Commit e25645b1 authored by Linus Torvalds's avatar Linus Torvalds

Merge tag 'linux-kselftest-5.5-rc1-kunit' of...

Merge tag 'linux-kselftest-5.5-rc1-kunit' of git://git.kernel.org/pub/scm/linux/kernel/git/shuah/linux-kselftest

Pull kselftest KUnit support gtom Shuah Khan:
 "This adds KUnit, a lightweight unit testing and mocking framework for
  the Linux kernel from Brendan Higgins.

  KUnit is not an end-to-end testing framework. It is currently
  supported on UML and sub-systems can write unit tests and run them in
  UML env. KUnit documentation is included in this update.

  In addition, this Kunit update adds 3 new kunit tests:

   - proc sysctl test from Iurii Zaikin

   - the 'list' doubly linked list test from David Gow

   - ext4 tests for decoding extended timestamps from Iurii Zaikin

  In the future KUnit will be linked to Kselftest framework to provide a
  way to trigger KUnit tests from user-space"

* tag 'linux-kselftest-5.5-rc1-kunit' of git://git.kernel.org/pub/scm/linux/kernel/git/shuah/linux-kselftest: (23 commits)
  lib/list-test: add a test for the 'list' doubly linked list
  ext4: add kunit test for decoding extended timestamps
  Documentation: kunit: Fix verification command
  kunit: Fix '--build_dir' option
  kunit: fix failure to build without printk
  MAINTAINERS: add proc sysctl KUnit test to PROC SYSCTL section
  kernel/sysctl-test: Add null pointer test for sysctl.c:proc_dointvec()
  MAINTAINERS: add entry for KUnit the unit testing framework
  Documentation: kunit: add documentation for KUnit
  kunit: defconfig: add defconfigs for building KUnit tests
  kunit: tool: add Python wrappers for running KUnit tests
  kunit: test: add tests for KUnit managed resources
  kunit: test: add the concept of assertions
  kunit: test: add tests for kunit test abort
  kunit: test: add support for test abort
  objtool: add kunit_try_catch_throw to the noreturn list
  kunit: test: add initial tests
  lib: enable building KUnit in lib/
  kunit: test: add the concept of expectations
  kunit: test: add assertion printing library
  ...
parents db7d2754 ea2dd7c0
...@@ -24,6 +24,7 @@ whole; patches welcome! ...@@ -24,6 +24,7 @@ whole; patches welcome!
gdb-kernel-debugging gdb-kernel-debugging
kgdb kgdb
kselftest kselftest
kunit/index
.. only:: subproject and html .. only:: subproject and html
......
.. SPDX-License-Identifier: GPL-2.0
=============
API Reference
=============
.. toctree::
test
This section documents the KUnit kernel testing API. It is divided into the
following sections:
================================= ==============================================
:doc:`test` documents all of the standard testing API
excluding mocking or mocking related features.
================================= ==============================================
.. SPDX-License-Identifier: GPL-2.0
========
Test API
========
This file documents all of the standard testing API excluding mocking or mocking
related features.
.. kernel-doc:: include/kunit/test.h
:internal:
.. SPDX-License-Identifier: GPL-2.0
==========================
Frequently Asked Questions
==========================
How is this different from Autotest, kselftest, etc?
====================================================
KUnit is a unit testing framework. Autotest, kselftest (and some others) are
not.
A `unit test <https://martinfowler.com/bliki/UnitTest.html>`_ is supposed to
test a single unit of code in isolation, hence the name. A unit test should be
the finest granularity of testing and as such should allow all possible code
paths to be tested in the code under test; this is only possible if the code
under test is very small and does not have any external dependencies outside of
the test's control like hardware.
There are no testing frameworks currently available for the kernel that do not
require installing the kernel on a test machine or in a VM and all require
tests to be written in userspace and run on the kernel under test; this is true
for Autotest, kselftest, and some others, disqualifying any of them from being
considered unit testing frameworks.
Does KUnit support running on architectures other than UML?
===========================================================
Yes, well, mostly.
For the most part, the KUnit core framework (what you use to write the tests)
can compile to any architecture; it compiles like just another part of the
kernel and runs when the kernel boots. However, there is some infrastructure,
like the KUnit Wrapper (``tools/testing/kunit/kunit.py``) that does not support
other architectures.
In short, this means that, yes, you can run KUnit on other architectures, but
it might require more work than using KUnit on UML.
For more information, see :ref:`kunit-on-non-uml`.
What is the difference between a unit test and these other kinds of tests?
==========================================================================
Most existing tests for the Linux kernel would be categorized as an integration
test, or an end-to-end test.
- A unit test is supposed to test a single unit of code in isolation, hence the
name. A unit test should be the finest granularity of testing and as such
should allow all possible code paths to be tested in the code under test; this
is only possible if the code under test is very small and does not have any
external dependencies outside of the test's control like hardware.
- An integration test tests the interaction between a minimal set of components,
usually just two or three. For example, someone might write an integration
test to test the interaction between a driver and a piece of hardware, or to
test the interaction between the userspace libraries the kernel provides and
the kernel itself; however, one of these tests would probably not test the
entire kernel along with hardware interactions and interactions with the
userspace.
- An end-to-end test usually tests the entire system from the perspective of the
code under test. For example, someone might write an end-to-end test for the
kernel by installing a production configuration of the kernel on production
hardware with a production userspace and then trying to exercise some behavior
that depends on interactions between the hardware, the kernel, and userspace.
.. SPDX-License-Identifier: GPL-2.0
=========================================
KUnit - Unit Testing for the Linux Kernel
=========================================
.. toctree::
:maxdepth: 2
start
usage
api/index
faq
What is KUnit?
==============
KUnit is a lightweight unit testing and mocking framework for the Linux kernel.
These tests are able to be run locally on a developer's workstation without a VM
or special hardware.
KUnit is heavily inspired by JUnit, Python's unittest.mock, and
Googletest/Googlemock for C++. KUnit provides facilities for defining unit test
cases, grouping related test cases into test suites, providing common
infrastructure for running tests, and much more.
Get started now: :doc:`start`
Why KUnit?
==========
A unit test is supposed to test a single unit of code in isolation, hence the
name. A unit test should be the finest granularity of testing and as such should
allow all possible code paths to be tested in the code under test; this is only
possible if the code under test is very small and does not have any external
dependencies outside of the test's control like hardware.
Outside of KUnit, there are no testing frameworks currently
available for the kernel that do not require installing the kernel on a test
machine or in a VM and all require tests to be written in userspace running on
the kernel; this is true for Autotest, and kselftest, disqualifying
any of them from being considered unit testing frameworks.
KUnit addresses the problem of being able to run tests without needing a virtual
machine or actual hardware with User Mode Linux. User Mode Linux is a Linux
architecture, like ARM or x86; however, unlike other architectures it compiles
to a standalone program that can be run like any other program directly inside
of a host operating system; to be clear, it does not require any virtualization
support; it is just a regular program.
KUnit is fast. Excluding build time, from invocation to completion KUnit can run
several dozen tests in only 10 to 20 seconds; this might not sound like a big
deal to some people, but having such fast and easy to run tests fundamentally
changes the way you go about testing and even writing code in the first place.
Linus himself said in his `git talk at Google
<https://gist.github.com/lorn/1272686/revisions#diff-53c65572127855f1b003db4064a94573R874>`_:
"... a lot of people seem to think that performance is about doing the
same thing, just doing it faster, and that is not true. That is not what
performance is all about. If you can do something really fast, really
well, people will start using it differently."
In this context Linus was talking about branching and merging,
but this point also applies to testing. If your tests are slow, unreliable, are
difficult to write, and require a special setup or special hardware to run,
then you wait a lot longer to write tests, and you wait a lot longer to run
tests; this means that tests are likely to break, unlikely to test a lot of
things, and are unlikely to be rerun once they pass. If your tests are really
fast, you run them all the time, every time you make a change, and every time
someone sends you some code. Why trust that someone ran all their tests
correctly on every change when you can just run them yourself in less time than
it takes to read their test log?
How do I use it?
================
* :doc:`start` - for new users of KUnit
* :doc:`usage` - for a more detailed explanation of KUnit features
* :doc:`api/index` - for the list of KUnit APIs used for testing
.. SPDX-License-Identifier: GPL-2.0
===============
Getting Started
===============
Installing dependencies
=======================
KUnit has the same dependencies as the Linux kernel. As long as you can build
the kernel, you can run KUnit.
KUnit Wrapper
=============
Included with KUnit is a simple Python wrapper that helps format the output to
easily use and read KUnit output. It handles building and running the kernel, as
well as formatting the output.
The wrapper can be run with:
.. code-block:: bash
./tools/testing/kunit/kunit.py run
Creating a kunitconfig
======================
The Python script is a thin wrapper around Kbuild as such, it needs to be
configured with a ``kunitconfig`` file. This file essentially contains the
regular Kernel config, with the specific test targets as well.
.. code-block:: bash
git clone -b master https://kunit.googlesource.com/kunitconfig $PATH_TO_KUNITCONFIG_REPO
cd $PATH_TO_LINUX_REPO
ln -s $PATH_TO_KUNIT_CONFIG_REPO/kunitconfig kunitconfig
You may want to add kunitconfig to your local gitignore.
Verifying KUnit Works
---------------------
To make sure that everything is set up correctly, simply invoke the Python
wrapper from your kernel repo:
.. code-block:: bash
./tools/testing/kunit/kunit.py run
.. note::
You may want to run ``make mrproper`` first.
If everything worked correctly, you should see the following:
.. code-block:: bash
Generating .config ...
Building KUnit Kernel ...
Starting KUnit Kernel ...
followed by a list of tests that are run. All of them should be passing.
.. note::
Because it is building a lot of sources for the first time, the ``Building
kunit kernel`` step may take a while.
Writing your first test
=======================
In your kernel repo let's add some code that we can test. Create a file
``drivers/misc/example.h`` with the contents:
.. code-block:: c
int misc_example_add(int left, int right);
create a file ``drivers/misc/example.c``:
.. code-block:: c
#include <linux/errno.h>
#include "example.h"
int misc_example_add(int left, int right)
{
return left + right;
}
Now add the following lines to ``drivers/misc/Kconfig``:
.. code-block:: kconfig
config MISC_EXAMPLE
bool "My example"
and the following lines to ``drivers/misc/Makefile``:
.. code-block:: make
obj-$(CONFIG_MISC_EXAMPLE) += example.o
Now we are ready to write the test. The test will be in
``drivers/misc/example-test.c``:
.. code-block:: c
#include <kunit/test.h>
#include "example.h"
/* Define the test cases. */
static void misc_example_add_test_basic(struct kunit *test)
{
KUNIT_EXPECT_EQ(test, 1, misc_example_add(1, 0));
KUNIT_EXPECT_EQ(test, 2, misc_example_add(1, 1));
KUNIT_EXPECT_EQ(test, 0, misc_example_add(-1, 1));
KUNIT_EXPECT_EQ(test, INT_MAX, misc_example_add(0, INT_MAX));
KUNIT_EXPECT_EQ(test, -1, misc_example_add(INT_MAX, INT_MIN));
}
static void misc_example_test_failure(struct kunit *test)
{
KUNIT_FAIL(test, "This test never passes.");
}
static struct kunit_case misc_example_test_cases[] = {
KUNIT_CASE(misc_example_add_test_basic),
KUNIT_CASE(misc_example_test_failure),
{}
};
static struct kunit_suite misc_example_test_suite = {
.name = "misc-example",
.test_cases = misc_example_test_cases,
};
kunit_test_suite(misc_example_test_suite);
Now add the following to ``drivers/misc/Kconfig``:
.. code-block:: kconfig
config MISC_EXAMPLE_TEST
bool "Test for my example"
depends on MISC_EXAMPLE && KUNIT
and the following to ``drivers/misc/Makefile``:
.. code-block:: make
obj-$(CONFIG_MISC_EXAMPLE_TEST) += example-test.o
Now add it to your ``kunitconfig``:
.. code-block:: none
CONFIG_MISC_EXAMPLE=y
CONFIG_MISC_EXAMPLE_TEST=y
Now you can run the test:
.. code-block:: bash
./tools/testing/kunit/kunit.py
You should see the following failure:
.. code-block:: none
...
[16:08:57] [PASSED] misc-example:misc_example_add_test_basic
[16:08:57] [FAILED] misc-example:misc_example_test_failure
[16:08:57] EXPECTATION FAILED at drivers/misc/example-test.c:17
[16:08:57] This test never passes.
...
Congrats! You just wrote your first KUnit test!
Next Steps
==========
* Check out the :doc:`usage` page for a more
in-depth explanation of KUnit.
.. SPDX-License-Identifier: GPL-2.0
===========
Using KUnit
===========
The purpose of this document is to describe what KUnit is, how it works, how it
is intended to be used, and all the concepts and terminology that are needed to
understand it. This guide assumes a working knowledge of the Linux kernel and
some basic knowledge of testing.
For a high level introduction to KUnit, including setting up KUnit for your
project, see :doc:`start`.
Organization of this document
=============================
This document is organized into two main sections: Testing and Isolating
Behavior. The first covers what a unit test is and how to use KUnit to write
them. The second covers how to use KUnit to isolate code and make it possible
to unit test code that was otherwise un-unit-testable.
Testing
=======
What is KUnit?
--------------
"K" is short for "kernel" so "KUnit" is the "(Linux) Kernel Unit Testing
Framework." KUnit is intended first and foremost for writing unit tests; it is
general enough that it can be used to write integration tests; however, this is
a secondary goal. KUnit has no ambition of being the only testing framework for
the kernel; for example, it does not intend to be an end-to-end testing
framework.
What is Unit Testing?
---------------------
A `unit test <https://martinfowler.com/bliki/UnitTest.html>`_ is a test that
tests code at the smallest possible scope, a *unit* of code. In the C
programming language that's a function.
Unit tests should be written for all the publicly exposed functions in a
compilation unit; so that is all the functions that are exported in either a
*class* (defined below) or all functions which are **not** static.
Writing Tests
-------------
Test Cases
~~~~~~~~~~
The fundamental unit in KUnit is the test case. A test case is a function with
the signature ``void (*)(struct kunit *test)``. It calls a function to be tested
and then sets *expectations* for what should happen. For example:
.. code-block:: c
void example_test_success(struct kunit *test)
{
}
void example_test_failure(struct kunit *test)
{
KUNIT_FAIL(test, "This test never passes.");
}
In the above example ``example_test_success`` always passes because it does
nothing; no expectations are set, so all expectations pass. On the other hand
``example_test_failure`` always fails because it calls ``KUNIT_FAIL``, which is
a special expectation that logs a message and causes the test case to fail.
Expectations
~~~~~~~~~~~~
An *expectation* is a way to specify that you expect a piece of code to do
something in a test. An expectation is called like a function. A test is made
by setting expectations about the behavior of a piece of code under test; when
one or more of the expectations fail, the test case fails and information about
the failure is logged. For example:
.. code-block:: c
void add_test_basic(struct kunit *test)
{
KUNIT_EXPECT_EQ(test, 1, add(1, 0));
KUNIT_EXPECT_EQ(test, 2, add(1, 1));
}
In the above example ``add_test_basic`` makes a number of assertions about the
behavior of a function called ``add``; the first parameter is always of type
``struct kunit *``, which contains information about the current test context;
the second parameter, in this case, is what the value is expected to be; the
last value is what the value actually is. If ``add`` passes all of these
expectations, the test case, ``add_test_basic`` will pass; if any one of these
expectations fail, the test case will fail.
It is important to understand that a test case *fails* when any expectation is
violated; however, the test will continue running, potentially trying other
expectations until the test case ends or is otherwise terminated. This is as
opposed to *assertions* which are discussed later.
To learn about more expectations supported by KUnit, see :doc:`api/test`.
.. note::
A single test case should be pretty short, pretty easy to understand,
focused on a single behavior.
For example, if we wanted to properly test the add function above, we would
create additional tests cases which would each test a different property that an
add function should have like this:
.. code-block:: c
void add_test_basic(struct kunit *test)
{
KUNIT_EXPECT_EQ(test, 1, add(1, 0));
KUNIT_EXPECT_EQ(test, 2, add(1, 1));
}
void add_test_negative(struct kunit *test)
{
KUNIT_EXPECT_EQ(test, 0, add(-1, 1));
}
void add_test_max(struct kunit *test)
{
KUNIT_EXPECT_EQ(test, INT_MAX, add(0, INT_MAX));
KUNIT_EXPECT_EQ(test, -1, add(INT_MAX, INT_MIN));
}
void add_test_overflow(struct kunit *test)
{
KUNIT_EXPECT_EQ(test, INT_MIN, add(INT_MAX, 1));
}
Notice how it is immediately obvious what all the properties that we are testing
for are.
Assertions
~~~~~~~~~~
KUnit also has the concept of an *assertion*. An assertion is just like an
expectation except the assertion immediately terminates the test case if it is
not satisfied.
For example:
.. code-block:: c
static void mock_test_do_expect_default_return(struct kunit *test)
{
struct mock_test_context *ctx = test->priv;
struct mock *mock = ctx->mock;
int param0 = 5, param1 = -5;
const char *two_param_types[] = {"int", "int"};
const void *two_params[] = {&param0, &param1};
const void *ret;
ret = mock->do_expect(mock,
"test_printk", test_printk,
two_param_types, two_params,
ARRAY_SIZE(two_params));
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ret);
KUNIT_EXPECT_EQ(test, -4, *((int *) ret));
}
In this example, the method under test should return a pointer to a value, so
if the pointer returned by the method is null or an errno, we don't want to
bother continuing the test since the following expectation could crash the test
case. `ASSERT_NOT_ERR_OR_NULL(...)` allows us to bail out of the test case if
the appropriate conditions have not been satisfied to complete the test.
Test Suites
~~~~~~~~~~~
Now obviously one unit test isn't very helpful; the power comes from having
many test cases covering all of your behaviors. Consequently it is common to
have many *similar* tests; in order to reduce duplication in these closely
related tests most unit testing frameworks provide the concept of a *test
suite*, in KUnit we call it a *test suite*; all it is is just a collection of
test cases for a unit of code with a set up function that gets invoked before
every test cases and then a tear down function that gets invoked after every
test case completes.
Example:
.. code-block:: c
static struct kunit_case example_test_cases[] = {
KUNIT_CASE(example_test_foo),
KUNIT_CASE(example_test_bar),
KUNIT_CASE(example_test_baz),
{}
};
static struct kunit_suite example_test_suite = {
.name = "example",
.init = example_test_init,
.exit = example_test_exit,
.test_cases = example_test_cases,
};
kunit_test_suite(example_test_suite);
In the above example the test suite, ``example_test_suite``, would run the test
cases ``example_test_foo``, ``example_test_bar``, and ``example_test_baz``,
each would have ``example_test_init`` called immediately before it and would
have ``example_test_exit`` called immediately after it.
``kunit_test_suite(example_test_suite)`` registers the test suite with the
KUnit test framework.
.. note::
A test case will only be run if it is associated with a test suite.
For a more information on these types of things see the :doc:`api/test`.
Isolating Behavior
==================
The most important aspect of unit testing that other forms of testing do not
provide is the ability to limit the amount of code under test to a single unit.
In practice, this is only possible by being able to control what code gets run
when the unit under test calls a function and this is usually accomplished
through some sort of indirection where a function is exposed as part of an API
such that the definition of that function can be changed without affecting the
rest of the code base. In the kernel this primarily comes from two constructs,
classes, structs that contain function pointers that are provided by the
implementer, and architecture specific functions which have definitions selected
at compile time.
Classes
-------
Classes are not a construct that is built into the C programming language;
however, it is an easily derived concept. Accordingly, pretty much every project
that does not use a standardized object oriented library (like GNOME's GObject)
has their own slightly different way of doing object oriented programming; the
Linux kernel is no exception.
The central concept in kernel object oriented programming is the class. In the
kernel, a *class* is a struct that contains function pointers. This creates a
contract between *implementers* and *users* since it forces them to use the
same function signature without having to call the function directly. In order
for it to truly be a class, the function pointers must specify that a pointer
to the class, known as a *class handle*, be one of the parameters; this makes
it possible for the member functions (also known as *methods*) to have access
to member variables (more commonly known as *fields*) allowing the same
implementation to have multiple *instances*.
Typically a class can be *overridden* by *child classes* by embedding the
*parent class* in the child class. Then when a method provided by the child
class is called, the child implementation knows that the pointer passed to it is
of a parent contained within the child; because of this, the child can compute
the pointer to itself because the pointer to the parent is always a fixed offset
from the pointer to the child; this offset is the offset of the parent contained
in the child struct. For example:
.. code-block:: c
struct shape {
int (*area)(struct shape *this);
};
struct rectangle {
struct shape parent;
int length;
int width;
};
int rectangle_area(struct shape *this)
{
struct rectangle *self = container_of(this, struct shape, parent);
return self->length * self->width;
};
void rectangle_new(struct rectangle *self, int length, int width)
{
self->parent.area = rectangle_area;
self->length = length;
self->width = width;
}
In this example (as in most kernel code) the operation of computing the pointer
to the child from the pointer to the parent is done by ``container_of``.
Faking Classes
~~~~~~~~~~~~~~
In order to unit test a piece of code that calls a method in a class, the
behavior of the method must be controllable, otherwise the test ceases to be a
unit test and becomes an integration test.
A fake just provides an implementation of a piece of code that is different than
what runs in a production instance, but behaves identically from the standpoint
of the callers; this is usually done to replace a dependency that is hard to
deal with, or is slow.
A good example for this might be implementing a fake EEPROM that just stores the
"contents" in an internal buffer. For example, let's assume we have a class that
represents an EEPROM:
.. code-block:: c
struct eeprom {
ssize_t (*read)(struct eeprom *this, size_t offset, char *buffer, size_t count);
ssize_t (*write)(struct eeprom *this, size_t offset, const char *buffer, size_t count);
};
And we want to test some code that buffers writes to the EEPROM:
.. code-block:: c
struct eeprom_buffer {
ssize_t (*write)(struct eeprom_buffer *this, const char *buffer, size_t count);
int flush(struct eeprom_buffer *this);
size_t flush_count; /* Flushes when buffer exceeds flush_count. */
};
struct eeprom_buffer *new_eeprom_buffer(struct eeprom *eeprom);
void destroy_eeprom_buffer(struct eeprom *eeprom);
We can easily test this code by *faking out* the underlying EEPROM:
.. code-block:: c
struct fake_eeprom {
struct eeprom parent;
char contents[FAKE_EEPROM_CONTENTS_SIZE];
};
ssize_t fake_eeprom_read(struct eeprom *parent, size_t offset, char *buffer, size_t count)
{
struct fake_eeprom *this = container_of(parent, struct fake_eeprom, parent);
count = min(count, FAKE_EEPROM_CONTENTS_SIZE - offset);
memcpy(buffer, this->contents + offset, count);
return count;
}
ssize_t fake_eeprom_write(struct eeprom *this, size_t offset, const char *buffer, size_t count)
{
struct fake_eeprom *this = container_of(parent, struct fake_eeprom, parent);
count = min(count, FAKE_EEPROM_CONTENTS_SIZE - offset);
memcpy(this->contents + offset, buffer, count);
return count;
}
void fake_eeprom_init(struct fake_eeprom *this)
{
this->parent.read = fake_eeprom_read;
this->parent.write = fake_eeprom_write;
memset(this->contents, 0, FAKE_EEPROM_CONTENTS_SIZE);
}
We can now use it to test ``struct eeprom_buffer``:
.. code-block:: c
struct eeprom_buffer_test {
struct fake_eeprom *fake_eeprom;
struct eeprom_buffer *eeprom_buffer;
};
static void eeprom_buffer_test_does_not_write_until_flush(struct kunit *test)
{
struct eeprom_buffer_test *ctx = test->priv;
struct eeprom_buffer *eeprom_buffer = ctx->eeprom_buffer;
struct fake_eeprom *fake_eeprom = ctx->fake_eeprom;
char buffer[] = {0xff};
eeprom_buffer->flush_count = SIZE_MAX;
eeprom_buffer->write(eeprom_buffer, buffer, 1);
KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0);
eeprom_buffer->write(eeprom_buffer, buffer, 1);
KUNIT_EXPECT_EQ(test, fake_eeprom->contents[1], 0);
eeprom_buffer->flush(eeprom_buffer);
KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0xff);
KUNIT_EXPECT_EQ(test, fake_eeprom->contents[1], 0xff);
}
static void eeprom_buffer_test_flushes_after_flush_count_met(struct kunit *test)
{
struct eeprom_buffer_test *ctx = test->priv;
struct eeprom_buffer *eeprom_buffer = ctx->eeprom_buffer;
struct fake_eeprom *fake_eeprom = ctx->fake_eeprom;
char buffer[] = {0xff};
eeprom_buffer->flush_count = 2;
eeprom_buffer->write(eeprom_buffer, buffer, 1);
KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0);
eeprom_buffer->write(eeprom_buffer, buffer, 1);
KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0xff);
KUNIT_EXPECT_EQ(test, fake_eeprom->contents[1], 0xff);
}
static void eeprom_buffer_test_flushes_increments_of_flush_count(struct kunit *test)
{
struct eeprom_buffer_test *ctx = test->priv;
struct eeprom_buffer *eeprom_buffer = ctx->eeprom_buffer;
struct fake_eeprom *fake_eeprom = ctx->fake_eeprom;
char buffer[] = {0xff, 0xff};
eeprom_buffer->flush_count = 2;
eeprom_buffer->write(eeprom_buffer, buffer, 1);
KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0);
eeprom_buffer->write(eeprom_buffer, buffer, 2);
KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0xff);
KUNIT_EXPECT_EQ(test, fake_eeprom->contents[1], 0xff);
/* Should have only flushed the first two bytes. */
KUNIT_EXPECT_EQ(test, fake_eeprom->contents[2], 0);
}
static int eeprom_buffer_test_init(struct kunit *test)
{
struct eeprom_buffer_test *ctx;
ctx = kunit_kzalloc(test, sizeof(*ctx), GFP_KERNEL);
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ctx);
ctx->fake_eeprom = kunit_kzalloc(test, sizeof(*ctx->fake_eeprom), GFP_KERNEL);
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ctx->fake_eeprom);
fake_eeprom_init(ctx->fake_eeprom);
ctx->eeprom_buffer = new_eeprom_buffer(&ctx->fake_eeprom->parent);
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ctx->eeprom_buffer);
test->priv = ctx;
return 0;
}
static void eeprom_buffer_test_exit(struct kunit *test)
{
struct eeprom_buffer_test *ctx = test->priv;
destroy_eeprom_buffer(ctx->eeprom_buffer);
}
.. _kunit-on-non-uml:
KUnit on non-UML architectures
==============================
By default KUnit uses UML as a way to provide dependencies for code under test.
Under most circumstances KUnit's usage of UML should be treated as an
implementation detail of how KUnit works under the hood. Nevertheless, there
are instances where being able to run architecture specific code, or test
against real hardware is desirable. For these reasons KUnit supports running on
other architectures.
Running existing KUnit tests on non-UML architectures
-----------------------------------------------------
There are some special considerations when running existing KUnit tests on
non-UML architectures:
* Hardware may not be deterministic, so a test that always passes or fails
when run under UML may not always do so on real hardware.
* Hardware and VM environments may not be hermetic. KUnit tries its best to
provide a hermetic environment to run tests; however, it cannot manage state
that it doesn't know about outside of the kernel. Consequently, tests that
may be hermetic on UML may not be hermetic on other architectures.
* Some features and tooling may not be supported outside of UML.
* Hardware and VMs are slower than UML.
None of these are reasons not to run your KUnit tests on real hardware; they are
only things to be aware of when doing so.
The biggest impediment will likely be that certain KUnit features and
infrastructure may not support your target environment. For example, at this
time the KUnit Wrapper (``tools/testing/kunit/kunit.py``) does not work outside
of UML. Unfortunately, there is no way around this. Using UML (or even just a
particular architecture) allows us to make a lot of assumptions that make it
possible to do things which might otherwise be impossible.
Nevertheless, all core KUnit framework features are fully supported on all
architectures, and using them is straightforward: all you need to do is to take
your kunitconfig, your Kconfig options for the tests you would like to run, and
merge them into whatever config your are using for your platform. That's it!
For example, let's say you have the following kunitconfig:
.. code-block:: none
CONFIG_KUNIT=y
CONFIG_KUNIT_EXAMPLE_TEST=y
If you wanted to run this test on an x86 VM, you might add the following config
options to your ``.config``:
.. code-block:: none
CONFIG_KUNIT=y
CONFIG_KUNIT_EXAMPLE_TEST=y
CONFIG_SERIAL_8250=y
CONFIG_SERIAL_8250_CONSOLE=y
All these new options do is enable support for a common serial console needed
for logging.
Next, you could build a kernel with these tests as follows:
.. code-block:: bash
make ARCH=x86 olddefconfig
make ARCH=x86
Once you have built a kernel, you could run it on QEMU as follows:
.. code-block:: bash
qemu-system-x86_64 -enable-kvm \
-m 1024 \
-kernel arch/x86_64/boot/bzImage \
-append 'console=ttyS0' \
--nographic
Interspersed in the kernel logs you might see the following:
.. code-block:: none
TAP version 14
# Subtest: example
1..1
# example_simple_test: initializing
ok 1 - example_simple_test
ok 1 - example
Congratulations, you just ran a KUnit test on the x86 architecture!
Writing new tests for other architectures
-----------------------------------------
The first thing you must do is ask yourself whether it is necessary to write a
KUnit test for a specific architecture, and then whether it is necessary to
write that test for a particular piece of hardware. In general, writing a test
that depends on having access to a particular piece of hardware or software (not
included in the Linux source repo) should be avoided at all costs.
Even if you only ever plan on running your KUnit test on your hardware
configuration, other people may want to run your tests and may not have access
to your hardware. If you write your test to run on UML, then anyone can run your
tests without knowing anything about your particular setup, and you can still
run your tests on your hardware setup just by compiling for your architecture.
.. important::
Always prefer tests that run on UML to tests that only run under a particular
architecture, and always prefer tests that run under QEMU or another easy
(and monitarily free) to obtain software environment to a specific piece of
hardware.
Nevertheless, there are still valid reasons to write an architecture or hardware
specific test: for example, you might want to test some code that really belongs
in ``arch/some-arch/*``. Even so, try your best to write the test so that it
does not depend on physical hardware: if some of your test cases don't need the
hardware, only require the hardware for tests that actually need it.
Now that you have narrowed down exactly what bits are hardware specific, the
actual procedure for writing and running the tests is pretty much the same as
writing normal KUnit tests. One special caveat is that you have to reset
hardware state in between test cases; if this is not possible, you may only be
able to run one test case per invocation.
.. TODO(brendanhiggins@google.com): Add an actual example of an architecture
dependent KUnit test.
...@@ -8928,6 +8928,17 @@ S: Maintained ...@@ -8928,6 +8928,17 @@ S: Maintained
F: tools/testing/selftests/ F: tools/testing/selftests/
F: Documentation/dev-tools/kselftest* F: Documentation/dev-tools/kselftest*
KERNEL UNIT TESTING FRAMEWORK (KUnit)
M: Brendan Higgins <brendanhiggins@google.com>
L: linux-kselftest@vger.kernel.org
L: kunit-dev@googlegroups.com
W: https://google.github.io/kunit-docs/third_party/kernel/docs/
S: Maintained
F: Documentation/dev-tools/kunit/
F: include/kunit/
F: lib/kunit/
F: tools/testing/kunit/
KERNEL USERMODE HELPER KERNEL USERMODE HELPER
M: Luis Chamberlain <mcgrof@kernel.org> M: Luis Chamberlain <mcgrof@kernel.org>
L: linux-kernel@vger.kernel.org L: linux-kernel@vger.kernel.org
...@@ -9505,6 +9516,13 @@ F: Documentation/misc-devices/lis3lv02d.rst ...@@ -9505,6 +9516,13 @@ F: Documentation/misc-devices/lis3lv02d.rst
F: drivers/misc/lis3lv02d/ F: drivers/misc/lis3lv02d/
F: drivers/platform/x86/hp_accel.c F: drivers/platform/x86/hp_accel.c
LIST KUNIT TEST
M: David Gow <davidgow@google.com>
L: linux-kselftest@vger.kernel.org
L: kunit-dev@googlegroups.com
S: Maintained
F: lib/list-test.c
LIVE PATCHING LIVE PATCHING
M: Josh Poimboeuf <jpoimboe@redhat.com> M: Josh Poimboeuf <jpoimboe@redhat.com>
M: Jiri Kosina <jikos@kernel.org> M: Jiri Kosina <jikos@kernel.org>
...@@ -13139,12 +13157,14 @@ F: Documentation/filesystems/proc.txt ...@@ -13139,12 +13157,14 @@ F: Documentation/filesystems/proc.txt
PROC SYSCTL PROC SYSCTL
M: Luis Chamberlain <mcgrof@kernel.org> M: Luis Chamberlain <mcgrof@kernel.org>
M: Kees Cook <keescook@chromium.org> M: Kees Cook <keescook@chromium.org>
M: Iurii Zaikin <yzaikin@google.com>
L: linux-kernel@vger.kernel.org L: linux-kernel@vger.kernel.org
L: linux-fsdevel@vger.kernel.org L: linux-fsdevel@vger.kernel.org
S: Maintained S: Maintained
F: fs/proc/proc_sysctl.c F: fs/proc/proc_sysctl.c
F: include/linux/sysctl.h F: include/linux/sysctl.h
F: kernel/sysctl.c F: kernel/sysctl.c
F: kernel/sysctl-test.c
F: tools/testing/selftests/sysctl/ F: tools/testing/selftests/sysctl/
PS3 NETWORK SUPPORT PS3 NETWORK SUPPORT
......
CONFIG_KUNIT=y
CONFIG_KUNIT_TEST=y
CONFIG_KUNIT_EXAMPLE_TEST=y
...@@ -106,3 +106,20 @@ config EXT4_DEBUG ...@@ -106,3 +106,20 @@ config EXT4_DEBUG
If you select Y here, then you will be able to turn on debugging If you select Y here, then you will be able to turn on debugging
with a command such as: with a command such as:
echo 1 > /sys/module/ext4/parameters/mballoc_debug echo 1 > /sys/module/ext4/parameters/mballoc_debug
config EXT4_KUNIT_TESTS
bool "KUnit tests for ext4"
select EXT4_FS
depends on KUNIT
help
This builds the ext4 KUnit tests.
KUnit tests run during boot and output the results to the debug log
in TAP format (http://testanything.org/). Only useful for kernel devs
running KUnit test harness and are not for inclusion into a production
build.
For more information on KUnit and unit tests in general please refer
to the KUnit documentation in Documentation/dev-tools/kunit/.
If unsure, say N.
...@@ -13,4 +13,5 @@ ext4-y := balloc.o bitmap.o block_validity.o dir.o ext4_jbd2.o extents.o \ ...@@ -13,4 +13,5 @@ ext4-y := balloc.o bitmap.o block_validity.o dir.o ext4_jbd2.o extents.o \
ext4-$(CONFIG_EXT4_FS_POSIX_ACL) += acl.o ext4-$(CONFIG_EXT4_FS_POSIX_ACL) += acl.o
ext4-$(CONFIG_EXT4_FS_SECURITY) += xattr_security.o ext4-$(CONFIG_EXT4_FS_SECURITY) += xattr_security.o
ext4-$(CONFIG_EXT4_KUNIT_TESTS) += inode-test.o
ext4-$(CONFIG_FS_VERITY) += verity.o ext4-$(CONFIG_FS_VERITY) += verity.o
// SPDX-License-Identifier: GPL-2.0
/*
* KUnit test of ext4 inode that verify the seconds part of [a/c/m]
* timestamps in ext4 inode structs are decoded correctly.
*/
#include <kunit/test.h>
#include <linux/kernel.h>
#include <linux/time64.h>
#include "ext4.h"
/*
* For constructing the nonnegative timestamp lower bound value.
* binary: 00000000 00000000 00000000 00000000
*/
#define LOWER_MSB_0 0L
/*
* For constructing the nonnegative timestamp upper bound value.
* binary: 01111111 11111111 11111111 11111111
*
*/
#define UPPER_MSB_0 0x7fffffffL
/*
* For constructing the negative timestamp lower bound value.
* binary: 10000000 00000000 00000000 00000000
*/
#define LOWER_MSB_1 (-0x80000000L)
/*
* For constructing the negative timestamp upper bound value.
* binary: 11111111 11111111 11111111 11111111
*/
#define UPPER_MSB_1 (-1L)
/*
* Upper bound for nanoseconds value supported by the encoding.
* binary: 00111111 11111111 11111111 11111111
*/
#define MAX_NANOSECONDS ((1L << 30) - 1)
#define CASE_NAME_FORMAT "%s: msb:%x lower_bound:%x extra_bits: %x"
#define LOWER_BOUND_NEG_NO_EXTRA_BITS_CASE\
"1901-12-13 Lower bound of 32bit < 0 timestamp, no extra bits"
#define UPPER_BOUND_NEG_NO_EXTRA_BITS_CASE\
"1969-12-31 Upper bound of 32bit < 0 timestamp, no extra bits"
#define LOWER_BOUND_NONNEG_NO_EXTRA_BITS_CASE\
"1970-01-01 Lower bound of 32bit >=0 timestamp, no extra bits"
#define UPPER_BOUND_NONNEG_NO_EXTRA_BITS_CASE\
"2038-01-19 Upper bound of 32bit >=0 timestamp, no extra bits"
#define LOWER_BOUND_NEG_LO_1_CASE\
"2038-01-19 Lower bound of 32bit <0 timestamp, lo extra sec bit on"
#define UPPER_BOUND_NEG_LO_1_CASE\
"2106-02-07 Upper bound of 32bit <0 timestamp, lo extra sec bit on"
#define LOWER_BOUND_NONNEG_LO_1_CASE\
"2106-02-07 Lower bound of 32bit >=0 timestamp, lo extra sec bit on"
#define UPPER_BOUND_NONNEG_LO_1_CASE\
"2174-02-25 Upper bound of 32bit >=0 timestamp, lo extra sec bit on"
#define LOWER_BOUND_NEG_HI_1_CASE\
"2174-02-25 Lower bound of 32bit <0 timestamp, hi extra sec bit on"
#define UPPER_BOUND_NEG_HI_1_CASE\
"2242-03-16 Upper bound of 32bit <0 timestamp, hi extra sec bit on"
#define LOWER_BOUND_NONNEG_HI_1_CASE\
"2242-03-16 Lower bound of 32bit >=0 timestamp, hi extra sec bit on"
#define UPPER_BOUND_NONNEG_HI_1_CASE\
"2310-04-04 Upper bound of 32bit >=0 timestamp, hi extra sec bit on"
#define UPPER_BOUND_NONNEG_HI_1_NS_1_CASE\
"2310-04-04 Upper bound of 32bit>=0 timestamp, hi extra sec bit 1. 1 ns"
#define LOWER_BOUND_NONNEG_HI_1_NS_MAX_CASE\
"2378-04-22 Lower bound of 32bit>= timestamp. Extra sec bits 1. Max ns"
#define LOWER_BOUND_NONNEG_EXTRA_BITS_1_CASE\
"2378-04-22 Lower bound of 32bit >=0 timestamp. All extra sec bits on"
#define UPPER_BOUND_NONNEG_EXTRA_BITS_1_CASE\
"2446-05-10 Upper bound of 32bit >=0 timestamp. All extra sec bits on"
struct timestamp_expectation {
const char *test_case_name;
struct timespec64 expected;
u32 extra_bits;
bool msb_set;
bool lower_bound;
};
static time64_t get_32bit_time(const struct timestamp_expectation * const test)
{
if (test->msb_set) {
if (test->lower_bound)
return LOWER_MSB_1;
return UPPER_MSB_1;
}
if (test->lower_bound)
return LOWER_MSB_0;
return UPPER_MSB_0;
}
/*
* Test data is derived from the table in the Inode Timestamps section of
* Documentation/filesystems/ext4/inodes.rst.
*/
static void inode_test_xtimestamp_decoding(struct kunit *test)
{
const struct timestamp_expectation test_data[] = {
{
.test_case_name = LOWER_BOUND_NEG_NO_EXTRA_BITS_CASE,
.msb_set = true,
.lower_bound = true,
.extra_bits = 0,
.expected = {.tv_sec = -0x80000000LL, .tv_nsec = 0L},
},
{
.test_case_name = UPPER_BOUND_NEG_NO_EXTRA_BITS_CASE,
.msb_set = true,
.lower_bound = false,
.extra_bits = 0,
.expected = {.tv_sec = -1LL, .tv_nsec = 0L},
},
{
.test_case_name = LOWER_BOUND_NONNEG_NO_EXTRA_BITS_CASE,
.msb_set = false,
.lower_bound = true,
.extra_bits = 0,
.expected = {0LL, 0L},
},
{
.test_case_name = UPPER_BOUND_NONNEG_NO_EXTRA_BITS_CASE,
.msb_set = false,
.lower_bound = false,
.extra_bits = 0,
.expected = {.tv_sec = 0x7fffffffLL, .tv_nsec = 0L},
},
{
.test_case_name = LOWER_BOUND_NEG_LO_1_CASE,
.msb_set = true,
.lower_bound = true,
.extra_bits = 1,
.expected = {.tv_sec = 0x80000000LL, .tv_nsec = 0L},
},
{
.test_case_name = UPPER_BOUND_NEG_LO_1_CASE,
.msb_set = true,
.lower_bound = false,
.extra_bits = 1,
.expected = {.tv_sec = 0xffffffffLL, .tv_nsec = 0L},
},
{
.test_case_name = LOWER_BOUND_NONNEG_LO_1_CASE,
.msb_set = false,
.lower_bound = true,
.extra_bits = 1,
.expected = {.tv_sec = 0x100000000LL, .tv_nsec = 0L},
},
{
.test_case_name = UPPER_BOUND_NONNEG_LO_1_CASE,
.msb_set = false,
.lower_bound = false,
.extra_bits = 1,
.expected = {.tv_sec = 0x17fffffffLL, .tv_nsec = 0L},
},
{
.test_case_name = LOWER_BOUND_NEG_HI_1_CASE,
.msb_set = true,
.lower_bound = true,
.extra_bits = 2,
.expected = {.tv_sec = 0x180000000LL, .tv_nsec = 0L},
},
{
.test_case_name = UPPER_BOUND_NEG_HI_1_CASE,
.msb_set = true,
.lower_bound = false,
.extra_bits = 2,
.expected = {.tv_sec = 0x1ffffffffLL, .tv_nsec = 0L},
},
{
.test_case_name = LOWER_BOUND_NONNEG_HI_1_CASE,
.msb_set = false,
.lower_bound = true,
.extra_bits = 2,
.expected = {.tv_sec = 0x200000000LL, .tv_nsec = 0L},
},
{
.test_case_name = UPPER_BOUND_NONNEG_HI_1_CASE,
.msb_set = false,
.lower_bound = false,
.extra_bits = 2,
.expected = {.tv_sec = 0x27fffffffLL, .tv_nsec = 0L},
},
{
.test_case_name = UPPER_BOUND_NONNEG_HI_1_NS_1_CASE,
.msb_set = false,
.lower_bound = false,
.extra_bits = 6,
.expected = {.tv_sec = 0x27fffffffLL, .tv_nsec = 1L},
},
{
.test_case_name = LOWER_BOUND_NONNEG_HI_1_NS_MAX_CASE,
.msb_set = false,
.lower_bound = true,
.extra_bits = 0xFFFFFFFF,
.expected = {.tv_sec = 0x300000000LL,
.tv_nsec = MAX_NANOSECONDS},
},
{
.test_case_name = LOWER_BOUND_NONNEG_EXTRA_BITS_1_CASE,
.msb_set = false,
.lower_bound = true,
.extra_bits = 3,
.expected = {.tv_sec = 0x300000000LL, .tv_nsec = 0L},
},
{
.test_case_name = UPPER_BOUND_NONNEG_EXTRA_BITS_1_CASE,
.msb_set = false,
.lower_bound = false,
.extra_bits = 3,
.expected = {.tv_sec = 0x37fffffffLL, .tv_nsec = 0L},
}
};
struct timespec64 timestamp;
int i;
for (i = 0; i < ARRAY_SIZE(test_data); ++i) {
timestamp.tv_sec = get_32bit_time(&test_data[i]);
ext4_decode_extra_time(&timestamp,
cpu_to_le32(test_data[i].extra_bits));
KUNIT_EXPECT_EQ_MSG(test,
test_data[i].expected.tv_sec,
timestamp.tv_sec,
CASE_NAME_FORMAT,
test_data[i].test_case_name,
test_data[i].msb_set,
test_data[i].lower_bound,
test_data[i].extra_bits);
KUNIT_EXPECT_EQ_MSG(test,
test_data[i].expected.tv_nsec,
timestamp.tv_nsec,
CASE_NAME_FORMAT,
test_data[i].test_case_name,
test_data[i].msb_set,
test_data[i].lower_bound,
test_data[i].extra_bits);
}
}
static struct kunit_case ext4_inode_test_cases[] = {
KUNIT_CASE(inode_test_xtimestamp_decoding),
{}
};
static struct kunit_suite ext4_inode_test_suite = {
.name = "ext4_inode_test",
.test_cases = ext4_inode_test_cases,
};
kunit_test_suite(ext4_inode_test_suite);
/* SPDX-License-Identifier: GPL-2.0 */
/*
* Assertion and expectation serialization API.
*
* Copyright (C) 2019, Google LLC.
* Author: Brendan Higgins <brendanhiggins@google.com>
*/
#ifndef _KUNIT_ASSERT_H
#define _KUNIT_ASSERT_H
#include <kunit/string-stream.h>
#include <linux/err.h>
struct kunit;
/**
* enum kunit_assert_type - Type of expectation/assertion.
* @KUNIT_ASSERTION: Used to denote that a kunit_assert represents an assertion.
* @KUNIT_EXPECTATION: Denotes that a kunit_assert represents an expectation.
*
* Used in conjunction with a &struct kunit_assert to denote whether it
* represents an expectation or an assertion.
*/
enum kunit_assert_type {
KUNIT_ASSERTION,
KUNIT_EXPECTATION,
};
/**
* struct kunit_assert - Data for printing a failed assertion or expectation.
* @test: the test case this expectation/assertion is associated with.
* @type: the type (either an expectation or an assertion) of this kunit_assert.
* @line: the source code line number that the expectation/assertion is at.
* @file: the file path of the source file that the expectation/assertion is in.
* @message: an optional message to provide additional context.
* @format: a function which formats the data in this kunit_assert to a string.
*
* Represents a failed expectation/assertion. Contains all the data necessary to
* format a string to a user reporting the failure.
*/
struct kunit_assert {
struct kunit *test;
enum kunit_assert_type type;
int line;
const char *file;
struct va_format message;
void (*format)(const struct kunit_assert *assert,
struct string_stream *stream);
};
/**
* KUNIT_INIT_VA_FMT_NULL - Default initializer for struct va_format.
*
* Used inside a struct initialization block to initialize struct va_format to
* default values where fmt and va are null.
*/
#define KUNIT_INIT_VA_FMT_NULL { .fmt = NULL, .va = NULL }
/**
* KUNIT_INIT_ASSERT_STRUCT() - Initializer for a &struct kunit_assert.
* @kunit: The test case that this expectation/assertion is associated with.
* @assert_type: The type (assertion or expectation) of this kunit_assert.
* @fmt: The formatting function which builds a string out of this kunit_assert.
*
* The base initializer for a &struct kunit_assert.
*/
#define KUNIT_INIT_ASSERT_STRUCT(kunit, assert_type, fmt) { \
.test = kunit, \
.type = assert_type, \
.file = __FILE__, \
.line = __LINE__, \
.message = KUNIT_INIT_VA_FMT_NULL, \
.format = fmt \
}
void kunit_base_assert_format(const struct kunit_assert *assert,
struct string_stream *stream);
void kunit_assert_print_msg(const struct kunit_assert *assert,
struct string_stream *stream);
/**
* struct kunit_fail_assert - Represents a plain fail expectation/assertion.
* @assert: The parent of this type.
*
* Represents a simple KUNIT_FAIL/KUNIT_ASSERT_FAILURE that always fails.
*/
struct kunit_fail_assert {
struct kunit_assert assert;
};
void kunit_fail_assert_format(const struct kunit_assert *assert,
struct string_stream *stream);
/**
* KUNIT_INIT_FAIL_ASSERT_STRUCT() - Initializer for &struct kunit_fail_assert.
* @test: The test case that this expectation/assertion is associated with.
* @type: The type (assertion or expectation) of this kunit_assert.
*
* Initializes a &struct kunit_fail_assert. Intended to be used in
* KUNIT_EXPECT_* and KUNIT_ASSERT_* macros.
*/
#define KUNIT_INIT_FAIL_ASSERT_STRUCT(test, type) { \
.assert = KUNIT_INIT_ASSERT_STRUCT(test, \
type, \
kunit_fail_assert_format) \
}
/**
* struct kunit_unary_assert - Represents a KUNIT_{EXPECT|ASSERT}_{TRUE|FALSE}
* @assert: The parent of this type.
* @condition: A string representation of a conditional expression.
* @expected_true: True if of type KUNIT_{EXPECT|ASSERT}_TRUE, false otherwise.
*
* Represents a simple expectation or assertion that simply asserts something is
* true or false. In other words, represents the expectations:
* KUNIT_{EXPECT|ASSERT}_{TRUE|FALSE}
*/
struct kunit_unary_assert {
struct kunit_assert assert;
const char *condition;
bool expected_true;
};
void kunit_unary_assert_format(const struct kunit_assert *assert,
struct string_stream *stream);
/**
* KUNIT_INIT_UNARY_ASSERT_STRUCT() - Initializes &struct kunit_unary_assert.
* @test: The test case that this expectation/assertion is associated with.
* @type: The type (assertion or expectation) of this kunit_assert.
* @cond: A string representation of the expression asserted true or false.
* @expect_true: True if of type KUNIT_{EXPECT|ASSERT}_TRUE, false otherwise.
*
* Initializes a &struct kunit_unary_assert. Intended to be used in
* KUNIT_EXPECT_* and KUNIT_ASSERT_* macros.
*/
#define KUNIT_INIT_UNARY_ASSERT_STRUCT(test, type, cond, expect_true) { \
.assert = KUNIT_INIT_ASSERT_STRUCT(test, \
type, \
kunit_unary_assert_format), \
.condition = cond, \
.expected_true = expect_true \
}
/**
* struct kunit_ptr_not_err_assert - An expectation/assertion that a pointer is
* not NULL and not a -errno.
* @assert: The parent of this type.
* @text: A string representation of the expression passed to the expectation.
* @value: The actual evaluated pointer value of the expression.
*
* Represents an expectation/assertion that a pointer is not null and is does
* not contain a -errno. (See IS_ERR_OR_NULL().)
*/
struct kunit_ptr_not_err_assert {
struct kunit_assert assert;
const char *text;
const void *value;
};
void kunit_ptr_not_err_assert_format(const struct kunit_assert *assert,
struct string_stream *stream);
/**
* KUNIT_INIT_PTR_NOT_ERR_ASSERT_STRUCT() - Initializes a
* &struct kunit_ptr_not_err_assert.
* @test: The test case that this expectation/assertion is associated with.
* @type: The type (assertion or expectation) of this kunit_assert.
* @txt: A string representation of the expression passed to the expectation.
* @val: The actual evaluated pointer value of the expression.
*
* Initializes a &struct kunit_ptr_not_err_assert. Intended to be used in
* KUNIT_EXPECT_* and KUNIT_ASSERT_* macros.
*/
#define KUNIT_INIT_PTR_NOT_ERR_STRUCT(test, type, txt, val) { \
.assert = KUNIT_INIT_ASSERT_STRUCT(test, \
type, \
kunit_ptr_not_err_assert_format), \
.text = txt, \
.value = val \
}
/**
* struct kunit_binary_assert - An expectation/assertion that compares two
* non-pointer values (for example, KUNIT_EXPECT_EQ(test, 1 + 1, 2)).
* @assert: The parent of this type.
* @operation: A string representation of the comparison operator (e.g. "==").
* @left_text: A string representation of the expression in the left slot.
* @left_value: The actual evaluated value of the expression in the left slot.
* @right_text: A string representation of the expression in the right slot.
* @right_value: The actual evaluated value of the expression in the right slot.
*
* Represents an expectation/assertion that compares two non-pointer values. For
* example, to expect that 1 + 1 == 2, you can use the expectation
* KUNIT_EXPECT_EQ(test, 1 + 1, 2);
*/
struct kunit_binary_assert {
struct kunit_assert assert;
const char *operation;
const char *left_text;
long long left_value;
const char *right_text;
long long right_value;
};
void kunit_binary_assert_format(const struct kunit_assert *assert,
struct string_stream *stream);
/**
* KUNIT_INIT_BINARY_ASSERT_STRUCT() - Initializes a
* &struct kunit_binary_assert.
* @test: The test case that this expectation/assertion is associated with.
* @type: The type (assertion or expectation) of this kunit_assert.
* @op_str: A string representation of the comparison operator (e.g. "==").
* @left_str: A string representation of the expression in the left slot.
* @left_val: The actual evaluated value of the expression in the left slot.
* @right_str: A string representation of the expression in the right slot.
* @right_val: The actual evaluated value of the expression in the right slot.
*
* Initializes a &struct kunit_binary_assert. Intended to be used in
* KUNIT_EXPECT_* and KUNIT_ASSERT_* macros.
*/
#define KUNIT_INIT_BINARY_ASSERT_STRUCT(test, \
type, \
op_str, \
left_str, \
left_val, \
right_str, \
right_val) { \
.assert = KUNIT_INIT_ASSERT_STRUCT(test, \
type, \
kunit_binary_assert_format), \
.operation = op_str, \
.left_text = left_str, \
.left_value = left_val, \
.right_text = right_str, \
.right_value = right_val \
}
/**
* struct kunit_binary_ptr_assert - An expectation/assertion that compares two
* pointer values (for example, KUNIT_EXPECT_PTR_EQ(test, foo, bar)).
* @assert: The parent of this type.
* @operation: A string representation of the comparison operator (e.g. "==").
* @left_text: A string representation of the expression in the left slot.
* @left_value: The actual evaluated value of the expression in the left slot.
* @right_text: A string representation of the expression in the right slot.
* @right_value: The actual evaluated value of the expression in the right slot.
*
* Represents an expectation/assertion that compares two pointer values. For
* example, to expect that foo and bar point to the same thing, you can use the
* expectation KUNIT_EXPECT_PTR_EQ(test, foo, bar);
*/
struct kunit_binary_ptr_assert {
struct kunit_assert assert;
const char *operation;
const char *left_text;
const void *left_value;
const char *right_text;
const void *right_value;
};
void kunit_binary_ptr_assert_format(const struct kunit_assert *assert,
struct string_stream *stream);
/**
* KUNIT_INIT_BINARY_PTR_ASSERT_STRUCT() - Initializes a
* &struct kunit_binary_ptr_assert.
* @test: The test case that this expectation/assertion is associated with.
* @type: The type (assertion or expectation) of this kunit_assert.
* @op_str: A string representation of the comparison operator (e.g. "==").
* @left_str: A string representation of the expression in the left slot.
* @left_val: The actual evaluated value of the expression in the left slot.
* @right_str: A string representation of the expression in the right slot.
* @right_val: The actual evaluated value of the expression in the right slot.
*
* Initializes a &struct kunit_binary_ptr_assert. Intended to be used in
* KUNIT_EXPECT_* and KUNIT_ASSERT_* macros.
*/
#define KUNIT_INIT_BINARY_PTR_ASSERT_STRUCT(test, \
type, \
op_str, \
left_str, \
left_val, \
right_str, \
right_val) { \
.assert = KUNIT_INIT_ASSERT_STRUCT(test, \
type, \
kunit_binary_ptr_assert_format), \
.operation = op_str, \
.left_text = left_str, \
.left_value = left_val, \
.right_text = right_str, \
.right_value = right_val \
}
/**
* struct kunit_binary_str_assert - An expectation/assertion that compares two
* string values (for example, KUNIT_EXPECT_STREQ(test, foo, "bar")).
* @assert: The parent of this type.
* @operation: A string representation of the comparison operator (e.g. "==").
* @left_text: A string representation of the expression in the left slot.
* @left_value: The actual evaluated value of the expression in the left slot.
* @right_text: A string representation of the expression in the right slot.
* @right_value: The actual evaluated value of the expression in the right slot.
*
* Represents an expectation/assertion that compares two string values. For
* example, to expect that the string in foo is equal to "bar", you can use the
* expectation KUNIT_EXPECT_STREQ(test, foo, "bar");
*/
struct kunit_binary_str_assert {
struct kunit_assert assert;
const char *operation;
const char *left_text;
const char *left_value;
const char *right_text;
const char *right_value;
};
void kunit_binary_str_assert_format(const struct kunit_assert *assert,
struct string_stream *stream);
/**
* KUNIT_INIT_BINARY_STR_ASSERT_STRUCT() - Initializes a
* &struct kunit_binary_str_assert.
* @test: The test case that this expectation/assertion is associated with.
* @type: The type (assertion or expectation) of this kunit_assert.
* @op_str: A string representation of the comparison operator (e.g. "==").
* @left_str: A string representation of the expression in the left slot.
* @left_val: The actual evaluated value of the expression in the left slot.
* @right_str: A string representation of the expression in the right slot.
* @right_val: The actual evaluated value of the expression in the right slot.
*
* Initializes a &struct kunit_binary_str_assert. Intended to be used in
* KUNIT_EXPECT_* and KUNIT_ASSERT_* macros.
*/
#define KUNIT_INIT_BINARY_STR_ASSERT_STRUCT(test, \
type, \
op_str, \
left_str, \
left_val, \
right_str, \
right_val) { \
.assert = KUNIT_INIT_ASSERT_STRUCT(test, \
type, \
kunit_binary_str_assert_format), \
.operation = op_str, \
.left_text = left_str, \
.left_value = left_val, \
.right_text = right_str, \
.right_value = right_val \
}
#endif /* _KUNIT_ASSERT_H */
/* SPDX-License-Identifier: GPL-2.0 */
/*
* C++ stream style string builder used in KUnit for building messages.
*
* Copyright (C) 2019, Google LLC.
* Author: Brendan Higgins <brendanhiggins@google.com>
*/
#ifndef _KUNIT_STRING_STREAM_H
#define _KUNIT_STRING_STREAM_H
#include <linux/spinlock.h>
#include <linux/types.h>
#include <stdarg.h>
struct string_stream_fragment {
struct kunit *test;
struct list_head node;
char *fragment;
};
struct string_stream {
size_t length;
struct list_head fragments;
/* length and fragments are protected by this lock */
spinlock_t lock;
struct kunit *test;
gfp_t gfp;
};
struct kunit;
struct string_stream *alloc_string_stream(struct kunit *test, gfp_t gfp);
int __printf(2, 3) string_stream_add(struct string_stream *stream,
const char *fmt, ...);
int string_stream_vadd(struct string_stream *stream,
const char *fmt,
va_list args);
char *string_stream_get_string(struct string_stream *stream);
int string_stream_append(struct string_stream *stream,
struct string_stream *other);
bool string_stream_is_empty(struct string_stream *stream);
int string_stream_destroy(struct string_stream *stream);
#endif /* _KUNIT_STRING_STREAM_H */
/* SPDX-License-Identifier: GPL-2.0 */
/*
* Base unit test (KUnit) API.
*
* Copyright (C) 2019, Google LLC.
* Author: Brendan Higgins <brendanhiggins@google.com>
*/
#ifndef _KUNIT_TEST_H
#define _KUNIT_TEST_H
#include <kunit/assert.h>
#include <kunit/try-catch.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/types.h>
struct kunit_resource;
typedef int (*kunit_resource_init_t)(struct kunit_resource *, void *);
typedef void (*kunit_resource_free_t)(struct kunit_resource *);
/**
* struct kunit_resource - represents a *test managed resource*
* @allocation: for the user to store arbitrary data.
* @free: a user supplied function to free the resource. Populated by
* kunit_alloc_resource().
*
* Represents a *test managed resource*, a resource which will automatically be
* cleaned up at the end of a test case.
*
* Example:
*
* .. code-block:: c
*
* struct kunit_kmalloc_params {
* size_t size;
* gfp_t gfp;
* };
*
* static int kunit_kmalloc_init(struct kunit_resource *res, void *context)
* {
* struct kunit_kmalloc_params *params = context;
* res->allocation = kmalloc(params->size, params->gfp);
*
* if (!res->allocation)
* return -ENOMEM;
*
* return 0;
* }
*
* static void kunit_kmalloc_free(struct kunit_resource *res)
* {
* kfree(res->allocation);
* }
*
* void *kunit_kmalloc(struct kunit *test, size_t size, gfp_t gfp)
* {
* struct kunit_kmalloc_params params;
* struct kunit_resource *res;
*
* params.size = size;
* params.gfp = gfp;
*
* res = kunit_alloc_resource(test, kunit_kmalloc_init,
* kunit_kmalloc_free, &params);
* if (res)
* return res->allocation;
*
* return NULL;
* }
*/
struct kunit_resource {
void *allocation;
kunit_resource_free_t free;
/* private: internal use only. */
struct list_head node;
};
struct kunit;
/**
* struct kunit_case - represents an individual test case.
*
* @run_case: the function representing the actual test case.
* @name: the name of the test case.
*
* A test case is a function with the signature,
* ``void (*)(struct kunit *)``
* that makes expectations and assertions (see KUNIT_EXPECT_TRUE() and
* KUNIT_ASSERT_TRUE()) about code under test. Each test case is associated
* with a &struct kunit_suite and will be run after the suite's init
* function and followed by the suite's exit function.
*
* A test case should be static and should only be created with the
* KUNIT_CASE() macro; additionally, every array of test cases should be
* terminated with an empty test case.
*
* Example:
*
* .. code-block:: c
*
* void add_test_basic(struct kunit *test)
* {
* KUNIT_EXPECT_EQ(test, 1, add(1, 0));
* KUNIT_EXPECT_EQ(test, 2, add(1, 1));
* KUNIT_EXPECT_EQ(test, 0, add(-1, 1));
* KUNIT_EXPECT_EQ(test, INT_MAX, add(0, INT_MAX));
* KUNIT_EXPECT_EQ(test, -1, add(INT_MAX, INT_MIN));
* }
*
* static struct kunit_case example_test_cases[] = {
* KUNIT_CASE(add_test_basic),
* {}
* };
*
*/
struct kunit_case {
void (*run_case)(struct kunit *test);
const char *name;
/* private: internal use only. */
bool success;
};
/**
* KUNIT_CASE - A helper for creating a &struct kunit_case
*
* @test_name: a reference to a test case function.
*
* Takes a symbol for a function representing a test case and creates a
* &struct kunit_case object from it. See the documentation for
* &struct kunit_case for an example on how to use it.
*/
#define KUNIT_CASE(test_name) { .run_case = test_name, .name = #test_name }
/**
* struct kunit_suite - describes a related collection of &struct kunit_case
*
* @name: the name of the test. Purely informational.
* @init: called before every test case.
* @exit: called after every test case.
* @test_cases: a null terminated array of test cases.
*
* A kunit_suite is a collection of related &struct kunit_case s, such that
* @init is called before every test case and @exit is called after every
* test case, similar to the notion of a *test fixture* or a *test class*
* in other unit testing frameworks like JUnit or Googletest.
*
* Every &struct kunit_case must be associated with a kunit_suite for KUnit
* to run it.
*/
struct kunit_suite {
const char name[256];
int (*init)(struct kunit *test);
void (*exit)(struct kunit *test);
struct kunit_case *test_cases;
};
/**
* struct kunit - represents a running instance of a test.
*
* @priv: for user to store arbitrary data. Commonly used to pass data
* created in the init function (see &struct kunit_suite).
*
* Used to store information about the current context under which the test
* is running. Most of this data is private and should only be accessed
* indirectly via public functions; the one exception is @priv which can be
* used by the test writer to store arbitrary data.
*/
struct kunit {
void *priv;
/* private: internal use only. */
const char *name; /* Read only after initialization! */
struct kunit_try_catch try_catch;
/*
* success starts as true, and may only be set to false during a
* test case; thus, it is safe to update this across multiple
* threads using WRITE_ONCE; however, as a consequence, it may only
* be read after the test case finishes once all threads associated
* with the test case have terminated.
*/
bool success; /* Read only after test_case finishes! */
spinlock_t lock; /* Guards all mutable test state. */
/*
* Because resources is a list that may be updated multiple times (with
* new resources) from any thread associated with a test case, we must
* protect it with some type of lock.
*/
struct list_head resources; /* Protected by lock. */
};
void kunit_init_test(struct kunit *test, const char *name);
int kunit_run_tests(struct kunit_suite *suite);
/**
* kunit_test_suite() - used to register a &struct kunit_suite with KUnit.
*
* @suite: a statically allocated &struct kunit_suite.
*
* Registers @suite with the test framework. See &struct kunit_suite for
* more information.
*
* NOTE: Currently KUnit tests are all run as late_initcalls; this means
* that they cannot test anything where tests must run at a different init
* phase. One significant restriction resulting from this is that KUnit
* cannot reliably test anything that is initialize in the late_init phase;
* another is that KUnit is useless to test things that need to be run in
* an earlier init phase.
*
* TODO(brendanhiggins@google.com): Don't run all KUnit tests as
* late_initcalls. I have some future work planned to dispatch all KUnit
* tests from the same place, and at the very least to do so after
* everything else is definitely initialized.
*/
#define kunit_test_suite(suite) \
static int kunit_suite_init##suite(void) \
{ \
return kunit_run_tests(&suite); \
} \
late_initcall(kunit_suite_init##suite)
/*
* Like kunit_alloc_resource() below, but returns the struct kunit_resource
* object that contains the allocation. This is mostly for testing purposes.
*/
struct kunit_resource *kunit_alloc_and_get_resource(struct kunit *test,
kunit_resource_init_t init,
kunit_resource_free_t free,
gfp_t internal_gfp,
void *context);
/**
* kunit_alloc_resource() - Allocates a *test managed resource*.
* @test: The test context object.
* @init: a user supplied function to initialize the resource.
* @free: a user supplied function to free the resource.
* @internal_gfp: gfp to use for internal allocations, if unsure, use GFP_KERNEL
* @context: for the user to pass in arbitrary data to the init function.
*
* Allocates a *test managed resource*, a resource which will automatically be
* cleaned up at the end of a test case. See &struct kunit_resource for an
* example.
*
* NOTE: KUnit needs to allocate memory for each kunit_resource object. You must
* specify an @internal_gfp that is compatible with the use context of your
* resource.
*/
static inline void *kunit_alloc_resource(struct kunit *test,
kunit_resource_init_t init,
kunit_resource_free_t free,
gfp_t internal_gfp,
void *context)
{
struct kunit_resource *res;
res = kunit_alloc_and_get_resource(test, init, free, internal_gfp,
context);
if (res)
return res->allocation;
return NULL;
}
typedef bool (*kunit_resource_match_t)(struct kunit *test,
const void *res,
void *match_data);
/**
* kunit_resource_instance_match() - Match a resource with the same instance.
* @test: Test case to which the resource belongs.
* @res: The data stored in kunit_resource->allocation.
* @match_data: The resource pointer to match against.
*
* An instance of kunit_resource_match_t that matches a resource whose
* allocation matches @match_data.
*/
static inline bool kunit_resource_instance_match(struct kunit *test,
const void *res,
void *match_data)
{
return res == match_data;
}
/**
* kunit_resource_destroy() - Find a kunit_resource and destroy it.
* @test: Test case to which the resource belongs.
* @match: Match function. Returns whether a given resource matches @match_data.
* @free: Must match free on the kunit_resource to free.
* @match_data: Data passed into @match.
*
* Free the latest kunit_resource of @test for which @free matches the
* kunit_resource_free_t associated with the resource and for which @match
* returns true.
*
* RETURNS:
* 0 if kunit_resource is found and freed, -ENOENT if not found.
*/
int kunit_resource_destroy(struct kunit *test,
kunit_resource_match_t match,
kunit_resource_free_t free,
void *match_data);
/**
* kunit_kmalloc() - Like kmalloc() except the allocation is *test managed*.
* @test: The test context object.
* @size: The size in bytes of the desired memory.
* @gfp: flags passed to underlying kmalloc().
*
* Just like `kmalloc(...)`, except the allocation is managed by the test case
* and is automatically cleaned up after the test case concludes. See &struct
* kunit_resource for more information.
*/
void *kunit_kmalloc(struct kunit *test, size_t size, gfp_t gfp);
/**
* kunit_kfree() - Like kfree except for allocations managed by KUnit.
* @test: The test case to which the resource belongs.
* @ptr: The memory allocation to free.
*/
void kunit_kfree(struct kunit *test, const void *ptr);
/**
* kunit_kzalloc() - Just like kunit_kmalloc(), but zeroes the allocation.
* @test: The test context object.
* @size: The size in bytes of the desired memory.
* @gfp: flags passed to underlying kmalloc().
*
* See kzalloc() and kunit_kmalloc() for more information.
*/
static inline void *kunit_kzalloc(struct kunit *test, size_t size, gfp_t gfp)
{
return kunit_kmalloc(test, size, gfp | __GFP_ZERO);
}
void kunit_cleanup(struct kunit *test);
#define kunit_printk(lvl, test, fmt, ...) \
printk(lvl "\t# %s: " fmt, (test)->name, ##__VA_ARGS__)
/**
* kunit_info() - Prints an INFO level message associated with @test.
*
* @test: The test context object.
* @fmt: A printk() style format string.
*
* Prints an info level message associated with the test suite being run.
* Takes a variable number of format parameters just like printk().
*/
#define kunit_info(test, fmt, ...) \
kunit_printk(KERN_INFO, test, fmt, ##__VA_ARGS__)
/**
* kunit_warn() - Prints a WARN level message associated with @test.
*
* @test: The test context object.
* @fmt: A printk() style format string.
*
* Prints a warning level message.
*/
#define kunit_warn(test, fmt, ...) \
kunit_printk(KERN_WARNING, test, fmt, ##__VA_ARGS__)
/**
* kunit_err() - Prints an ERROR level message associated with @test.
*
* @test: The test context object.
* @fmt: A printk() style format string.
*
* Prints an error level message.
*/
#define kunit_err(test, fmt, ...) \
kunit_printk(KERN_ERR, test, fmt, ##__VA_ARGS__)
/**
* KUNIT_SUCCEED() - A no-op expectation. Only exists for code clarity.
* @test: The test context object.
*
* The opposite of KUNIT_FAIL(), it is an expectation that cannot fail. In other
* words, it does nothing and only exists for code clarity. See
* KUNIT_EXPECT_TRUE() for more information.
*/
#define KUNIT_SUCCEED(test) do {} while (0)
void kunit_do_assertion(struct kunit *test,
struct kunit_assert *assert,
bool pass,
const char *fmt, ...);
#define KUNIT_ASSERTION(test, pass, assert_class, INITIALIZER, fmt, ...) do { \
struct assert_class __assertion = INITIALIZER; \
kunit_do_assertion(test, \
&__assertion.assert, \
pass, \
fmt, \
##__VA_ARGS__); \
} while (0)
#define KUNIT_FAIL_ASSERTION(test, assert_type, fmt, ...) \
KUNIT_ASSERTION(test, \
false, \
kunit_fail_assert, \
KUNIT_INIT_FAIL_ASSERT_STRUCT(test, assert_type), \
fmt, \
##__VA_ARGS__)
/**
* KUNIT_FAIL() - Always causes a test to fail when evaluated.
* @test: The test context object.
* @fmt: an informational message to be printed when the assertion is made.
* @...: string format arguments.
*
* The opposite of KUNIT_SUCCEED(), it is an expectation that always fails. In
* other words, it always results in a failed expectation, and consequently
* always causes the test case to fail when evaluated. See KUNIT_EXPECT_TRUE()
* for more information.
*/
#define KUNIT_FAIL(test, fmt, ...) \
KUNIT_FAIL_ASSERTION(test, \
KUNIT_EXPECTATION, \
fmt, \
##__VA_ARGS__)
#define KUNIT_UNARY_ASSERTION(test, \
assert_type, \
condition, \
expected_true, \
fmt, \
...) \
KUNIT_ASSERTION(test, \
!!(condition) == !!expected_true, \
kunit_unary_assert, \
KUNIT_INIT_UNARY_ASSERT_STRUCT(test, \
assert_type, \
#condition, \
expected_true), \
fmt, \
##__VA_ARGS__)
#define KUNIT_TRUE_MSG_ASSERTION(test, assert_type, condition, fmt, ...) \
KUNIT_UNARY_ASSERTION(test, \
assert_type, \
condition, \
true, \
fmt, \
##__VA_ARGS__)
#define KUNIT_TRUE_ASSERTION(test, assert_type, condition) \
KUNIT_TRUE_MSG_ASSERTION(test, assert_type, condition, NULL)
#define KUNIT_FALSE_MSG_ASSERTION(test, assert_type, condition, fmt, ...) \
KUNIT_UNARY_ASSERTION(test, \
assert_type, \
condition, \
false, \
fmt, \
##__VA_ARGS__)
#define KUNIT_FALSE_ASSERTION(test, assert_type, condition) \
KUNIT_FALSE_MSG_ASSERTION(test, assert_type, condition, NULL)
/*
* A factory macro for defining the assertions and expectations for the basic
* comparisons defined for the built in types.
*
* Unfortunately, there is no common type that all types can be promoted to for
* which all the binary operators behave the same way as for the actual types
* (for example, there is no type that long long and unsigned long long can
* both be cast to where the comparison result is preserved for all values). So
* the best we can do is do the comparison in the original types and then coerce
* everything to long long for printing; this way, the comparison behaves
* correctly and the printed out value usually makes sense without
* interpretation, but can always be interpreted to figure out the actual
* value.
*/
#define KUNIT_BASE_BINARY_ASSERTION(test, \
assert_class, \
ASSERT_CLASS_INIT, \
assert_type, \
left, \
op, \
right, \
fmt, \
...) \
do { \
typeof(left) __left = (left); \
typeof(right) __right = (right); \
((void)__typecheck(__left, __right)); \
\
KUNIT_ASSERTION(test, \
__left op __right, \
assert_class, \
ASSERT_CLASS_INIT(test, \
assert_type, \
#op, \
#left, \
__left, \
#right, \
__right), \
fmt, \
##__VA_ARGS__); \
} while (0)
#define KUNIT_BASE_EQ_MSG_ASSERTION(test, \
assert_class, \
ASSERT_CLASS_INIT, \
assert_type, \
left, \
right, \
fmt, \
...) \
KUNIT_BASE_BINARY_ASSERTION(test, \
assert_class, \
ASSERT_CLASS_INIT, \
assert_type, \
left, ==, right, \
fmt, \
##__VA_ARGS__)
#define KUNIT_BASE_NE_MSG_ASSERTION(test, \
assert_class, \
ASSERT_CLASS_INIT, \
assert_type, \
left, \
right, \
fmt, \
...) \
KUNIT_BASE_BINARY_ASSERTION(test, \
assert_class, \
ASSERT_CLASS_INIT, \
assert_type, \
left, !=, right, \
fmt, \
##__VA_ARGS__)
#define KUNIT_BASE_LT_MSG_ASSERTION(test, \
assert_class, \
ASSERT_CLASS_INIT, \
assert_type, \
left, \
right, \
fmt, \
...) \
KUNIT_BASE_BINARY_ASSERTION(test, \
assert_class, \
ASSERT_CLASS_INIT, \
assert_type, \
left, <, right, \
fmt, \
##__VA_ARGS__)
#define KUNIT_BASE_LE_MSG_ASSERTION(test, \
assert_class, \
ASSERT_CLASS_INIT, \
assert_type, \
left, \
right, \
fmt, \
...) \
KUNIT_BASE_BINARY_ASSERTION(test, \
assert_class, \
ASSERT_CLASS_INIT, \
assert_type, \
left, <=, right, \
fmt, \
##__VA_ARGS__)
#define KUNIT_BASE_GT_MSG_ASSERTION(test, \
assert_class, \
ASSERT_CLASS_INIT, \
assert_type, \
left, \
right, \
fmt, \
...) \
KUNIT_BASE_BINARY_ASSERTION(test, \
assert_class, \
ASSERT_CLASS_INIT, \
assert_type, \
left, >, right, \
fmt, \
##__VA_ARGS__)
#define KUNIT_BASE_GE_MSG_ASSERTION(test, \
assert_class, \
ASSERT_CLASS_INIT, \
assert_type, \
left, \
right, \
fmt, \
...) \
KUNIT_BASE_BINARY_ASSERTION(test, \
assert_class, \
ASSERT_CLASS_INIT, \
assert_type, \
left, >=, right, \
fmt, \
##__VA_ARGS__)
#define KUNIT_BINARY_EQ_MSG_ASSERTION(test, assert_type, left, right, fmt, ...)\
KUNIT_BASE_EQ_MSG_ASSERTION(test, \
kunit_binary_assert, \
KUNIT_INIT_BINARY_ASSERT_STRUCT, \
assert_type, \
left, \
right, \
fmt, \
##__VA_ARGS__)
#define KUNIT_BINARY_EQ_ASSERTION(test, assert_type, left, right) \
KUNIT_BINARY_EQ_MSG_ASSERTION(test, \
assert_type, \
left, \
right, \
NULL)
#define KUNIT_BINARY_PTR_EQ_MSG_ASSERTION(test, \
assert_type, \
left, \
right, \
fmt, \
...) \
KUNIT_BASE_EQ_MSG_ASSERTION(test, \
kunit_binary_ptr_assert, \
KUNIT_INIT_BINARY_PTR_ASSERT_STRUCT, \
assert_type, \
left, \
right, \
fmt, \
##__VA_ARGS__)
#define KUNIT_BINARY_PTR_EQ_ASSERTION(test, assert_type, left, right) \
KUNIT_BINARY_PTR_EQ_MSG_ASSERTION(test, \
assert_type, \
left, \
right, \
NULL)
#define KUNIT_BINARY_NE_MSG_ASSERTION(test, assert_type, left, right, fmt, ...)\
KUNIT_BASE_NE_MSG_ASSERTION(test, \
kunit_binary_assert, \
KUNIT_INIT_BINARY_ASSERT_STRUCT, \
assert_type, \
left, \
right, \
fmt, \
##__VA_ARGS__)
#define KUNIT_BINARY_NE_ASSERTION(test, assert_type, left, right) \
KUNIT_BINARY_NE_MSG_ASSERTION(test, \
assert_type, \
left, \
right, \
NULL)
#define KUNIT_BINARY_PTR_NE_MSG_ASSERTION(test, \
assert_type, \
left, \
right, \
fmt, \
...) \
KUNIT_BASE_NE_MSG_ASSERTION(test, \
kunit_binary_ptr_assert, \
KUNIT_INIT_BINARY_PTR_ASSERT_STRUCT, \
assert_type, \
left, \
right, \
fmt, \
##__VA_ARGS__)
#define KUNIT_BINARY_PTR_NE_ASSERTION(test, assert_type, left, right) \
KUNIT_BINARY_PTR_NE_MSG_ASSERTION(test, \
assert_type, \
left, \
right, \
NULL)
#define KUNIT_BINARY_LT_MSG_ASSERTION(test, assert_type, left, right, fmt, ...)\
KUNIT_BASE_LT_MSG_ASSERTION(test, \
kunit_binary_assert, \
KUNIT_INIT_BINARY_ASSERT_STRUCT, \
assert_type, \
left, \
right, \
fmt, \
##__VA_ARGS__)
#define KUNIT_BINARY_LT_ASSERTION(test, assert_type, left, right) \
KUNIT_BINARY_LT_MSG_ASSERTION(test, \
assert_type, \
left, \
right, \
NULL)
#define KUNIT_BINARY_PTR_LT_MSG_ASSERTION(test, \
assert_type, \
left, \
right, \
fmt, \
...) \
KUNIT_BASE_LT_MSG_ASSERTION(test, \
kunit_binary_ptr_assert, \
KUNIT_INIT_BINARY_PTR_ASSERT_STRUCT, \
assert_type, \
left, \
right, \
fmt, \
##__VA_ARGS__)
#define KUNIT_BINARY_PTR_LT_ASSERTION(test, assert_type, left, right) \
KUNIT_BINARY_PTR_LT_MSG_ASSERTION(test, \
assert_type, \
left, \
right, \
NULL)
#define KUNIT_BINARY_LE_MSG_ASSERTION(test, assert_type, left, right, fmt, ...)\
KUNIT_BASE_LE_MSG_ASSERTION(test, \
kunit_binary_assert, \
KUNIT_INIT_BINARY_ASSERT_STRUCT, \
assert_type, \
left, \
right, \
fmt, \
##__VA_ARGS__)
#define KUNIT_BINARY_LE_ASSERTION(test, assert_type, left, right) \
KUNIT_BINARY_LE_MSG_ASSERTION(test, \
assert_type, \
left, \
right, \
NULL)
#define KUNIT_BINARY_PTR_LE_MSG_ASSERTION(test, \
assert_type, \
left, \
right, \
fmt, \
...) \
KUNIT_BASE_LE_MSG_ASSERTION(test, \
kunit_binary_ptr_assert, \
KUNIT_INIT_BINARY_PTR_ASSERT_STRUCT, \
assert_type, \
left, \
right, \
fmt, \
##__VA_ARGS__)
#define KUNIT_BINARY_PTR_LE_ASSERTION(test, assert_type, left, right) \
KUNIT_BINARY_PTR_LE_MSG_ASSERTION(test, \
assert_type, \
left, \
right, \
NULL)
#define KUNIT_BINARY_GT_MSG_ASSERTION(test, assert_type, left, right, fmt, ...)\
KUNIT_BASE_GT_MSG_ASSERTION(test, \
kunit_binary_assert, \
KUNIT_INIT_BINARY_ASSERT_STRUCT, \
assert_type, \
left, \
right, \
fmt, \
##__VA_ARGS__)
#define KUNIT_BINARY_GT_ASSERTION(test, assert_type, left, right) \
KUNIT_BINARY_GT_MSG_ASSERTION(test, \
assert_type, \
left, \
right, \
NULL)
#define KUNIT_BINARY_PTR_GT_MSG_ASSERTION(test, \
assert_type, \
left, \
right, \
fmt, \
...) \
KUNIT_BASE_GT_MSG_ASSERTION(test, \
kunit_binary_ptr_assert, \
KUNIT_INIT_BINARY_PTR_ASSERT_STRUCT, \
assert_type, \
left, \
right, \
fmt, \
##__VA_ARGS__)
#define KUNIT_BINARY_PTR_GT_ASSERTION(test, assert_type, left, right) \
KUNIT_BINARY_PTR_GT_MSG_ASSERTION(test, \
assert_type, \
left, \
right, \
NULL)
#define KUNIT_BINARY_GE_MSG_ASSERTION(test, assert_type, left, right, fmt, ...)\
KUNIT_BASE_GE_MSG_ASSERTION(test, \
kunit_binary_assert, \
KUNIT_INIT_BINARY_ASSERT_STRUCT, \
assert_type, \
left, \
right, \
fmt, \
##__VA_ARGS__)
#define KUNIT_BINARY_GE_ASSERTION(test, assert_type, left, right) \
KUNIT_BINARY_GE_MSG_ASSERTION(test, \
assert_type, \
left, \
right, \
NULL)
#define KUNIT_BINARY_PTR_GE_MSG_ASSERTION(test, \
assert_type, \
left, \
right, \
fmt, \
...) \
KUNIT_BASE_GE_MSG_ASSERTION(test, \
kunit_binary_ptr_assert, \
KUNIT_INIT_BINARY_PTR_ASSERT_STRUCT, \
assert_type, \
left, \
right, \
fmt, \
##__VA_ARGS__)
#define KUNIT_BINARY_PTR_GE_ASSERTION(test, assert_type, left, right) \
KUNIT_BINARY_PTR_GE_MSG_ASSERTION(test, \
assert_type, \
left, \
right, \
NULL)
#define KUNIT_BINARY_STR_ASSERTION(test, \
assert_type, \
left, \
op, \
right, \
fmt, \
...) \
do { \
typeof(left) __left = (left); \
typeof(right) __right = (right); \
\
KUNIT_ASSERTION(test, \
strcmp(__left, __right) op 0, \
kunit_binary_str_assert, \
KUNIT_INIT_BINARY_ASSERT_STRUCT(test, \
assert_type, \
#op, \
#left, \
__left, \
#right, \
__right), \
fmt, \
##__VA_ARGS__); \
} while (0)
#define KUNIT_BINARY_STR_EQ_MSG_ASSERTION(test, \
assert_type, \
left, \
right, \
fmt, \
...) \
KUNIT_BINARY_STR_ASSERTION(test, \
assert_type, \
left, ==, right, \
fmt, \
##__VA_ARGS__)
#define KUNIT_BINARY_STR_EQ_ASSERTION(test, assert_type, left, right) \
KUNIT_BINARY_STR_EQ_MSG_ASSERTION(test, \
assert_type, \
left, \
right, \
NULL)
#define KUNIT_BINARY_STR_NE_MSG_ASSERTION(test, \
assert_type, \
left, \
right, \
fmt, \
...) \
KUNIT_BINARY_STR_ASSERTION(test, \
assert_type, \
left, !=, right, \
fmt, \
##__VA_ARGS__)
#define KUNIT_BINARY_STR_NE_ASSERTION(test, assert_type, left, right) \
KUNIT_BINARY_STR_NE_MSG_ASSERTION(test, \
assert_type, \
left, \
right, \
NULL)
#define KUNIT_PTR_NOT_ERR_OR_NULL_MSG_ASSERTION(test, \
assert_type, \
ptr, \
fmt, \
...) \
do { \
typeof(ptr) __ptr = (ptr); \
\
KUNIT_ASSERTION(test, \
!IS_ERR_OR_NULL(__ptr), \
kunit_ptr_not_err_assert, \
KUNIT_INIT_PTR_NOT_ERR_STRUCT(test, \
assert_type, \
#ptr, \
__ptr), \
fmt, \
##__VA_ARGS__); \
} while (0)
#define KUNIT_PTR_NOT_ERR_OR_NULL_ASSERTION(test, assert_type, ptr) \
KUNIT_PTR_NOT_ERR_OR_NULL_MSG_ASSERTION(test, \
assert_type, \
ptr, \
NULL)
/**
* KUNIT_EXPECT_TRUE() - Causes a test failure when the expression is not true.
* @test: The test context object.
* @condition: an arbitrary boolean expression. The test fails when this does
* not evaluate to true.
*
* This and expectations of the form `KUNIT_EXPECT_*` will cause the test case
* to fail when the specified condition is not met; however, it will not prevent
* the test case from continuing to run; this is otherwise known as an
* *expectation failure*.
*/
#define KUNIT_EXPECT_TRUE(test, condition) \
KUNIT_TRUE_ASSERTION(test, KUNIT_EXPECTATION, condition)
#define KUNIT_EXPECT_TRUE_MSG(test, condition, fmt, ...) \
KUNIT_TRUE_MSG_ASSERTION(test, \
KUNIT_EXPECTATION, \
condition, \
fmt, \
##__VA_ARGS__)
/**
* KUNIT_EXPECT_FALSE() - Makes a test failure when the expression is not false.
* @test: The test context object.
* @condition: an arbitrary boolean expression. The test fails when this does
* not evaluate to false.
*
* Sets an expectation that @condition evaluates to false. See
* KUNIT_EXPECT_TRUE() for more information.
*/
#define KUNIT_EXPECT_FALSE(test, condition) \
KUNIT_FALSE_ASSERTION(test, KUNIT_EXPECTATION, condition)
#define KUNIT_EXPECT_FALSE_MSG(test, condition, fmt, ...) \
KUNIT_FALSE_MSG_ASSERTION(test, \
KUNIT_EXPECTATION, \
condition, \
fmt, \
##__VA_ARGS__)
/**
* KUNIT_EXPECT_EQ() - Sets an expectation that @left and @right are equal.
* @test: The test context object.
* @left: an arbitrary expression that evaluates to a primitive C type.
* @right: an arbitrary expression that evaluates to a primitive C type.
*
* Sets an expectation that the values that @left and @right evaluate to are
* equal. This is semantically equivalent to
* KUNIT_EXPECT_TRUE(@test, (@left) == (@right)). See KUNIT_EXPECT_TRUE() for
* more information.
*/
#define KUNIT_EXPECT_EQ(test, left, right) \
KUNIT_BINARY_EQ_ASSERTION(test, KUNIT_EXPECTATION, left, right)
#define KUNIT_EXPECT_EQ_MSG(test, left, right, fmt, ...) \
KUNIT_BINARY_EQ_MSG_ASSERTION(test, \
KUNIT_EXPECTATION, \
left, \
right, \
fmt, \
##__VA_ARGS__)
/**
* KUNIT_EXPECT_PTR_EQ() - Expects that pointers @left and @right are equal.
* @test: The test context object.
* @left: an arbitrary expression that evaluates to a pointer.
* @right: an arbitrary expression that evaluates to a pointer.
*
* Sets an expectation that the values that @left and @right evaluate to are
* equal. This is semantically equivalent to
* KUNIT_EXPECT_TRUE(@test, (@left) == (@right)). See KUNIT_EXPECT_TRUE() for
* more information.
*/
#define KUNIT_EXPECT_PTR_EQ(test, left, right) \
KUNIT_BINARY_PTR_EQ_ASSERTION(test, \
KUNIT_EXPECTATION, \
left, \
right)
#define KUNIT_EXPECT_PTR_EQ_MSG(test, left, right, fmt, ...) \
KUNIT_BINARY_PTR_EQ_MSG_ASSERTION(test, \
KUNIT_EXPECTATION, \
left, \
right, \
fmt, \
##__VA_ARGS__)
/**
* KUNIT_EXPECT_NE() - An expectation that @left and @right are not equal.
* @test: The test context object.
* @left: an arbitrary expression that evaluates to a primitive C type.
* @right: an arbitrary expression that evaluates to a primitive C type.
*
* Sets an expectation that the values that @left and @right evaluate to are not
* equal. This is semantically equivalent to
* KUNIT_EXPECT_TRUE(@test, (@left) != (@right)). See KUNIT_EXPECT_TRUE() for
* more information.
*/
#define KUNIT_EXPECT_NE(test, left, right) \
KUNIT_BINARY_NE_ASSERTION(test, KUNIT_EXPECTATION, left, right)
#define KUNIT_EXPECT_NE_MSG(test, left, right, fmt, ...) \
KUNIT_BINARY_NE_MSG_ASSERTION(test, \
KUNIT_EXPECTATION, \
left, \
right, \
fmt, \
##__VA_ARGS__)
/**
* KUNIT_EXPECT_PTR_NE() - Expects that pointers @left and @right are not equal.
* @test: The test context object.
* @left: an arbitrary expression that evaluates to a pointer.
* @right: an arbitrary expression that evaluates to a pointer.
*
* Sets an expectation that the values that @left and @right evaluate to are not
* equal. This is semantically equivalent to
* KUNIT_EXPECT_TRUE(@test, (@left) != (@right)). See KUNIT_EXPECT_TRUE() for
* more information.
*/
#define KUNIT_EXPECT_PTR_NE(test, left, right) \
KUNIT_BINARY_PTR_NE_ASSERTION(test, \
KUNIT_EXPECTATION, \
left, \
right)
#define KUNIT_EXPECT_PTR_NE_MSG(test, left, right, fmt, ...) \
KUNIT_BINARY_PTR_NE_MSG_ASSERTION(test, \
KUNIT_EXPECTATION, \
left, \
right, \
fmt, \
##__VA_ARGS__)
/**
* KUNIT_EXPECT_LT() - An expectation that @left is less than @right.
* @test: The test context object.
* @left: an arbitrary expression that evaluates to a primitive C type.
* @right: an arbitrary expression that evaluates to a primitive C type.
*
* Sets an expectation that the value that @left evaluates to is less than the
* value that @right evaluates to. This is semantically equivalent to
* KUNIT_EXPECT_TRUE(@test, (@left) < (@right)). See KUNIT_EXPECT_TRUE() for
* more information.
*/
#define KUNIT_EXPECT_LT(test, left, right) \
KUNIT_BINARY_LT_ASSERTION(test, KUNIT_EXPECTATION, left, right)
#define KUNIT_EXPECT_LT_MSG(test, left, right, fmt, ...) \
KUNIT_BINARY_LT_MSG_ASSERTION(test, \
KUNIT_EXPECTATION, \
left, \
right, \
fmt, \
##__VA_ARGS__)
/**
* KUNIT_EXPECT_LE() - Expects that @left is less than or equal to @right.
* @test: The test context object.
* @left: an arbitrary expression that evaluates to a primitive C type.
* @right: an arbitrary expression that evaluates to a primitive C type.
*
* Sets an expectation that the value that @left evaluates to is less than or
* equal to the value that @right evaluates to. Semantically this is equivalent
* to KUNIT_EXPECT_TRUE(@test, (@left) <= (@right)). See KUNIT_EXPECT_TRUE() for
* more information.
*/
#define KUNIT_EXPECT_LE(test, left, right) \
KUNIT_BINARY_LE_ASSERTION(test, KUNIT_EXPECTATION, left, right)
#define KUNIT_EXPECT_LE_MSG(test, left, right, fmt, ...) \
KUNIT_BINARY_LE_MSG_ASSERTION(test, \
KUNIT_EXPECTATION, \
left, \
right, \
fmt, \
##__VA_ARGS__)
/**
* KUNIT_EXPECT_GT() - An expectation that @left is greater than @right.
* @test: The test context object.
* @left: an arbitrary expression that evaluates to a primitive C type.
* @right: an arbitrary expression that evaluates to a primitive C type.
*
* Sets an expectation that the value that @left evaluates to is greater than
* the value that @right evaluates to. This is semantically equivalent to
* KUNIT_EXPECT_TRUE(@test, (@left) > (@right)). See KUNIT_EXPECT_TRUE() for
* more information.
*/
#define KUNIT_EXPECT_GT(test, left, right) \
KUNIT_BINARY_GT_ASSERTION(test, KUNIT_EXPECTATION, left, right)
#define KUNIT_EXPECT_GT_MSG(test, left, right, fmt, ...) \
KUNIT_BINARY_GT_MSG_ASSERTION(test, \
KUNIT_EXPECTATION, \
left, \
right, \
fmt, \
##__VA_ARGS__)
/**
* KUNIT_EXPECT_GE() - Expects that @left is greater than or equal to @right.
* @test: The test context object.
* @left: an arbitrary expression that evaluates to a primitive C type.
* @right: an arbitrary expression that evaluates to a primitive C type.
*
* Sets an expectation that the value that @left evaluates to is greater than
* the value that @right evaluates to. This is semantically equivalent to
* KUNIT_EXPECT_TRUE(@test, (@left) >= (@right)). See KUNIT_EXPECT_TRUE() for
* more information.
*/
#define KUNIT_EXPECT_GE(test, left, right) \
KUNIT_BINARY_GE_ASSERTION(test, KUNIT_EXPECTATION, left, right)
#define KUNIT_EXPECT_GE_MSG(test, left, right, fmt, ...) \
KUNIT_BINARY_GE_MSG_ASSERTION(test, \
KUNIT_EXPECTATION, \
left, \
right, \
fmt, \
##__VA_ARGS__)
/**
* KUNIT_EXPECT_STREQ() - Expects that strings @left and @right are equal.
* @test: The test context object.
* @left: an arbitrary expression that evaluates to a null terminated string.
* @right: an arbitrary expression that evaluates to a null terminated string.
*
* Sets an expectation that the values that @left and @right evaluate to are
* equal. This is semantically equivalent to
* KUNIT_EXPECT_TRUE(@test, !strcmp((@left), (@right))). See KUNIT_EXPECT_TRUE()
* for more information.
*/
#define KUNIT_EXPECT_STREQ(test, left, right) \
KUNIT_BINARY_STR_EQ_ASSERTION(test, KUNIT_EXPECTATION, left, right)
#define KUNIT_EXPECT_STREQ_MSG(test, left, right, fmt, ...) \
KUNIT_BINARY_STR_EQ_MSG_ASSERTION(test, \
KUNIT_EXPECTATION, \
left, \
right, \
fmt, \
##__VA_ARGS__)
/**
* KUNIT_EXPECT_STRNEQ() - Expects that strings @left and @right are not equal.
* @test: The test context object.
* @left: an arbitrary expression that evaluates to a null terminated string.
* @right: an arbitrary expression that evaluates to a null terminated string.
*
* Sets an expectation that the values that @left and @right evaluate to are
* not equal. This is semantically equivalent to
* KUNIT_EXPECT_TRUE(@test, strcmp((@left), (@right))). See KUNIT_EXPECT_TRUE()
* for more information.
*/
#define KUNIT_EXPECT_STRNEQ(test, left, right) \
KUNIT_BINARY_STR_NE_ASSERTION(test, KUNIT_EXPECTATION, left, right)
#define KUNIT_EXPECT_STRNEQ_MSG(test, left, right, fmt, ...) \
KUNIT_BINARY_STR_NE_MSG_ASSERTION(test, \
KUNIT_EXPECTATION, \
left, \
right, \
fmt, \
##__VA_ARGS__)
/**
* KUNIT_EXPECT_NOT_ERR_OR_NULL() - Expects that @ptr is not null and not err.
* @test: The test context object.
* @ptr: an arbitrary pointer.
*
* Sets an expectation that the value that @ptr evaluates to is not null and not
* an errno stored in a pointer. This is semantically equivalent to
* KUNIT_EXPECT_TRUE(@test, !IS_ERR_OR_NULL(@ptr)). See KUNIT_EXPECT_TRUE() for
* more information.
*/
#define KUNIT_EXPECT_NOT_ERR_OR_NULL(test, ptr) \
KUNIT_PTR_NOT_ERR_OR_NULL_ASSERTION(test, KUNIT_EXPECTATION, ptr)
#define KUNIT_EXPECT_NOT_ERR_OR_NULL_MSG(test, ptr, fmt, ...) \
KUNIT_PTR_NOT_ERR_OR_NULL_MSG_ASSERTION(test, \
KUNIT_EXPECTATION, \
ptr, \
fmt, \
##__VA_ARGS__)
#define KUNIT_ASSERT_FAILURE(test, fmt, ...) \
KUNIT_FAIL_ASSERTION(test, KUNIT_ASSERTION, fmt, ##__VA_ARGS__)
/**
* KUNIT_ASSERT_TRUE() - Sets an assertion that @condition is true.
* @test: The test context object.
* @condition: an arbitrary boolean expression. The test fails and aborts when
* this does not evaluate to true.
*
* This and assertions of the form `KUNIT_ASSERT_*` will cause the test case to
* fail *and immediately abort* when the specified condition is not met. Unlike
* an expectation failure, it will prevent the test case from continuing to run;
* this is otherwise known as an *assertion failure*.
*/
#define KUNIT_ASSERT_TRUE(test, condition) \
KUNIT_TRUE_ASSERTION(test, KUNIT_ASSERTION, condition)
#define KUNIT_ASSERT_TRUE_MSG(test, condition, fmt, ...) \
KUNIT_TRUE_MSG_ASSERTION(test, \
KUNIT_ASSERTION, \
condition, \
fmt, \
##__VA_ARGS__)
/**
* KUNIT_ASSERT_FALSE() - Sets an assertion that @condition is false.
* @test: The test context object.
* @condition: an arbitrary boolean expression.
*
* Sets an assertion that the value that @condition evaluates to is false. This
* is the same as KUNIT_EXPECT_FALSE(), except it causes an assertion failure
* (see KUNIT_ASSERT_TRUE()) when the assertion is not met.
*/
#define KUNIT_ASSERT_FALSE(test, condition) \
KUNIT_FALSE_ASSERTION(test, KUNIT_ASSERTION, condition)
#define KUNIT_ASSERT_FALSE_MSG(test, condition, fmt, ...) \
KUNIT_FALSE_MSG_ASSERTION(test, \
KUNIT_ASSERTION, \
condition, \
fmt, \
##__VA_ARGS__)
/**
* KUNIT_ASSERT_EQ() - Sets an assertion that @left and @right are equal.
* @test: The test context object.
* @left: an arbitrary expression that evaluates to a primitive C type.
* @right: an arbitrary expression that evaluates to a primitive C type.
*
* Sets an assertion that the values that @left and @right evaluate to are
* equal. This is the same as KUNIT_EXPECT_EQ(), except it causes an assertion
* failure (see KUNIT_ASSERT_TRUE()) when the assertion is not met.
*/
#define KUNIT_ASSERT_EQ(test, left, right) \
KUNIT_BINARY_EQ_ASSERTION(test, KUNIT_ASSERTION, left, right)
#define KUNIT_ASSERT_EQ_MSG(test, left, right, fmt, ...) \
KUNIT_BINARY_EQ_MSG_ASSERTION(test, \
KUNIT_ASSERTION, \
left, \
right, \
fmt, \
##__VA_ARGS__)
/**
* KUNIT_ASSERT_PTR_EQ() - Asserts that pointers @left and @right are equal.
* @test: The test context object.
* @left: an arbitrary expression that evaluates to a pointer.
* @right: an arbitrary expression that evaluates to a pointer.
*
* Sets an assertion that the values that @left and @right evaluate to are
* equal. This is the same as KUNIT_EXPECT_EQ(), except it causes an assertion
* failure (see KUNIT_ASSERT_TRUE()) when the assertion is not met.
*/
#define KUNIT_ASSERT_PTR_EQ(test, left, right) \
KUNIT_BINARY_PTR_EQ_ASSERTION(test, KUNIT_ASSERTION, left, right)
#define KUNIT_ASSERT_PTR_EQ_MSG(test, left, right, fmt, ...) \
KUNIT_BINARY_PTR_EQ_MSG_ASSERTION(test, \
KUNIT_ASSERTION, \
left, \
right, \
fmt, \
##__VA_ARGS__)
/**
* KUNIT_ASSERT_NE() - An assertion that @left and @right are not equal.
* @test: The test context object.
* @left: an arbitrary expression that evaluates to a primitive C type.
* @right: an arbitrary expression that evaluates to a primitive C type.
*
* Sets an assertion that the values that @left and @right evaluate to are not
* equal. This is the same as KUNIT_EXPECT_NE(), except it causes an assertion
* failure (see KUNIT_ASSERT_TRUE()) when the assertion is not met.
*/
#define KUNIT_ASSERT_NE(test, left, right) \
KUNIT_BINARY_NE_ASSERTION(test, KUNIT_ASSERTION, left, right)
#define KUNIT_ASSERT_NE_MSG(test, left, right, fmt, ...) \
KUNIT_BINARY_NE_MSG_ASSERTION(test, \
KUNIT_ASSERTION, \
left, \
right, \
fmt, \
##__VA_ARGS__)
/**
* KUNIT_ASSERT_PTR_NE() - Asserts that pointers @left and @right are not equal.
* KUNIT_ASSERT_PTR_EQ() - Asserts that pointers @left and @right are equal.
* @test: The test context object.
* @left: an arbitrary expression that evaluates to a pointer.
* @right: an arbitrary expression that evaluates to a pointer.
*
* Sets an assertion that the values that @left and @right evaluate to are not
* equal. This is the same as KUNIT_EXPECT_NE(), except it causes an assertion
* failure (see KUNIT_ASSERT_TRUE()) when the assertion is not met.
*/
#define KUNIT_ASSERT_PTR_NE(test, left, right) \
KUNIT_BINARY_PTR_NE_ASSERTION(test, KUNIT_ASSERTION, left, right)
#define KUNIT_ASSERT_PTR_NE_MSG(test, left, right, fmt, ...) \
KUNIT_BINARY_PTR_NE_MSG_ASSERTION(test, \
KUNIT_ASSERTION, \
left, \
right, \
fmt, \
##__VA_ARGS__)
/**
* KUNIT_ASSERT_LT() - An assertion that @left is less than @right.
* @test: The test context object.
* @left: an arbitrary expression that evaluates to a primitive C type.
* @right: an arbitrary expression that evaluates to a primitive C type.
*
* Sets an assertion that the value that @left evaluates to is less than the
* value that @right evaluates to. This is the same as KUNIT_EXPECT_LT(), except
* it causes an assertion failure (see KUNIT_ASSERT_TRUE()) when the assertion
* is not met.
*/
#define KUNIT_ASSERT_LT(test, left, right) \
KUNIT_BINARY_LT_ASSERTION(test, KUNIT_ASSERTION, left, right)
#define KUNIT_ASSERT_LT_MSG(test, left, right, fmt, ...) \
KUNIT_BINARY_LT_MSG_ASSERTION(test, \
KUNIT_ASSERTION, \
left, \
right, \
fmt, \
##__VA_ARGS__)
/**
* KUNIT_ASSERT_LE() - An assertion that @left is less than or equal to @right.
* @test: The test context object.
* @left: an arbitrary expression that evaluates to a primitive C type.
* @right: an arbitrary expression that evaluates to a primitive C type.
*
* Sets an assertion that the value that @left evaluates to is less than or
* equal to the value that @right evaluates to. This is the same as
* KUNIT_EXPECT_LE(), except it causes an assertion failure (see
* KUNIT_ASSERT_TRUE()) when the assertion is not met.
*/
#define KUNIT_ASSERT_LE(test, left, right) \
KUNIT_BINARY_LE_ASSERTION(test, KUNIT_ASSERTION, left, right)
#define KUNIT_ASSERT_LE_MSG(test, left, right, fmt, ...) \
KUNIT_BINARY_LE_MSG_ASSERTION(test, \
KUNIT_ASSERTION, \
left, \
right, \
fmt, \
##__VA_ARGS__)
/**
* KUNIT_ASSERT_GT() - An assertion that @left is greater than @right.
* @test: The test context object.
* @left: an arbitrary expression that evaluates to a primitive C type.
* @right: an arbitrary expression that evaluates to a primitive C type.
*
* Sets an assertion that the value that @left evaluates to is greater than the
* value that @right evaluates to. This is the same as KUNIT_EXPECT_GT(), except
* it causes an assertion failure (see KUNIT_ASSERT_TRUE()) when the assertion
* is not met.
*/
#define KUNIT_ASSERT_GT(test, left, right) \
KUNIT_BINARY_GT_ASSERTION(test, KUNIT_ASSERTION, left, right)
#define KUNIT_ASSERT_GT_MSG(test, left, right, fmt, ...) \
KUNIT_BINARY_GT_MSG_ASSERTION(test, \
KUNIT_ASSERTION, \
left, \
right, \
fmt, \
##__VA_ARGS__)
/**
* KUNIT_ASSERT_GE() - Assertion that @left is greater than or equal to @right.
* @test: The test context object.
* @left: an arbitrary expression that evaluates to a primitive C type.
* @right: an arbitrary expression that evaluates to a primitive C type.
*
* Sets an assertion that the value that @left evaluates to is greater than the
* value that @right evaluates to. This is the same as KUNIT_EXPECT_GE(), except
* it causes an assertion failure (see KUNIT_ASSERT_TRUE()) when the assertion
* is not met.
*/
#define KUNIT_ASSERT_GE(test, left, right) \
KUNIT_BINARY_GE_ASSERTION(test, KUNIT_ASSERTION, left, right)
#define KUNIT_ASSERT_GE_MSG(test, left, right, fmt, ...) \
KUNIT_BINARY_GE_MSG_ASSERTION(test, \
KUNIT_ASSERTION, \
left, \
right, \
fmt, \
##__VA_ARGS__)
/**
* KUNIT_ASSERT_STREQ() - An assertion that strings @left and @right are equal.
* @test: The test context object.
* @left: an arbitrary expression that evaluates to a null terminated string.
* @right: an arbitrary expression that evaluates to a null terminated string.
*
* Sets an assertion that the values that @left and @right evaluate to are
* equal. This is the same as KUNIT_EXPECT_STREQ(), except it causes an
* assertion failure (see KUNIT_ASSERT_TRUE()) when the assertion is not met.
*/
#define KUNIT_ASSERT_STREQ(test, left, right) \
KUNIT_BINARY_STR_EQ_ASSERTION(test, KUNIT_ASSERTION, left, right)
#define KUNIT_ASSERT_STREQ_MSG(test, left, right, fmt, ...) \
KUNIT_BINARY_STR_EQ_MSG_ASSERTION(test, \
KUNIT_ASSERTION, \
left, \
right, \
fmt, \
##__VA_ARGS__)
/**
* KUNIT_ASSERT_STRNEQ() - Expects that strings @left and @right are not equal.
* @test: The test context object.
* @left: an arbitrary expression that evaluates to a null terminated string.
* @right: an arbitrary expression that evaluates to a null terminated string.
*
* Sets an expectation that the values that @left and @right evaluate to are
* not equal. This is semantically equivalent to
* KUNIT_ASSERT_TRUE(@test, strcmp((@left), (@right))). See KUNIT_ASSERT_TRUE()
* for more information.
*/
#define KUNIT_ASSERT_STRNEQ(test, left, right) \
KUNIT_BINARY_STR_NE_ASSERTION(test, KUNIT_ASSERTION, left, right)
#define KUNIT_ASSERT_STRNEQ_MSG(test, left, right, fmt, ...) \
KUNIT_BINARY_STR_NE_MSG_ASSERTION(test, \
KUNIT_ASSERTION, \
left, \
right, \
fmt, \
##__VA_ARGS__)
/**
* KUNIT_ASSERT_NOT_ERR_OR_NULL() - Assertion that @ptr is not null and not err.
* @test: The test context object.
* @ptr: an arbitrary pointer.
*
* Sets an assertion that the value that @ptr evaluates to is not null and not
* an errno stored in a pointer. This is the same as
* KUNIT_EXPECT_NOT_ERR_OR_NULL(), except it causes an assertion failure (see
* KUNIT_ASSERT_TRUE()) when the assertion is not met.
*/
#define KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr) \
KUNIT_PTR_NOT_ERR_OR_NULL_ASSERTION(test, KUNIT_ASSERTION, ptr)
#define KUNIT_ASSERT_NOT_ERR_OR_NULL_MSG(test, ptr, fmt, ...) \
KUNIT_PTR_NOT_ERR_OR_NULL_MSG_ASSERTION(test, \
KUNIT_ASSERTION, \
ptr, \
fmt, \
##__VA_ARGS__)
#endif /* _KUNIT_TEST_H */
/* SPDX-License-Identifier: GPL-2.0 */
/*
* An API to allow a function, that may fail, to be executed, and recover in a
* controlled manner.
*
* Copyright (C) 2019, Google LLC.
* Author: Brendan Higgins <brendanhiggins@google.com>
*/
#ifndef _KUNIT_TRY_CATCH_H
#define _KUNIT_TRY_CATCH_H
#include <linux/types.h>
typedef void (*kunit_try_catch_func_t)(void *);
struct completion;
struct kunit;
/**
* struct kunit_try_catch - provides a generic way to run code which might fail.
* @test: The test case that is currently being executed.
* @try_completion: Completion that the control thread waits on while test runs.
* @try_result: Contains any errno obtained while running test case.
* @try: The function, the test case, to attempt to run.
* @catch: The function called if @try bails out.
* @context: used to pass user data to the try and catch functions.
*
* kunit_try_catch provides a generic, architecture independent way to execute
* an arbitrary function of type kunit_try_catch_func_t which may bail out by
* calling kunit_try_catch_throw(). If kunit_try_catch_throw() is called, @try
* is stopped at the site of invocation and @catch is called.
*
* struct kunit_try_catch provides a generic interface for the functionality
* needed to implement kunit->abort() which in turn is needed for implementing
* assertions. Assertions allow stating a precondition for a test simplifying
* how test cases are written and presented.
*
* Assertions are like expectations, except they abort (call
* kunit_try_catch_throw()) when the specified condition is not met. This is
* useful when you look at a test case as a logical statement about some piece
* of code, where assertions are the premises for the test case, and the
* conclusion is a set of predicates, rather expectations, that must all be
* true. If your premises are violated, it does not makes sense to continue.
*/
struct kunit_try_catch {
/* private: internal use only. */
struct kunit *test;
struct completion *try_completion;
int try_result;
kunit_try_catch_func_t try;
kunit_try_catch_func_t catch;
void *context;
};
void kunit_try_catch_init(struct kunit_try_catch *try_catch,
struct kunit *test,
kunit_try_catch_func_t try,
kunit_try_catch_func_t catch);
void kunit_try_catch_run(struct kunit_try_catch *try_catch, void *context);
void __noreturn kunit_try_catch_throw(struct kunit_try_catch *try_catch);
static inline int kunit_try_catch_get_result(struct kunit_try_catch *try_catch)
{
return try_catch->try_result;
}
/*
* Exposed for testing only.
*/
void kunit_generic_try_catch_init(struct kunit_try_catch *try_catch);
#endif /* _KUNIT_TRY_CATCH_H */
...@@ -115,6 +115,8 @@ obj-$(CONFIG_TORTURE_TEST) += torture.o ...@@ -115,6 +115,8 @@ obj-$(CONFIG_TORTURE_TEST) += torture.o
obj-$(CONFIG_HAS_IOMEM) += iomem.o obj-$(CONFIG_HAS_IOMEM) += iomem.o
obj-$(CONFIG_RSEQ) += rseq.o obj-$(CONFIG_RSEQ) += rseq.o
obj-$(CONFIG_SYSCTL_KUNIT_TEST) += sysctl-test.o
obj-$(CONFIG_GCC_PLUGIN_STACKLEAK) += stackleak.o obj-$(CONFIG_GCC_PLUGIN_STACKLEAK) += stackleak.o
KASAN_SANITIZE_stackleak.o := n KASAN_SANITIZE_stackleak.o := n
KCOV_INSTRUMENT_stackleak.o := n KCOV_INSTRUMENT_stackleak.o := n
......
// SPDX-License-Identifier: GPL-2.0
/*
* KUnit test of proc sysctl.
*/
#include <kunit/test.h>
#include <linux/sysctl.h>
#define KUNIT_PROC_READ 0
#define KUNIT_PROC_WRITE 1
static int i_zero;
static int i_one_hundred = 100;
/*
* Test that proc_dointvec will not try to use a NULL .data field even when the
* length is non-zero.
*/
static void sysctl_test_api_dointvec_null_tbl_data(struct kunit *test)
{
struct ctl_table null_data_table = {
.procname = "foo",
/*
* Here we are testing that proc_dointvec behaves correctly when
* we give it a NULL .data field. Normally this would point to a
* piece of memory where the value would be stored.
*/
.data = NULL,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
.extra1 = &i_zero,
.extra2 = &i_one_hundred,
};
/*
* proc_dointvec expects a buffer in user space, so we allocate one. We
* also need to cast it to __user so sparse doesn't get mad.
*/
void __user *buffer = (void __user *)kunit_kzalloc(test, sizeof(int),
GFP_USER);
size_t len;
loff_t pos;
/*
* We don't care what the starting length is since proc_dointvec should
* not try to read because .data is NULL.
*/
len = 1234;
KUNIT_EXPECT_EQ(test, 0, proc_dointvec(&null_data_table,
KUNIT_PROC_READ, buffer, &len,
&pos));
KUNIT_EXPECT_EQ(test, (size_t)0, len);
/*
* See above.
*/
len = 1234;
KUNIT_EXPECT_EQ(test, 0, proc_dointvec(&null_data_table,
KUNIT_PROC_WRITE, buffer, &len,
&pos));
KUNIT_EXPECT_EQ(test, (size_t)0, len);
}
/*
* Similar to the previous test, we create a struct ctrl_table that has a .data
* field that proc_dointvec cannot do anything with; however, this time it is
* because we tell proc_dointvec that the size is 0.
*/
static void sysctl_test_api_dointvec_table_maxlen_unset(struct kunit *test)
{
int data = 0;
struct ctl_table data_maxlen_unset_table = {
.procname = "foo",
.data = &data,
/*
* So .data is no longer NULL, but we tell proc_dointvec its
* length is 0, so it still shouldn't try to use it.
*/
.maxlen = 0,
.mode = 0644,
.proc_handler = proc_dointvec,
.extra1 = &i_zero,
.extra2 = &i_one_hundred,
};
void __user *buffer = (void __user *)kunit_kzalloc(test, sizeof(int),
GFP_USER);
size_t len;
loff_t pos;
/*
* As before, we don't care what buffer length is because proc_dointvec
* cannot do anything because its internal .data buffer has zero length.
*/
len = 1234;
KUNIT_EXPECT_EQ(test, 0, proc_dointvec(&data_maxlen_unset_table,
KUNIT_PROC_READ, buffer, &len,
&pos));
KUNIT_EXPECT_EQ(test, (size_t)0, len);
/*
* See previous comment.
*/
len = 1234;
KUNIT_EXPECT_EQ(test, 0, proc_dointvec(&data_maxlen_unset_table,
KUNIT_PROC_WRITE, buffer, &len,
&pos));
KUNIT_EXPECT_EQ(test, (size_t)0, len);
}
/*
* Here we provide a valid struct ctl_table, but we try to read and write from
* it using a buffer of zero length, so it should still fail in a similar way as
* before.
*/
static void sysctl_test_api_dointvec_table_len_is_zero(struct kunit *test)
{
int data = 0;
/* Good table. */
struct ctl_table table = {
.procname = "foo",
.data = &data,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
.extra1 = &i_zero,
.extra2 = &i_one_hundred,
};
void __user *buffer = (void __user *)kunit_kzalloc(test, sizeof(int),
GFP_USER);
/*
* However, now our read/write buffer has zero length.
*/
size_t len = 0;
loff_t pos;
KUNIT_EXPECT_EQ(test, 0, proc_dointvec(&table, KUNIT_PROC_READ, buffer,
&len, &pos));
KUNIT_EXPECT_EQ(test, (size_t)0, len);
KUNIT_EXPECT_EQ(test, 0, proc_dointvec(&table, KUNIT_PROC_WRITE, buffer,
&len, &pos));
KUNIT_EXPECT_EQ(test, (size_t)0, len);
}
/*
* Test that proc_dointvec refuses to read when the file position is non-zero.
*/
static void sysctl_test_api_dointvec_table_read_but_position_set(
struct kunit *test)
{
int data = 0;
/* Good table. */
struct ctl_table table = {
.procname = "foo",
.data = &data,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
.extra1 = &i_zero,
.extra2 = &i_one_hundred,
};
void __user *buffer = (void __user *)kunit_kzalloc(test, sizeof(int),
GFP_USER);
/*
* We don't care about our buffer length because we start off with a
* non-zero file position.
*/
size_t len = 1234;
/*
* proc_dointvec should refuse to read into the buffer since the file
* pos is non-zero.
*/
loff_t pos = 1;
KUNIT_EXPECT_EQ(test, 0, proc_dointvec(&table, KUNIT_PROC_READ, buffer,
&len, &pos));
KUNIT_EXPECT_EQ(test, (size_t)0, len);
}
/*
* Test that we can read a two digit number in a sufficiently size buffer.
* Nothing fancy.
*/
static void sysctl_test_dointvec_read_happy_single_positive(struct kunit *test)
{
int data = 0;
/* Good table. */
struct ctl_table table = {
.procname = "foo",
.data = &data,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
.extra1 = &i_zero,
.extra2 = &i_one_hundred,
};
size_t len = 4;
loff_t pos = 0;
char *buffer = kunit_kzalloc(test, len, GFP_USER);
char __user *user_buffer = (char __user *)buffer;
/* Store 13 in the data field. */
*((int *)table.data) = 13;
KUNIT_EXPECT_EQ(test, 0, proc_dointvec(&table, KUNIT_PROC_READ,
user_buffer, &len, &pos));
KUNIT_ASSERT_EQ(test, (size_t)3, len);
buffer[len] = '\0';
/* And we read 13 back out. */
KUNIT_EXPECT_STREQ(test, "13\n", buffer);
}
/*
* Same as previous test, just now with negative numbers.
*/
static void sysctl_test_dointvec_read_happy_single_negative(struct kunit *test)
{
int data = 0;
/* Good table. */
struct ctl_table table = {
.procname = "foo",
.data = &data,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
.extra1 = &i_zero,
.extra2 = &i_one_hundred,
};
size_t len = 5;
loff_t pos = 0;
char *buffer = kunit_kzalloc(test, len, GFP_USER);
char __user *user_buffer = (char __user *)buffer;
*((int *)table.data) = -16;
KUNIT_EXPECT_EQ(test, 0, proc_dointvec(&table, KUNIT_PROC_READ,
user_buffer, &len, &pos));
KUNIT_ASSERT_EQ(test, (size_t)4, len);
buffer[len] = '\0';
KUNIT_EXPECT_STREQ(test, "-16\n", (char *)buffer);
}
/*
* Test that a simple positive write works.
*/
static void sysctl_test_dointvec_write_happy_single_positive(struct kunit *test)
{
int data = 0;
/* Good table. */
struct ctl_table table = {
.procname = "foo",
.data = &data,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
.extra1 = &i_zero,
.extra2 = &i_one_hundred,
};
char input[] = "9";
size_t len = sizeof(input) - 1;
loff_t pos = 0;
char *buffer = kunit_kzalloc(test, len, GFP_USER);
char __user *user_buffer = (char __user *)buffer;
memcpy(buffer, input, len);
KUNIT_EXPECT_EQ(test, 0, proc_dointvec(&table, KUNIT_PROC_WRITE,
user_buffer, &len, &pos));
KUNIT_EXPECT_EQ(test, sizeof(input) - 1, len);
KUNIT_EXPECT_EQ(test, sizeof(input) - 1, (size_t)pos);
KUNIT_EXPECT_EQ(test, 9, *((int *)table.data));
}
/*
* Same as previous test, but now with negative numbers.
*/
static void sysctl_test_dointvec_write_happy_single_negative(struct kunit *test)
{
int data = 0;
struct ctl_table table = {
.procname = "foo",
.data = &data,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
.extra1 = &i_zero,
.extra2 = &i_one_hundred,
};
char input[] = "-9";
size_t len = sizeof(input) - 1;
loff_t pos = 0;
char *buffer = kunit_kzalloc(test, len, GFP_USER);
char __user *user_buffer = (char __user *)buffer;
memcpy(buffer, input, len);
KUNIT_EXPECT_EQ(test, 0, proc_dointvec(&table, KUNIT_PROC_WRITE,
user_buffer, &len, &pos));
KUNIT_EXPECT_EQ(test, sizeof(input) - 1, len);
KUNIT_EXPECT_EQ(test, sizeof(input) - 1, (size_t)pos);
KUNIT_EXPECT_EQ(test, -9, *((int *)table.data));
}
/*
* Test that writing a value smaller than the minimum possible value is not
* allowed.
*/
static void sysctl_test_api_dointvec_write_single_less_int_min(
struct kunit *test)
{
int data = 0;
struct ctl_table table = {
.procname = "foo",
.data = &data,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
.extra1 = &i_zero,
.extra2 = &i_one_hundred,
};
size_t max_len = 32, len = max_len;
loff_t pos = 0;
char *buffer = kunit_kzalloc(test, max_len, GFP_USER);
char __user *user_buffer = (char __user *)buffer;
unsigned long abs_of_less_than_min = (unsigned long)INT_MAX
- (INT_MAX + INT_MIN) + 1;
/*
* We use this rigmarole to create a string that contains a value one
* less than the minimum accepted value.
*/
KUNIT_ASSERT_LT(test,
(size_t)snprintf(buffer, max_len, "-%lu",
abs_of_less_than_min),
max_len);
KUNIT_EXPECT_EQ(test, -EINVAL, proc_dointvec(&table, KUNIT_PROC_WRITE,
user_buffer, &len, &pos));
KUNIT_EXPECT_EQ(test, max_len, len);
KUNIT_EXPECT_EQ(test, 0, *((int *)table.data));
}
/*
* Test that writing the maximum possible value works.
*/
static void sysctl_test_api_dointvec_write_single_greater_int_max(
struct kunit *test)
{
int data = 0;
struct ctl_table table = {
.procname = "foo",
.data = &data,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
.extra1 = &i_zero,
.extra2 = &i_one_hundred,
};
size_t max_len = 32, len = max_len;
loff_t pos = 0;
char *buffer = kunit_kzalloc(test, max_len, GFP_USER);
char __user *user_buffer = (char __user *)buffer;
unsigned long greater_than_max = (unsigned long)INT_MAX + 1;
KUNIT_ASSERT_GT(test, greater_than_max, (unsigned long)INT_MAX);
KUNIT_ASSERT_LT(test, (size_t)snprintf(buffer, max_len, "%lu",
greater_than_max),
max_len);
KUNIT_EXPECT_EQ(test, -EINVAL, proc_dointvec(&table, KUNIT_PROC_WRITE,
user_buffer, &len, &pos));
KUNIT_ASSERT_EQ(test, max_len, len);
KUNIT_EXPECT_EQ(test, 0, *((int *)table.data));
}
static struct kunit_case sysctl_test_cases[] = {
KUNIT_CASE(sysctl_test_api_dointvec_null_tbl_data),
KUNIT_CASE(sysctl_test_api_dointvec_table_maxlen_unset),
KUNIT_CASE(sysctl_test_api_dointvec_table_len_is_zero),
KUNIT_CASE(sysctl_test_api_dointvec_table_read_but_position_set),
KUNIT_CASE(sysctl_test_dointvec_read_happy_single_positive),
KUNIT_CASE(sysctl_test_dointvec_read_happy_single_negative),
KUNIT_CASE(sysctl_test_dointvec_write_happy_single_positive),
KUNIT_CASE(sysctl_test_dointvec_write_happy_single_negative),
KUNIT_CASE(sysctl_test_api_dointvec_write_single_less_int_min),
KUNIT_CASE(sysctl_test_api_dointvec_write_single_greater_int_max),
{}
};
static struct kunit_suite sysctl_test_suite = {
.name = "sysctl_test",
.test_cases = sysctl_test_cases,
};
kunit_test_suite(sysctl_test_suite);
...@@ -1664,6 +1664,8 @@ config PROVIDE_OHCI1394_DMA_INIT ...@@ -1664,6 +1664,8 @@ config PROVIDE_OHCI1394_DMA_INIT
See Documentation/debugging-via-ohci1394.txt for more information. See Documentation/debugging-via-ohci1394.txt for more information.
source "lib/kunit/Kconfig"
menuconfig RUNTIME_TESTING_MENU menuconfig RUNTIME_TESTING_MENU
bool "Runtime Testing" bool "Runtime Testing"
def_bool y def_bool y
...@@ -1948,6 +1950,35 @@ config TEST_SYSCTL ...@@ -1948,6 +1950,35 @@ config TEST_SYSCTL
If unsure, say N. If unsure, say N.
config SYSCTL_KUNIT_TEST
bool "KUnit test for sysctl"
depends on KUNIT
help
This builds the proc sysctl unit test, which runs on boot.
Tests the API contract and implementation correctness of sysctl.
For more information on KUnit and unit tests in general please refer
to the KUnit documentation in Documentation/dev-tools/kunit/.
If unsure, say N.
config LIST_KUNIT_TEST
bool "KUnit Test for Kernel Linked-list structures"
depends on KUNIT
help
This builds the linked list KUnit test suite.
It tests that the API and basic functionality of the list_head type
and associated macros.
KUnit tests run during boot and output the results to the debug log
in TAP format (http://testanything.org/). Only useful for kernel devs
running the KUnit test harness, and not intended for inclusion into a
production build.
For more information on KUnit and unit tests in general please refer
to the KUnit documentation in Documentation/dev-tools/kunit/.
If unsure, say N.
config TEST_UDELAY config TEST_UDELAY
tristate "udelay test driver" tristate "udelay test driver"
help help
......
...@@ -92,6 +92,8 @@ obj-$(CONFIG_TEST_MEMINIT) += test_meminit.o ...@@ -92,6 +92,8 @@ obj-$(CONFIG_TEST_MEMINIT) += test_meminit.o
obj-$(CONFIG_TEST_LIVEPATCH) += livepatch/ obj-$(CONFIG_TEST_LIVEPATCH) += livepatch/
obj-$(CONFIG_KUNIT) += kunit/
ifeq ($(CONFIG_DEBUG_KOBJECT),y) ifeq ($(CONFIG_DEBUG_KOBJECT),y)
CFLAGS_kobject.o += -DDEBUG CFLAGS_kobject.o += -DDEBUG
CFLAGS_kobject_uevent.o += -DDEBUG CFLAGS_kobject_uevent.o += -DDEBUG
...@@ -290,3 +292,6 @@ obj-$(CONFIG_GENERIC_LIB_MULDI3) += muldi3.o ...@@ -290,3 +292,6 @@ obj-$(CONFIG_GENERIC_LIB_MULDI3) += muldi3.o
obj-$(CONFIG_GENERIC_LIB_CMPDI2) += cmpdi2.o obj-$(CONFIG_GENERIC_LIB_CMPDI2) += cmpdi2.o
obj-$(CONFIG_GENERIC_LIB_UCMPDI2) += ucmpdi2.o obj-$(CONFIG_GENERIC_LIB_UCMPDI2) += ucmpdi2.o
obj-$(CONFIG_OBJAGG) += objagg.o obj-$(CONFIG_OBJAGG) += objagg.o
# KUnit tests
obj-$(CONFIG_LIST_KUNIT_TEST) += list-test.o
#
# KUnit base configuration
#
menuconfig KUNIT
bool "KUnit - Enable support for unit tests"
help
Enables support for kernel unit tests (KUnit), a lightweight unit
testing and mocking framework for the Linux kernel. These tests are
able to be run locally on a developer's workstation without a VM or
special hardware when using UML. Can also be used on most other
architectures. For more information, please see
Documentation/dev-tools/kunit/.
if KUNIT
config KUNIT_TEST
bool "KUnit test for KUnit"
help
Enables the unit tests for the KUnit test framework. These tests test
the KUnit test framework itself; the tests are both written using
KUnit and test KUnit. This option should only be enabled for testing
purposes by developers interested in testing that KUnit works as
expected.
config KUNIT_EXAMPLE_TEST
bool "Example test for KUnit"
help
Enables an example unit test that illustrates some of the basic
features of KUnit. This test only exists to help new users understand
what KUnit is and how it is used. Please refer to the example test
itself, lib/kunit/example-test.c, for more information. This option
is intended for curious hackers who would like to understand how to
use KUnit for kernel development.
endif # KUNIT
obj-$(CONFIG_KUNIT) += test.o \
string-stream.o \
assert.o \
try-catch.o
obj-$(CONFIG_KUNIT_TEST) += test-test.o \
string-stream-test.o
obj-$(CONFIG_KUNIT_EXAMPLE_TEST) += example-test.o
// SPDX-License-Identifier: GPL-2.0
/*
* Assertion and expectation serialization API.
*
* Copyright (C) 2019, Google LLC.
* Author: Brendan Higgins <brendanhiggins@google.com>
*/
#include <kunit/assert.h>
void kunit_base_assert_format(const struct kunit_assert *assert,
struct string_stream *stream)
{
const char *expect_or_assert = NULL;
switch (assert->type) {
case KUNIT_EXPECTATION:
expect_or_assert = "EXPECTATION";
break;
case KUNIT_ASSERTION:
expect_or_assert = "ASSERTION";
break;
}
string_stream_add(stream, "%s FAILED at %s:%d\n",
expect_or_assert, assert->file, assert->line);
}
void kunit_assert_print_msg(const struct kunit_assert *assert,
struct string_stream *stream)
{
if (assert->message.fmt)
string_stream_add(stream, "\n%pV", &assert->message);
}
void kunit_fail_assert_format(const struct kunit_assert *assert,
struct string_stream *stream)
{
kunit_base_assert_format(assert, stream);
string_stream_add(stream, "%pV", &assert->message);
}
void kunit_unary_assert_format(const struct kunit_assert *assert,
struct string_stream *stream)
{
struct kunit_unary_assert *unary_assert = container_of(
assert, struct kunit_unary_assert, assert);
kunit_base_assert_format(assert, stream);
if (unary_assert->expected_true)
string_stream_add(stream,
"\tExpected %s to be true, but is false\n",
unary_assert->condition);
else
string_stream_add(stream,
"\tExpected %s to be false, but is true\n",
unary_assert->condition);
kunit_assert_print_msg(assert, stream);
}
void kunit_ptr_not_err_assert_format(const struct kunit_assert *assert,
struct string_stream *stream)
{
struct kunit_ptr_not_err_assert *ptr_assert = container_of(
assert, struct kunit_ptr_not_err_assert, assert);
kunit_base_assert_format(assert, stream);
if (!ptr_assert->value) {
string_stream_add(stream,
"\tExpected %s is not null, but is\n",
ptr_assert->text);
} else if (IS_ERR(ptr_assert->value)) {
string_stream_add(stream,
"\tExpected %s is not error, but is: %ld\n",
ptr_assert->text,
PTR_ERR(ptr_assert->value));
}
kunit_assert_print_msg(assert, stream);
}
void kunit_binary_assert_format(const struct kunit_assert *assert,
struct string_stream *stream)
{
struct kunit_binary_assert *binary_assert = container_of(
assert, struct kunit_binary_assert, assert);
kunit_base_assert_format(assert, stream);
string_stream_add(stream,
"\tExpected %s %s %s, but\n",
binary_assert->left_text,
binary_assert->operation,
binary_assert->right_text);
string_stream_add(stream, "\t\t%s == %lld\n",
binary_assert->left_text,
binary_assert->left_value);
string_stream_add(stream, "\t\t%s == %lld",
binary_assert->right_text,
binary_assert->right_value);
kunit_assert_print_msg(assert, stream);
}
void kunit_binary_ptr_assert_format(const struct kunit_assert *assert,
struct string_stream *stream)
{
struct kunit_binary_ptr_assert *binary_assert = container_of(
assert, struct kunit_binary_ptr_assert, assert);
kunit_base_assert_format(assert, stream);
string_stream_add(stream,
"\tExpected %s %s %s, but\n",
binary_assert->left_text,
binary_assert->operation,
binary_assert->right_text);
string_stream_add(stream, "\t\t%s == %pK\n",
binary_assert->left_text,
binary_assert->left_value);
string_stream_add(stream, "\t\t%s == %pK",
binary_assert->right_text,
binary_assert->right_value);
kunit_assert_print_msg(assert, stream);
}
void kunit_binary_str_assert_format(const struct kunit_assert *assert,
struct string_stream *stream)
{
struct kunit_binary_str_assert *binary_assert = container_of(
assert, struct kunit_binary_str_assert, assert);
kunit_base_assert_format(assert, stream);
string_stream_add(stream,
"\tExpected %s %s %s, but\n",
binary_assert->left_text,
binary_assert->operation,
binary_assert->right_text);
string_stream_add(stream, "\t\t%s == %s\n",
binary_assert->left_text,
binary_assert->left_value);
string_stream_add(stream, "\t\t%s == %s",
binary_assert->right_text,
binary_assert->right_value);
kunit_assert_print_msg(assert, stream);
}
// SPDX-License-Identifier: GPL-2.0
/*
* Example KUnit test to show how to use KUnit.
*
* Copyright (C) 2019, Google LLC.
* Author: Brendan Higgins <brendanhiggins@google.com>
*/
#include <kunit/test.h>
/*
* This is the most fundamental element of KUnit, the test case. A test case
* makes a set EXPECTATIONs and ASSERTIONs about the behavior of some code; if
* any expectations or assertions are not met, the test fails; otherwise, the
* test passes.
*
* In KUnit, a test case is just a function with the signature
* `void (*)(struct kunit *)`. `struct kunit` is a context object that stores
* information about the current test.
*/
static void example_simple_test(struct kunit *test)
{
/*
* This is an EXPECTATION; it is how KUnit tests things. When you want
* to test a piece of code, you set some expectations about what the
* code should do. KUnit then runs the test and verifies that the code's
* behavior matched what was expected.
*/
KUNIT_EXPECT_EQ(test, 1 + 1, 2);
}
/*
* This is run once before each test case, see the comment on
* example_test_suite for more information.
*/
static int example_test_init(struct kunit *test)
{
kunit_info(test, "initializing\n");
return 0;
}
/*
* Here we make a list of all the test cases we want to add to the test suite
* below.
*/
static struct kunit_case example_test_cases[] = {
/*
* This is a helper to create a test case object from a test case
* function; its exact function is not important to understand how to
* use KUnit, just know that this is how you associate test cases with a
* test suite.
*/
KUNIT_CASE(example_simple_test),
{}
};
/*
* This defines a suite or grouping of tests.
*
* Test cases are defined as belonging to the suite by adding them to
* `kunit_cases`.
*
* Often it is desirable to run some function which will set up things which
* will be used by every test; this is accomplished with an `init` function
* which runs before each test case is invoked. Similarly, an `exit` function
* may be specified which runs after every test case and can be used to for
* cleanup. For clarity, running tests in a test suite would behave as follows:
*
* suite.init(test);
* suite.test_case[0](test);
* suite.exit(test);
* suite.init(test);
* suite.test_case[1](test);
* suite.exit(test);
* ...;
*/
static struct kunit_suite example_test_suite = {
.name = "example",
.init = example_test_init,
.test_cases = example_test_cases,
};
/*
* This registers the above test suite telling KUnit that this is a suite of
* tests that need to be run.
*/
kunit_test_suite(example_test_suite);
// SPDX-License-Identifier: GPL-2.0
/*
* KUnit test for struct string_stream.
*
* Copyright (C) 2019, Google LLC.
* Author: Brendan Higgins <brendanhiggins@google.com>
*/
#include <kunit/string-stream.h>
#include <kunit/test.h>
#include <linux/slab.h>
static void string_stream_test_empty_on_creation(struct kunit *test)
{
struct string_stream *stream = alloc_string_stream(test, GFP_KERNEL);
KUNIT_EXPECT_TRUE(test, string_stream_is_empty(stream));
}
static void string_stream_test_not_empty_after_add(struct kunit *test)
{
struct string_stream *stream = alloc_string_stream(test, GFP_KERNEL);
string_stream_add(stream, "Foo");
KUNIT_EXPECT_FALSE(test, string_stream_is_empty(stream));
}
static void string_stream_test_get_string(struct kunit *test)
{
struct string_stream *stream = alloc_string_stream(test, GFP_KERNEL);
char *output;
string_stream_add(stream, "Foo");
string_stream_add(stream, " %s", "bar");
output = string_stream_get_string(stream);
KUNIT_ASSERT_STREQ(test, output, "Foo bar");
}
static struct kunit_case string_stream_test_cases[] = {
KUNIT_CASE(string_stream_test_empty_on_creation),
KUNIT_CASE(string_stream_test_not_empty_after_add),
KUNIT_CASE(string_stream_test_get_string),
{}
};
static struct kunit_suite string_stream_test_suite = {
.name = "string-stream-test",
.test_cases = string_stream_test_cases
};
kunit_test_suite(string_stream_test_suite);
// SPDX-License-Identifier: GPL-2.0
/*
* C++ stream style string builder used in KUnit for building messages.
*
* Copyright (C) 2019, Google LLC.
* Author: Brendan Higgins <brendanhiggins@google.com>
*/
#include <kunit/string-stream.h>
#include <kunit/test.h>
#include <linux/list.h>
#include <linux/slab.h>
struct string_stream_fragment_alloc_context {
struct kunit *test;
int len;
gfp_t gfp;
};
static int string_stream_fragment_init(struct kunit_resource *res,
void *context)
{
struct string_stream_fragment_alloc_context *ctx = context;
struct string_stream_fragment *frag;
frag = kunit_kzalloc(ctx->test, sizeof(*frag), ctx->gfp);
if (!frag)
return -ENOMEM;
frag->test = ctx->test;
frag->fragment = kunit_kmalloc(ctx->test, ctx->len, ctx->gfp);
if (!frag->fragment)
return -ENOMEM;
res->allocation = frag;
return 0;
}
static void string_stream_fragment_free(struct kunit_resource *res)
{
struct string_stream_fragment *frag = res->allocation;
list_del(&frag->node);
kunit_kfree(frag->test, frag->fragment);
kunit_kfree(frag->test, frag);
}
static struct string_stream_fragment *alloc_string_stream_fragment(
struct kunit *test, int len, gfp_t gfp)
{
struct string_stream_fragment_alloc_context context = {
.test = test,
.len = len,
.gfp = gfp
};
return kunit_alloc_resource(test,
string_stream_fragment_init,
string_stream_fragment_free,
gfp,
&context);
}
static int string_stream_fragment_destroy(struct string_stream_fragment *frag)
{
return kunit_resource_destroy(frag->test,
kunit_resource_instance_match,
string_stream_fragment_free,
frag);
}
int string_stream_vadd(struct string_stream *stream,
const char *fmt,
va_list args)
{
struct string_stream_fragment *frag_container;
int len;
va_list args_for_counting;
/* Make a copy because `vsnprintf` could change it */
va_copy(args_for_counting, args);
/* Need space for null byte. */
len = vsnprintf(NULL, 0, fmt, args_for_counting) + 1;
va_end(args_for_counting);
frag_container = alloc_string_stream_fragment(stream->test,
len,
stream->gfp);
if (!frag_container)
return -ENOMEM;
len = vsnprintf(frag_container->fragment, len, fmt, args);
spin_lock(&stream->lock);
stream->length += len;
list_add_tail(&frag_container->node, &stream->fragments);
spin_unlock(&stream->lock);
return 0;
}
int string_stream_add(struct string_stream *stream, const char *fmt, ...)
{
va_list args;
int result;
va_start(args, fmt);
result = string_stream_vadd(stream, fmt, args);
va_end(args);
return result;
}
static void string_stream_clear(struct string_stream *stream)
{
struct string_stream_fragment *frag_container, *frag_container_safe;
spin_lock(&stream->lock);
list_for_each_entry_safe(frag_container,
frag_container_safe,
&stream->fragments,
node) {
string_stream_fragment_destroy(frag_container);
}
stream->length = 0;
spin_unlock(&stream->lock);
}
char *string_stream_get_string(struct string_stream *stream)
{
struct string_stream_fragment *frag_container;
size_t buf_len = stream->length + 1; /* +1 for null byte. */
char *buf;
buf = kunit_kzalloc(stream->test, buf_len, stream->gfp);
if (!buf)
return NULL;
spin_lock(&stream->lock);
list_for_each_entry(frag_container, &stream->fragments, node)
strlcat(buf, frag_container->fragment, buf_len);
spin_unlock(&stream->lock);
return buf;
}
int string_stream_append(struct string_stream *stream,
struct string_stream *other)
{
const char *other_content;
other_content = string_stream_get_string(other);
if (!other_content)
return -ENOMEM;
return string_stream_add(stream, other_content);
}
bool string_stream_is_empty(struct string_stream *stream)
{
return list_empty(&stream->fragments);
}
struct string_stream_alloc_context {
struct kunit *test;
gfp_t gfp;
};
static int string_stream_init(struct kunit_resource *res, void *context)
{
struct string_stream *stream;
struct string_stream_alloc_context *ctx = context;
stream = kunit_kzalloc(ctx->test, sizeof(*stream), ctx->gfp);
if (!stream)
return -ENOMEM;
res->allocation = stream;
stream->gfp = ctx->gfp;
stream->test = ctx->test;
INIT_LIST_HEAD(&stream->fragments);
spin_lock_init(&stream->lock);
return 0;
}
static void string_stream_free(struct kunit_resource *res)
{
struct string_stream *stream = res->allocation;
string_stream_clear(stream);
}
struct string_stream *alloc_string_stream(struct kunit *test, gfp_t gfp)
{
struct string_stream_alloc_context context = {
.test = test,
.gfp = gfp
};
return kunit_alloc_resource(test,
string_stream_init,
string_stream_free,
gfp,
&context);
}
int string_stream_destroy(struct string_stream *stream)
{
return kunit_resource_destroy(stream->test,
kunit_resource_instance_match,
string_stream_free,
stream);
}
// SPDX-License-Identifier: GPL-2.0
/*
* KUnit test for core test infrastructure.
*
* Copyright (C) 2019, Google LLC.
* Author: Brendan Higgins <brendanhiggins@google.com>
*/
#include <kunit/test.h>
struct kunit_try_catch_test_context {
struct kunit_try_catch *try_catch;
bool function_called;
};
static void kunit_test_successful_try(void *data)
{
struct kunit *test = data;
struct kunit_try_catch_test_context *ctx = test->priv;
ctx->function_called = true;
}
static void kunit_test_no_catch(void *data)
{
struct kunit *test = data;
KUNIT_FAIL(test, "Catch should not be called\n");
}
static void kunit_test_try_catch_successful_try_no_catch(struct kunit *test)
{
struct kunit_try_catch_test_context *ctx = test->priv;
struct kunit_try_catch *try_catch = ctx->try_catch;
kunit_try_catch_init(try_catch,
test,
kunit_test_successful_try,
kunit_test_no_catch);
kunit_try_catch_run(try_catch, test);
KUNIT_EXPECT_TRUE(test, ctx->function_called);
}
static void kunit_test_unsuccessful_try(void *data)
{
struct kunit *test = data;
struct kunit_try_catch_test_context *ctx = test->priv;
struct kunit_try_catch *try_catch = ctx->try_catch;
kunit_try_catch_throw(try_catch);
KUNIT_FAIL(test, "This line should never be reached\n");
}
static void kunit_test_catch(void *data)
{
struct kunit *test = data;
struct kunit_try_catch_test_context *ctx = test->priv;
ctx->function_called = true;
}
static void kunit_test_try_catch_unsuccessful_try_does_catch(struct kunit *test)
{
struct kunit_try_catch_test_context *ctx = test->priv;
struct kunit_try_catch *try_catch = ctx->try_catch;
kunit_try_catch_init(try_catch,
test,
kunit_test_unsuccessful_try,
kunit_test_catch);
kunit_try_catch_run(try_catch, test);
KUNIT_EXPECT_TRUE(test, ctx->function_called);
}
static int kunit_try_catch_test_init(struct kunit *test)
{
struct kunit_try_catch_test_context *ctx;
ctx = kunit_kzalloc(test, sizeof(*ctx), GFP_KERNEL);
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ctx);
test->priv = ctx;
ctx->try_catch = kunit_kmalloc(test,
sizeof(*ctx->try_catch),
GFP_KERNEL);
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ctx->try_catch);
return 0;
}
static struct kunit_case kunit_try_catch_test_cases[] = {
KUNIT_CASE(kunit_test_try_catch_successful_try_no_catch),
KUNIT_CASE(kunit_test_try_catch_unsuccessful_try_does_catch),
{}
};
static struct kunit_suite kunit_try_catch_test_suite = {
.name = "kunit-try-catch-test",
.init = kunit_try_catch_test_init,
.test_cases = kunit_try_catch_test_cases,
};
kunit_test_suite(kunit_try_catch_test_suite);
/*
* Context for testing test managed resources
* is_resource_initialized is used to test arbitrary resources
*/
struct kunit_test_resource_context {
struct kunit test;
bool is_resource_initialized;
int allocate_order[2];
int free_order[2];
};
static int fake_resource_init(struct kunit_resource *res, void *context)
{
struct kunit_test_resource_context *ctx = context;
res->allocation = &ctx->is_resource_initialized;
ctx->is_resource_initialized = true;
return 0;
}
static void fake_resource_free(struct kunit_resource *res)
{
bool *is_resource_initialized = res->allocation;
*is_resource_initialized = false;
}
static void kunit_resource_test_init_resources(struct kunit *test)
{
struct kunit_test_resource_context *ctx = test->priv;
kunit_init_test(&ctx->test, "testing_test_init_test");
KUNIT_EXPECT_TRUE(test, list_empty(&ctx->test.resources));
}
static void kunit_resource_test_alloc_resource(struct kunit *test)
{
struct kunit_test_resource_context *ctx = test->priv;
struct kunit_resource *res;
kunit_resource_free_t free = fake_resource_free;
res = kunit_alloc_and_get_resource(&ctx->test,
fake_resource_init,
fake_resource_free,
GFP_KERNEL,
ctx);
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, res);
KUNIT_EXPECT_PTR_EQ(test,
&ctx->is_resource_initialized,
(bool *) res->allocation);
KUNIT_EXPECT_TRUE(test, list_is_last(&res->node, &ctx->test.resources));
KUNIT_EXPECT_PTR_EQ(test, free, res->free);
}
static void kunit_resource_test_destroy_resource(struct kunit *test)
{
struct kunit_test_resource_context *ctx = test->priv;
struct kunit_resource *res = kunit_alloc_and_get_resource(
&ctx->test,
fake_resource_init,
fake_resource_free,
GFP_KERNEL,
ctx);
KUNIT_ASSERT_FALSE(test,
kunit_resource_destroy(&ctx->test,
kunit_resource_instance_match,
res->free,
res->allocation));
KUNIT_EXPECT_FALSE(test, ctx->is_resource_initialized);
KUNIT_EXPECT_TRUE(test, list_empty(&ctx->test.resources));
}
static void kunit_resource_test_cleanup_resources(struct kunit *test)
{
int i;
struct kunit_test_resource_context *ctx = test->priv;
struct kunit_resource *resources[5];
for (i = 0; i < ARRAY_SIZE(resources); i++) {
resources[i] = kunit_alloc_and_get_resource(&ctx->test,
fake_resource_init,
fake_resource_free,
GFP_KERNEL,
ctx);
}
kunit_cleanup(&ctx->test);
KUNIT_EXPECT_TRUE(test, list_empty(&ctx->test.resources));
}
static void kunit_resource_test_mark_order(int order_array[],
size_t order_size,
int key)
{
int i;
for (i = 0; i < order_size && order_array[i]; i++)
;
order_array[i] = key;
}
#define KUNIT_RESOURCE_TEST_MARK_ORDER(ctx, order_field, key) \
kunit_resource_test_mark_order(ctx->order_field, \
ARRAY_SIZE(ctx->order_field), \
key)
static int fake_resource_2_init(struct kunit_resource *res, void *context)
{
struct kunit_test_resource_context *ctx = context;
KUNIT_RESOURCE_TEST_MARK_ORDER(ctx, allocate_order, 2);
res->allocation = ctx;
return 0;
}
static void fake_resource_2_free(struct kunit_resource *res)
{
struct kunit_test_resource_context *ctx = res->allocation;
KUNIT_RESOURCE_TEST_MARK_ORDER(ctx, free_order, 2);
}
static int fake_resource_1_init(struct kunit_resource *res, void *context)
{
struct kunit_test_resource_context *ctx = context;
kunit_alloc_and_get_resource(&ctx->test,
fake_resource_2_init,
fake_resource_2_free,
GFP_KERNEL,
ctx);
KUNIT_RESOURCE_TEST_MARK_ORDER(ctx, allocate_order, 1);
res->allocation = ctx;
return 0;
}
static void fake_resource_1_free(struct kunit_resource *res)
{
struct kunit_test_resource_context *ctx = res->allocation;
KUNIT_RESOURCE_TEST_MARK_ORDER(ctx, free_order, 1);
}
/*
* TODO(brendanhiggins@google.com): replace the arrays that keep track of the
* order of allocation and freeing with strict mocks using the IN_SEQUENCE macro
* to assert allocation and freeing order when the feature becomes available.
*/
static void kunit_resource_test_proper_free_ordering(struct kunit *test)
{
struct kunit_test_resource_context *ctx = test->priv;
/* fake_resource_1 allocates a fake_resource_2 in its init. */
kunit_alloc_and_get_resource(&ctx->test,
fake_resource_1_init,
fake_resource_1_free,
GFP_KERNEL,
ctx);
/*
* Since fake_resource_2_init calls KUNIT_RESOURCE_TEST_MARK_ORDER
* before returning to fake_resource_1_init, it should be the first to
* put its key in the allocate_order array.
*/
KUNIT_EXPECT_EQ(test, ctx->allocate_order[0], 2);
KUNIT_EXPECT_EQ(test, ctx->allocate_order[1], 1);
kunit_cleanup(&ctx->test);
/*
* Because fake_resource_2 finishes allocation before fake_resource_1,
* fake_resource_1 should be freed first since it could depend on
* fake_resource_2.
*/
KUNIT_EXPECT_EQ(test, ctx->free_order[0], 1);
KUNIT_EXPECT_EQ(test, ctx->free_order[1], 2);
}
static int kunit_resource_test_init(struct kunit *test)
{
struct kunit_test_resource_context *ctx =
kzalloc(sizeof(*ctx), GFP_KERNEL);
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ctx);
test->priv = ctx;
kunit_init_test(&ctx->test, "test_test_context");
return 0;
}
static void kunit_resource_test_exit(struct kunit *test)
{
struct kunit_test_resource_context *ctx = test->priv;
kunit_cleanup(&ctx->test);
kfree(ctx);
}
static struct kunit_case kunit_resource_test_cases[] = {
KUNIT_CASE(kunit_resource_test_init_resources),
KUNIT_CASE(kunit_resource_test_alloc_resource),
KUNIT_CASE(kunit_resource_test_destroy_resource),
KUNIT_CASE(kunit_resource_test_cleanup_resources),
KUNIT_CASE(kunit_resource_test_proper_free_ordering),
{}
};
static struct kunit_suite kunit_resource_test_suite = {
.name = "kunit-resource-test",
.init = kunit_resource_test_init,
.exit = kunit_resource_test_exit,
.test_cases = kunit_resource_test_cases,
};
kunit_test_suite(kunit_resource_test_suite);
// SPDX-License-Identifier: GPL-2.0
/*
* Base unit test (KUnit) API.
*
* Copyright (C) 2019, Google LLC.
* Author: Brendan Higgins <brendanhiggins@google.com>
*/
#include <kunit/test.h>
#include <kunit/try-catch.h>
#include <linux/kernel.h>
#include <linux/sched/debug.h>
static void kunit_set_failure(struct kunit *test)
{
WRITE_ONCE(test->success, false);
}
static void kunit_print_tap_version(void)
{
static bool kunit_has_printed_tap_version;
if (!kunit_has_printed_tap_version) {
pr_info("TAP version 14\n");
kunit_has_printed_tap_version = true;
}
}
static size_t kunit_test_cases_len(struct kunit_case *test_cases)
{
struct kunit_case *test_case;
size_t len = 0;
for (test_case = test_cases; test_case->run_case; test_case++)
len++;
return len;
}
static void kunit_print_subtest_start(struct kunit_suite *suite)
{
kunit_print_tap_version();
pr_info("\t# Subtest: %s\n", suite->name);
pr_info("\t1..%zd\n", kunit_test_cases_len(suite->test_cases));
}
static void kunit_print_ok_not_ok(bool should_indent,
bool is_ok,
size_t test_number,
const char *description)
{
const char *indent, *ok_not_ok;
if (should_indent)
indent = "\t";
else
indent = "";
if (is_ok)
ok_not_ok = "ok";
else
ok_not_ok = "not ok";
pr_info("%s%s %zd - %s\n", indent, ok_not_ok, test_number, description);
}
static bool kunit_suite_has_succeeded(struct kunit_suite *suite)
{
const struct kunit_case *test_case;
for (test_case = suite->test_cases; test_case->run_case; test_case++)
if (!test_case->success)
return false;
return true;
}
static void kunit_print_subtest_end(struct kunit_suite *suite)
{
static size_t kunit_suite_counter = 1;
kunit_print_ok_not_ok(false,
kunit_suite_has_succeeded(suite),
kunit_suite_counter++,
suite->name);
}
static void kunit_print_test_case_ok_not_ok(struct kunit_case *test_case,
size_t test_number)
{
kunit_print_ok_not_ok(true,
test_case->success,
test_number,
test_case->name);
}
static void kunit_print_string_stream(struct kunit *test,
struct string_stream *stream)
{
struct string_stream_fragment *fragment;
char *buf;
buf = string_stream_get_string(stream);
if (!buf) {
kunit_err(test,
"Could not allocate buffer, dumping stream:\n");
list_for_each_entry(fragment, &stream->fragments, node) {
kunit_err(test, "%s", fragment->fragment);
}
kunit_err(test, "\n");
} else {
kunit_err(test, "%s", buf);
kunit_kfree(test, buf);
}
}
static void kunit_fail(struct kunit *test, struct kunit_assert *assert)
{
struct string_stream *stream;
kunit_set_failure(test);
stream = alloc_string_stream(test, GFP_KERNEL);
if (!stream) {
WARN(true,
"Could not allocate stream to print failed assertion in %s:%d\n",
assert->file,
assert->line);
return;
}
assert->format(assert, stream);
kunit_print_string_stream(test, stream);
WARN_ON(string_stream_destroy(stream));
}
static void __noreturn kunit_abort(struct kunit *test)
{
kunit_try_catch_throw(&test->try_catch); /* Does not return. */
/*
* Throw could not abort from test.
*
* XXX: we should never reach this line! As kunit_try_catch_throw is
* marked __noreturn.
*/
WARN_ONCE(true, "Throw could not abort from test!\n");
}
void kunit_do_assertion(struct kunit *test,
struct kunit_assert *assert,
bool pass,
const char *fmt, ...)
{
va_list args;
if (pass)
return;
va_start(args, fmt);
assert->message.fmt = fmt;
assert->message.va = &args;
kunit_fail(test, assert);
va_end(args);
if (assert->type == KUNIT_ASSERTION)
kunit_abort(test);
}
void kunit_init_test(struct kunit *test, const char *name)
{
spin_lock_init(&test->lock);
INIT_LIST_HEAD(&test->resources);
test->name = name;
test->success = true;
}
/*
* Initializes and runs test case. Does not clean up or do post validations.
*/
static void kunit_run_case_internal(struct kunit *test,
struct kunit_suite *suite,
struct kunit_case *test_case)
{
if (suite->init) {
int ret;
ret = suite->init(test);
if (ret) {
kunit_err(test, "failed to initialize: %d\n", ret);
kunit_set_failure(test);
return;
}
}
test_case->run_case(test);
}
static void kunit_case_internal_cleanup(struct kunit *test)
{
kunit_cleanup(test);
}
/*
* Performs post validations and cleanup after a test case was run.
* XXX: Should ONLY BE CALLED AFTER kunit_run_case_internal!
*/
static void kunit_run_case_cleanup(struct kunit *test,
struct kunit_suite *suite)
{
if (suite->exit)
suite->exit(test);
kunit_case_internal_cleanup(test);
}
struct kunit_try_catch_context {
struct kunit *test;
struct kunit_suite *suite;
struct kunit_case *test_case;
};
static void kunit_try_run_case(void *data)
{
struct kunit_try_catch_context *ctx = data;
struct kunit *test = ctx->test;
struct kunit_suite *suite = ctx->suite;
struct kunit_case *test_case = ctx->test_case;
/*
* kunit_run_case_internal may encounter a fatal error; if it does,
* abort will be called, this thread will exit, and finally the parent
* thread will resume control and handle any necessary clean up.
*/
kunit_run_case_internal(test, suite, test_case);
/* This line may never be reached. */
kunit_run_case_cleanup(test, suite);
}
static void kunit_catch_run_case(void *data)
{
struct kunit_try_catch_context *ctx = data;
struct kunit *test = ctx->test;
struct kunit_suite *suite = ctx->suite;
int try_exit_code = kunit_try_catch_get_result(&test->try_catch);
if (try_exit_code) {
kunit_set_failure(test);
/*
* Test case could not finish, we have no idea what state it is
* in, so don't do clean up.
*/
if (try_exit_code == -ETIMEDOUT) {
kunit_err(test, "test case timed out\n");
/*
* Unknown internal error occurred preventing test case from
* running, so there is nothing to clean up.
*/
} else {
kunit_err(test, "internal error occurred preventing test case from running: %d\n",
try_exit_code);
}
return;
}
/*
* Test case was run, but aborted. It is the test case's business as to
* whether it failed or not, we just need to clean up.
*/
kunit_run_case_cleanup(test, suite);
}
/*
* Performs all logic to run a test case. It also catches most errors that
* occur in a test case and reports them as failures.
*/
static void kunit_run_case_catch_errors(struct kunit_suite *suite,
struct kunit_case *test_case)
{
struct kunit_try_catch_context context;
struct kunit_try_catch *try_catch;
struct kunit test;
kunit_init_test(&test, test_case->name);
try_catch = &test.try_catch;
kunit_try_catch_init(try_catch,
&test,
kunit_try_run_case,
kunit_catch_run_case);
context.test = &test;
context.suite = suite;
context.test_case = test_case;
kunit_try_catch_run(try_catch, &context);
test_case->success = test.success;
}
int kunit_run_tests(struct kunit_suite *suite)
{
struct kunit_case *test_case;
size_t test_case_count = 1;
kunit_print_subtest_start(suite);
for (test_case = suite->test_cases; test_case->run_case; test_case++) {
kunit_run_case_catch_errors(suite, test_case);
kunit_print_test_case_ok_not_ok(test_case, test_case_count++);
}
kunit_print_subtest_end(suite);
return 0;
}
struct kunit_resource *kunit_alloc_and_get_resource(struct kunit *test,
kunit_resource_init_t init,
kunit_resource_free_t free,
gfp_t internal_gfp,
void *context)
{
struct kunit_resource *res;
int ret;
res = kzalloc(sizeof(*res), internal_gfp);
if (!res)
return NULL;
ret = init(res, context);
if (ret)
return NULL;
res->free = free;
spin_lock(&test->lock);
list_add_tail(&res->node, &test->resources);
spin_unlock(&test->lock);
return res;
}
static void kunit_resource_free(struct kunit *test, struct kunit_resource *res)
{
res->free(res);
kfree(res);
}
static struct kunit_resource *kunit_resource_find(struct kunit *test,
kunit_resource_match_t match,
kunit_resource_free_t free,
void *match_data)
{
struct kunit_resource *resource;
lockdep_assert_held(&test->lock);
list_for_each_entry_reverse(resource, &test->resources, node) {
if (resource->free != free)
continue;
if (match(test, resource->allocation, match_data))
return resource;
}
return NULL;
}
static struct kunit_resource *kunit_resource_remove(
struct kunit *test,
kunit_resource_match_t match,
kunit_resource_free_t free,
void *match_data)
{
struct kunit_resource *resource;
spin_lock(&test->lock);
resource = kunit_resource_find(test, match, free, match_data);
if (resource)
list_del(&resource->node);
spin_unlock(&test->lock);
return resource;
}
int kunit_resource_destroy(struct kunit *test,
kunit_resource_match_t match,
kunit_resource_free_t free,
void *match_data)
{
struct kunit_resource *resource;
resource = kunit_resource_remove(test, match, free, match_data);
if (!resource)
return -ENOENT;
kunit_resource_free(test, resource);
return 0;
}
struct kunit_kmalloc_params {
size_t size;
gfp_t gfp;
};
static int kunit_kmalloc_init(struct kunit_resource *res, void *context)
{
struct kunit_kmalloc_params *params = context;
res->allocation = kmalloc(params->size, params->gfp);
if (!res->allocation)
return -ENOMEM;
return 0;
}
static void kunit_kmalloc_free(struct kunit_resource *res)
{
kfree(res->allocation);
}
void *kunit_kmalloc(struct kunit *test, size_t size, gfp_t gfp)
{
struct kunit_kmalloc_params params = {
.size = size,
.gfp = gfp
};
return kunit_alloc_resource(test,
kunit_kmalloc_init,
kunit_kmalloc_free,
gfp,
&params);
}
void kunit_kfree(struct kunit *test, const void *ptr)
{
int rc;
rc = kunit_resource_destroy(test,
kunit_resource_instance_match,
kunit_kmalloc_free,
(void *)ptr);
WARN_ON(rc);
}
void kunit_cleanup(struct kunit *test)
{
struct kunit_resource *resource;
/*
* test->resources is a stack - each allocation must be freed in the
* reverse order from which it was added since one resource may depend
* on another for its entire lifetime.
* Also, we cannot use the normal list_for_each constructs, even the
* safe ones because *arbitrary* nodes may be deleted when
* kunit_resource_free is called; the list_for_each_safe variants only
* protect against the current node being deleted, not the next.
*/
while (true) {
spin_lock(&test->lock);
if (list_empty(&test->resources)) {
spin_unlock(&test->lock);
break;
}
resource = list_last_entry(&test->resources,
struct kunit_resource,
node);
list_del(&resource->node);
spin_unlock(&test->lock);
kunit_resource_free(test, resource);
}
}
// SPDX-License-Identifier: GPL-2.0
/*
* An API to allow a function, that may fail, to be executed, and recover in a
* controlled manner.
*
* Copyright (C) 2019, Google LLC.
* Author: Brendan Higgins <brendanhiggins@google.com>
*/
#include <kunit/test.h>
#include <kunit/try-catch.h>
#include <linux/completion.h>
#include <linux/kernel.h>
#include <linux/kthread.h>
#include <linux/sched/sysctl.h>
void __noreturn kunit_try_catch_throw(struct kunit_try_catch *try_catch)
{
try_catch->try_result = -EFAULT;
complete_and_exit(try_catch->try_completion, -EFAULT);
}
static int kunit_generic_run_threadfn_adapter(void *data)
{
struct kunit_try_catch *try_catch = data;
try_catch->try(try_catch->context);
complete_and_exit(try_catch->try_completion, 0);
}
static unsigned long kunit_test_timeout(void)
{
unsigned long timeout_msecs;
/*
* TODO(brendanhiggins@google.com): We should probably have some type of
* variable timeout here. The only question is what that timeout value
* should be.
*
* The intention has always been, at some point, to be able to label
* tests with some type of size bucket (unit/small, integration/medium,
* large/system/end-to-end, etc), where each size bucket would get a
* default timeout value kind of like what Bazel does:
* https://docs.bazel.build/versions/master/be/common-definitions.html#test.size
* There is still some debate to be had on exactly how we do this. (For
* one, we probably want to have some sort of test runner level
* timeout.)
*
* For more background on this topic, see:
* https://mike-bland.com/2011/11/01/small-medium-large.html
*/
if (sysctl_hung_task_timeout_secs) {
/*
* If sysctl_hung_task is active, just set the timeout to some
* value less than that.
*
* In regards to the above TODO, if we decide on variable
* timeouts, this logic will likely need to change.
*/
timeout_msecs = (sysctl_hung_task_timeout_secs - 1) *
MSEC_PER_SEC;
} else {
timeout_msecs = 300 * MSEC_PER_SEC; /* 5 min */
}
return timeout_msecs;
}
void kunit_try_catch_run(struct kunit_try_catch *try_catch, void *context)
{
DECLARE_COMPLETION_ONSTACK(try_completion);
struct kunit *test = try_catch->test;
struct task_struct *task_struct;
int exit_code, time_remaining;
try_catch->context = context;
try_catch->try_completion = &try_completion;
try_catch->try_result = 0;
task_struct = kthread_run(kunit_generic_run_threadfn_adapter,
try_catch,
"kunit_try_catch_thread");
if (IS_ERR(task_struct)) {
try_catch->catch(try_catch->context);
return;
}
time_remaining = wait_for_completion_timeout(&try_completion,
kunit_test_timeout());
if (time_remaining == 0) {
kunit_err(test, "try timed out\n");
try_catch->try_result = -ETIMEDOUT;
}
exit_code = try_catch->try_result;
if (!exit_code)
return;
if (exit_code == -EFAULT)
try_catch->try_result = 0;
else if (exit_code == -EINTR)
kunit_err(test, "wake_up_process() was never called\n");
else if (exit_code)
kunit_err(test, "Unknown error: %d\n", exit_code);
try_catch->catch(try_catch->context);
}
void kunit_try_catch_init(struct kunit_try_catch *try_catch,
struct kunit *test,
kunit_try_catch_func_t try,
kunit_try_catch_func_t catch)
{
try_catch->test = test;
try_catch->try = try;
try_catch->catch = catch;
}
// SPDX-License-Identifier: GPL-2.0
/*
* KUnit test for the Kernel Linked-list structures.
*
* Copyright (C) 2019, Google LLC.
* Author: David Gow <davidgow@google.com>
*/
#include <kunit/test.h>
#include <linux/list.h>
struct list_test_struct {
int data;
struct list_head list;
};
static void list_test_list_init(struct kunit *test)
{
/* Test the different ways of initialising a list. */
struct list_head list1 = LIST_HEAD_INIT(list1);
struct list_head list2;
LIST_HEAD(list3);
struct list_head *list4;
struct list_head *list5;
INIT_LIST_HEAD(&list2);
list4 = kzalloc(sizeof(*list4), GFP_KERNEL | __GFP_NOFAIL);
INIT_LIST_HEAD(list4);
list5 = kmalloc(sizeof(*list5), GFP_KERNEL | __GFP_NOFAIL);
memset(list5, 0xFF, sizeof(*list5));
INIT_LIST_HEAD(list5);
/* list_empty_careful() checks both next and prev. */
KUNIT_EXPECT_TRUE(test, list_empty_careful(&list1));
KUNIT_EXPECT_TRUE(test, list_empty_careful(&list2));
KUNIT_EXPECT_TRUE(test, list_empty_careful(&list3));
KUNIT_EXPECT_TRUE(test, list_empty_careful(list4));
KUNIT_EXPECT_TRUE(test, list_empty_careful(list5));
kfree(list4);
kfree(list5);
}
static void list_test_list_add(struct kunit *test)
{
struct list_head a, b;
LIST_HEAD(list);
list_add(&a, &list);
list_add(&b, &list);
/* should be [list] -> b -> a */
KUNIT_EXPECT_PTR_EQ(test, list.next, &b);
KUNIT_EXPECT_PTR_EQ(test, b.prev, &list);
KUNIT_EXPECT_PTR_EQ(test, b.next, &a);
}
static void list_test_list_add_tail(struct kunit *test)
{
struct list_head a, b;
LIST_HEAD(list);
list_add_tail(&a, &list);
list_add_tail(&b, &list);
/* should be [list] -> a -> b */
KUNIT_EXPECT_PTR_EQ(test, list.next, &a);
KUNIT_EXPECT_PTR_EQ(test, a.prev, &list);
KUNIT_EXPECT_PTR_EQ(test, a.next, &b);
}
static void list_test_list_del(struct kunit *test)
{
struct list_head a, b;
LIST_HEAD(list);
list_add_tail(&a, &list);
list_add_tail(&b, &list);
/* before: [list] -> a -> b */
list_del(&a);
/* now: [list] -> b */
KUNIT_EXPECT_PTR_EQ(test, list.next, &b);
KUNIT_EXPECT_PTR_EQ(test, b.prev, &list);
}
static void list_test_list_replace(struct kunit *test)
{
struct list_head a_old, a_new, b;
LIST_HEAD(list);
list_add_tail(&a_old, &list);
list_add_tail(&b, &list);
/* before: [list] -> a_old -> b */
list_replace(&a_old, &a_new);
/* now: [list] -> a_new -> b */
KUNIT_EXPECT_PTR_EQ(test, list.next, &a_new);
KUNIT_EXPECT_PTR_EQ(test, b.prev, &a_new);
}
static void list_test_list_replace_init(struct kunit *test)
{
struct list_head a_old, a_new, b;
LIST_HEAD(list);
list_add_tail(&a_old, &list);
list_add_tail(&b, &list);
/* before: [list] -> a_old -> b */
list_replace_init(&a_old, &a_new);
/* now: [list] -> a_new -> b */
KUNIT_EXPECT_PTR_EQ(test, list.next, &a_new);
KUNIT_EXPECT_PTR_EQ(test, b.prev, &a_new);
/* check a_old is empty (initialized) */
KUNIT_EXPECT_TRUE(test, list_empty_careful(&a_old));
}
static void list_test_list_swap(struct kunit *test)
{
struct list_head a, b;
LIST_HEAD(list);
list_add_tail(&a, &list);
list_add_tail(&b, &list);
/* before: [list] -> a -> b */
list_swap(&a, &b);
/* after: [list] -> b -> a */
KUNIT_EXPECT_PTR_EQ(test, &b, list.next);
KUNIT_EXPECT_PTR_EQ(test, &a, list.prev);
KUNIT_EXPECT_PTR_EQ(test, &a, b.next);
KUNIT_EXPECT_PTR_EQ(test, &list, b.prev);
KUNIT_EXPECT_PTR_EQ(test, &list, a.next);
KUNIT_EXPECT_PTR_EQ(test, &b, a.prev);
}
static void list_test_list_del_init(struct kunit *test)
{
struct list_head a, b;
LIST_HEAD(list);
list_add_tail(&a, &list);
list_add_tail(&b, &list);
/* before: [list] -> a -> b */
list_del_init(&a);
/* after: [list] -> b, a initialised */
KUNIT_EXPECT_PTR_EQ(test, list.next, &b);
KUNIT_EXPECT_PTR_EQ(test, b.prev, &list);
KUNIT_EXPECT_TRUE(test, list_empty_careful(&a));
}
static void list_test_list_move(struct kunit *test)
{
struct list_head a, b;
LIST_HEAD(list1);
LIST_HEAD(list2);
list_add_tail(&a, &list1);
list_add_tail(&b, &list2);
/* before: [list1] -> a, [list2] -> b */
list_move(&a, &list2);
/* after: [list1] empty, [list2] -> a -> b */
KUNIT_EXPECT_TRUE(test, list_empty(&list1));
KUNIT_EXPECT_PTR_EQ(test, &a, list2.next);
KUNIT_EXPECT_PTR_EQ(test, &b, a.next);
}
static void list_test_list_move_tail(struct kunit *test)
{
struct list_head a, b;
LIST_HEAD(list1);
LIST_HEAD(list2);
list_add_tail(&a, &list1);
list_add_tail(&b, &list2);
/* before: [list1] -> a, [list2] -> b */
list_move_tail(&a, &list2);
/* after: [list1] empty, [list2] -> b -> a */
KUNIT_EXPECT_TRUE(test, list_empty(&list1));
KUNIT_EXPECT_PTR_EQ(test, &b, list2.next);
KUNIT_EXPECT_PTR_EQ(test, &a, b.next);
}
static void list_test_list_bulk_move_tail(struct kunit *test)
{
struct list_head a, b, c, d, x, y;
struct list_head *list1_values[] = { &x, &b, &c, &y };
struct list_head *list2_values[] = { &a, &d };
struct list_head *ptr;
LIST_HEAD(list1);
LIST_HEAD(list2);
int i = 0;
list_add_tail(&x, &list1);
list_add_tail(&y, &list1);
list_add_tail(&a, &list2);
list_add_tail(&b, &list2);
list_add_tail(&c, &list2);
list_add_tail(&d, &list2);
/* before: [list1] -> x -> y, [list2] -> a -> b -> c -> d */
list_bulk_move_tail(&y, &b, &c);
/* after: [list1] -> x -> b -> c -> y, [list2] -> a -> d */
list_for_each(ptr, &list1) {
KUNIT_EXPECT_PTR_EQ(test, ptr, list1_values[i]);
i++;
}
KUNIT_EXPECT_EQ(test, i, 4);
i = 0;
list_for_each(ptr, &list2) {
KUNIT_EXPECT_PTR_EQ(test, ptr, list2_values[i]);
i++;
}
KUNIT_EXPECT_EQ(test, i, 2);
}
static void list_test_list_is_first(struct kunit *test)
{
struct list_head a, b;
LIST_HEAD(list);
list_add_tail(&a, &list);
list_add_tail(&b, &list);
KUNIT_EXPECT_TRUE(test, list_is_first(&a, &list));
KUNIT_EXPECT_FALSE(test, list_is_first(&b, &list));
}
static void list_test_list_is_last(struct kunit *test)
{
struct list_head a, b;
LIST_HEAD(list);
list_add_tail(&a, &list);
list_add_tail(&b, &list);
KUNIT_EXPECT_FALSE(test, list_is_last(&a, &list));
KUNIT_EXPECT_TRUE(test, list_is_last(&b, &list));
}
static void list_test_list_empty(struct kunit *test)
{
struct list_head a;
LIST_HEAD(list1);
LIST_HEAD(list2);
list_add_tail(&a, &list1);
KUNIT_EXPECT_FALSE(test, list_empty(&list1));
KUNIT_EXPECT_TRUE(test, list_empty(&list2));
}
static void list_test_list_empty_careful(struct kunit *test)
{
/* This test doesn't check correctness under concurrent access */
struct list_head a;
LIST_HEAD(list1);
LIST_HEAD(list2);
list_add_tail(&a, &list1);
KUNIT_EXPECT_FALSE(test, list_empty_careful(&list1));
KUNIT_EXPECT_TRUE(test, list_empty_careful(&list2));
}
static void list_test_list_rotate_left(struct kunit *test)
{
struct list_head a, b;
LIST_HEAD(list);
list_add_tail(&a, &list);
list_add_tail(&b, &list);
/* before: [list] -> a -> b */
list_rotate_left(&list);
/* after: [list] -> b -> a */
KUNIT_EXPECT_PTR_EQ(test, list.next, &b);
KUNIT_EXPECT_PTR_EQ(test, b.prev, &list);
KUNIT_EXPECT_PTR_EQ(test, b.next, &a);
}
static void list_test_list_rotate_to_front(struct kunit *test)
{
struct list_head a, b, c, d;
struct list_head *list_values[] = { &c, &d, &a, &b };
struct list_head *ptr;
LIST_HEAD(list);
int i = 0;
list_add_tail(&a, &list);
list_add_tail(&b, &list);
list_add_tail(&c, &list);
list_add_tail(&d, &list);
/* before: [list] -> a -> b -> c -> d */
list_rotate_to_front(&c, &list);
/* after: [list] -> c -> d -> a -> b */
list_for_each(ptr, &list) {
KUNIT_EXPECT_PTR_EQ(test, ptr, list_values[i]);
i++;
}
KUNIT_EXPECT_EQ(test, i, 4);
}
static void list_test_list_is_singular(struct kunit *test)
{
struct list_head a, b;
LIST_HEAD(list);
/* [list] empty */
KUNIT_EXPECT_FALSE(test, list_is_singular(&list));
list_add_tail(&a, &list);
/* [list] -> a */
KUNIT_EXPECT_TRUE(test, list_is_singular(&list));
list_add_tail(&b, &list);
/* [list] -> a -> b */
KUNIT_EXPECT_FALSE(test, list_is_singular(&list));
}
static void list_test_list_cut_position(struct kunit *test)
{
struct list_head entries[3], *cur;
LIST_HEAD(list1);
LIST_HEAD(list2);
int i = 0;
list_add_tail(&entries[0], &list1);
list_add_tail(&entries[1], &list1);
list_add_tail(&entries[2], &list1);
/* before: [list1] -> entries[0] -> entries[1] -> entries[2] */
list_cut_position(&list2, &list1, &entries[1]);
/* after: [list2] -> entries[0] -> entries[1], [list1] -> entries[2] */
list_for_each(cur, &list2) {
KUNIT_EXPECT_PTR_EQ(test, cur, &entries[i]);
i++;
}
KUNIT_EXPECT_EQ(test, i, 2);
list_for_each(cur, &list1) {
KUNIT_EXPECT_PTR_EQ(test, cur, &entries[i]);
i++;
}
}
static void list_test_list_cut_before(struct kunit *test)
{
struct list_head entries[3], *cur;
LIST_HEAD(list1);
LIST_HEAD(list2);
int i = 0;
list_add_tail(&entries[0], &list1);
list_add_tail(&entries[1], &list1);
list_add_tail(&entries[2], &list1);
/* before: [list1] -> entries[0] -> entries[1] -> entries[2] */
list_cut_before(&list2, &list1, &entries[1]);
/* after: [list2] -> entries[0], [list1] -> entries[1] -> entries[2] */
list_for_each(cur, &list2) {
KUNIT_EXPECT_PTR_EQ(test, cur, &entries[i]);
i++;
}
KUNIT_EXPECT_EQ(test, i, 1);
list_for_each(cur, &list1) {
KUNIT_EXPECT_PTR_EQ(test, cur, &entries[i]);
i++;
}
}
static void list_test_list_splice(struct kunit *test)
{
struct list_head entries[5], *cur;
LIST_HEAD(list1);
LIST_HEAD(list2);
int i = 0;
list_add_tail(&entries[0], &list1);
list_add_tail(&entries[1], &list1);
list_add_tail(&entries[2], &list2);
list_add_tail(&entries[3], &list2);
list_add_tail(&entries[4], &list1);
/* before: [list1]->e[0]->e[1]->e[4], [list2]->e[2]->e[3] */
list_splice(&list2, &entries[1]);
/* after: [list1]->e[0]->e[1]->e[2]->e[3]->e[4], [list2] uninit */
list_for_each(cur, &list1) {
KUNIT_EXPECT_PTR_EQ(test, cur, &entries[i]);
i++;
}
KUNIT_EXPECT_EQ(test, i, 5);
}
static void list_test_list_splice_tail(struct kunit *test)
{
struct list_head entries[5], *cur;
LIST_HEAD(list1);
LIST_HEAD(list2);
int i = 0;
list_add_tail(&entries[0], &list1);
list_add_tail(&entries[1], &list1);
list_add_tail(&entries[2], &list2);
list_add_tail(&entries[3], &list2);
list_add_tail(&entries[4], &list1);
/* before: [list1]->e[0]->e[1]->e[4], [list2]->e[2]->e[3] */
list_splice_tail(&list2, &entries[4]);
/* after: [list1]->e[0]->e[1]->e[2]->e[3]->e[4], [list2] uninit */
list_for_each(cur, &list1) {
KUNIT_EXPECT_PTR_EQ(test, cur, &entries[i]);
i++;
}
KUNIT_EXPECT_EQ(test, i, 5);
}
static void list_test_list_splice_init(struct kunit *test)
{
struct list_head entries[5], *cur;
LIST_HEAD(list1);
LIST_HEAD(list2);
int i = 0;
list_add_tail(&entries[0], &list1);
list_add_tail(&entries[1], &list1);
list_add_tail(&entries[2], &list2);
list_add_tail(&entries[3], &list2);
list_add_tail(&entries[4], &list1);
/* before: [list1]->e[0]->e[1]->e[4], [list2]->e[2]->e[3] */
list_splice_init(&list2, &entries[1]);
/* after: [list1]->e[0]->e[1]->e[2]->e[3]->e[4], [list2] empty */
list_for_each(cur, &list1) {
KUNIT_EXPECT_PTR_EQ(test, cur, &entries[i]);
i++;
}
KUNIT_EXPECT_EQ(test, i, 5);
KUNIT_EXPECT_TRUE(test, list_empty_careful(&list2));
}
static void list_test_list_splice_tail_init(struct kunit *test)
{
struct list_head entries[5], *cur;
LIST_HEAD(list1);
LIST_HEAD(list2);
int i = 0;
list_add_tail(&entries[0], &list1);
list_add_tail(&entries[1], &list1);
list_add_tail(&entries[2], &list2);
list_add_tail(&entries[3], &list2);
list_add_tail(&entries[4], &list1);
/* before: [list1]->e[0]->e[1]->e[4], [list2]->e[2]->e[3] */
list_splice_tail_init(&list2, &entries[4]);
/* after: [list1]->e[0]->e[1]->e[2]->e[3]->e[4], [list2] empty */
list_for_each(cur, &list1) {
KUNIT_EXPECT_PTR_EQ(test, cur, &entries[i]);
i++;
}
KUNIT_EXPECT_EQ(test, i, 5);
KUNIT_EXPECT_TRUE(test, list_empty_careful(&list2));
}
static void list_test_list_entry(struct kunit *test)
{
struct list_test_struct test_struct;
KUNIT_EXPECT_PTR_EQ(test, &test_struct, list_entry(&(test_struct.list),
struct list_test_struct, list));
}
static void list_test_list_first_entry(struct kunit *test)
{
struct list_test_struct test_struct1, test_struct2;
LIST_HEAD(list);
list_add_tail(&test_struct1.list, &list);
list_add_tail(&test_struct2.list, &list);
KUNIT_EXPECT_PTR_EQ(test, &test_struct1, list_first_entry(&list,
struct list_test_struct, list));
}
static void list_test_list_last_entry(struct kunit *test)
{
struct list_test_struct test_struct1, test_struct2;
LIST_HEAD(list);
list_add_tail(&test_struct1.list, &list);
list_add_tail(&test_struct2.list, &list);
KUNIT_EXPECT_PTR_EQ(test, &test_struct2, list_last_entry(&list,
struct list_test_struct, list));
}
static void list_test_list_first_entry_or_null(struct kunit *test)
{
struct list_test_struct test_struct1, test_struct2;
LIST_HEAD(list);
KUNIT_EXPECT_FALSE(test, list_first_entry_or_null(&list,
struct list_test_struct, list));
list_add_tail(&test_struct1.list, &list);
list_add_tail(&test_struct2.list, &list);
KUNIT_EXPECT_PTR_EQ(test, &test_struct1,
list_first_entry_or_null(&list,
struct list_test_struct, list));
}
static void list_test_list_next_entry(struct kunit *test)
{
struct list_test_struct test_struct1, test_struct2;
LIST_HEAD(list);
list_add_tail(&test_struct1.list, &list);
list_add_tail(&test_struct2.list, &list);
KUNIT_EXPECT_PTR_EQ(test, &test_struct2, list_next_entry(&test_struct1,
list));
}
static void list_test_list_prev_entry(struct kunit *test)
{
struct list_test_struct test_struct1, test_struct2;
LIST_HEAD(list);
list_add_tail(&test_struct1.list, &list);
list_add_tail(&test_struct2.list, &list);
KUNIT_EXPECT_PTR_EQ(test, &test_struct1, list_prev_entry(&test_struct2,
list));
}
static void list_test_list_for_each(struct kunit *test)
{
struct list_head entries[3], *cur;
LIST_HEAD(list);
int i = 0;
list_add_tail(&entries[0], &list);
list_add_tail(&entries[1], &list);
list_add_tail(&entries[2], &list);
list_for_each(cur, &list) {
KUNIT_EXPECT_PTR_EQ(test, cur, &entries[i]);
i++;
}
KUNIT_EXPECT_EQ(test, i, 3);
}
static void list_test_list_for_each_prev(struct kunit *test)
{
struct list_head entries[3], *cur;
LIST_HEAD(list);
int i = 2;
list_add_tail(&entries[0], &list);
list_add_tail(&entries[1], &list);
list_add_tail(&entries[2], &list);
list_for_each_prev(cur, &list) {
KUNIT_EXPECT_PTR_EQ(test, cur, &entries[i]);
i--;
}
KUNIT_EXPECT_EQ(test, i, -1);
}
static void list_test_list_for_each_safe(struct kunit *test)
{
struct list_head entries[3], *cur, *n;
LIST_HEAD(list);
int i = 0;
list_add_tail(&entries[0], &list);
list_add_tail(&entries[1], &list);
list_add_tail(&entries[2], &list);
list_for_each_safe(cur, n, &list) {
KUNIT_EXPECT_PTR_EQ(test, cur, &entries[i]);
list_del(&entries[i]);
i++;
}
KUNIT_EXPECT_EQ(test, i, 3);
KUNIT_EXPECT_TRUE(test, list_empty(&list));
}
static void list_test_list_for_each_prev_safe(struct kunit *test)
{
struct list_head entries[3], *cur, *n;
LIST_HEAD(list);
int i = 2;
list_add_tail(&entries[0], &list);
list_add_tail(&entries[1], &list);
list_add_tail(&entries[2], &list);
list_for_each_prev_safe(cur, n, &list) {
KUNIT_EXPECT_PTR_EQ(test, cur, &entries[i]);
list_del(&entries[i]);
i--;
}
KUNIT_EXPECT_EQ(test, i, -1);
KUNIT_EXPECT_TRUE(test, list_empty(&list));
}
static void list_test_list_for_each_entry(struct kunit *test)
{
struct list_test_struct entries[5], *cur;
static LIST_HEAD(list);
int i = 0;
for (i = 0; i < 5; ++i) {
entries[i].data = i;
list_add_tail(&entries[i].list, &list);
}
i = 0;
list_for_each_entry(cur, &list, list) {
KUNIT_EXPECT_EQ(test, cur->data, i);
i++;
}
KUNIT_EXPECT_EQ(test, i, 5);
}
static void list_test_list_for_each_entry_reverse(struct kunit *test)
{
struct list_test_struct entries[5], *cur;
static LIST_HEAD(list);
int i = 0;
for (i = 0; i < 5; ++i) {
entries[i].data = i;
list_add_tail(&entries[i].list, &list);
}
i = 4;
list_for_each_entry_reverse(cur, &list, list) {
KUNIT_EXPECT_EQ(test, cur->data, i);
i--;
}
KUNIT_EXPECT_EQ(test, i, -1);
}
static struct kunit_case list_test_cases[] = {
KUNIT_CASE(list_test_list_init),
KUNIT_CASE(list_test_list_add),
KUNIT_CASE(list_test_list_add_tail),
KUNIT_CASE(list_test_list_del),
KUNIT_CASE(list_test_list_replace),
KUNIT_CASE(list_test_list_replace_init),
KUNIT_CASE(list_test_list_swap),
KUNIT_CASE(list_test_list_del_init),
KUNIT_CASE(list_test_list_move),
KUNIT_CASE(list_test_list_move_tail),
KUNIT_CASE(list_test_list_bulk_move_tail),
KUNIT_CASE(list_test_list_is_first),
KUNIT_CASE(list_test_list_is_last),
KUNIT_CASE(list_test_list_empty),
KUNIT_CASE(list_test_list_empty_careful),
KUNIT_CASE(list_test_list_rotate_left),
KUNIT_CASE(list_test_list_rotate_to_front),
KUNIT_CASE(list_test_list_is_singular),
KUNIT_CASE(list_test_list_cut_position),
KUNIT_CASE(list_test_list_cut_before),
KUNIT_CASE(list_test_list_splice),
KUNIT_CASE(list_test_list_splice_tail),
KUNIT_CASE(list_test_list_splice_init),
KUNIT_CASE(list_test_list_splice_tail_init),
KUNIT_CASE(list_test_list_entry),
KUNIT_CASE(list_test_list_first_entry),
KUNIT_CASE(list_test_list_last_entry),
KUNIT_CASE(list_test_list_first_entry_or_null),
KUNIT_CASE(list_test_list_next_entry),
KUNIT_CASE(list_test_list_prev_entry),
KUNIT_CASE(list_test_list_for_each),
KUNIT_CASE(list_test_list_for_each_prev),
KUNIT_CASE(list_test_list_for_each_safe),
KUNIT_CASE(list_test_list_for_each_prev_safe),
KUNIT_CASE(list_test_list_for_each_entry),
KUNIT_CASE(list_test_list_for_each_entry_reverse),
{},
};
static struct kunit_suite list_test_module = {
.name = "list-kunit-test",
.test_cases = list_test_cases,
};
kunit_test_suite(list_test_module);
...@@ -144,6 +144,7 @@ static bool __dead_end_function(struct objtool_file *file, struct symbol *func, ...@@ -144,6 +144,7 @@ static bool __dead_end_function(struct objtool_file *file, struct symbol *func,
"usercopy_abort", "usercopy_abort",
"machine_real_restart", "machine_real_restart",
"rewind_stack_do_exit", "rewind_stack_do_exit",
"kunit_try_catch_throw",
}; };
if (!func) if (!func)
......
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
\ No newline at end of file
CONFIG_KUNIT=y
CONFIG_KUNIT_TEST=y
CONFIG_KUNIT_EXAMPLE_TEST=y
#!/usr/bin/python3
# SPDX-License-Identifier: GPL-2.0
#
# A thin wrapper on top of the KUnit Kernel
#
# Copyright (C) 2019, Google LLC.
# Author: Felix Guo <felixguoxiuping@gmail.com>
# Author: Brendan Higgins <brendanhiggins@google.com>
import argparse
import sys
import os
import time
import shutil
from collections import namedtuple
from enum import Enum, auto
import kunit_config
import kunit_kernel
import kunit_parser
KunitResult = namedtuple('KunitResult', ['status','result'])
KunitRequest = namedtuple('KunitRequest', ['raw_output','timeout', 'jobs', 'build_dir', 'defconfig'])
class KunitStatus(Enum):
SUCCESS = auto()
CONFIG_FAILURE = auto()
BUILD_FAILURE = auto()
TEST_FAILURE = auto()
def create_default_kunitconfig():
if not os.path.exists(kunit_kernel.KUNITCONFIG_PATH):
shutil.copyfile('arch/um/configs/kunit_defconfig',
kunit_kernel.KUNITCONFIG_PATH)
def run_tests(linux: kunit_kernel.LinuxSourceTree,
request: KunitRequest) -> KunitResult:
if request.defconfig:
create_default_kunitconfig()
config_start = time.time()
success = linux.build_reconfig(request.build_dir)
config_end = time.time()
if not success:
return KunitResult(KunitStatus.CONFIG_FAILURE, 'could not configure kernel')
kunit_parser.print_with_timestamp('Building KUnit Kernel ...')
build_start = time.time()
success = linux.build_um_kernel(request.jobs, request.build_dir)
build_end = time.time()
if not success:
return KunitResult(KunitStatus.BUILD_FAILURE, 'could not build kernel')
kunit_parser.print_with_timestamp('Starting KUnit Kernel ...')
test_start = time.time()
test_result = kunit_parser.TestResult(kunit_parser.TestStatus.SUCCESS,
[],
'Tests not Parsed.')
if request.raw_output:
kunit_parser.raw_output(
linux.run_kernel(timeout=request.timeout,
build_dir=request.build_dir))
else:
kunit_output = linux.run_kernel(timeout=request.timeout,
build_dir=request.build_dir)
test_result = kunit_parser.parse_run_tests(kunit_output)
test_end = time.time()
kunit_parser.print_with_timestamp((
'Elapsed time: %.3fs total, %.3fs configuring, %.3fs ' +
'building, %.3fs running\n') % (
test_end - config_start,
config_end - config_start,
build_end - build_start,
test_end - test_start))
if test_result.status != kunit_parser.TestStatus.SUCCESS:
return KunitResult(KunitStatus.TEST_FAILURE, test_result)
else:
return KunitResult(KunitStatus.SUCCESS, test_result)
def main(argv, linux=None):
parser = argparse.ArgumentParser(
description='Helps writing and running KUnit tests.')
subparser = parser.add_subparsers(dest='subcommand')
run_parser = subparser.add_parser('run', help='Runs KUnit tests.')
run_parser.add_argument('--raw_output', help='don\'t format output from kernel',
action='store_true')
run_parser.add_argument('--timeout',
help='maximum number of seconds to allow for all tests '
'to run. This does not include time taken to build the '
'tests.',
type=int,
default=300,
metavar='timeout')
run_parser.add_argument('--jobs',
help='As in the make command, "Specifies the number of '
'jobs (commands) to run simultaneously."',
type=int, default=8, metavar='jobs')
run_parser.add_argument('--build_dir',
help='As in the make command, it specifies the build '
'directory.',
type=str, default=None, metavar='build_dir')
run_parser.add_argument('--defconfig',
help='Uses a default kunitconfig.',
action='store_true')
cli_args = parser.parse_args(argv)
if cli_args.subcommand == 'run':
if cli_args.defconfig:
create_default_kunitconfig()
if not linux:
linux = kunit_kernel.LinuxSourceTree()
request = KunitRequest(cli_args.raw_output,
cli_args.timeout,
cli_args.jobs,
cli_args.build_dir,
cli_args.defconfig)
result = run_tests(linux, request)
if result.status != KunitStatus.SUCCESS:
sys.exit(1)
else:
parser.print_help()
if __name__ == '__main__':
main(sys.argv[1:])
# SPDX-License-Identifier: GPL-2.0
#
# Builds a .config from a kunitconfig.
#
# Copyright (C) 2019, Google LLC.
# Author: Felix Guo <felixguoxiuping@gmail.com>
# Author: Brendan Higgins <brendanhiggins@google.com>
import collections
import re
CONFIG_IS_NOT_SET_PATTERN = r'^# CONFIG_\w+ is not set$'
CONFIG_PATTERN = r'^CONFIG_\w+=\S+$'
KconfigEntryBase = collections.namedtuple('KconfigEntry', ['raw_entry'])
class KconfigEntry(KconfigEntryBase):
def __str__(self) -> str:
return self.raw_entry
class KconfigParseError(Exception):
"""Error parsing Kconfig defconfig or .config."""
class Kconfig(object):
"""Represents defconfig or .config specified using the Kconfig language."""
def __init__(self):
self._entries = []
def entries(self):
return set(self._entries)
def add_entry(self, entry: KconfigEntry) -> None:
self._entries.append(entry)
def is_subset_of(self, other: 'Kconfig') -> bool:
return self.entries().issubset(other.entries())
def write_to_file(self, path: str) -> None:
with open(path, 'w') as f:
for entry in self.entries():
f.write(str(entry) + '\n')
def parse_from_string(self, blob: str) -> None:
"""Parses a string containing KconfigEntrys and populates this Kconfig."""
self._entries = []
is_not_set_matcher = re.compile(CONFIG_IS_NOT_SET_PATTERN)
config_matcher = re.compile(CONFIG_PATTERN)
for line in blob.split('\n'):
line = line.strip()
if not line:
continue
elif config_matcher.match(line) or is_not_set_matcher.match(line):
self._entries.append(KconfigEntry(line))
elif line[0] == '#':
continue
else:
raise KconfigParseError('Failed to parse: ' + line)
def read_from_file(self, path: str) -> None:
with open(path, 'r') as f:
self.parse_from_string(f.read())
# SPDX-License-Identifier: GPL-2.0
#
# Runs UML kernel, collects output, and handles errors.
#
# Copyright (C) 2019, Google LLC.
# Author: Felix Guo <felixguoxiuping@gmail.com>
# Author: Brendan Higgins <brendanhiggins@google.com>
import logging
import subprocess
import os
import kunit_config
KCONFIG_PATH = '.config'
KUNITCONFIG_PATH = 'kunitconfig'
class ConfigError(Exception):
"""Represents an error trying to configure the Linux kernel."""
class BuildError(Exception):
"""Represents an error trying to build the Linux kernel."""
class LinuxSourceTreeOperations(object):
"""An abstraction over command line operations performed on a source tree."""
def make_mrproper(self):
try:
subprocess.check_output(['make', 'mrproper'])
except OSError as e:
raise ConfigError('Could not call make command: ' + e)
except subprocess.CalledProcessError as e:
raise ConfigError(e.output)
def make_olddefconfig(self, build_dir):
command = ['make', 'ARCH=um', 'olddefconfig']
if build_dir:
command += ['O=' + build_dir]
try:
subprocess.check_output(command)
except OSError as e:
raise ConfigError('Could not call make command: ' + e)
except subprocess.CalledProcessError as e:
raise ConfigError(e.output)
def make(self, jobs, build_dir):
command = ['make', 'ARCH=um', '--jobs=' + str(jobs)]
if build_dir:
command += ['O=' + build_dir]
try:
subprocess.check_output(command)
except OSError as e:
raise BuildError('Could not call execute make: ' + e)
except subprocess.CalledProcessError as e:
raise BuildError(e.output)
def linux_bin(self, params, timeout, build_dir):
"""Runs the Linux UML binary. Must be named 'linux'."""
linux_bin = './linux'
if build_dir:
linux_bin = os.path.join(build_dir, 'linux')
process = subprocess.Popen(
[linux_bin] + params,
stdin=subprocess.PIPE,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE)
process.wait(timeout=timeout)
return process
def get_kconfig_path(build_dir):
kconfig_path = KCONFIG_PATH
if build_dir:
kconfig_path = os.path.join(build_dir, KCONFIG_PATH)
return kconfig_path
class LinuxSourceTree(object):
"""Represents a Linux kernel source tree with KUnit tests."""
def __init__(self):
self._kconfig = kunit_config.Kconfig()
self._kconfig.read_from_file(KUNITCONFIG_PATH)
self._ops = LinuxSourceTreeOperations()
def clean(self):
try:
self._ops.make_mrproper()
except ConfigError as e:
logging.error(e)
return False
return True
def build_config(self, build_dir):
kconfig_path = get_kconfig_path(build_dir)
if build_dir and not os.path.exists(build_dir):
os.mkdir(build_dir)
self._kconfig.write_to_file(kconfig_path)
try:
self._ops.make_olddefconfig(build_dir)
except ConfigError as e:
logging.error(e)
return False
validated_kconfig = kunit_config.Kconfig()
validated_kconfig.read_from_file(kconfig_path)
if not self._kconfig.is_subset_of(validated_kconfig):
logging.error('Provided Kconfig is not contained in validated .config!')
return False
return True
def build_reconfig(self, build_dir):
"""Creates a new .config if it is not a subset of the kunitconfig."""
kconfig_path = get_kconfig_path(build_dir)
if os.path.exists(kconfig_path):
existing_kconfig = kunit_config.Kconfig()
existing_kconfig.read_from_file(kconfig_path)
if not self._kconfig.is_subset_of(existing_kconfig):
print('Regenerating .config ...')
os.remove(kconfig_path)
return self.build_config(build_dir)
else:
return True
else:
print('Generating .config ...')
return self.build_config(build_dir)
def build_um_kernel(self, jobs, build_dir):
try:
self._ops.make_olddefconfig(build_dir)
self._ops.make(jobs, build_dir)
except (ConfigError, BuildError) as e:
logging.error(e)
return False
used_kconfig = kunit_config.Kconfig()
used_kconfig.read_from_file(get_kconfig_path(build_dir))
if not self._kconfig.is_subset_of(used_kconfig):
logging.error('Provided Kconfig is not contained in final config!')
return False
return True
def run_kernel(self, args=[], timeout=None, build_dir=None):
args.extend(['mem=256M'])
process = self._ops.linux_bin(args, timeout, build_dir)
with open('test.log', 'w') as f:
for line in process.stdout:
f.write(line.rstrip().decode('ascii') + '\n')
yield line.rstrip().decode('ascii')
# SPDX-License-Identifier: GPL-2.0
#
# Parses test results from a kernel dmesg log.
#
# Copyright (C) 2019, Google LLC.
# Author: Felix Guo <felixguoxiuping@gmail.com>
# Author: Brendan Higgins <brendanhiggins@google.com>
import re
from collections import namedtuple
from datetime import datetime
from enum import Enum, auto
from functools import reduce
from typing import List
TestResult = namedtuple('TestResult', ['status','suites','log'])
class TestSuite(object):
def __init__(self):
self.status = None
self.name = None
self.cases = []
def __str__(self):
return 'TestSuite(' + self.status + ',' + self.name + ',' + str(self.cases) + ')'
def __repr__(self):
return str(self)
class TestCase(object):
def __init__(self):
self.status = None
self.name = ''
self.log = []
def __str__(self):
return 'TestCase(' + self.status + ',' + self.name + ',' + str(self.log) + ')'
def __repr__(self):
return str(self)
class TestStatus(Enum):
SUCCESS = auto()
FAILURE = auto()
TEST_CRASHED = auto()
NO_TESTS = auto()
kunit_start_re = re.compile(r'^TAP version [0-9]+$')
kunit_end_re = re.compile('List of all partitions:')
def isolate_kunit_output(kernel_output):
started = False
for line in kernel_output:
if kunit_start_re.match(line):
started = True
yield line
elif kunit_end_re.match(line):
break
elif started:
yield line
def raw_output(kernel_output):
for line in kernel_output:
print(line)
DIVIDER = '=' * 60
RESET = '\033[0;0m'
def red(text):
return '\033[1;31m' + text + RESET
def yellow(text):
return '\033[1;33m' + text + RESET
def green(text):
return '\033[1;32m' + text + RESET
def print_with_timestamp(message):
print('[%s] %s' % (datetime.now().strftime('%H:%M:%S'), message))
def format_suite_divider(message):
return '======== ' + message + ' ========'
def print_suite_divider(message):
print_with_timestamp(DIVIDER)
print_with_timestamp(format_suite_divider(message))
def print_log(log):
for m in log:
print_with_timestamp(m)
TAP_ENTRIES = re.compile(r'^(TAP|\t?ok|\t?not ok|\t?[0-9]+\.\.[0-9]+|\t?#).*$')
def consume_non_diagnositic(lines: List[str]) -> None:
while lines and not TAP_ENTRIES.match(lines[0]):
lines.pop(0)
def save_non_diagnositic(lines: List[str], test_case: TestCase) -> None:
while lines and not TAP_ENTRIES.match(lines[0]):
test_case.log.append(lines[0])
lines.pop(0)
OkNotOkResult = namedtuple('OkNotOkResult', ['is_ok','description', 'text'])
OK_NOT_OK_SUBTEST = re.compile(r'^\t(ok|not ok) [0-9]+ - (.*)$')
OK_NOT_OK_MODULE = re.compile(r'^(ok|not ok) [0-9]+ - (.*)$')
def parse_ok_not_ok_test_case(lines: List[str],
test_case: TestCase,
expecting_test_case: bool) -> bool:
save_non_diagnositic(lines, test_case)
if not lines:
if expecting_test_case:
test_case.status = TestStatus.TEST_CRASHED
return True
else:
return False
line = lines[0]
match = OK_NOT_OK_SUBTEST.match(line)
if match:
test_case.log.append(lines.pop(0))
test_case.name = match.group(2)
if test_case.status == TestStatus.TEST_CRASHED:
return True
if match.group(1) == 'ok':
test_case.status = TestStatus.SUCCESS
else:
test_case.status = TestStatus.FAILURE
return True
else:
return False
SUBTEST_DIAGNOSTIC = re.compile(r'^\t# .*?: (.*)$')
DIAGNOSTIC_CRASH_MESSAGE = 'kunit test case crashed!'
def parse_diagnostic(lines: List[str], test_case: TestCase) -> bool:
save_non_diagnositic(lines, test_case)
if not lines:
return False
line = lines[0]
match = SUBTEST_DIAGNOSTIC.match(line)
if match:
test_case.log.append(lines.pop(0))
if match.group(1) == DIAGNOSTIC_CRASH_MESSAGE:
test_case.status = TestStatus.TEST_CRASHED
return True
else:
return False
def parse_test_case(lines: List[str], expecting_test_case: bool) -> TestCase:
test_case = TestCase()
save_non_diagnositic(lines, test_case)
while parse_diagnostic(lines, test_case):
pass
if parse_ok_not_ok_test_case(lines, test_case, expecting_test_case):
return test_case
else:
return None
SUBTEST_HEADER = re.compile(r'^\t# Subtest: (.*)$')
def parse_subtest_header(lines: List[str]) -> str:
consume_non_diagnositic(lines)
if not lines:
return None
match = SUBTEST_HEADER.match(lines[0])
if match:
lines.pop(0)
return match.group(1)
else:
return None
SUBTEST_PLAN = re.compile(r'\t[0-9]+\.\.([0-9]+)')
def parse_subtest_plan(lines: List[str]) -> int:
consume_non_diagnositic(lines)
match = SUBTEST_PLAN.match(lines[0])
if match:
lines.pop(0)
return int(match.group(1))
else:
return None
def max_status(left: TestStatus, right: TestStatus) -> TestStatus:
if left == TestStatus.TEST_CRASHED or right == TestStatus.TEST_CRASHED:
return TestStatus.TEST_CRASHED
elif left == TestStatus.FAILURE or right == TestStatus.FAILURE:
return TestStatus.FAILURE
elif left != TestStatus.SUCCESS:
return left
elif right != TestStatus.SUCCESS:
return right
else:
return TestStatus.SUCCESS
def parse_ok_not_ok_test_suite(lines: List[str], test_suite: TestSuite) -> bool:
consume_non_diagnositic(lines)
if not lines:
test_suite.status = TestStatus.TEST_CRASHED
return False
line = lines[0]
match = OK_NOT_OK_MODULE.match(line)
if match:
lines.pop(0)
if match.group(1) == 'ok':
test_suite.status = TestStatus.SUCCESS
else:
test_suite.status = TestStatus.FAILURE
return True
else:
return False
def bubble_up_errors(to_status, status_container_list) -> TestStatus:
status_list = map(to_status, status_container_list)
return reduce(max_status, status_list, TestStatus.SUCCESS)
def bubble_up_test_case_errors(test_suite: TestSuite) -> TestStatus:
max_test_case_status = bubble_up_errors(lambda x: x.status, test_suite.cases)
return max_status(max_test_case_status, test_suite.status)
def parse_test_suite(lines: List[str]) -> TestSuite:
if not lines:
return None
consume_non_diagnositic(lines)
test_suite = TestSuite()
test_suite.status = TestStatus.SUCCESS
name = parse_subtest_header(lines)
if not name:
return None
test_suite.name = name
expected_test_case_num = parse_subtest_plan(lines)
if not expected_test_case_num:
return None
test_case = parse_test_case(lines, expected_test_case_num > 0)
expected_test_case_num -= 1
while test_case:
test_suite.cases.append(test_case)
test_case = parse_test_case(lines, expected_test_case_num > 0)
expected_test_case_num -= 1
if parse_ok_not_ok_test_suite(lines, test_suite):
test_suite.status = bubble_up_test_case_errors(test_suite)
return test_suite
elif not lines:
print_with_timestamp(red('[ERROR] ') + 'ran out of lines before end token')
return test_suite
else:
print('failed to parse end of suite' + lines[0])
return None
TAP_HEADER = re.compile(r'^TAP version 14$')
def parse_tap_header(lines: List[str]) -> bool:
consume_non_diagnositic(lines)
if TAP_HEADER.match(lines[0]):
lines.pop(0)
return True
else:
return False
def bubble_up_suite_errors(test_suite_list: List[TestSuite]) -> TestStatus:
return bubble_up_errors(lambda x: x.status, test_suite_list)
def parse_test_result(lines: List[str]) -> TestResult:
if not lines:
return TestResult(TestStatus.NO_TESTS, [], lines)
consume_non_diagnositic(lines)
if not parse_tap_header(lines):
return None
test_suites = []
test_suite = parse_test_suite(lines)
while test_suite:
test_suites.append(test_suite)
test_suite = parse_test_suite(lines)
return TestResult(bubble_up_suite_errors(test_suites), test_suites, lines)
def parse_run_tests(kernel_output) -> TestResult:
total_tests = 0
failed_tests = 0
crashed_tests = 0
test_result = parse_test_result(list(isolate_kunit_output(kernel_output)))
for test_suite in test_result.suites:
if test_suite.status == TestStatus.SUCCESS:
print_suite_divider(green('[PASSED] ') + test_suite.name)
elif test_suite.status == TestStatus.TEST_CRASHED:
print_suite_divider(red('[CRASHED] ' + test_suite.name))
else:
print_suite_divider(red('[FAILED] ') + test_suite.name)
for test_case in test_suite.cases:
total_tests += 1
if test_case.status == TestStatus.SUCCESS:
print_with_timestamp(green('[PASSED] ') + test_case.name)
elif test_case.status == TestStatus.TEST_CRASHED:
crashed_tests += 1
print_with_timestamp(red('[CRASHED] ' + test_case.name))
print_log(map(yellow, test_case.log))
print_with_timestamp('')
else:
failed_tests += 1
print_with_timestamp(red('[FAILED] ') + test_case.name)
print_log(map(yellow, test_case.log))
print_with_timestamp('')
print_with_timestamp(DIVIDER)
fmt = green if test_result.status == TestStatus.SUCCESS else red
print_with_timestamp(
fmt('Testing complete. %d tests run. %d failed. %d crashed.' %
(total_tests, failed_tests, crashed_tests)))
return test_result
#!/usr/bin/python3
# SPDX-License-Identifier: GPL-2.0
#
# A collection of tests for tools/testing/kunit/kunit.py
#
# Copyright (C) 2019, Google LLC.
# Author: Brendan Higgins <brendanhiggins@google.com>
import unittest
from unittest import mock
import tempfile, shutil # Handling test_tmpdir
import os
import kunit_config
import kunit_parser
import kunit_kernel
import kunit
test_tmpdir = ''
def setUpModule():
global test_tmpdir
test_tmpdir = tempfile.mkdtemp()
def tearDownModule():
shutil.rmtree(test_tmpdir)
def get_absolute_path(path):
return os.path.join(os.path.dirname(__file__), path)
class KconfigTest(unittest.TestCase):
def test_is_subset_of(self):
kconfig0 = kunit_config.Kconfig()
self.assertTrue(kconfig0.is_subset_of(kconfig0))
kconfig1 = kunit_config.Kconfig()
kconfig1.add_entry(kunit_config.KconfigEntry('CONFIG_TEST=y'))
self.assertTrue(kconfig1.is_subset_of(kconfig1))
self.assertTrue(kconfig0.is_subset_of(kconfig1))
self.assertFalse(kconfig1.is_subset_of(kconfig0))
def test_read_from_file(self):
kconfig = kunit_config.Kconfig()
kconfig_path = get_absolute_path(
'test_data/test_read_from_file.kconfig')
kconfig.read_from_file(kconfig_path)
expected_kconfig = kunit_config.Kconfig()
expected_kconfig.add_entry(
kunit_config.KconfigEntry('CONFIG_UML=y'))
expected_kconfig.add_entry(
kunit_config.KconfigEntry('CONFIG_MMU=y'))
expected_kconfig.add_entry(
kunit_config.KconfigEntry('CONFIG_TEST=y'))
expected_kconfig.add_entry(
kunit_config.KconfigEntry('CONFIG_EXAMPLE_TEST=y'))
expected_kconfig.add_entry(
kunit_config.KconfigEntry('# CONFIG_MK8 is not set'))
self.assertEqual(kconfig.entries(), expected_kconfig.entries())
def test_write_to_file(self):
kconfig_path = os.path.join(test_tmpdir, '.config')
expected_kconfig = kunit_config.Kconfig()
expected_kconfig.add_entry(
kunit_config.KconfigEntry('CONFIG_UML=y'))
expected_kconfig.add_entry(
kunit_config.KconfigEntry('CONFIG_MMU=y'))
expected_kconfig.add_entry(
kunit_config.KconfigEntry('CONFIG_TEST=y'))
expected_kconfig.add_entry(
kunit_config.KconfigEntry('CONFIG_EXAMPLE_TEST=y'))
expected_kconfig.add_entry(
kunit_config.KconfigEntry('# CONFIG_MK8 is not set'))
expected_kconfig.write_to_file(kconfig_path)
actual_kconfig = kunit_config.Kconfig()
actual_kconfig.read_from_file(kconfig_path)
self.assertEqual(actual_kconfig.entries(),
expected_kconfig.entries())
class KUnitParserTest(unittest.TestCase):
def assertContains(self, needle, haystack):
for line in haystack:
if needle in line:
return
raise AssertionError('"' +
str(needle) + '" not found in "' + str(haystack) + '"!')
def test_output_isolated_correctly(self):
log_path = get_absolute_path(
'test_data/test_output_isolated_correctly.log')
file = open(log_path)
result = kunit_parser.isolate_kunit_output(file.readlines())
self.assertContains('TAP version 14\n', result)
self.assertContains(' # Subtest: example', result)
self.assertContains(' 1..2', result)
self.assertContains(' ok 1 - example_simple_test', result)
self.assertContains(' ok 2 - example_mock_test', result)
self.assertContains('ok 1 - example', result)
file.close()
def test_parse_successful_test_log(self):
all_passed_log = get_absolute_path(
'test_data/test_is_test_passed-all_passed.log')
file = open(all_passed_log)
result = kunit_parser.parse_run_tests(file.readlines())
self.assertEqual(
kunit_parser.TestStatus.SUCCESS,
result.status)
file.close()
def test_parse_failed_test_log(self):
failed_log = get_absolute_path(
'test_data/test_is_test_passed-failure.log')
file = open(failed_log)
result = kunit_parser.parse_run_tests(file.readlines())
self.assertEqual(
kunit_parser.TestStatus.FAILURE,
result.status)
file.close()
def test_no_tests(self):
empty_log = get_absolute_path(
'test_data/test_is_test_passed-no_tests_run.log')
file = open(empty_log)
result = kunit_parser.parse_run_tests(
kunit_parser.isolate_kunit_output(file.readlines()))
self.assertEqual(0, len(result.suites))
self.assertEqual(
kunit_parser.TestStatus.NO_TESTS,
result.status)
file.close()
def test_crashed_test(self):
crashed_log = get_absolute_path(
'test_data/test_is_test_passed-crash.log')
file = open(crashed_log)
result = kunit_parser.parse_run_tests(file.readlines())
self.assertEqual(
kunit_parser.TestStatus.TEST_CRASHED,
result.status)
file.close()
class StrContains(str):
def __eq__(self, other):
return self in other
class KUnitMainTest(unittest.TestCase):
def setUp(self):
path = get_absolute_path('test_data/test_is_test_passed-all_passed.log')
file = open(path)
all_passed_log = file.readlines()
self.print_patch = mock.patch('builtins.print')
self.print_mock = self.print_patch.start()
self.linux_source_mock = mock.Mock()
self.linux_source_mock.build_reconfig = mock.Mock(return_value=True)
self.linux_source_mock.build_um_kernel = mock.Mock(return_value=True)
self.linux_source_mock.run_kernel = mock.Mock(return_value=all_passed_log)
def tearDown(self):
self.print_patch.stop()
pass
def test_run_passes_args_pass(self):
kunit.main(['run'], self.linux_source_mock)
assert self.linux_source_mock.build_reconfig.call_count == 1
assert self.linux_source_mock.run_kernel.call_count == 1
self.print_mock.assert_any_call(StrContains('Testing complete.'))
def test_run_passes_args_fail(self):
self.linux_source_mock.run_kernel = mock.Mock(return_value=[])
with self.assertRaises(SystemExit) as e:
kunit.main(['run'], self.linux_source_mock)
assert type(e.exception) == SystemExit
assert e.exception.code == 1
assert self.linux_source_mock.build_reconfig.call_count == 1
assert self.linux_source_mock.run_kernel.call_count == 1
self.print_mock.assert_any_call(StrContains(' 0 tests run'))
def test_run_raw_output(self):
self.linux_source_mock.run_kernel = mock.Mock(return_value=[])
kunit.main(['run', '--raw_output'], self.linux_source_mock)
assert self.linux_source_mock.build_reconfig.call_count == 1
assert self.linux_source_mock.run_kernel.call_count == 1
for kall in self.print_mock.call_args_list:
assert kall != mock.call(StrContains('Testing complete.'))
assert kall != mock.call(StrContains(' 0 tests run'))
def test_run_timeout(self):
timeout = 3453
kunit.main(['run', '--timeout', str(timeout)], self.linux_source_mock)
assert self.linux_source_mock.build_reconfig.call_count == 1
self.linux_source_mock.run_kernel.assert_called_once_with(timeout=timeout)
self.print_mock.assert_any_call(StrContains('Testing complete.'))
if __name__ == '__main__':
unittest.main()
TAP version 14
# Subtest: sysctl_test
1..8
# sysctl_test_dointvec_null_tbl_data: sysctl_test_dointvec_null_tbl_data passed
ok 1 - sysctl_test_dointvec_null_tbl_data
# sysctl_test_dointvec_table_maxlen_unset: sysctl_test_dointvec_table_maxlen_unset passed
ok 2 - sysctl_test_dointvec_table_maxlen_unset
# sysctl_test_dointvec_table_len_is_zero: sysctl_test_dointvec_table_len_is_zero passed
ok 3 - sysctl_test_dointvec_table_len_is_zero
# sysctl_test_dointvec_table_read_but_position_set: sysctl_test_dointvec_table_read_but_position_set passed
ok 4 - sysctl_test_dointvec_table_read_but_position_set
# sysctl_test_dointvec_happy_single_positive: sysctl_test_dointvec_happy_single_positive passed
ok 5 - sysctl_test_dointvec_happy_single_positive
# sysctl_test_dointvec_happy_single_negative: sysctl_test_dointvec_happy_single_negative passed
ok 6 - sysctl_test_dointvec_happy_single_negative
# sysctl_test_dointvec_single_less_int_min: sysctl_test_dointvec_single_less_int_min passed
ok 7 - sysctl_test_dointvec_single_less_int_min
# sysctl_test_dointvec_single_greater_int_max: sysctl_test_dointvec_single_greater_int_max passed
ok 8 - sysctl_test_dointvec_single_greater_int_max
kunit sysctl_test: all tests passed
ok 1 - sysctl_test
# Subtest: example
1..2
init_suite
# example_simple_test: initializing
# example_simple_test: example_simple_test passed
ok 1 - example_simple_test
# example_mock_test: initializing
# example_mock_test: example_mock_test passed
ok 2 - example_mock_test
kunit example: all tests passed
ok 2 - example
printk: console [tty0] enabled
printk: console [mc-1] enabled
TAP version 14
# Subtest: sysctl_test
1..8
# sysctl_test_dointvec_null_tbl_data: sysctl_test_dointvec_null_tbl_data passed
ok 1 - sysctl_test_dointvec_null_tbl_data
# sysctl_test_dointvec_table_maxlen_unset: sysctl_test_dointvec_table_maxlen_unset passed
ok 2 - sysctl_test_dointvec_table_maxlen_unset
# sysctl_test_dointvec_table_len_is_zero: sysctl_test_dointvec_table_len_is_zero passed
ok 3 - sysctl_test_dointvec_table_len_is_zero
# sysctl_test_dointvec_table_read_but_position_set: sysctl_test_dointvec_table_read_but_position_set passed
ok 4 - sysctl_test_dointvec_table_read_but_position_set
# sysctl_test_dointvec_happy_single_positive: sysctl_test_dointvec_happy_single_positive passed
ok 5 - sysctl_test_dointvec_happy_single_positive
# sysctl_test_dointvec_happy_single_negative: sysctl_test_dointvec_happy_single_negative passed
ok 6 - sysctl_test_dointvec_happy_single_negative
# sysctl_test_dointvec_single_less_int_min: sysctl_test_dointvec_single_less_int_min passed
ok 7 - sysctl_test_dointvec_single_less_int_min
# sysctl_test_dointvec_single_greater_int_max: sysctl_test_dointvec_single_greater_int_max passed
ok 8 - sysctl_test_dointvec_single_greater_int_max
kunit sysctl_test: all tests passed
ok 1 - sysctl_test
# Subtest: example
1..2
init_suite
# example_simple_test: initializing
Stack:
6016f7db 6f81bd30 6f81bdd0 60021450
6024b0e8 60021440 60018bbe 16f81bdc0
00000001 6f81bd30 6f81bd20 6f81bdd0
Call Trace:
[<6016f7db>] ? kunit_try_run_case+0xab/0xf0
[<60021450>] ? set_signals+0x0/0x60
[<60021440>] ? get_signals+0x0/0x10
[<60018bbe>] ? kunit_um_run_try_catch+0x5e/0xc0
[<60021450>] ? set_signals+0x0/0x60
[<60021440>] ? get_signals+0x0/0x10
[<60018bb3>] ? kunit_um_run_try_catch+0x53/0xc0
[<6016f321>] ? kunit_run_case_catch_errors+0x121/0x1a0
[<60018b60>] ? kunit_um_run_try_catch+0x0/0xc0
[<600189e0>] ? kunit_um_throw+0x0/0x180
[<6016f730>] ? kunit_try_run_case+0x0/0xf0
[<6016f600>] ? kunit_catch_run_case+0x0/0x130
[<6016edd0>] ? kunit_vprintk+0x0/0x30
[<6016ece0>] ? kunit_fail+0x0/0x40
[<6016eca0>] ? kunit_abort+0x0/0x40
[<6016ed20>] ? kunit_printk_emit+0x0/0xb0
[<6016f200>] ? kunit_run_case_catch_errors+0x0/0x1a0
[<6016f46e>] ? kunit_run_tests+0xce/0x260
[<6005b390>] ? unregister_console+0x0/0x190
[<60175b70>] ? suite_kunit_initexample_test_suite+0x0/0x20
[<60001cbb>] ? do_one_initcall+0x0/0x197
[<60001d47>] ? do_one_initcall+0x8c/0x197
[<6005cd20>] ? irq_to_desc+0x0/0x30
[<60002005>] ? kernel_init_freeable+0x1b3/0x272
[<6005c5ec>] ? printk+0x0/0x9b
[<601c0086>] ? kernel_init+0x26/0x160
[<60014442>] ? new_thread_handler+0x82/0xc0
# example_simple_test: kunit test case crashed!
# example_simple_test: example_simple_test failed
not ok 1 - example_simple_test
# example_mock_test: initializing
# example_mock_test: example_mock_test passed
ok 2 - example_mock_test
kunit example: one or more tests failed
not ok 2 - example
List of all partitions:
TAP version 14
# Subtest: sysctl_test
1..8
# sysctl_test_dointvec_null_tbl_data: sysctl_test_dointvec_null_tbl_data passed
ok 1 - sysctl_test_dointvec_null_tbl_data
# sysctl_test_dointvec_table_maxlen_unset: sysctl_test_dointvec_table_maxlen_unset passed
ok 2 - sysctl_test_dointvec_table_maxlen_unset
# sysctl_test_dointvec_table_len_is_zero: sysctl_test_dointvec_table_len_is_zero passed
ok 3 - sysctl_test_dointvec_table_len_is_zero
# sysctl_test_dointvec_table_read_but_position_set: sysctl_test_dointvec_table_read_but_position_set passed
ok 4 - sysctl_test_dointvec_table_read_but_position_set
# sysctl_test_dointvec_happy_single_positive: sysctl_test_dointvec_happy_single_positive passed
ok 5 - sysctl_test_dointvec_happy_single_positive
# sysctl_test_dointvec_happy_single_negative: sysctl_test_dointvec_happy_single_negative passed
ok 6 - sysctl_test_dointvec_happy_single_negative
# sysctl_test_dointvec_single_less_int_min: sysctl_test_dointvec_single_less_int_min passed
ok 7 - sysctl_test_dointvec_single_less_int_min
# sysctl_test_dointvec_single_greater_int_max: sysctl_test_dointvec_single_greater_int_max passed
ok 8 - sysctl_test_dointvec_single_greater_int_max
kunit sysctl_test: all tests passed
ok 1 - sysctl_test
# Subtest: example
1..2
init_suite
# example_simple_test: initializing
# example_simple_test: EXPECTATION FAILED at lib/kunit/example-test.c:30
Expected 1 + 1 == 3, but
1 + 1 == 2
3 == 3
# example_simple_test: example_simple_test failed
not ok 1 - example_simple_test
# example_mock_test: initializing
# example_mock_test: example_mock_test passed
ok 2 - example_mock_test
kunit example: one or more tests failed
not ok 2 - example
Core dump limits :
soft - 0
hard - NONE
Checking environment variables for a tempdir...none found
Checking if /dev/shm is on tmpfs...OK
Checking PROT_EXEC mmap in /dev/shm...OK
Adding 24743936 bytes to physical memory to account for exec-shield gap
Linux version 4.12.0-rc3-00010-g7319eb35f493-dirty (brendanhiggins@mactruck.svl.corp.google.com) (gcc version 7.3.0 (Debian 7.3.0-5) ) #29 Thu Mar 15 14:57:19 PDT 2018
Built 1 zonelists in Zone order, mobility grouping on. Total pages: 14038
Kernel command line: root=98:0
PID hash table entries: 256 (order: -1, 2048 bytes)
Dentry cache hash table entries: 8192 (order: 4, 65536 bytes)
Inode-cache hash table entries: 4096 (order: 3, 32768 bytes)
Memory: 27868K/56932K available (1681K kernel code, 480K rwdata, 400K rodata, 89K init, 205K bss, 29064K reserved, 0K cma-reserved)
SLUB: HWalign=64, Order=0-3, MinObjects=0, CPUs=1, Nodes=1
NR_IRQS:15
clocksource: timer: mask: 0xffffffffffffffff max_cycles: 0x1cd42e205, max_idle_ns: 881590404426 ns
Calibrating delay loop... 7384.26 BogoMIPS (lpj=36921344)
pid_max: default: 32768 minimum: 301
Mount-cache hash table entries: 512 (order: 0, 4096 bytes)
Mountpoint-cache hash table entries: 512 (order: 0, 4096 bytes)
Checking that host ptys support output SIGIO...Yes
Checking that host ptys support SIGIO on close...No, enabling workaround
Using 2.6 host AIO
clocksource: jiffies: mask: 0xffffffff max_cycles: 0xffffffff, max_idle_ns: 19112604462750000 ns
futex hash table entries: 256 (order: 0, 6144 bytes)
clocksource: Switched to clocksource timer
console [stderr0] disabled
mconsole (version 2) initialized on /usr/local/google/home/brendanhiggins/.uml/6Ijecl/mconsole
Checking host MADV_REMOVE support...OK
workingset: timestamp_bits=62 max_order=13 bucket_order=0
Block layer SCSI generic (bsg) driver version 0.4 loaded (major 254)
io scheduler noop registered
io scheduler deadline registered
io scheduler cfq registered (default)
io scheduler mq-deadline registered
io scheduler kyber registered
Initialized stdio console driver
Using a channel type which is configured out of UML
setup_one_line failed for device 1 : Configuration failed
Using a channel type which is configured out of UML
setup_one_line failed for device 2 : Configuration failed
Using a channel type which is configured out of UML
setup_one_line failed for device 3 : Configuration failed
Using a channel type which is configured out of UML
setup_one_line failed for device 4 : Configuration failed
Using a channel type which is configured out of UML
setup_one_line failed for device 5 : Configuration failed
Using a channel type which is configured out of UML
setup_one_line failed for device 6 : Configuration failed
Using a channel type which is configured out of UML
setup_one_line failed for device 7 : Configuration failed
Using a channel type which is configured out of UML
setup_one_line failed for device 8 : Configuration failed
Using a channel type which is configured out of UML
setup_one_line failed for device 9 : Configuration failed
Using a channel type which is configured out of UML
setup_one_line failed for device 10 : Configuration failed
Using a channel type which is configured out of UML
setup_one_line failed for device 11 : Configuration failed
Using a channel type which is configured out of UML
setup_one_line failed for device 12 : Configuration failed
Using a channel type which is configured out of UML
setup_one_line failed for device 13 : Configuration failed
Using a channel type which is configured out of UML
setup_one_line failed for device 14 : Configuration failed
Using a channel type which is configured out of UML
setup_one_line failed for device 15 : Configuration failed
Console initialized on /dev/tty0
console [tty0] enabled
console [mc-1] enabled
List of all partitions:
No filesystem could mount root, tried:
Kernel panic - not syncing: VFS: Unable to mount root fs on unknown-block(98,0)
Linux version 5.1.0-rc7-00061-g04652f1cb4aa0 (brendanhiggins@mactruck.svl.corp.google.com) (gcc version 7.3.0 (Debian 7.3.0-18)) #163 Wed May 8 16:18:20 PDT 2019
Built 1 zonelists, mobility grouping on. Total pages: 69906
Kernel command line: mem=256M root=98:0
Dentry cache hash table entries: 65536 (order: 7, 524288 bytes)
Inode-cache hash table entries: 32768 (order: 6, 262144 bytes)
Memory: 254468K/283500K available (1734K kernel code, 489K rwdata, 396K rodata, 85K init, 216K bss, 29032K reserved, 0K cma-reserved)
SLUB: HWalign=64, Order=0-3, MinObjects=0, CPUs=1, Nodes=1
NR_IRQS: 15
clocksource: timer: mask: 0xffffffffffffffff max_cycles: 0x1cd42e205, max_idle_ns: 881590404426 ns
------------[ cut here ]------------
WARNING: CPU: 0 PID: 0 at kernel/time/clockevents.c:458 clockevents_register_device+0x143/0x160
posix-timer cpumask == cpu_all_mask, using cpu_possible_mask instead
CPU: 0 PID: 0 Comm: swapper Not tainted 5.1.0-rc7-00061-g04652f1cb4aa0 #163
Stack:
6005cc00 60233e18 60233e60 60233e18
60233e60 00000009 00000000 6002a1b4
1ca00000000 60071c23 60233e78 100000000000062
Call Trace:
[<600214c5>] ? os_is_signal_stack+0x15/0x30
[<6005c5ec>] ? printk+0x0/0x9b
[<6001597e>] ? show_stack+0xbe/0x1c0
[<6005cc00>] ? __printk_safe_exit+0x0/0x40
[<6002a1b4>] ? __warn+0x144/0x170
[<60071c23>] ? clockevents_register_device+0x143/0x160
[<60021440>] ? get_signals+0x0/0x10
[<6005c5ec>] ? printk+0x0/0x9b
[<6002a27b>] ? warn_slowpath_fmt+0x9b/0xb0
[<6005c5ec>] ? printk+0x0/0x9b
[<6002a1e0>] ? warn_slowpath_fmt+0x0/0xb0
[<6005c5ec>] ? printk+0x0/0x9b
[<60021440>] ? get_signals+0x0/0x10
[<600213f0>] ? block_signals+0x0/0x20
[<60071c23>] ? clockevents_register_device+0x143/0x160
[<60021440>] ? get_signals+0x0/0x10
[<600213f0>] ? block_signals+0x0/0x20
[<6005c5ec>] ? printk+0x0/0x9b
[<60001bc8>] ? start_kernel+0x477/0x56a
[<600036f1>] ? start_kernel_proc+0x46/0x4d
[<60014442>] ? new_thread_handler+0x82/0xc0
random: get_random_bytes called from print_oops_end_marker+0x4c/0x60 with crng_init=0
---[ end trace c83434852b3702d3 ]---
Calibrating delay loop... 6958.28 BogoMIPS (lpj=34791424)
pid_max: default: 32768 minimum: 301
Mount-cache hash table entries: 1024 (order: 1, 8192 bytes)
Mountpoint-cache hash table entries: 1024 (order: 1, 8192 bytes)
*** VALIDATE proc ***
Checking that host ptys support output SIGIO...Yes
Checking that host ptys support SIGIO on close...No, enabling workaround
clocksource: jiffies: mask: 0xffffffff max_cycles: 0xffffffff, max_idle_ns: 19112604462750000 ns
futex hash table entries: 256 (order: 0, 6144 bytes)
clocksource: Switched to clocksource timer
printk: console [stderr0] disabled
mconsole (version 2) initialized on /usr/local/google/home/brendanhiggins/.uml/VZ2qMm/mconsole
Checking host MADV_REMOVE support...OK
workingset: timestamp_bits=62 max_order=16 bucket_order=0
Block layer SCSI generic (bsg) driver version 0.4 loaded (major 254)
io scheduler mq-deadline registered
io scheduler kyber registered
Initialized stdio console driver
Using a channel type which is configured out of UML
setup_one_line failed for device 1 : Configuration failed
Using a channel type which is configured out of UML
setup_one_line failed for device 2 : Configuration failed
Using a channel type which is configured out of UML
setup_one_line failed for device 3 : Configuration failed
Using a channel type which is configured out of UML
setup_one_line failed for device 4 : Configuration failed
Using a channel type which is configured out of UML
setup_one_line failed for device 5 : Configuration failed
Using a channel type which is configured out of UML
setup_one_line failed for device 6 : Configuration failed
Using a channel type which is configured out of UML
setup_one_line failed for device 7 : Configuration failed
Using a channel type which is configured out of UML
setup_one_line failed for device 8 : Configuration failed
Using a channel type which is configured out of UML
setup_one_line failed for device 9 : Configuration failed
Using a channel type which is configured out of UML
setup_one_line failed for device 10 : Configuration failed
Using a channel type which is configured out of UML
setup_one_line failed for device 11 : Configuration failed
Using a channel type which is configured out of UML
setup_one_line failed for device 12 : Configuration failed
Using a channel type which is configured out of UML
setup_one_line failed for device 13 : Configuration failed
Using a channel type which is configured out of UML
setup_one_line failed for device 14 : Configuration failed
Using a channel type which is configured out of UML
setup_one_line failed for device 15 : Configuration failed
Console initialized on /dev/tty0
printk: console [tty0] enabled
printk: console [mc-1] enabled
TAP version 14
# Subtest: example
1..2
init_suite
# example_simple_test: initializing
# example_simple_test: example_simple_test passed
ok 1 - example_simple_test
# example_mock_test: initializing
# example_mock_test: example_mock_test passed
ok 2 - example_mock_test
kunit example: all tests passed
ok 1 - example
List of all partitions:
#
# Automatically generated file; DO NOT EDIT.
# User Mode Linux/x86 4.12.0-rc3 Kernel Configuration
#
CONFIG_UML=y
CONFIG_MMU=y
#
# UML-specific options
#
#
# Host processor type and features
#
# CONFIG_MK8 is not set
CONFIG_TEST=y
CONFIG_EXAMPLE_TEST=y
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment