_mempool(void) ...@@ -3030,6 +3030,34 @@ static void __init iommu_exit_mempool(void)
} }
static void quirk_ioat_snb_local_iommu(struct pci_dev *pdev)
{
struct dmar_drhd_unit *drhd;
u32 vtbar;
int rc;
/* We know that this device on this chipset has its own IOMMU.
* If we find it under a different IOMMU, then the BIOS is lying
* to us. Hope that the IOMMU for this device is actually
* disabled, and it needs no translation...
*/
rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar);
if (rc) {
/* "can't" happen */
dev_info(&pdev->dev, "failed to run vt-d quirk\n");
return;
}
vtbar &= 0xffff0000;
/* we know that the this iommu should be at offset 0xa000 from vtbar */
drhd = dmar_find_matched_drhd_unit(pdev);
if (WARN_TAINT_ONCE(!drhd || drhd->reg_base_addr - vtbar != 0xa000,
TAINT_FIRMWARE_WORKAROUND,
"BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n"))
pdev->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
}
DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB, quirk_ioat_snb_local_iommu);
static void __init init_no_remapping_devices(void) static void __init init_no_remapping_devices(void)
{ {
struct dmar_drhd_unit *drhd; struct dmar_drhd_unit *drhd;
......
...@@ -114,11 +114,17 @@ enum dma_ctrl_flags { ...@@ -114,11 +114,17 @@ enum dma_ctrl_flags {
* @DMA_TERMINATE_ALL: terminate all ongoing transfers * @DMA_TERMINATE_ALL: terminate all ongoing transfers
* @DMA_PAUSE: pause ongoing transfers * @DMA_PAUSE: pause ongoing transfers
* @DMA_RESUME: resume paused transfer * @DMA_RESUME: resume paused transfer
* @DMA_SLAVE_CONFIG: this command is only implemented by DMA controllers
* that need to runtime reconfigure the slave channels (as opposed to passing
* configuration data in statically from the platform). An additional
* argument of struct dma_slave_config must be passed in with this
* command.
*/ */
enum dma_ctrl_cmd { enum dma_ctrl_cmd {
DMA_TERMINATE_ALL, DMA_TERMINATE_ALL,
DMA_PAUSE, DMA_PAUSE,
DMA_RESUME, DMA_RESUME,
DMA_SLAVE_CONFIG,
}; };
/** /**
...@@ -199,6 +205,71 @@ struct dma_chan_dev { ...@@ -199,6 +205,71 @@ struct dma_chan_dev {
atomic_t *idr_ref; atomic_t *idr_ref;
}; };
/**
* enum dma_slave_buswidth - defines bus with of the DMA slave
* device, source or target buses
*/
enum dma_slave_buswidth {
DMA_SLAVE_BUSWIDTH_UNDEFINED = 0,
DMA_SLAVE_BUSWIDTH_1_BYTE = 1,
DMA_SLAVE_BUSWIDTH_2_BYTES = 2,
DMA_SLAVE_BUSWIDTH_4_BYTES = 4,
DMA_SLAVE_BUSWIDTH_8_BYTES = 8,
};
/**
* struct dma_slave_config - dma slave channel runtime config
* @direction: whether the data shall go in or out on this slave
* channel, right now. DMA_TO_DEVICE and DMA_FROM_DEVICE are
* legal values, DMA_BIDIRECTIONAL is not acceptable since we
* need to differentiate source and target addresses.
* @src_addr: this is the physical address where DMA slave data
* should be read (RX), if the source is memory this argument is
* ignored.
* @dst_addr: this is the physical address where DMA slave data
* should be written (TX), if the source is memory this argument
* is ignored.
* @src_addr_width: this is the width in bytes of the source (RX)
* register where DMA data shall be read. If the source
* is memory this may be ignored depending on architecture.
* Legal values: 1, 2, 4, 8.
* @dst_addr_width: same as src_addr_width but for destination
* target (TX) mutatis mutandis.
* @src_maxburst: the maximum number of words (note: words, as in
* units of the src_addr_width member, not bytes) that can be sent
* in one burst to the device. Typically something like half the
* FIFO depth on I/O peripherals so you don't overflow it. This
* may or may not be applicable on memory sources.
* @dst_maxburst: same as src_maxburst but for destination target
* mutatis mutandis.
*
* This struct is passed in as configuration data to a DMA engine
* in order to set up a certain channel for DMA transport at runtime.
* The DMA device/engine has to provide support for an additional
* command in the channel config interface, DMA_SLAVE_CONFIG
* and this struct will then be passed in as an argument to the
* DMA engine device_control() function.
*
* The rationale for adding configuration information to this struct
* is as follows: if it is likely that most DMA slave controllers in
* the world will support the configuration option, then make it
* generic. If not: if it is fixed so that it be sent in static from
* the platform data, then prefer to do that. Else, if it is neither
* fixed at runtime, nor generic enough (such as bus mastership on
* some CPU family and whatnot) then create a custom slave config
* struct and pass that, then make this config a member of that
* struct, if applicable.
*/
struct dma_slave_config {
enum dma_data_direction direction;
dma_addr_t src_addr;
dma_addr_t dst_addr;
enum dma_slave_buswidth src_addr_width;
enum dma_slave_buswidth dst_addr_width;
u32 src_maxburst;
u32 dst_maxburst;
};
static inline const char *dma_chan_name(struct dma_chan *chan) static inline const char *dma_chan_name(struct dma_chan *chan)
{ {
return dev_name(&chan->dev->device); return dev_name(&chan->dev->device);
......
/*
* intel_mid_dma.h - Intel MID DMA Drivers
*
* Copyright (C) 2008-10 Intel Corp
* Author: Vinod Koul <vinod.koul@intel.com>
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
*
*/
#ifndef __INTEL_MID_DMA_H__
#define __INTEL_MID_DMA_H__
#include <linux/dmaengine.h>
/*DMA transaction width, src and dstn width would be same
The DMA length must be width aligned,
for 32 bit width the length must be 32 bit (4bytes) aligned only*/
enum intel_mid_dma_width {
LNW_DMA_WIDTH_8BIT = 0x0,
LNW_DMA_WIDTH_16BIT = 0x1,
LNW_DMA_WIDTH_32BIT = 0x2,
};
/*DMA mode configurations*/
enum intel_mid_dma_mode {
LNW_DMA_PER_TO_MEM = 0, /*periphral to memory configuration*/
LNW_DMA_MEM_TO_PER, /*memory to periphral configuration*/
LNW_DMA_MEM_TO_MEM, /*mem to mem confg (testing only)*/
};
/*DMA handshaking*/
enum intel_mid_dma_hs_mode {
LNW_DMA_HW_HS = 0, /*HW Handshaking only*/
LNW_DMA_SW_HS = 1, /*SW Handshaking not recommended*/
};
/*Burst size configuration*/
enum intel_mid_dma_msize {
LNW_DMA_MSIZE_1 = 0x0,
LNW_DMA_MSIZE_4 = 0x1,
LNW_DMA_MSIZE_8 = 0x2,
LNW_DMA_MSIZE_16 = 0x3,
LNW_DMA_MSIZE_32 = 0x4,
LNW_DMA_MSIZE_64 = 0x5,
};
/**
* struct intel_mid_dma_slave - DMA slave structure
*
* @dirn: DMA trf direction
* @src_width: tx register width
* @dst_width: rx register width
* @hs_mode: HW/SW handshaking mode
* @cfg_mode: DMA data transfer mode (per-per/mem-per/mem-mem)
* @src_msize: Source DMA burst size
* @dst_msize: Dst DMA burst size
* @device_instance: DMA peripheral device instance, we can have multiple
* peripheral device connected to single DMAC
*/
struct intel_mid_dma_slave {
enum dma_data_direction dirn;
enum intel_mid_dma_width src_width; /*width of DMA src txn*/
enum intel_mid_dma_width dst_width; /*width of DMA dst txn*/
enum intel_mid_dma_hs_mode hs_mode; /*handshaking*/
enum intel_mid_dma_mode cfg_mode; /*mode configuration*/
enum intel_mid_dma_msize src_msize; /*size if src burst*/
enum intel_mid_dma_msize dst_msize; /*size of dst burst*/
unsigned int device_instance; /*0, 1 for periphral instance*/
};
#endif /*__INTEL_MID_DMA_H__*/
/*
* Copyright (c) 2010 Intel Corporation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#ifndef PCH_DMA_H
#define PCH_DMA_H
#include <linux/dmaengine.h>
enum pch_dma_width {
PCH_DMA_WIDTH_1_BYTE,
PCH_DMA_WIDTH_2_BYTES,
PCH_DMA_WIDTH_4_BYTES,
};
struct pch_dma_slave {
struct device *dma_dev;
unsigned int chan_id;
dma_addr_t tx_reg;
dma_addr_t rx_reg;
enum pch_dma_width width;
};
#endif
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment