Commit e2cdf640 authored by Ken Wang's avatar Ken Wang Committed by Alex Deucher

drm/amdgpu: add display controller implementation for si v10

v4: rebase fixups
v5: more fixes based on dce8 code
v6: squash in dmif offset fix
v7: rebase fixups
v8: rebase fixups, drop some debugging remnants
v9: fix BE build
v10: include Marek's tiling fixes, add support for
     page_flip_target, set MASTER_UDPATE_MODE=0,
     fix cursor
Acked-by: default avatarChristian König <christian.koenig@amd.com>
Signed-off-by: default avatarKen Wang <Qingqing.Wang@amd.com>
Signed-off-by: default avatarAlex Deucher <alexander.deucher@amd.com>
parent 27ae1064
/*
* Copyright 2015 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include "drmP.h"
#include "amdgpu.h"
#include "amdgpu_pm.h"
#include "amdgpu_i2c.h"
#include "atom.h"
#include "amdgpu_atombios.h"
#include "atombios_crtc.h"
#include "atombios_encoders.h"
#include "amdgpu_pll.h"
#include "amdgpu_connectors.h"
#include "si/si_reg.h"
#include "si/sid.h"
static void dce_v6_0_set_display_funcs(struct amdgpu_device *adev);
static void dce_v6_0_set_irq_funcs(struct amdgpu_device *adev);
static const u32 crtc_offsets[6] =
{
SI_CRTC0_REGISTER_OFFSET,
SI_CRTC1_REGISTER_OFFSET,
SI_CRTC2_REGISTER_OFFSET,
SI_CRTC3_REGISTER_OFFSET,
SI_CRTC4_REGISTER_OFFSET,
SI_CRTC5_REGISTER_OFFSET
};
static const uint32_t dig_offsets[] = {
SI_CRTC0_REGISTER_OFFSET,
SI_CRTC1_REGISTER_OFFSET,
SI_CRTC2_REGISTER_OFFSET,
SI_CRTC3_REGISTER_OFFSET,
SI_CRTC4_REGISTER_OFFSET,
SI_CRTC5_REGISTER_OFFSET,
(0x13830 - 0x7030) >> 2,
};
static const struct {
uint32_t reg;
uint32_t vblank;
uint32_t vline;
uint32_t hpd;
} interrupt_status_offsets[6] = { {
.reg = DISP_INTERRUPT_STATUS,
.vblank = DISP_INTERRUPT_STATUS__LB_D1_VBLANK_INTERRUPT_MASK,
.vline = DISP_INTERRUPT_STATUS__LB_D1_VLINE_INTERRUPT_MASK,
.hpd = DISP_INTERRUPT_STATUS__DC_HPD1_INTERRUPT_MASK
}, {
.reg = DISP_INTERRUPT_STATUS_CONTINUE,
.vblank = DISP_INTERRUPT_STATUS_CONTINUE__LB_D2_VBLANK_INTERRUPT_MASK,
.vline = DISP_INTERRUPT_STATUS_CONTINUE__LB_D2_VLINE_INTERRUPT_MASK,
.hpd = DISP_INTERRUPT_STATUS_CONTINUE__DC_HPD2_INTERRUPT_MASK
}, {
.reg = DISP_INTERRUPT_STATUS_CONTINUE2,
.vblank = DISP_INTERRUPT_STATUS_CONTINUE2__LB_D3_VBLANK_INTERRUPT_MASK,
.vline = DISP_INTERRUPT_STATUS_CONTINUE2__LB_D3_VLINE_INTERRUPT_MASK,
.hpd = DISP_INTERRUPT_STATUS_CONTINUE2__DC_HPD3_INTERRUPT_MASK
}, {
.reg = DISP_INTERRUPT_STATUS_CONTINUE3,
.vblank = DISP_INTERRUPT_STATUS_CONTINUE3__LB_D4_VBLANK_INTERRUPT_MASK,
.vline = DISP_INTERRUPT_STATUS_CONTINUE3__LB_D4_VLINE_INTERRUPT_MASK,
.hpd = DISP_INTERRUPT_STATUS_CONTINUE3__DC_HPD4_INTERRUPT_MASK
}, {
.reg = DISP_INTERRUPT_STATUS_CONTINUE4,
.vblank = DISP_INTERRUPT_STATUS_CONTINUE4__LB_D5_VBLANK_INTERRUPT_MASK,
.vline = DISP_INTERRUPT_STATUS_CONTINUE4__LB_D5_VLINE_INTERRUPT_MASK,
.hpd = DISP_INTERRUPT_STATUS_CONTINUE4__DC_HPD5_INTERRUPT_MASK
}, {
.reg = DISP_INTERRUPT_STATUS_CONTINUE5,
.vblank = DISP_INTERRUPT_STATUS_CONTINUE5__LB_D6_VBLANK_INTERRUPT_MASK,
.vline = DISP_INTERRUPT_STATUS_CONTINUE5__LB_D6_VLINE_INTERRUPT_MASK,
.hpd = DISP_INTERRUPT_STATUS_CONTINUE5__DC_HPD6_INTERRUPT_MASK
} };
static const uint32_t hpd_int_control_offsets[6] = {
DC_HPD1_INT_CONTROL,
DC_HPD2_INT_CONTROL,
DC_HPD3_INT_CONTROL,
DC_HPD4_INT_CONTROL,
DC_HPD5_INT_CONTROL,
DC_HPD6_INT_CONTROL,
};
static u32 dce_v6_0_audio_endpt_rreg(struct amdgpu_device *adev,
u32 block_offset, u32 reg)
{
DRM_INFO("xxxx: dce_v6_0_audio_endpt_rreg ----no impl!!!!\n");
return 0;
}
static void dce_v6_0_audio_endpt_wreg(struct amdgpu_device *adev,
u32 block_offset, u32 reg, u32 v)
{
DRM_INFO("xxxx: dce_v6_0_audio_endpt_wreg ----no impl!!!!\n");
}
static bool dce_v6_0_is_in_vblank(struct amdgpu_device *adev, int crtc)
{
if (RREG32(EVERGREEN_CRTC_STATUS + crtc_offsets[crtc]) & EVERGREEN_CRTC_V_BLANK)
return true;
else
return false;
}
static bool dce_v6_0_is_counter_moving(struct amdgpu_device *adev, int crtc)
{
u32 pos1, pos2;
pos1 = RREG32(EVERGREEN_CRTC_STATUS_POSITION + crtc_offsets[crtc]);
pos2 = RREG32(EVERGREEN_CRTC_STATUS_POSITION + crtc_offsets[crtc]);
if (pos1 != pos2)
return true;
else
return false;
}
/**
* dce_v6_0_wait_for_vblank - vblank wait asic callback.
*
* @crtc: crtc to wait for vblank on
*
* Wait for vblank on the requested crtc (evergreen+).
*/
static void dce_v6_0_vblank_wait(struct amdgpu_device *adev, int crtc)
{
unsigned i = 0;
if (crtc >= adev->mode_info.num_crtc)
return;
if (!(RREG32(EVERGREEN_CRTC_CONTROL + crtc_offsets[crtc]) & EVERGREEN_CRTC_MASTER_EN))
return;
/* depending on when we hit vblank, we may be close to active; if so,
* wait for another frame.
*/
while (dce_v6_0_is_in_vblank(adev, crtc)) {
if (i++ % 100 == 0) {
if (!dce_v6_0_is_counter_moving(adev, crtc))
break;
}
}
while (!dce_v6_0_is_in_vblank(adev, crtc)) {
if (i++ % 100 == 0) {
if (!dce_v6_0_is_counter_moving(adev, crtc))
break;
}
}
}
static u32 dce_v6_0_vblank_get_counter(struct amdgpu_device *adev, int crtc)
{
if (crtc >= adev->mode_info.num_crtc)
return 0;
else
return RREG32(CRTC_STATUS_FRAME_COUNT + crtc_offsets[crtc]);
}
static void dce_v6_0_pageflip_interrupt_init(struct amdgpu_device *adev)
{
unsigned i;
/* Enable pflip interrupts */
for (i = 0; i <= adev->mode_info.num_crtc; i++)
amdgpu_irq_get(adev, &adev->pageflip_irq, i);
}
static void dce_v6_0_pageflip_interrupt_fini(struct amdgpu_device *adev)
{
unsigned i;
/* Disable pflip interrupts */
for (i = 0; i <= adev->mode_info.num_crtc; i++)
amdgpu_irq_put(adev, &adev->pageflip_irq, i);
}
/**
* dce_v6_0_page_flip - pageflip callback.
*
* @adev: amdgpu_device pointer
* @crtc_id: crtc to cleanup pageflip on
* @crtc_base: new address of the crtc (GPU MC address)
*
* Does the actual pageflip (evergreen+).
* During vblank we take the crtc lock and wait for the update_pending
* bit to go high, when it does, we release the lock, and allow the
* double buffered update to take place.
* Returns the current update pending status.
*/
static void dce_v6_0_page_flip(struct amdgpu_device *adev,
int crtc_id, u64 crtc_base, bool async)
{
struct amdgpu_crtc *amdgpu_crtc = adev->mode_info.crtcs[crtc_id];
/* flip at hsync for async, default is vsync */
WREG32(EVERGREEN_GRPH_FLIP_CONTROL + amdgpu_crtc->crtc_offset, async ?
EVERGREEN_GRPH_SURFACE_UPDATE_H_RETRACE_EN : 0);
/* update the scanout addresses */
WREG32(EVERGREEN_GRPH_PRIMARY_SURFACE_ADDRESS_HIGH + amdgpu_crtc->crtc_offset,
upper_32_bits(crtc_base));
WREG32(EVERGREEN_GRPH_PRIMARY_SURFACE_ADDRESS + amdgpu_crtc->crtc_offset,
(u32)crtc_base);
/* post the write */
RREG32(EVERGREEN_GRPH_PRIMARY_SURFACE_ADDRESS + amdgpu_crtc->crtc_offset);
}
static int dce_v6_0_crtc_get_scanoutpos(struct amdgpu_device *adev, int crtc,
u32 *vbl, u32 *position)
{
if ((crtc < 0) || (crtc >= adev->mode_info.num_crtc))
return -EINVAL;
*vbl = RREG32(EVERGREEN_CRTC_V_BLANK_START_END + crtc_offsets[crtc]);
*position = RREG32(EVERGREEN_CRTC_STATUS_POSITION + crtc_offsets[crtc]);
return 0;
}
/**
* dce_v6_0_hpd_sense - hpd sense callback.
*
* @adev: amdgpu_device pointer
* @hpd: hpd (hotplug detect) pin
*
* Checks if a digital monitor is connected (evergreen+).
* Returns true if connected, false if not connected.
*/
static bool dce_v6_0_hpd_sense(struct amdgpu_device *adev,
enum amdgpu_hpd_id hpd)
{
bool connected = false;
switch (hpd) {
case AMDGPU_HPD_1:
if (RREG32(DC_HPD1_INT_STATUS) & DC_HPDx_SENSE)
connected = true;
break;
case AMDGPU_HPD_2:
if (RREG32(DC_HPD2_INT_STATUS) & DC_HPDx_SENSE)
connected = true;
break;
case AMDGPU_HPD_3:
if (RREG32(DC_HPD3_INT_STATUS) & DC_HPDx_SENSE)
connected = true;
break;
case AMDGPU_HPD_4:
if (RREG32(DC_HPD4_INT_STATUS) & DC_HPDx_SENSE)
connected = true;
break;
case AMDGPU_HPD_5:
if (RREG32(DC_HPD5_INT_STATUS) & DC_HPDx_SENSE)
connected = true;
break;
case AMDGPU_HPD_6:
if (RREG32(DC_HPD6_INT_STATUS) & DC_HPDx_SENSE)
connected = true;
break;
default:
break;
}
return connected;
}
/**
* dce_v6_0_hpd_set_polarity - hpd set polarity callback.
*
* @adev: amdgpu_device pointer
* @hpd: hpd (hotplug detect) pin
*
* Set the polarity of the hpd pin (evergreen+).
*/
static void dce_v6_0_hpd_set_polarity(struct amdgpu_device *adev,
enum amdgpu_hpd_id hpd)
{
u32 tmp;
bool connected = dce_v6_0_hpd_sense(adev, hpd);
switch (hpd) {
case AMDGPU_HPD_1:
tmp = RREG32(DC_HPD1_INT_CONTROL);
if (connected)
tmp &= ~DC_HPDx_INT_POLARITY;
else
tmp |= DC_HPDx_INT_POLARITY;
WREG32(DC_HPD1_INT_CONTROL, tmp);
break;
case AMDGPU_HPD_2:
tmp = RREG32(DC_HPD2_INT_CONTROL);
if (connected)
tmp &= ~DC_HPDx_INT_POLARITY;
else
tmp |= DC_HPDx_INT_POLARITY;
WREG32(DC_HPD2_INT_CONTROL, tmp);
break;
case AMDGPU_HPD_3:
tmp = RREG32(DC_HPD3_INT_CONTROL);
if (connected)
tmp &= ~DC_HPDx_INT_POLARITY;
else
tmp |= DC_HPDx_INT_POLARITY;
WREG32(DC_HPD3_INT_CONTROL, tmp);
break;
case AMDGPU_HPD_4:
tmp = RREG32(DC_HPD4_INT_CONTROL);
if (connected)
tmp &= ~DC_HPDx_INT_POLARITY;
else
tmp |= DC_HPDx_INT_POLARITY;
WREG32(DC_HPD4_INT_CONTROL, tmp);
break;
case AMDGPU_HPD_5:
tmp = RREG32(DC_HPD5_INT_CONTROL);
if (connected)
tmp &= ~DC_HPDx_INT_POLARITY;
else
tmp |= DC_HPDx_INT_POLARITY;
WREG32(DC_HPD5_INT_CONTROL, tmp);
break;
case AMDGPU_HPD_6:
tmp = RREG32(DC_HPD6_INT_CONTROL);
if (connected)
tmp &= ~DC_HPDx_INT_POLARITY;
else
tmp |= DC_HPDx_INT_POLARITY;
WREG32(DC_HPD6_INT_CONTROL, tmp);
break;
default:
break;
}
}
/**
* dce_v6_0_hpd_init - hpd setup callback.
*
* @adev: amdgpu_device pointer
*
* Setup the hpd pins used by the card (evergreen+).
* Enable the pin, set the polarity, and enable the hpd interrupts.
*/
static void dce_v6_0_hpd_init(struct amdgpu_device *adev)
{
struct drm_device *dev = adev->ddev;
struct drm_connector *connector;
u32 tmp = DC_HPDx_CONNECTION_TIMER(0x9c4) |
DC_HPDx_RX_INT_TIMER(0xfa) | DC_HPDx_EN;
list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
struct amdgpu_connector *amdgpu_connector = to_amdgpu_connector(connector);
if (connector->connector_type == DRM_MODE_CONNECTOR_eDP ||
connector->connector_type == DRM_MODE_CONNECTOR_LVDS) {
/* don't try to enable hpd on eDP or LVDS avoid breaking the
* aux dp channel on imac and help (but not completely fix)
* https://bugzilla.redhat.com/show_bug.cgi?id=726143
* also avoid interrupt storms during dpms.
*/
continue;
}
switch (amdgpu_connector->hpd.hpd) {
case AMDGPU_HPD_1:
WREG32(DC_HPD1_CONTROL, tmp);
break;
case AMDGPU_HPD_2:
WREG32(DC_HPD2_CONTROL, tmp);
break;
case AMDGPU_HPD_3:
WREG32(DC_HPD3_CONTROL, tmp);
break;
case AMDGPU_HPD_4:
WREG32(DC_HPD4_CONTROL, tmp);
break;
case AMDGPU_HPD_5:
WREG32(DC_HPD5_CONTROL, tmp);
break;
case AMDGPU_HPD_6:
WREG32(DC_HPD6_CONTROL, tmp);
break;
default:
break;
}
dce_v6_0_hpd_set_polarity(adev, amdgpu_connector->hpd.hpd);
amdgpu_irq_get(adev, &adev->hpd_irq, amdgpu_connector->hpd.hpd);
}
}
/**
* dce_v6_0_hpd_fini - hpd tear down callback.
*
* @adev: amdgpu_device pointer
*
* Tear down the hpd pins used by the card (evergreen+).
* Disable the hpd interrupts.
*/
static void dce_v6_0_hpd_fini(struct amdgpu_device *adev)
{
struct drm_device *dev = adev->ddev;
struct drm_connector *connector;
list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
struct amdgpu_connector *amdgpu_connector = to_amdgpu_connector(connector);
switch (amdgpu_connector->hpd.hpd) {
case AMDGPU_HPD_1:
WREG32(DC_HPD1_CONTROL, 0);
break;
case AMDGPU_HPD_2:
WREG32(DC_HPD2_CONTROL, 0);
break;
case AMDGPU_HPD_3:
WREG32(DC_HPD3_CONTROL, 0);
break;
case AMDGPU_HPD_4:
WREG32(DC_HPD4_CONTROL, 0);
break;
case AMDGPU_HPD_5:
WREG32(DC_HPD5_CONTROL, 0);
break;
case AMDGPU_HPD_6:
WREG32(DC_HPD6_CONTROL, 0);
break;
default:
break;
}
amdgpu_irq_put(adev, &adev->hpd_irq, amdgpu_connector->hpd.hpd);
}
}
static u32 dce_v6_0_hpd_get_gpio_reg(struct amdgpu_device *adev)
{
return SI_DC_GPIO_HPD_A;
}
static bool dce_v6_0_is_display_hung(struct amdgpu_device *adev)
{
DRM_INFO("xxxx: dce_v6_0_is_display_hung ----no imp!!!!!\n");
return true;
}
static u32 evergreen_get_vblank_counter(struct amdgpu_device* adev, int crtc)
{
if (crtc >= adev->mode_info.num_crtc)
return 0;
else
return RREG32(CRTC_STATUS_FRAME_COUNT + crtc_offsets[crtc]);
}
static void dce_v6_0_stop_mc_access(struct amdgpu_device *adev,
struct amdgpu_mode_mc_save *save)
{
u32 crtc_enabled, tmp, frame_count;
int i, j;
save->vga_render_control = RREG32(VGA_RENDER_CONTROL);
save->vga_hdp_control = RREG32(VGA_HDP_CONTROL);
/* disable VGA render */
WREG32(VGA_RENDER_CONTROL, 0);
/* blank the display controllers */
for (i = 0; i < adev->mode_info.num_crtc; i++) {
crtc_enabled = RREG32(EVERGREEN_CRTC_CONTROL + crtc_offsets[i]) & EVERGREEN_CRTC_MASTER_EN;
if (crtc_enabled) {
save->crtc_enabled[i] = true;
tmp = RREG32(EVERGREEN_CRTC_BLANK_CONTROL + crtc_offsets[i]);
if (!(tmp & EVERGREEN_CRTC_BLANK_DATA_EN)) {
dce_v6_0_vblank_wait(adev, i);
WREG32(EVERGREEN_CRTC_UPDATE_LOCK + crtc_offsets[i], 1);
tmp |= EVERGREEN_CRTC_BLANK_DATA_EN;
WREG32(EVERGREEN_CRTC_BLANK_CONTROL + crtc_offsets[i], tmp);
WREG32(EVERGREEN_CRTC_UPDATE_LOCK + crtc_offsets[i], 0);
}
/* wait for the next frame */
frame_count = evergreen_get_vblank_counter(adev, i);
for (j = 0; j < adev->usec_timeout; j++) {
if (evergreen_get_vblank_counter(adev, i) != frame_count)
break;
udelay(1);
}
/* XXX this is a hack to avoid strange behavior with EFI on certain systems */
WREG32(EVERGREEN_CRTC_UPDATE_LOCK + crtc_offsets[i], 1);
tmp = RREG32(EVERGREEN_CRTC_CONTROL + crtc_offsets[i]);
tmp &= ~EVERGREEN_CRTC_MASTER_EN;
WREG32(EVERGREEN_CRTC_CONTROL + crtc_offsets[i], tmp);
WREG32(EVERGREEN_CRTC_UPDATE_LOCK + crtc_offsets[i], 0);
save->crtc_enabled[i] = false;
/* ***** */
} else {
save->crtc_enabled[i] = false;
}
}
}
static void dce_v6_0_resume_mc_access(struct amdgpu_device *adev,
struct amdgpu_mode_mc_save *save)
{
u32 tmp;
int i, j;
/* update crtc base addresses */
for (i = 0; i < adev->mode_info.num_crtc; i++) {
WREG32(EVERGREEN_GRPH_PRIMARY_SURFACE_ADDRESS_HIGH + crtc_offsets[i],
upper_32_bits(adev->mc.vram_start));
WREG32(EVERGREEN_GRPH_SECONDARY_SURFACE_ADDRESS_HIGH + crtc_offsets[i],
upper_32_bits(adev->mc.vram_start));
WREG32(EVERGREEN_GRPH_PRIMARY_SURFACE_ADDRESS + crtc_offsets[i],
(u32)adev->mc.vram_start);
WREG32(EVERGREEN_GRPH_SECONDARY_SURFACE_ADDRESS + crtc_offsets[i],
(u32)adev->mc.vram_start);
}
WREG32(EVERGREEN_VGA_MEMORY_BASE_ADDRESS_HIGH, upper_32_bits(adev->mc.vram_start));
WREG32(EVERGREEN_VGA_MEMORY_BASE_ADDRESS, (u32)adev->mc.vram_start);
/* unlock regs and wait for update */
for (i = 0; i < adev->mode_info.num_crtc; i++) {
if (save->crtc_enabled[i]) {
tmp = RREG32(EVERGREEN_MASTER_UPDATE_MODE + crtc_offsets[i]);
if ((tmp & 0x7) != 3) {
tmp &= ~0x7;
tmp |= 0x3;
WREG32(EVERGREEN_MASTER_UPDATE_MODE + crtc_offsets[i], tmp);
}
tmp = RREG32(EVERGREEN_GRPH_UPDATE + crtc_offsets[i]);
if (tmp & EVERGREEN_GRPH_UPDATE_LOCK) {
tmp &= ~EVERGREEN_GRPH_UPDATE_LOCK;
WREG32(EVERGREEN_GRPH_UPDATE + crtc_offsets[i], tmp);
}
tmp = RREG32(EVERGREEN_MASTER_UPDATE_LOCK + crtc_offsets[i]);
if (tmp & 1) {
tmp &= ~1;
WREG32(EVERGREEN_MASTER_UPDATE_LOCK + crtc_offsets[i], tmp);
}
for (j = 0; j < adev->usec_timeout; j++) {
tmp = RREG32(EVERGREEN_GRPH_UPDATE + crtc_offsets[i]);
if ((tmp & EVERGREEN_GRPH_SURFACE_UPDATE_PENDING) == 0)
break;
udelay(1);
}
}
}
/* Unlock vga access */
WREG32(VGA_HDP_CONTROL, save->vga_hdp_control);
mdelay(1);
WREG32(VGA_RENDER_CONTROL, save->vga_render_control);
}
static void dce_v6_0_set_vga_render_state(struct amdgpu_device *adev,
bool render)
{
if (!render)
WREG32(R_000300_VGA_RENDER_CONTROL,
RREG32(R_000300_VGA_RENDER_CONTROL) & C_000300_VGA_VSTATUS_CNTL);
}
static void dce_v6_0_program_fmt(struct drm_encoder *encoder)
{
struct drm_device *dev = encoder->dev;
struct amdgpu_device *adev = dev->dev_private;
struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder);
struct drm_connector *connector = amdgpu_get_connector_for_encoder(encoder);
struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(encoder->crtc);
int bpc = 0;
u32 tmp = 0;
enum amdgpu_connector_dither dither = AMDGPU_FMT_DITHER_DISABLE;
if (connector) {
struct amdgpu_connector *amdgpu_connector = to_amdgpu_connector(connector);
bpc = amdgpu_connector_get_monitor_bpc(connector);
dither = amdgpu_connector->dither;
}
/* LVDS FMT is set up by atom */
if (amdgpu_encoder->devices & ATOM_DEVICE_LCD_SUPPORT)
return;
if (bpc == 0)
return;
switch (bpc) {
case 6:
if (dither == AMDGPU_FMT_DITHER_ENABLE)
/* XXX sort out optimal dither settings */
tmp |= (FMT_FRAME_RANDOM_ENABLE | FMT_HIGHPASS_RANDOM_ENABLE |
FMT_SPATIAL_DITHER_EN);
else
tmp |= FMT_TRUNCATE_EN;
break;
case 8:
if (dither == AMDGPU_FMT_DITHER_ENABLE)
/* XXX sort out optimal dither settings */
tmp |= (FMT_FRAME_RANDOM_ENABLE | FMT_HIGHPASS_RANDOM_ENABLE |
FMT_RGB_RANDOM_ENABLE |
FMT_SPATIAL_DITHER_EN | FMT_SPATIAL_DITHER_DEPTH);
else
tmp |= (FMT_TRUNCATE_EN | FMT_TRUNCATE_DEPTH);
break;
case 10:
default:
/* not needed */
break;
}
WREG32(FMT_BIT_DEPTH_CONTROL + amdgpu_crtc->crtc_offset, tmp);
}
/**
* cik_get_number_of_dram_channels - get the number of dram channels
*
* @adev: amdgpu_device pointer
*
* Look up the number of video ram channels (CIK).
* Used for display watermark bandwidth calculations
* Returns the number of dram channels
*/
static u32 si_get_number_of_dram_channels(struct amdgpu_device *adev)
{
u32 tmp = RREG32(MC_SHARED_CHMAP);
switch ((tmp & MC_SHARED_CHMAP__NOOFCHAN_MASK) >> MC_SHARED_CHMAP__NOOFCHAN__SHIFT) {
case 0:
default:
return 1;
case 1:
return 2;
case 2:
return 4;
case 3:
return 8;
case 4:
return 3;
case 5:
return 6;
case 6:
return 10;
case 7:
return 12;
case 8:
return 16;
}
}
struct dce6_wm_params {
u32 dram_channels; /* number of dram channels */
u32 yclk; /* bandwidth per dram data pin in kHz */
u32 sclk; /* engine clock in kHz */
u32 disp_clk; /* display clock in kHz */
u32 src_width; /* viewport width */
u32 active_time; /* active display time in ns */
u32 blank_time; /* blank time in ns */
bool interlaced; /* mode is interlaced */
fixed20_12 vsc; /* vertical scale ratio */
u32 num_heads; /* number of active crtcs */
u32 bytes_per_pixel; /* bytes per pixel display + overlay */
u32 lb_size; /* line buffer allocated to pipe */
u32 vtaps; /* vertical scaler taps */
};
/**
* dce_v6_0_dram_bandwidth - get the dram bandwidth
*
* @wm: watermark calculation data
*
* Calculate the raw dram bandwidth (CIK).
* Used for display watermark bandwidth calculations
* Returns the dram bandwidth in MBytes/s
*/
static u32 dce_v6_0_dram_bandwidth(struct dce6_wm_params *wm)
{
/* Calculate raw DRAM Bandwidth */
fixed20_12 dram_efficiency; /* 0.7 */
fixed20_12 yclk, dram_channels, bandwidth;
fixed20_12 a;
a.full = dfixed_const(1000);
yclk.full = dfixed_const(wm->yclk);
yclk.full = dfixed_div(yclk, a);
dram_channels.full = dfixed_const(wm->dram_channels * 4);
a.full = dfixed_const(10);
dram_efficiency.full = dfixed_const(7);
dram_efficiency.full = dfixed_div(dram_efficiency, a);
bandwidth.full = dfixed_mul(dram_channels, yclk);
bandwidth.full = dfixed_mul(bandwidth, dram_efficiency);
return dfixed_trunc(bandwidth);
}
/**
* dce_v6_0_dram_bandwidth_for_display - get the dram bandwidth for display
*
* @wm: watermark calculation data
*
* Calculate the dram bandwidth used for display (CIK).
* Used for display watermark bandwidth calculations
* Returns the dram bandwidth for display in MBytes/s
*/
static u32 dce_v6_0_dram_bandwidth_for_display(struct dce6_wm_params *wm)
{
/* Calculate DRAM Bandwidth and the part allocated to display. */
fixed20_12 disp_dram_allocation; /* 0.3 to 0.7 */
fixed20_12 yclk, dram_channels, bandwidth;
fixed20_12 a;
a.full = dfixed_const(1000);
yclk.full = dfixed_const(wm->yclk);
yclk.full = dfixed_div(yclk, a);
dram_channels.full = dfixed_const(wm->dram_channels * 4);
a.full = dfixed_const(10);
disp_dram_allocation.full = dfixed_const(3); /* XXX worse case value 0.3 */
disp_dram_allocation.full = dfixed_div(disp_dram_allocation, a);
bandwidth.full = dfixed_mul(dram_channels, yclk);
bandwidth.full = dfixed_mul(bandwidth, disp_dram_allocation);
return dfixed_trunc(bandwidth);
}
/**
* dce_v6_0_data_return_bandwidth - get the data return bandwidth
*
* @wm: watermark calculation data
*
* Calculate the data return bandwidth used for display (CIK).
* Used for display watermark bandwidth calculations
* Returns the data return bandwidth in MBytes/s
*/
static u32 dce_v6_0_data_return_bandwidth(struct dce6_wm_params *wm)
{
/* Calculate the display Data return Bandwidth */
fixed20_12 return_efficiency; /* 0.8 */
fixed20_12 sclk, bandwidth;
fixed20_12 a;
a.full = dfixed_const(1000);
sclk.full = dfixed_const(wm->sclk);
sclk.full = dfixed_div(sclk, a);
a.full = dfixed_const(10);
return_efficiency.full = dfixed_const(8);
return_efficiency.full = dfixed_div(return_efficiency, a);
a.full = dfixed_const(32);
bandwidth.full = dfixed_mul(a, sclk);
bandwidth.full = dfixed_mul(bandwidth, return_efficiency);
return dfixed_trunc(bandwidth);
}
/**
* dce_v6_0_dmif_request_bandwidth - get the dmif bandwidth
*
* @wm: watermark calculation data
*
* Calculate the dmif bandwidth used for display (CIK).
* Used for display watermark bandwidth calculations
* Returns the dmif bandwidth in MBytes/s
*/
static u32 dce_v6_0_dmif_request_bandwidth(struct dce6_wm_params *wm)
{
/* Calculate the DMIF Request Bandwidth */
fixed20_12 disp_clk_request_efficiency; /* 0.8 */
fixed20_12 disp_clk, bandwidth;
fixed20_12 a, b;
a.full = dfixed_const(1000);
disp_clk.full = dfixed_const(wm->disp_clk);
disp_clk.full = dfixed_div(disp_clk, a);
a.full = dfixed_const(32);
b.full = dfixed_mul(a, disp_clk);
a.full = dfixed_const(10);
disp_clk_request_efficiency.full = dfixed_const(8);
disp_clk_request_efficiency.full = dfixed_div(disp_clk_request_efficiency, a);
bandwidth.full = dfixed_mul(b, disp_clk_request_efficiency);
return dfixed_trunc(bandwidth);
}
/**
* dce_v6_0_available_bandwidth - get the min available bandwidth
*
* @wm: watermark calculation data
*
* Calculate the min available bandwidth used for display (CIK).
* Used for display watermark bandwidth calculations
* Returns the min available bandwidth in MBytes/s
*/
static u32 dce_v6_0_available_bandwidth(struct dce6_wm_params *wm)
{
/* Calculate the Available bandwidth. Display can use this temporarily but not in average. */
u32 dram_bandwidth = dce_v6_0_dram_bandwidth(wm);
u32 data_return_bandwidth = dce_v6_0_data_return_bandwidth(wm);
u32 dmif_req_bandwidth = dce_v6_0_dmif_request_bandwidth(wm);
return min(dram_bandwidth, min(data_return_bandwidth, dmif_req_bandwidth));
}
/**
* dce_v6_0_average_bandwidth - get the average available bandwidth
*
* @wm: watermark calculation data
*
* Calculate the average available bandwidth used for display (CIK).
* Used for display watermark bandwidth calculations
* Returns the average available bandwidth in MBytes/s
*/
static u32 dce_v6_0_average_bandwidth(struct dce6_wm_params *wm)
{
/* Calculate the display mode Average Bandwidth
* DisplayMode should contain the source and destination dimensions,
* timing, etc.
*/
fixed20_12 bpp;
fixed20_12 line_time;
fixed20_12 src_width;
fixed20_12 bandwidth;
fixed20_12 a;
a.full = dfixed_const(1000);
line_time.full = dfixed_const(wm->active_time + wm->blank_time);
line_time.full = dfixed_div(line_time, a);
bpp.full = dfixed_const(wm->bytes_per_pixel);
src_width.full = dfixed_const(wm->src_width);
bandwidth.full = dfixed_mul(src_width, bpp);
bandwidth.full = dfixed_mul(bandwidth, wm->vsc);
bandwidth.full = dfixed_div(bandwidth, line_time);
return dfixed_trunc(bandwidth);
}
/**
* dce_v6_0_latency_watermark - get the latency watermark
*
* @wm: watermark calculation data
*
* Calculate the latency watermark (CIK).
* Used for display watermark bandwidth calculations
* Returns the latency watermark in ns
*/
static u32 dce_v6_0_latency_watermark(struct dce6_wm_params *wm)
{
/* First calculate the latency in ns */
u32 mc_latency = 2000; /* 2000 ns. */
u32 available_bandwidth = dce_v6_0_available_bandwidth(wm);
u32 worst_chunk_return_time = (512 * 8 * 1000) / available_bandwidth;
u32 cursor_line_pair_return_time = (128 * 4 * 1000) / available_bandwidth;
u32 dc_latency = 40000000 / wm->disp_clk; /* dc pipe latency */
u32 other_heads_data_return_time = ((wm->num_heads + 1) * worst_chunk_return_time) +
(wm->num_heads * cursor_line_pair_return_time);
u32 latency = mc_latency + other_heads_data_return_time + dc_latency;
u32 max_src_lines_per_dst_line, lb_fill_bw, line_fill_time;
u32 tmp, dmif_size = 12288;
fixed20_12 a, b, c;
if (wm->num_heads == 0)
return 0;
a.full = dfixed_const(2);
b.full = dfixed_const(1);
if ((wm->vsc.full > a.full) ||
((wm->vsc.full > b.full) && (wm->vtaps >= 3)) ||
(wm->vtaps >= 5) ||
((wm->vsc.full >= a.full) && wm->interlaced))
max_src_lines_per_dst_line = 4;
else
max_src_lines_per_dst_line = 2;
a.full = dfixed_const(available_bandwidth);
b.full = dfixed_const(wm->num_heads);
a.full = dfixed_div(a, b);
b.full = dfixed_const(mc_latency + 512);
c.full = dfixed_const(wm->disp_clk);
b.full = dfixed_div(b, c);
c.full = dfixed_const(dmif_size);
b.full = dfixed_div(c, b);
tmp = min(dfixed_trunc(a), dfixed_trunc(b));
b.full = dfixed_const(1000);
c.full = dfixed_const(wm->disp_clk);
b.full = dfixed_div(c, b);
c.full = dfixed_const(wm->bytes_per_pixel);
b.full = dfixed_mul(b, c);
lb_fill_bw = min(tmp, dfixed_trunc(b));
a.full = dfixed_const(max_src_lines_per_dst_line * wm->src_width * wm->bytes_per_pixel);
b.full = dfixed_const(1000);
c.full = dfixed_const(lb_fill_bw);
b.full = dfixed_div(c, b);
a.full = dfixed_div(a, b);
line_fill_time = dfixed_trunc(a);
if (line_fill_time < wm->active_time)
return latency;
else
return latency + (line_fill_time - wm->active_time);
}
/**
* dce_v6_0_average_bandwidth_vs_dram_bandwidth_for_display - check
* average and available dram bandwidth
*
* @wm: watermark calculation data
*
* Check if the display average bandwidth fits in the display
* dram bandwidth (CIK).
* Used for display watermark bandwidth calculations
* Returns true if the display fits, false if not.
*/
static bool dce_v6_0_average_bandwidth_vs_dram_bandwidth_for_display(struct dce6_wm_params *wm)
{
if (dce_v6_0_average_bandwidth(wm) <=
(dce_v6_0_dram_bandwidth_for_display(wm) / wm->num_heads))
return true;
else
return false;
}
/**
* dce_v6_0_average_bandwidth_vs_available_bandwidth - check
* average and available bandwidth
*
* @wm: watermark calculation data
*
* Check if the display average bandwidth fits in the display
* available bandwidth (CIK).
* Used for display watermark bandwidth calculations
* Returns true if the display fits, false if not.
*/
static bool dce_v6_0_average_bandwidth_vs_available_bandwidth(struct dce6_wm_params *wm)
{
if (dce_v6_0_average_bandwidth(wm) <=
(dce_v6_0_available_bandwidth(wm) / wm->num_heads))
return true;
else
return false;
}
/**
* dce_v6_0_check_latency_hiding - check latency hiding
*
* @wm: watermark calculation data
*
* Check latency hiding (CIK).
* Used for display watermark bandwidth calculations
* Returns true if the display fits, false if not.
*/
static bool dce_v6_0_check_latency_hiding(struct dce6_wm_params *wm)
{
u32 lb_partitions = wm->lb_size / wm->src_width;
u32 line_time = wm->active_time + wm->blank_time;
u32 latency_tolerant_lines;
u32 latency_hiding;
fixed20_12 a;
a.full = dfixed_const(1);
if (wm->vsc.full > a.full)
latency_tolerant_lines = 1;
else {
if (lb_partitions <= (wm->vtaps + 1))
latency_tolerant_lines = 1;
else
latency_tolerant_lines = 2;
}
latency_hiding = (latency_tolerant_lines * line_time + wm->blank_time);
if (dce_v6_0_latency_watermark(wm) <= latency_hiding)
return true;
else
return false;
}
/**
* dce_v6_0_program_watermarks - program display watermarks
*
* @adev: amdgpu_device pointer
* @amdgpu_crtc: the selected display controller
* @lb_size: line buffer size
* @num_heads: number of display controllers in use
*
* Calculate and program the display watermarks for the
* selected display controller (CIK).
*/
static void dce_v6_0_program_watermarks(struct amdgpu_device *adev,
struct amdgpu_crtc *amdgpu_crtc,
u32 lb_size, u32 num_heads)
{
struct drm_display_mode *mode = &amdgpu_crtc->base.mode;
struct dce6_wm_params wm_low, wm_high;
u32 dram_channels;
u32 pixel_period;
u32 line_time = 0;
u32 latency_watermark_a = 0, latency_watermark_b = 0;
u32 priority_a_mark = 0, priority_b_mark = 0;
u32 priority_a_cnt = PRIORITY_OFF;
u32 priority_b_cnt = PRIORITY_OFF;
u32 tmp, arb_control3;
fixed20_12 a, b, c;
if (amdgpu_crtc->base.enabled && num_heads && mode) {
pixel_period = 1000000 / (u32)mode->clock;
line_time = min((u32)mode->crtc_htotal * pixel_period, (u32)65535);
priority_a_cnt = 0;
priority_b_cnt = 0;
dram_channels = si_get_number_of_dram_channels(adev);
/* watermark for high clocks */
if (adev->pm.dpm_enabled) {
wm_high.yclk =
amdgpu_dpm_get_mclk(adev, false) * 10;
wm_high.sclk =
amdgpu_dpm_get_sclk(adev, false) * 10;
} else {
wm_high.yclk = adev->pm.current_mclk * 10;
wm_high.sclk = adev->pm.current_sclk * 10;
}
wm_high.disp_clk = mode->clock;
wm_high.src_width = mode->crtc_hdisplay;
wm_high.active_time = mode->crtc_hdisplay * pixel_period;
wm_high.blank_time = line_time - wm_high.active_time;
wm_high.interlaced = false;
if (mode->flags & DRM_MODE_FLAG_INTERLACE)
wm_high.interlaced = true;
wm_high.vsc = amdgpu_crtc->vsc;
wm_high.vtaps = 1;
if (amdgpu_crtc->rmx_type != RMX_OFF)
wm_high.vtaps = 2;
wm_high.bytes_per_pixel = 4; /* XXX: get this from fb config */
wm_high.lb_size = lb_size;
wm_high.dram_channels = dram_channels;
wm_high.num_heads = num_heads;
if (adev->pm.dpm_enabled) {
/* watermark for low clocks */
wm_low.yclk =
amdgpu_dpm_get_mclk(adev, true) * 10;
wm_low.sclk =
amdgpu_dpm_get_sclk(adev, true) * 10;
} else {
wm_low.yclk = adev->pm.current_mclk * 10;
wm_low.sclk = adev->pm.current_sclk * 10;
}
wm_low.disp_clk = mode->clock;
wm_low.src_width = mode->crtc_hdisplay;
wm_low.active_time = mode->crtc_hdisplay * pixel_period;
wm_low.blank_time = line_time - wm_low.active_time;
wm_low.interlaced = false;
if (mode->flags & DRM_MODE_FLAG_INTERLACE)
wm_low.interlaced = true;
wm_low.vsc = amdgpu_crtc->vsc;
wm_low.vtaps = 1;
if (amdgpu_crtc->rmx_type != RMX_OFF)
wm_low.vtaps = 2;
wm_low.bytes_per_pixel = 4; /* XXX: get this from fb config */
wm_low.lb_size = lb_size;
wm_low.dram_channels = dram_channels;
wm_low.num_heads = num_heads;
/* set for high clocks */
latency_watermark_a = min(dce_v6_0_latency_watermark(&wm_high), (u32)65535);
/* set for low clocks */
latency_watermark_b = min(dce_v6_0_latency_watermark(&wm_low), (u32)65535);
/* possibly force display priority to high */
/* should really do this at mode validation time... */
if (!dce_v6_0_average_bandwidth_vs_dram_bandwidth_for_display(&wm_high) ||
!dce_v6_0_average_bandwidth_vs_available_bandwidth(&wm_high) ||
!dce_v6_0_check_latency_hiding(&wm_high) ||
(adev->mode_info.disp_priority == 2)) {
DRM_DEBUG_KMS("force priority to high\n");
priority_a_cnt |= PRIORITY_ALWAYS_ON;
priority_b_cnt |= PRIORITY_ALWAYS_ON;
}
if (!dce_v6_0_average_bandwidth_vs_dram_bandwidth_for_display(&wm_low) ||
!dce_v6_0_average_bandwidth_vs_available_bandwidth(&wm_low) ||
!dce_v6_0_check_latency_hiding(&wm_low) ||
(adev->mode_info.disp_priority == 2)) {
DRM_DEBUG_KMS("force priority to high\n");
priority_a_cnt |= PRIORITY_ALWAYS_ON;
priority_b_cnt |= PRIORITY_ALWAYS_ON;
}
a.full = dfixed_const(1000);
b.full = dfixed_const(mode->clock);
b.full = dfixed_div(b, a);
c.full = dfixed_const(latency_watermark_a);
c.full = dfixed_mul(c, b);
c.full = dfixed_mul(c, amdgpu_crtc->hsc);
c.full = dfixed_div(c, a);
a.full = dfixed_const(16);
c.full = dfixed_div(c, a);
priority_a_mark = dfixed_trunc(c);
priority_a_cnt |= priority_a_mark & PRIORITY_MARK_MASK;
a.full = dfixed_const(1000);
b.full = dfixed_const(mode->clock);
b.full = dfixed_div(b, a);
c.full = dfixed_const(latency_watermark_b);
c.full = dfixed_mul(c, b);
c.full = dfixed_mul(c, amdgpu_crtc->hsc);
c.full = dfixed_div(c, a);
a.full = dfixed_const(16);
c.full = dfixed_div(c, a);
priority_b_mark = dfixed_trunc(c);
priority_b_cnt |= priority_b_mark & PRIORITY_MARK_MASK;
}
/* select wm A */
arb_control3 = RREG32(DPG_PIPE_ARBITRATION_CONTROL3 + amdgpu_crtc->crtc_offset);
tmp = arb_control3;
tmp &= ~LATENCY_WATERMARK_MASK(3);
tmp |= LATENCY_WATERMARK_MASK(1);
WREG32(DPG_PIPE_ARBITRATION_CONTROL3 + amdgpu_crtc->crtc_offset, tmp);
WREG32(DPG_PIPE_LATENCY_CONTROL + amdgpu_crtc->crtc_offset,
(LATENCY_LOW_WATERMARK(latency_watermark_a) |
LATENCY_HIGH_WATERMARK(line_time)));
/* select wm B */
tmp = RREG32(DPG_PIPE_ARBITRATION_CONTROL3 + amdgpu_crtc->crtc_offset);
tmp &= ~LATENCY_WATERMARK_MASK(3);
tmp |= LATENCY_WATERMARK_MASK(2);
WREG32(DPG_PIPE_ARBITRATION_CONTROL3 + amdgpu_crtc->crtc_offset, tmp);
WREG32(DPG_PIPE_LATENCY_CONTROL + amdgpu_crtc->crtc_offset,
(LATENCY_LOW_WATERMARK(latency_watermark_b) |
LATENCY_HIGH_WATERMARK(line_time)));
/* restore original selection */
WREG32(DPG_PIPE_ARBITRATION_CONTROL3 + amdgpu_crtc->crtc_offset, arb_control3);
/* write the priority marks */
WREG32(PRIORITY_A_CNT + amdgpu_crtc->crtc_offset, priority_a_cnt);
WREG32(PRIORITY_B_CNT + amdgpu_crtc->crtc_offset, priority_b_cnt);
/* save values for DPM */
amdgpu_crtc->line_time = line_time;
amdgpu_crtc->wm_high = latency_watermark_a;
}
/* watermark setup */
static u32 dce_v6_0_line_buffer_adjust(struct amdgpu_device *adev,
struct amdgpu_crtc *amdgpu_crtc,
struct drm_display_mode *mode,
struct drm_display_mode *other_mode)
{
u32 tmp, buffer_alloc, i;
u32 pipe_offset = amdgpu_crtc->crtc_id * 0x8;
/*
* Line Buffer Setup
* There are 3 line buffers, each one shared by 2 display controllers.
* DC_LB_MEMORY_SPLIT controls how that line buffer is shared between
* the display controllers. The paritioning is done via one of four
* preset allocations specified in bits 21:20:
* 0 - half lb
* 2 - whole lb, other crtc must be disabled
*/
/* this can get tricky if we have two large displays on a paired group
* of crtcs. Ideally for multiple large displays we'd assign them to
* non-linked crtcs for maximum line buffer allocation.
*/
if (amdgpu_crtc->base.enabled && mode) {
if (other_mode) {
tmp = 0; /* 1/2 */
buffer_alloc = 1;
} else {
tmp = 2; /* whole */
buffer_alloc = 2;
}
} else {
tmp = 0;
buffer_alloc = 0;
}
WREG32(DC_LB_MEMORY_SPLIT + amdgpu_crtc->crtc_offset,
DC_LB_MEMORY_CONFIG(tmp));
WREG32(PIPE0_DMIF_BUFFER_CONTROL + pipe_offset,
DMIF_BUFFERS_ALLOCATED(buffer_alloc));
for (i = 0; i < adev->usec_timeout; i++) {
if (RREG32(PIPE0_DMIF_BUFFER_CONTROL + pipe_offset) &
DMIF_BUFFERS_ALLOCATED_COMPLETED)
break;
udelay(1);
}
if (amdgpu_crtc->base.enabled && mode) {
switch (tmp) {
case 0:
default:
return 4096 * 2;
case 2:
return 8192 * 2;
}
}
/* controller not enabled, so no lb used */
return 0;
}
/**
*
* dce_v6_0_bandwidth_update - program display watermarks
*
* @adev: amdgpu_device pointer
*
* Calculate and program the display watermarks and line
* buffer allocation (CIK).
*/
static void dce_v6_0_bandwidth_update(struct amdgpu_device *adev)
{
struct drm_display_mode *mode0 = NULL;
struct drm_display_mode *mode1 = NULL;
u32 num_heads = 0, lb_size;
int i;
if (!adev->mode_info.mode_config_initialized)
return;
amdgpu_update_display_priority(adev);
for (i = 0; i < adev->mode_info.num_crtc; i++) {
if (adev->mode_info.crtcs[i]->base.enabled)
num_heads++;
}
for (i = 0; i < adev->mode_info.num_crtc; i += 2) {
mode0 = &adev->mode_info.crtcs[i]->base.mode;
mode1 = &adev->mode_info.crtcs[i+1]->base.mode;
lb_size = dce_v6_0_line_buffer_adjust(adev, adev->mode_info.crtcs[i], mode0, mode1);
dce_v6_0_program_watermarks(adev, adev->mode_info.crtcs[i], lb_size, num_heads);
lb_size = dce_v6_0_line_buffer_adjust(adev, adev->mode_info.crtcs[i+1], mode1, mode0);
dce_v6_0_program_watermarks(adev, adev->mode_info.crtcs[i+1], lb_size, num_heads);
}
}
/*
static void dce_v6_0_audio_get_connected_pins(struct amdgpu_device *adev)
{
int i;
u32 offset, tmp;
for (i = 0; i < adev->mode_info.audio.num_pins; i++) {
offset = adev->mode_info.audio.pin[i].offset;
tmp = RREG32_AUDIO_ENDPT(offset,
AZ_F0_CODEC_PIN_CONTROL_RESPONSE_CONFIGURATION_DEFAULT);
if (((tmp & PORT_CONNECTIVITY_MASK) >> PORT_CONNECTIVITY_SHIFT) == 1)
adev->mode_info.audio.pin[i].connected = false;
else
adev->mode_info.audio.pin[i].connected = true;
}
}
static struct amdgpu_audio_pin *dce_v6_0_audio_get_pin(struct amdgpu_device *adev)
{
int i;
dce_v6_0_audio_get_connected_pins(adev);
for (i = 0; i < adev->mode_info.audio.num_pins; i++) {
if (adev->mode_info.audio.pin[i].connected)
return &adev->mode_info.audio.pin[i];
}
DRM_ERROR("No connected audio pins found!\n");
return NULL;
}
static void dce_v6_0_afmt_audio_select_pin(struct drm_encoder *encoder)
{
struct amdgpu_device *adev = encoder->dev->dev_private;
struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder);
struct amdgpu_encoder_atom_dig *dig = amdgpu_encoder->enc_priv;
u32 offset;
if (!dig || !dig->afmt || !dig->afmt->pin)
return;
offset = dig->afmt->offset;
WREG32(AFMT_AUDIO_SRC_CONTROL + offset,
AFMT_AUDIO_SRC_SELECT(dig->afmt->pin->id));
}
static void dce_v6_0_audio_write_latency_fields(struct drm_encoder *encoder,
struct drm_display_mode *mode)
{
DRM_INFO("xxxx: dce_v6_0_audio_write_latency_fields---no imp!!!!!\n");
}
static void dce_v6_0_audio_write_speaker_allocation(struct drm_encoder *encoder)
{
DRM_INFO("xxxx: dce_v6_0_audio_write_speaker_allocation---no imp!!!!!\n");
}
static void dce_v6_0_audio_write_sad_regs(struct drm_encoder *encoder)
{
DRM_INFO("xxxx: dce_v6_0_audio_write_sad_regs---no imp!!!!!\n");
}
*/
static void dce_v6_0_audio_enable(struct amdgpu_device *adev,
struct amdgpu_audio_pin *pin,
bool enable)
{
DRM_INFO("xxxx: dce_v6_0_audio_enable---no imp!!!!!\n");
}
static const u32 pin_offsets[7] =
{
(0x1780 - 0x1780),
(0x1786 - 0x1780),
(0x178c - 0x1780),
(0x1792 - 0x1780),
(0x1798 - 0x1780),
(0x179d - 0x1780),
(0x17a4 - 0x1780),
};
static int dce_v6_0_audio_init(struct amdgpu_device *adev)
{
return 0;
}
static void dce_v6_0_audio_fini(struct amdgpu_device *adev)
{
}
/*
static void dce_v6_0_afmt_update_ACR(struct drm_encoder *encoder, uint32_t clock)
{
DRM_INFO("xxxx: dce_v6_0_afmt_update_ACR---no imp!!!!!\n");
}
*/
/*
* build a HDMI Video Info Frame
*/
/*
static void dce_v6_0_afmt_update_avi_infoframe(struct drm_encoder *encoder,
void *buffer, size_t size)
{
DRM_INFO("xxxx: dce_v6_0_afmt_update_avi_infoframe---no imp!!!!!\n");
}
static void dce_v6_0_audio_set_dto(struct drm_encoder *encoder, u32 clock)
{
DRM_INFO("xxxx: dce_v6_0_audio_set_dto---no imp!!!!!\n");
}
*/
/*
* update the info frames with the data from the current display mode
*/
static void dce_v6_0_afmt_setmode(struct drm_encoder *encoder,
struct drm_display_mode *mode)
{
DRM_INFO("xxxx: dce_v6_0_afmt_setmode ----no impl !!!!!!!!\n");
}
static void dce_v6_0_afmt_enable(struct drm_encoder *encoder, bool enable)
{
struct drm_device *dev = encoder->dev;
struct amdgpu_device *adev = dev->dev_private;
struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder);
struct amdgpu_encoder_atom_dig *dig = amdgpu_encoder->enc_priv;
if (!dig || !dig->afmt)
return;
/* Silent, r600_hdmi_enable will raise WARN for us */
if (enable && dig->afmt->enabled)
return;
if (!enable && !dig->afmt->enabled)
return;
if (!enable && dig->afmt->pin) {
dce_v6_0_audio_enable(adev, dig->afmt->pin, false);
dig->afmt->pin = NULL;
}
dig->afmt->enabled = enable;
DRM_DEBUG("%sabling AFMT interface @ 0x%04X for encoder 0x%x\n",
enable ? "En" : "Dis", dig->afmt->offset, amdgpu_encoder->encoder_id);
}
static void dce_v6_0_afmt_init(struct amdgpu_device *adev)
{
int i;
for (i = 0; i < adev->mode_info.num_dig; i++)
adev->mode_info.afmt[i] = NULL;
/* DCE8 has audio blocks tied to DIG encoders */
for (i = 0; i < adev->mode_info.num_dig; i++) {
adev->mode_info.afmt[i] = kzalloc(sizeof(struct amdgpu_afmt), GFP_KERNEL);
if (adev->mode_info.afmt[i]) {
adev->mode_info.afmt[i]->offset = dig_offsets[i];
adev->mode_info.afmt[i]->id = i;
}
}
}
static void dce_v6_0_afmt_fini(struct amdgpu_device *adev)
{
int i;
for (i = 0; i < adev->mode_info.num_dig; i++) {
kfree(adev->mode_info.afmt[i]);
adev->mode_info.afmt[i] = NULL;
}
}
static const u32 vga_control_regs[6] =
{
AVIVO_D1VGA_CONTROL,
AVIVO_D2VGA_CONTROL,
EVERGREEN_D3VGA_CONTROL,
EVERGREEN_D4VGA_CONTROL,
EVERGREEN_D5VGA_CONTROL,
EVERGREEN_D6VGA_CONTROL,
};
static void dce_v6_0_vga_enable(struct drm_crtc *crtc, bool enable)
{
struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc);
struct drm_device *dev = crtc->dev;
struct amdgpu_device *adev = dev->dev_private;
u32 vga_control;
vga_control = RREG32(vga_control_regs[amdgpu_crtc->crtc_id]) & ~1;
if (enable)
WREG32(vga_control_regs[amdgpu_crtc->crtc_id], vga_control | 1);
else
WREG32(vga_control_regs[amdgpu_crtc->crtc_id], vga_control);
}
static void dce_v6_0_grph_enable(struct drm_crtc *crtc, bool enable)
{
struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc);
struct drm_device *dev = crtc->dev;
struct amdgpu_device *adev = dev->dev_private;
if (enable)
WREG32(EVERGREEN_GRPH_ENABLE + amdgpu_crtc->crtc_offset, 1);
else
WREG32(EVERGREEN_GRPH_ENABLE + amdgpu_crtc->crtc_offset, 0);
}
static int dce_v6_0_crtc_do_set_base(struct drm_crtc *crtc,
struct drm_framebuffer *fb,
int x, int y, int atomic)
{
struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc);
struct drm_device *dev = crtc->dev;
struct amdgpu_device *adev = dev->dev_private;
struct amdgpu_framebuffer *amdgpu_fb;
struct drm_framebuffer *target_fb;
struct drm_gem_object *obj;
struct amdgpu_bo *rbo;
uint64_t fb_location, tiling_flags;
uint32_t fb_format, fb_pitch_pixels, pipe_config;
u32 fb_swap = EVERGREEN_GRPH_ENDIAN_SWAP(EVERGREEN_GRPH_ENDIAN_NONE);
u32 viewport_w, viewport_h;
int r;
bool bypass_lut = false;
/* no fb bound */
if (!atomic && !crtc->primary->fb) {
DRM_DEBUG_KMS("No FB bound\n");
return 0;
}
if (atomic) {
amdgpu_fb = to_amdgpu_framebuffer(fb);
target_fb = fb;
}
else {
amdgpu_fb = to_amdgpu_framebuffer(crtc->primary->fb);
target_fb = crtc->primary->fb;
}
/* If atomic, assume fb object is pinned & idle & fenced and
* just update base pointers
*/
obj = amdgpu_fb->obj;
rbo = gem_to_amdgpu_bo(obj);
r = amdgpu_bo_reserve(rbo, false);
if (unlikely(r != 0))
return r;
if (atomic)
fb_location = amdgpu_bo_gpu_offset(rbo);
else {
r = amdgpu_bo_pin(rbo, AMDGPU_GEM_DOMAIN_VRAM, &fb_location);
if (unlikely(r != 0)) {
amdgpu_bo_unreserve(rbo);
return -EINVAL;
}
}
amdgpu_bo_get_tiling_flags(rbo, &tiling_flags);
amdgpu_bo_unreserve(rbo);
switch (target_fb->pixel_format) {
case DRM_FORMAT_C8:
fb_format = (EVERGREEN_GRPH_DEPTH(EVERGREEN_GRPH_DEPTH_8BPP) |
EVERGREEN_GRPH_FORMAT(EVERGREEN_GRPH_FORMAT_INDEXED));
break;
case DRM_FORMAT_XRGB4444:
case DRM_FORMAT_ARGB4444:
fb_format = (EVERGREEN_GRPH_DEPTH(EVERGREEN_GRPH_DEPTH_16BPP) |
EVERGREEN_GRPH_FORMAT(EVERGREEN_GRPH_FORMAT_ARGB4444));
#ifdef __BIG_ENDIAN
fb_swap = EVERGREEN_GRPH_ENDIAN_SWAP(EVERGREEN_GRPH_ENDIAN_8IN16);
#endif
break;
case DRM_FORMAT_XRGB1555:
case DRM_FORMAT_ARGB1555:
fb_format = (EVERGREEN_GRPH_DEPTH(EVERGREEN_GRPH_DEPTH_16BPP) |
EVERGREEN_GRPH_FORMAT(EVERGREEN_GRPH_FORMAT_ARGB1555));
#ifdef __BIG_ENDIAN
fb_swap = EVERGREEN_GRPH_ENDIAN_SWAP(EVERGREEN_GRPH_ENDIAN_8IN16);
#endif
break;
case DRM_FORMAT_BGRX5551:
case DRM_FORMAT_BGRA5551:
fb_format = (EVERGREEN_GRPH_DEPTH(EVERGREEN_GRPH_DEPTH_16BPP) |
EVERGREEN_GRPH_FORMAT(EVERGREEN_GRPH_FORMAT_BGRA5551));
#ifdef __BIG_ENDIAN
fb_swap = EVERGREEN_GRPH_ENDIAN_SWAP(EVERGREEN_GRPH_ENDIAN_8IN16);
#endif
break;
case DRM_FORMAT_RGB565:
fb_format = (EVERGREEN_GRPH_DEPTH(EVERGREEN_GRPH_DEPTH_16BPP) |
EVERGREEN_GRPH_FORMAT(EVERGREEN_GRPH_FORMAT_ARGB565));
#ifdef __BIG_ENDIAN
fb_swap = EVERGREEN_GRPH_ENDIAN_SWAP(EVERGREEN_GRPH_ENDIAN_8IN16);
#endif
break;
case DRM_FORMAT_XRGB8888:
case DRM_FORMAT_ARGB8888:
fb_format = (EVERGREEN_GRPH_DEPTH(EVERGREEN_GRPH_DEPTH_32BPP) |
EVERGREEN_GRPH_FORMAT(EVERGREEN_GRPH_FORMAT_ARGB8888));
#ifdef __BIG_ENDIAN
fb_swap = EVERGREEN_GRPH_ENDIAN_SWAP(EVERGREEN_GRPH_ENDIAN_8IN32);
#endif
break;
case DRM_FORMAT_XRGB2101010:
case DRM_FORMAT_ARGB2101010:
fb_format = (EVERGREEN_GRPH_DEPTH(EVERGREEN_GRPH_DEPTH_32BPP) |
EVERGREEN_GRPH_FORMAT(EVERGREEN_GRPH_FORMAT_ARGB2101010));
#ifdef __BIG_ENDIAN
fb_swap = EVERGREEN_GRPH_ENDIAN_SWAP(EVERGREEN_GRPH_ENDIAN_8IN32);
#endif
/* Greater 8 bpc fb needs to bypass hw-lut to retain precision */
bypass_lut = true;
break;
case DRM_FORMAT_BGRX1010102:
case DRM_FORMAT_BGRA1010102:
fb_format = (EVERGREEN_GRPH_DEPTH(EVERGREEN_GRPH_DEPTH_32BPP) |
EVERGREEN_GRPH_FORMAT(EVERGREEN_GRPH_FORMAT_BGRA1010102));
#ifdef __BIG_ENDIAN
fb_swap = EVERGREEN_GRPH_ENDIAN_SWAP(EVERGREEN_GRPH_ENDIAN_8IN32);
#endif
/* Greater 8 bpc fb needs to bypass hw-lut to retain precision */
bypass_lut = true;
break;
default:
DRM_ERROR("Unsupported screen format %s\n",
drm_get_format_name(target_fb->pixel_format));
return -EINVAL;
}
if (AMDGPU_TILING_GET(tiling_flags, ARRAY_MODE) == ARRAY_2D_TILED_THIN1) {
unsigned bankw, bankh, mtaspect, tile_split, num_banks;
bankw = AMDGPU_TILING_GET(tiling_flags, BANK_WIDTH);
bankh = AMDGPU_TILING_GET(tiling_flags, BANK_HEIGHT);
mtaspect = AMDGPU_TILING_GET(tiling_flags, MACRO_TILE_ASPECT);
tile_split = AMDGPU_TILING_GET(tiling_flags, TILE_SPLIT);
num_banks = AMDGPU_TILING_GET(tiling_flags, NUM_BANKS);
fb_format |= EVERGREEN_GRPH_NUM_BANKS(num_banks);
fb_format |= EVERGREEN_GRPH_ARRAY_MODE(EVERGREEN_GRPH_ARRAY_2D_TILED_THIN1);
fb_format |= EVERGREEN_GRPH_TILE_SPLIT(tile_split);
fb_format |= EVERGREEN_GRPH_BANK_WIDTH(bankw);
fb_format |= EVERGREEN_GRPH_BANK_HEIGHT(bankh);
fb_format |= EVERGREEN_GRPH_MACRO_TILE_ASPECT(mtaspect);
} else if (AMDGPU_TILING_GET(tiling_flags, ARRAY_MODE) == ARRAY_1D_TILED_THIN1)
fb_format |= EVERGREEN_GRPH_ARRAY_MODE(EVERGREEN_GRPH_ARRAY_1D_TILED_THIN1);
pipe_config = AMDGPU_TILING_GET(tiling_flags, PIPE_CONFIG);
fb_format |= SI_GRPH_PIPE_CONFIG(pipe_config);
dce_v6_0_vga_enable(crtc, false);
/* Make sure surface address is updated at vertical blank rather than
* horizontal blank
*/
WREG32(EVERGREEN_GRPH_FLIP_CONTROL + amdgpu_crtc->crtc_offset, 0);
WREG32(EVERGREEN_GRPH_PRIMARY_SURFACE_ADDRESS_HIGH + amdgpu_crtc->crtc_offset,
upper_32_bits(fb_location));
WREG32(EVERGREEN_GRPH_SECONDARY_SURFACE_ADDRESS_HIGH + amdgpu_crtc->crtc_offset,
upper_32_bits(fb_location));
WREG32(EVERGREEN_GRPH_PRIMARY_SURFACE_ADDRESS + amdgpu_crtc->crtc_offset,
(u32)fb_location & EVERGREEN_GRPH_SURFACE_ADDRESS_MASK);
WREG32(EVERGREEN_GRPH_SECONDARY_SURFACE_ADDRESS + amdgpu_crtc->crtc_offset,
(u32) fb_location & EVERGREEN_GRPH_SURFACE_ADDRESS_MASK);
WREG32(EVERGREEN_GRPH_CONTROL + amdgpu_crtc->crtc_offset, fb_format);
WREG32(EVERGREEN_GRPH_SWAP_CONTROL + amdgpu_crtc->crtc_offset, fb_swap);
/*
* The LUT only has 256 slots for indexing by a 8 bpc fb. Bypass the LUT
* for > 8 bpc scanout to avoid truncation of fb indices to 8 msb's, to
* retain the full precision throughout the pipeline.
*/
WREG32_P(EVERGREEN_GRPH_LUT_10BIT_BYPASS_CONTROL + amdgpu_crtc->crtc_offset,
(bypass_lut ? EVERGREEN_LUT_10BIT_BYPASS_EN : 0),
~EVERGREEN_LUT_10BIT_BYPASS_EN);
if (bypass_lut)
DRM_DEBUG_KMS("Bypassing hardware LUT due to 10 bit fb scanout.\n");
WREG32(EVERGREEN_GRPH_SURFACE_OFFSET_X + amdgpu_crtc->crtc_offset, 0);
WREG32(EVERGREEN_GRPH_SURFACE_OFFSET_Y + amdgpu_crtc->crtc_offset, 0);
WREG32(EVERGREEN_GRPH_X_START + amdgpu_crtc->crtc_offset, 0);
WREG32(EVERGREEN_GRPH_Y_START + amdgpu_crtc->crtc_offset, 0);
WREG32(EVERGREEN_GRPH_X_END + amdgpu_crtc->crtc_offset, target_fb->width);
WREG32(EVERGREEN_GRPH_Y_END + amdgpu_crtc->crtc_offset, target_fb->height);
fb_pitch_pixels = target_fb->pitches[0] / (target_fb->bits_per_pixel / 8);
WREG32(EVERGREEN_GRPH_PITCH + amdgpu_crtc->crtc_offset, fb_pitch_pixels);
dce_v6_0_grph_enable(crtc, true);
WREG32(EVERGREEN_DESKTOP_HEIGHT + amdgpu_crtc->crtc_offset,
target_fb->height);
x &= ~3;
y &= ~1;
WREG32(EVERGREEN_VIEWPORT_START + amdgpu_crtc->crtc_offset,
(x << 16) | y);
viewport_w = crtc->mode.hdisplay;
viewport_h = (crtc->mode.vdisplay + 1) & ~1;
WREG32(EVERGREEN_VIEWPORT_SIZE + amdgpu_crtc->crtc_offset,
(viewport_w << 16) | viewport_h);
/* set pageflip to happen anywhere in vblank interval */
WREG32(EVERGREEN_MASTER_UPDATE_MODE + amdgpu_crtc->crtc_offset, 0);
if (!atomic && fb && fb != crtc->primary->fb) {
amdgpu_fb = to_amdgpu_framebuffer(fb);
rbo = gem_to_amdgpu_bo(amdgpu_fb->obj);
r = amdgpu_bo_reserve(rbo, false);
if (unlikely(r != 0))
return r;
amdgpu_bo_unpin(rbo);
amdgpu_bo_unreserve(rbo);
}
/* Bytes per pixel may have changed */
dce_v6_0_bandwidth_update(adev);
return 0;
}
static void dce_v6_0_set_interleave(struct drm_crtc *crtc,
struct drm_display_mode *mode)
{
struct drm_device *dev = crtc->dev;
struct amdgpu_device *adev = dev->dev_private;
struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc);
if (mode->flags & DRM_MODE_FLAG_INTERLACE)
WREG32(EVERGREEN_DATA_FORMAT + amdgpu_crtc->crtc_offset,
EVERGREEN_INTERLEAVE_EN);
else
WREG32(EVERGREEN_DATA_FORMAT + amdgpu_crtc->crtc_offset, 0);
}
static void dce_v6_0_crtc_load_lut(struct drm_crtc *crtc)
{
struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc);
struct drm_device *dev = crtc->dev;
struct amdgpu_device *adev = dev->dev_private;
int i;
DRM_DEBUG_KMS("%d\n", amdgpu_crtc->crtc_id);
WREG32(NI_INPUT_CSC_CONTROL + amdgpu_crtc->crtc_offset,
(NI_INPUT_CSC_GRPH_MODE(NI_INPUT_CSC_BYPASS) |
NI_INPUT_CSC_OVL_MODE(NI_INPUT_CSC_BYPASS)));
WREG32(NI_PRESCALE_GRPH_CONTROL + amdgpu_crtc->crtc_offset,
NI_GRPH_PRESCALE_BYPASS);
WREG32(NI_PRESCALE_OVL_CONTROL + amdgpu_crtc->crtc_offset,
NI_OVL_PRESCALE_BYPASS);
WREG32(NI_INPUT_GAMMA_CONTROL + amdgpu_crtc->crtc_offset,
(NI_GRPH_INPUT_GAMMA_MODE(NI_INPUT_GAMMA_USE_LUT) |
NI_OVL_INPUT_GAMMA_MODE(NI_INPUT_GAMMA_USE_LUT)));
WREG32(EVERGREEN_DC_LUT_CONTROL + amdgpu_crtc->crtc_offset, 0);
WREG32(EVERGREEN_DC_LUT_BLACK_OFFSET_BLUE + amdgpu_crtc->crtc_offset, 0);
WREG32(EVERGREEN_DC_LUT_BLACK_OFFSET_GREEN + amdgpu_crtc->crtc_offset, 0);
WREG32(EVERGREEN_DC_LUT_BLACK_OFFSET_RED + amdgpu_crtc->crtc_offset, 0);
WREG32(EVERGREEN_DC_LUT_WHITE_OFFSET_BLUE + amdgpu_crtc->crtc_offset, 0xffff);
WREG32(EVERGREEN_DC_LUT_WHITE_OFFSET_GREEN + amdgpu_crtc->crtc_offset, 0xffff);
WREG32(EVERGREEN_DC_LUT_WHITE_OFFSET_RED + amdgpu_crtc->crtc_offset, 0xffff);
WREG32(EVERGREEN_DC_LUT_RW_MODE + amdgpu_crtc->crtc_offset, 0);
WREG32(EVERGREEN_DC_LUT_WRITE_EN_MASK + amdgpu_crtc->crtc_offset, 0x00000007);
WREG32(EVERGREEN_DC_LUT_RW_INDEX + amdgpu_crtc->crtc_offset, 0);
for (i = 0; i < 256; i++) {
WREG32(EVERGREEN_DC_LUT_30_COLOR + amdgpu_crtc->crtc_offset,
(amdgpu_crtc->lut_r[i] << 20) |
(amdgpu_crtc->lut_g[i] << 10) |
(amdgpu_crtc->lut_b[i] << 0));
}
WREG32(NI_DEGAMMA_CONTROL + amdgpu_crtc->crtc_offset,
(NI_GRPH_DEGAMMA_MODE(NI_DEGAMMA_BYPASS) |
NI_OVL_DEGAMMA_MODE(NI_DEGAMMA_BYPASS) |
NI_ICON_DEGAMMA_MODE(NI_DEGAMMA_BYPASS) |
NI_CURSOR_DEGAMMA_MODE(NI_DEGAMMA_BYPASS)));
WREG32(NI_GAMUT_REMAP_CONTROL + amdgpu_crtc->crtc_offset,
(NI_GRPH_GAMUT_REMAP_MODE(NI_GAMUT_REMAP_BYPASS) |
NI_OVL_GAMUT_REMAP_MODE(NI_GAMUT_REMAP_BYPASS)));
WREG32(NI_REGAMMA_CONTROL + amdgpu_crtc->crtc_offset,
(NI_GRPH_REGAMMA_MODE(NI_REGAMMA_BYPASS) |
NI_OVL_REGAMMA_MODE(NI_REGAMMA_BYPASS)));
WREG32(NI_OUTPUT_CSC_CONTROL + amdgpu_crtc->crtc_offset,
(NI_OUTPUT_CSC_GRPH_MODE(0) |
NI_OUTPUT_CSC_OVL_MODE(NI_OUTPUT_CSC_BYPASS)));
/* XXX match this to the depth of the crtc fmt block, move to modeset? */
WREG32(0x1a50 + amdgpu_crtc->crtc_offset, 0);
}
static int dce_v6_0_pick_dig_encoder(struct drm_encoder *encoder)
{
struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder);
struct amdgpu_encoder_atom_dig *dig = amdgpu_encoder->enc_priv;
switch (amdgpu_encoder->encoder_id) {
case ENCODER_OBJECT_ID_INTERNAL_UNIPHY:
if (dig->linkb)
return 1;
else
return 0;
break;
case ENCODER_OBJECT_ID_INTERNAL_UNIPHY1:
if (dig->linkb)
return 3;
else
return 2;
break;
case ENCODER_OBJECT_ID_INTERNAL_UNIPHY2:
if (dig->linkb)
return 5;
else
return 4;
break;
case ENCODER_OBJECT_ID_INTERNAL_UNIPHY3:
return 6;
break;
default:
DRM_ERROR("invalid encoder_id: 0x%x\n", amdgpu_encoder->encoder_id);
return 0;
}
}
/**
* dce_v6_0_pick_pll - Allocate a PPLL for use by the crtc.
*
* @crtc: drm crtc
*
* Returns the PPLL (Pixel PLL) to be used by the crtc. For DP monitors
* a single PPLL can be used for all DP crtcs/encoders. For non-DP
* monitors a dedicated PPLL must be used. If a particular board has
* an external DP PLL, return ATOM_PPLL_INVALID to skip PLL programming
* as there is no need to program the PLL itself. If we are not able to
* allocate a PLL, return ATOM_PPLL_INVALID to skip PLL programming to
* avoid messing up an existing monitor.
*
*
*/
static u32 dce_v6_0_pick_pll(struct drm_crtc *crtc)
{
struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc);
struct drm_device *dev = crtc->dev;
struct amdgpu_device *adev = dev->dev_private;
u32 pll_in_use;
int pll;
if (ENCODER_MODE_IS_DP(amdgpu_atombios_encoder_get_encoder_mode(amdgpu_crtc->encoder))) {
if (adev->clock.dp_extclk)
/* skip PPLL programming if using ext clock */
return ATOM_PPLL_INVALID;
else
return ATOM_PPLL0;
} else {
/* use the same PPLL for all monitors with the same clock */
pll = amdgpu_pll_get_shared_nondp_ppll(crtc);
if (pll != ATOM_PPLL_INVALID)
return pll;
}
/* PPLL1, and PPLL2 */
pll_in_use = amdgpu_pll_get_use_mask(crtc);
if (!(pll_in_use & (1 << ATOM_PPLL2)))
return ATOM_PPLL2;
if (!(pll_in_use & (1 << ATOM_PPLL1)))
return ATOM_PPLL1;
DRM_ERROR("unable to allocate a PPLL\n");
return ATOM_PPLL_INVALID;
}
static void dce_v6_0_lock_cursor(struct drm_crtc *crtc, bool lock)
{
struct amdgpu_device *adev = crtc->dev->dev_private;
struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc);
uint32_t cur_lock;
cur_lock = RREG32(EVERGREEN_CUR_UPDATE + amdgpu_crtc->crtc_offset);
if (lock)
cur_lock |= EVERGREEN_CURSOR_UPDATE_LOCK;
else
cur_lock &= ~EVERGREEN_CURSOR_UPDATE_LOCK;
WREG32(EVERGREEN_CUR_UPDATE + amdgpu_crtc->crtc_offset, cur_lock);
}
static void dce_v6_0_hide_cursor(struct drm_crtc *crtc)
{
struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc);
struct amdgpu_device *adev = crtc->dev->dev_private;
WREG32_IDX(EVERGREEN_CUR_CONTROL + amdgpu_crtc->crtc_offset,
EVERGREEN_CURSOR_MODE(EVERGREEN_CURSOR_24_8_PRE_MULT) |
EVERGREEN_CURSOR_URGENT_CONTROL(EVERGREEN_CURSOR_URGENT_1_2));
}
static void dce_v6_0_show_cursor(struct drm_crtc *crtc)
{
struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc);
struct amdgpu_device *adev = crtc->dev->dev_private;
WREG32(EVERGREEN_CUR_SURFACE_ADDRESS_HIGH + amdgpu_crtc->crtc_offset,
upper_32_bits(amdgpu_crtc->cursor_addr));
WREG32(EVERGREEN_CUR_SURFACE_ADDRESS + amdgpu_crtc->crtc_offset,
lower_32_bits(amdgpu_crtc->cursor_addr));
WREG32_IDX(EVERGREEN_CUR_CONTROL + amdgpu_crtc->crtc_offset,
EVERGREEN_CURSOR_EN |
EVERGREEN_CURSOR_MODE(EVERGREEN_CURSOR_24_8_PRE_MULT) |
EVERGREEN_CURSOR_URGENT_CONTROL(EVERGREEN_CURSOR_URGENT_1_2));
}
static int dce_v6_0_cursor_move_locked(struct drm_crtc *crtc,
int x, int y)
{
struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc);
struct amdgpu_device *adev = crtc->dev->dev_private;
int xorigin = 0, yorigin = 0;
int w = amdgpu_crtc->cursor_width;
/* avivo cursor are offset into the total surface */
x += crtc->x;
y += crtc->y;
DRM_DEBUG("x %d y %d c->x %d c->y %d\n", x, y, crtc->x, crtc->y);
if (x < 0) {
xorigin = min(-x, amdgpu_crtc->max_cursor_width - 1);
x = 0;
}
if (y < 0) {
yorigin = min(-y, amdgpu_crtc->max_cursor_height - 1);
y = 0;
}
WREG32(EVERGREEN_CUR_POSITION + amdgpu_crtc->crtc_offset, (x << 16) | y);
WREG32(EVERGREEN_CUR_HOT_SPOT + amdgpu_crtc->crtc_offset, (xorigin << 16) | yorigin);
WREG32(EVERGREEN_CUR_SIZE + amdgpu_crtc->crtc_offset,
((w - 1) << 16) | (amdgpu_crtc->cursor_height - 1));
amdgpu_crtc->cursor_x = x;
amdgpu_crtc->cursor_y = y;
return 0;
}
static int dce_v6_0_crtc_cursor_move(struct drm_crtc *crtc,
int x, int y)
{
int ret;
dce_v6_0_lock_cursor(crtc, true);
ret = dce_v6_0_cursor_move_locked(crtc, x, y);
dce_v6_0_lock_cursor(crtc, false);
return ret;
}
static int dce_v6_0_crtc_cursor_set2(struct drm_crtc *crtc,
struct drm_file *file_priv,
uint32_t handle,
uint32_t width,
uint32_t height,
int32_t hot_x,
int32_t hot_y)
{
struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc);
struct drm_gem_object *obj;
struct amdgpu_bo *aobj;
int ret;
if (!handle) {
/* turn off cursor */
dce_v6_0_hide_cursor(crtc);
obj = NULL;
goto unpin;
}
if ((width > amdgpu_crtc->max_cursor_width) ||
(height > amdgpu_crtc->max_cursor_height)) {
DRM_ERROR("bad cursor width or height %d x %d\n", width, height);
return -EINVAL;
}
obj = drm_gem_object_lookup(file_priv, handle);
if (!obj) {
DRM_ERROR("Cannot find cursor object %x for crtc %d\n", handle, amdgpu_crtc->crtc_id);
return -ENOENT;
}
aobj = gem_to_amdgpu_bo(obj);
ret = amdgpu_bo_reserve(aobj, false);
if (ret != 0) {
drm_gem_object_unreference_unlocked(obj);
return ret;
}
ret = amdgpu_bo_pin(aobj, AMDGPU_GEM_DOMAIN_VRAM, &amdgpu_crtc->cursor_addr);
amdgpu_bo_unreserve(aobj);
if (ret) {
DRM_ERROR("Failed to pin new cursor BO (%d)\n", ret);
drm_gem_object_unreference_unlocked(obj);
return ret;
}
amdgpu_crtc->cursor_width = width;
amdgpu_crtc->cursor_height = height;
dce_v6_0_lock_cursor(crtc, true);
if (hot_x != amdgpu_crtc->cursor_hot_x ||
hot_y != amdgpu_crtc->cursor_hot_y) {
int x, y;
x = amdgpu_crtc->cursor_x + amdgpu_crtc->cursor_hot_x - hot_x;
y = amdgpu_crtc->cursor_y + amdgpu_crtc->cursor_hot_y - hot_y;
dce_v6_0_cursor_move_locked(crtc, x, y);
amdgpu_crtc->cursor_hot_x = hot_x;
amdgpu_crtc->cursor_hot_y = hot_y;
}
dce_v6_0_show_cursor(crtc);
dce_v6_0_lock_cursor(crtc, false);
unpin:
if (amdgpu_crtc->cursor_bo) {
struct amdgpu_bo *aobj = gem_to_amdgpu_bo(amdgpu_crtc->cursor_bo);
ret = amdgpu_bo_reserve(aobj, false);
if (likely(ret == 0)) {
amdgpu_bo_unpin(aobj);
amdgpu_bo_unreserve(aobj);
}
drm_gem_object_unreference_unlocked(amdgpu_crtc->cursor_bo);
}
amdgpu_crtc->cursor_bo = obj;
return 0;
}
static void dce_v6_0_cursor_reset(struct drm_crtc *crtc)
{
struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc);
if (amdgpu_crtc->cursor_bo) {
dce_v6_0_lock_cursor(crtc, true);
dce_v6_0_cursor_move_locked(crtc, amdgpu_crtc->cursor_x,
amdgpu_crtc->cursor_y);
dce_v6_0_show_cursor(crtc);
dce_v6_0_lock_cursor(crtc, false);
}
}
static int dce_v6_0_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
u16 *blue, uint32_t size)
{
struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc);
int i;
/* userspace palettes are always correct as is */
for (i = 0; i < size; i++) {
amdgpu_crtc->lut_r[i] = red[i] >> 6;
amdgpu_crtc->lut_g[i] = green[i] >> 6;
amdgpu_crtc->lut_b[i] = blue[i] >> 6;
}
dce_v6_0_crtc_load_lut(crtc);
return 0;
}
static void dce_v6_0_crtc_destroy(struct drm_crtc *crtc)
{
struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc);
drm_crtc_cleanup(crtc);
kfree(amdgpu_crtc);
}
static const struct drm_crtc_funcs dce_v6_0_crtc_funcs = {
.cursor_set2 = dce_v6_0_crtc_cursor_set2,
.cursor_move = dce_v6_0_crtc_cursor_move,
.gamma_set = dce_v6_0_crtc_gamma_set,
.set_config = amdgpu_crtc_set_config,
.destroy = dce_v6_0_crtc_destroy,
.page_flip_target = amdgpu_crtc_page_flip_target,
};
static void dce_v6_0_crtc_dpms(struct drm_crtc *crtc, int mode)
{
struct drm_device *dev = crtc->dev;
struct amdgpu_device *adev = dev->dev_private;
struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc);
unsigned type;
switch (mode) {
case DRM_MODE_DPMS_ON:
amdgpu_crtc->enabled = true;
amdgpu_atombios_crtc_enable(crtc, ATOM_ENABLE);
amdgpu_atombios_crtc_blank(crtc, ATOM_DISABLE);
/* Make sure VBLANK and PFLIP interrupts are still enabled */
type = amdgpu_crtc_idx_to_irq_type(adev, amdgpu_crtc->crtc_id);
amdgpu_irq_update(adev, &adev->crtc_irq, type);
amdgpu_irq_update(adev, &adev->pageflip_irq, type);
drm_vblank_post_modeset(dev, amdgpu_crtc->crtc_id);
dce_v6_0_crtc_load_lut(crtc);
break;
case DRM_MODE_DPMS_STANDBY:
case DRM_MODE_DPMS_SUSPEND:
case DRM_MODE_DPMS_OFF:
drm_vblank_pre_modeset(dev, amdgpu_crtc->crtc_id);
if (amdgpu_crtc->enabled)
amdgpu_atombios_crtc_blank(crtc, ATOM_ENABLE);
amdgpu_atombios_crtc_enable(crtc, ATOM_DISABLE);
amdgpu_crtc->enabled = false;
break;
}
/* adjust pm to dpms */
amdgpu_pm_compute_clocks(adev);
}
static void dce_v6_0_crtc_prepare(struct drm_crtc *crtc)
{
/* disable crtc pair power gating before programming */
amdgpu_atombios_crtc_powergate(crtc, ATOM_DISABLE);
amdgpu_atombios_crtc_lock(crtc, ATOM_ENABLE);
dce_v6_0_crtc_dpms(crtc, DRM_MODE_DPMS_OFF);
}
static void dce_v6_0_crtc_commit(struct drm_crtc *crtc)
{
dce_v6_0_crtc_dpms(crtc, DRM_MODE_DPMS_ON);
amdgpu_atombios_crtc_lock(crtc, ATOM_DISABLE);
}
static void dce_v6_0_crtc_disable(struct drm_crtc *crtc)
{
struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc);
struct drm_device *dev = crtc->dev;
struct amdgpu_device *adev = dev->dev_private;
struct amdgpu_atom_ss ss;
int i;
dce_v6_0_crtc_dpms(crtc, DRM_MODE_DPMS_OFF);
if (crtc->primary->fb) {
int r;
struct amdgpu_framebuffer *amdgpu_fb;
struct amdgpu_bo *rbo;
amdgpu_fb = to_amdgpu_framebuffer(crtc->primary->fb);
rbo = gem_to_amdgpu_bo(amdgpu_fb->obj);
r = amdgpu_bo_reserve(rbo, false);
if (unlikely(r))
DRM_ERROR("failed to reserve rbo before unpin\n");
else {
amdgpu_bo_unpin(rbo);
amdgpu_bo_unreserve(rbo);
}
}
/* disable the GRPH */
dce_v6_0_grph_enable(crtc, false);
amdgpu_atombios_crtc_powergate(crtc, ATOM_ENABLE);
for (i = 0; i < adev->mode_info.num_crtc; i++) {
if (adev->mode_info.crtcs[i] &&
adev->mode_info.crtcs[i]->enabled &&
i != amdgpu_crtc->crtc_id &&
amdgpu_crtc->pll_id == adev->mode_info.crtcs[i]->pll_id) {
/* one other crtc is using this pll don't turn
* off the pll
*/
goto done;
}
}
switch (amdgpu_crtc->pll_id) {
case ATOM_PPLL1:
case ATOM_PPLL2:
/* disable the ppll */
amdgpu_atombios_crtc_program_pll(crtc, amdgpu_crtc->crtc_id, amdgpu_crtc->pll_id,
0, 0, ATOM_DISABLE, 0, 0, 0, 0, 0, false, &ss);
break;
default:
break;
}
done:
amdgpu_crtc->pll_id = ATOM_PPLL_INVALID;
amdgpu_crtc->adjusted_clock = 0;
amdgpu_crtc->encoder = NULL;
amdgpu_crtc->connector = NULL;
}
static int dce_v6_0_crtc_mode_set(struct drm_crtc *crtc,
struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode,
int x, int y, struct drm_framebuffer *old_fb)
{
struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc);
if (!amdgpu_crtc->adjusted_clock)
return -EINVAL;
amdgpu_atombios_crtc_set_pll(crtc, adjusted_mode);
amdgpu_atombios_crtc_set_dtd_timing(crtc, adjusted_mode);
dce_v6_0_crtc_do_set_base(crtc, old_fb, x, y, 0);
amdgpu_atombios_crtc_overscan_setup(crtc, mode, adjusted_mode);
amdgpu_atombios_crtc_scaler_setup(crtc);
dce_v6_0_cursor_reset(crtc);
/* update the hw version fpr dpm */
amdgpu_crtc->hw_mode = *adjusted_mode;
return 0;
}
static bool dce_v6_0_crtc_mode_fixup(struct drm_crtc *crtc,
const struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc);
struct drm_device *dev = crtc->dev;
struct drm_encoder *encoder;
/* assign the encoder to the amdgpu crtc to avoid repeated lookups later */
list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
if (encoder->crtc == crtc) {
amdgpu_crtc->encoder = encoder;
amdgpu_crtc->connector = amdgpu_get_connector_for_encoder(encoder);
break;
}
}
if ((amdgpu_crtc->encoder == NULL) || (amdgpu_crtc->connector == NULL)) {
amdgpu_crtc->encoder = NULL;
amdgpu_crtc->connector = NULL;
return false;
}
if (!amdgpu_crtc_scaling_mode_fixup(crtc, mode, adjusted_mode))
return false;
if (amdgpu_atombios_crtc_prepare_pll(crtc, adjusted_mode))
return false;
/* pick pll */
amdgpu_crtc->pll_id = dce_v6_0_pick_pll(crtc);
/* if we can't get a PPLL for a non-DP encoder, fail */
if ((amdgpu_crtc->pll_id == ATOM_PPLL_INVALID) &&
!ENCODER_MODE_IS_DP(amdgpu_atombios_encoder_get_encoder_mode(amdgpu_crtc->encoder)))
return false;
return true;
}
static int dce_v6_0_crtc_set_base(struct drm_crtc *crtc, int x, int y,
struct drm_framebuffer *old_fb)
{
return dce_v6_0_crtc_do_set_base(crtc, old_fb, x, y, 0);
}
static int dce_v6_0_crtc_set_base_atomic(struct drm_crtc *crtc,
struct drm_framebuffer *fb,
int x, int y, enum mode_set_atomic state)
{
return dce_v6_0_crtc_do_set_base(crtc, fb, x, y, 1);
}
static const struct drm_crtc_helper_funcs dce_v6_0_crtc_helper_funcs = {
.dpms = dce_v6_0_crtc_dpms,
.mode_fixup = dce_v6_0_crtc_mode_fixup,
.mode_set = dce_v6_0_crtc_mode_set,
.mode_set_base = dce_v6_0_crtc_set_base,
.mode_set_base_atomic = dce_v6_0_crtc_set_base_atomic,
.prepare = dce_v6_0_crtc_prepare,
.commit = dce_v6_0_crtc_commit,
.load_lut = dce_v6_0_crtc_load_lut,
.disable = dce_v6_0_crtc_disable,
};
static int dce_v6_0_crtc_init(struct amdgpu_device *adev, int index)
{
struct amdgpu_crtc *amdgpu_crtc;
int i;
amdgpu_crtc = kzalloc(sizeof(struct amdgpu_crtc) +
(AMDGPUFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
if (amdgpu_crtc == NULL)
return -ENOMEM;
drm_crtc_init(adev->ddev, &amdgpu_crtc->base, &dce_v6_0_crtc_funcs);
drm_mode_crtc_set_gamma_size(&amdgpu_crtc->base, 256);
amdgpu_crtc->crtc_id = index;
adev->mode_info.crtcs[index] = amdgpu_crtc;
amdgpu_crtc->max_cursor_width = CURSOR_WIDTH;
amdgpu_crtc->max_cursor_height = CURSOR_HEIGHT;
adev->ddev->mode_config.cursor_width = amdgpu_crtc->max_cursor_width;
adev->ddev->mode_config.cursor_height = amdgpu_crtc->max_cursor_height;
for (i = 0; i < 256; i++) {
amdgpu_crtc->lut_r[i] = i << 2;
amdgpu_crtc->lut_g[i] = i << 2;
amdgpu_crtc->lut_b[i] = i << 2;
}
amdgpu_crtc->crtc_offset = crtc_offsets[amdgpu_crtc->crtc_id];
amdgpu_crtc->pll_id = ATOM_PPLL_INVALID;
amdgpu_crtc->adjusted_clock = 0;
amdgpu_crtc->encoder = NULL;
amdgpu_crtc->connector = NULL;
drm_crtc_helper_add(&amdgpu_crtc->base, &dce_v6_0_crtc_helper_funcs);
return 0;
}
static int dce_v6_0_early_init(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
adev->audio_endpt_rreg = &dce_v6_0_audio_endpt_rreg;
adev->audio_endpt_wreg = &dce_v6_0_audio_endpt_wreg;
dce_v6_0_set_display_funcs(adev);
dce_v6_0_set_irq_funcs(adev);
switch (adev->asic_type) {
case CHIP_TAHITI:
case CHIP_PITCAIRN:
case CHIP_VERDE:
adev->mode_info.num_crtc = 6;
adev->mode_info.num_hpd = 6;
adev->mode_info.num_dig = 6;
break;
case CHIP_OLAND:
adev->mode_info.num_crtc = 2;
adev->mode_info.num_hpd = 2;
adev->mode_info.num_dig = 2;
break;
default:
/* FIXME: not supported yet */
return -EINVAL;
}
return 0;
}
static int dce_v6_0_sw_init(void *handle)
{
int r, i;
bool ret;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
for (i = 0; i < adev->mode_info.num_crtc; i++) {
r = amdgpu_irq_add_id(adev, i + 1, &adev->crtc_irq);
if (r)
return r;
}
for (i = 8; i < 20; i += 2) {
r = amdgpu_irq_add_id(adev, i, &adev->pageflip_irq);
if (r)
return r;
}
/* HPD hotplug */
r = amdgpu_irq_add_id(adev, 42, &adev->hpd_irq);
if (r)
return r;
adev->mode_info.mode_config_initialized = true;
adev->ddev->mode_config.funcs = &amdgpu_mode_funcs;
adev->ddev->mode_config.async_page_flip = true;
adev->ddev->mode_config.max_width = 16384;
adev->ddev->mode_config.max_height = 16384;
adev->ddev->mode_config.preferred_depth = 24;
adev->ddev->mode_config.prefer_shadow = 1;
adev->ddev->mode_config.fb_base = adev->mc.aper_base;
r = amdgpu_modeset_create_props(adev);
if (r)
return r;
adev->ddev->mode_config.max_width = 16384;
adev->ddev->mode_config.max_height = 16384;
/* allocate crtcs */
for (i = 0; i < adev->mode_info.num_crtc; i++) {
r = dce_v6_0_crtc_init(adev, i);
if (r)
return r;
}
ret = amdgpu_atombios_get_connector_info_from_object_table(adev);
if (ret)
amdgpu_print_display_setup(adev->ddev);
else
return -EINVAL;
/* setup afmt */
dce_v6_0_afmt_init(adev);
r = dce_v6_0_audio_init(adev);
if (r)
return r;
drm_kms_helper_poll_init(adev->ddev);
return r;
}
static int dce_v6_0_sw_fini(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
kfree(adev->mode_info.bios_hardcoded_edid);
drm_kms_helper_poll_fini(adev->ddev);
dce_v6_0_audio_fini(adev);
dce_v6_0_afmt_fini(adev);
drm_mode_config_cleanup(adev->ddev);
adev->mode_info.mode_config_initialized = false;
return 0;
}
static int dce_v6_0_hw_init(void *handle)
{
int i;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
/* init dig PHYs, disp eng pll */
amdgpu_atombios_encoder_init_dig(adev);
amdgpu_atombios_crtc_set_disp_eng_pll(adev, adev->clock.default_dispclk);
/* initialize hpd */
dce_v6_0_hpd_init(adev);
for (i = 0; i < adev->mode_info.audio.num_pins; i++) {
dce_v6_0_audio_enable(adev, &adev->mode_info.audio.pin[i], false);
}
dce_v6_0_pageflip_interrupt_init(adev);
return 0;
}
static int dce_v6_0_hw_fini(void *handle)
{
int i;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
dce_v6_0_hpd_fini(adev);
for (i = 0; i < adev->mode_info.audio.num_pins; i++) {
dce_v6_0_audio_enable(adev, &adev->mode_info.audio.pin[i], false);
}
dce_v6_0_pageflip_interrupt_fini(adev);
return 0;
}
static int dce_v6_0_suspend(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
amdgpu_atombios_scratch_regs_save(adev);
return dce_v6_0_hw_fini(handle);
}
static int dce_v6_0_resume(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
int ret;
ret = dce_v6_0_hw_init(handle);
amdgpu_atombios_scratch_regs_restore(adev);
/* turn on the BL */
if (adev->mode_info.bl_encoder) {
u8 bl_level = amdgpu_display_backlight_get_level(adev,
adev->mode_info.bl_encoder);
amdgpu_display_backlight_set_level(adev, adev->mode_info.bl_encoder,
bl_level);
}
return ret;
}
static bool dce_v6_0_is_idle(void *handle)
{
return true;
}
static int dce_v6_0_wait_for_idle(void *handle)
{
return 0;
}
static int dce_v6_0_soft_reset(void *handle)
{
DRM_INFO("xxxx: dce_v6_0_soft_reset --- no impl!!\n");
return 0;
}
static void dce_v6_0_set_crtc_vblank_interrupt_state(struct amdgpu_device *adev,
int crtc,
enum amdgpu_interrupt_state state)
{
u32 reg_block, interrupt_mask;
if (crtc >= adev->mode_info.num_crtc) {
DRM_DEBUG("invalid crtc %d\n", crtc);
return;
}
switch (crtc) {
case 0:
reg_block = SI_CRTC0_REGISTER_OFFSET;
break;
case 1:
reg_block = SI_CRTC1_REGISTER_OFFSET;
break;
case 2:
reg_block = SI_CRTC2_REGISTER_OFFSET;
break;
case 3:
reg_block = SI_CRTC3_REGISTER_OFFSET;
break;
case 4:
reg_block = SI_CRTC4_REGISTER_OFFSET;
break;
case 5:
reg_block = SI_CRTC5_REGISTER_OFFSET;
break;
default:
DRM_DEBUG("invalid crtc %d\n", crtc);
return;
}
switch (state) {
case AMDGPU_IRQ_STATE_DISABLE:
interrupt_mask = RREG32(INT_MASK + reg_block);
interrupt_mask &= ~VBLANK_INT_MASK;
WREG32(INT_MASK + reg_block, interrupt_mask);
break;
case AMDGPU_IRQ_STATE_ENABLE:
interrupt_mask = RREG32(INT_MASK + reg_block);
interrupt_mask |= VBLANK_INT_MASK;
WREG32(INT_MASK + reg_block, interrupt_mask);
break;
default:
break;
}
}
static void dce_v6_0_set_crtc_vline_interrupt_state(struct amdgpu_device *adev,
int crtc,
enum amdgpu_interrupt_state state)
{
}
static int dce_v6_0_set_hpd_interrupt_state(struct amdgpu_device *adev,
struct amdgpu_irq_src *src,
unsigned type,
enum amdgpu_interrupt_state state)
{
u32 dc_hpd_int_cntl_reg, dc_hpd_int_cntl;
switch (type) {
case AMDGPU_HPD_1:
dc_hpd_int_cntl_reg = DC_HPD1_INT_CONTROL;
break;
case AMDGPU_HPD_2:
dc_hpd_int_cntl_reg = DC_HPD2_INT_CONTROL;
break;
case AMDGPU_HPD_3:
dc_hpd_int_cntl_reg = DC_HPD3_INT_CONTROL;
break;
case AMDGPU_HPD_4:
dc_hpd_int_cntl_reg = DC_HPD4_INT_CONTROL;
break;
case AMDGPU_HPD_5:
dc_hpd_int_cntl_reg = DC_HPD5_INT_CONTROL;
break;
case AMDGPU_HPD_6:
dc_hpd_int_cntl_reg = DC_HPD6_INT_CONTROL;
break;
default:
DRM_DEBUG("invalid hdp %d\n", type);
return 0;
}
switch (state) {
case AMDGPU_IRQ_STATE_DISABLE:
dc_hpd_int_cntl = RREG32(dc_hpd_int_cntl_reg);
dc_hpd_int_cntl &= ~(DC_HPDx_INT_EN | DC_HPDx_RX_INT_EN);
WREG32(dc_hpd_int_cntl_reg, dc_hpd_int_cntl);
break;
case AMDGPU_IRQ_STATE_ENABLE:
dc_hpd_int_cntl = RREG32(dc_hpd_int_cntl_reg);
dc_hpd_int_cntl |= (DC_HPDx_INT_EN | DC_HPDx_RX_INT_EN);
WREG32(dc_hpd_int_cntl_reg, dc_hpd_int_cntl);
break;
default:
break;
}
return 0;
}
static int dce_v6_0_set_crtc_interrupt_state(struct amdgpu_device *adev,
struct amdgpu_irq_src *src,
unsigned type,
enum amdgpu_interrupt_state state)
{
switch (type) {
case AMDGPU_CRTC_IRQ_VBLANK1:
dce_v6_0_set_crtc_vblank_interrupt_state(adev, 0, state);
break;
case AMDGPU_CRTC_IRQ_VBLANK2:
dce_v6_0_set_crtc_vblank_interrupt_state(adev, 1, state);
break;
case AMDGPU_CRTC_IRQ_VBLANK3:
dce_v6_0_set_crtc_vblank_interrupt_state(adev, 2, state);
break;
case AMDGPU_CRTC_IRQ_VBLANK4:
dce_v6_0_set_crtc_vblank_interrupt_state(adev, 3, state);
break;
case AMDGPU_CRTC_IRQ_VBLANK5:
dce_v6_0_set_crtc_vblank_interrupt_state(adev, 4, state);
break;
case AMDGPU_CRTC_IRQ_VBLANK6:
dce_v6_0_set_crtc_vblank_interrupt_state(adev, 5, state);
break;
case AMDGPU_CRTC_IRQ_VLINE1:
dce_v6_0_set_crtc_vline_interrupt_state(adev, 0, state);
break;
case AMDGPU_CRTC_IRQ_VLINE2:
dce_v6_0_set_crtc_vline_interrupt_state(adev, 1, state);
break;
case AMDGPU_CRTC_IRQ_VLINE3:
dce_v6_0_set_crtc_vline_interrupt_state(adev, 2, state);
break;
case AMDGPU_CRTC_IRQ_VLINE4:
dce_v6_0_set_crtc_vline_interrupt_state(adev, 3, state);
break;
case AMDGPU_CRTC_IRQ_VLINE5:
dce_v6_0_set_crtc_vline_interrupt_state(adev, 4, state);
break;
case AMDGPU_CRTC_IRQ_VLINE6:
dce_v6_0_set_crtc_vline_interrupt_state(adev, 5, state);
break;
default:
break;
}
return 0;
}
static int dce_v6_0_crtc_irq(struct amdgpu_device *adev,
struct amdgpu_irq_src *source,
struct amdgpu_iv_entry *entry)
{
unsigned crtc = entry->src_id - 1;
uint32_t disp_int = RREG32(interrupt_status_offsets[crtc].reg);
unsigned irq_type = amdgpu_crtc_idx_to_irq_type(adev, crtc);
switch (entry->src_data) {
case 0: /* vblank */
if (disp_int & interrupt_status_offsets[crtc].vblank)
WREG32(VBLANK_STATUS + crtc_offsets[crtc], VBLANK_ACK);
else
DRM_DEBUG("IH: IH event w/o asserted irq bit?\n");
if (amdgpu_irq_enabled(adev, source, irq_type)) {
drm_handle_vblank(adev->ddev, crtc);
}
DRM_DEBUG("IH: D%d vblank\n", crtc + 1);
break;
case 1: /* vline */
if (disp_int & interrupt_status_offsets[crtc].vline)
WREG32(VLINE_STATUS + crtc_offsets[crtc], VLINE_ACK);
else
DRM_DEBUG("IH: IH event w/o asserted irq bit?\n");
DRM_DEBUG("IH: D%d vline\n", crtc + 1);
break;
default:
DRM_DEBUG("Unhandled interrupt: %d %d\n", entry->src_id, entry->src_data);
break;
}
return 0;
}
static int dce_v6_0_set_pageflip_interrupt_state(struct amdgpu_device *adev,
struct amdgpu_irq_src *src,
unsigned type,
enum amdgpu_interrupt_state state)
{
u32 reg;
if (type >= adev->mode_info.num_crtc) {
DRM_ERROR("invalid pageflip crtc %d\n", type);
return -EINVAL;
}
reg = RREG32(GRPH_INT_CONTROL + crtc_offsets[type]);
if (state == AMDGPU_IRQ_STATE_DISABLE)
WREG32(GRPH_INT_CONTROL + crtc_offsets[type],
reg & ~GRPH_INTERRUPT_CONTROL__GRPH_PFLIP_INT_MASK_MASK);
else
WREG32(GRPH_INT_CONTROL + crtc_offsets[type],
reg | GRPH_INTERRUPT_CONTROL__GRPH_PFLIP_INT_MASK_MASK);
return 0;
}
static int dce_v6_0_pageflip_irq(struct amdgpu_device *adev,
struct amdgpu_irq_src *source,
struct amdgpu_iv_entry *entry)
{
unsigned long flags;
unsigned crtc_id;
struct amdgpu_crtc *amdgpu_crtc;
struct amdgpu_flip_work *works;
crtc_id = (entry->src_id - 8) >> 1;
amdgpu_crtc = adev->mode_info.crtcs[crtc_id];
if (crtc_id >= adev->mode_info.num_crtc) {
DRM_ERROR("invalid pageflip crtc %d\n", crtc_id);
return -EINVAL;
}
if (RREG32(GRPH_INT_STATUS + crtc_offsets[crtc_id]) &
GRPH_INTERRUPT_STATUS__GRPH_PFLIP_INT_OCCURRED_MASK)
WREG32(GRPH_INT_STATUS + crtc_offsets[crtc_id],
GRPH_INTERRUPT_STATUS__GRPH_PFLIP_INT_CLEAR_MASK);
/* IRQ could occur when in initial stage */
if (amdgpu_crtc == NULL)
return 0;
spin_lock_irqsave(&adev->ddev->event_lock, flags);
works = amdgpu_crtc->pflip_works;
if (amdgpu_crtc->pflip_status != AMDGPU_FLIP_SUBMITTED){
DRM_DEBUG_DRIVER("amdgpu_crtc->pflip_status = %d != "
"AMDGPU_FLIP_SUBMITTED(%d)\n",
amdgpu_crtc->pflip_status,
AMDGPU_FLIP_SUBMITTED);
spin_unlock_irqrestore(&adev->ddev->event_lock, flags);
return 0;
}
/* page flip completed. clean up */
amdgpu_crtc->pflip_status = AMDGPU_FLIP_NONE;
amdgpu_crtc->pflip_works = NULL;
/* wakeup usersapce */
if (works->event)
drm_crtc_send_vblank_event(&amdgpu_crtc->base, works->event);
spin_unlock_irqrestore(&adev->ddev->event_lock, flags);
drm_crtc_vblank_put(&amdgpu_crtc->base);
schedule_work(&works->unpin_work);
return 0;
}
static int dce_v6_0_hpd_irq(struct amdgpu_device *adev,
struct amdgpu_irq_src *source,
struct amdgpu_iv_entry *entry)
{
uint32_t disp_int, mask, int_control, tmp;
unsigned hpd;
if (entry->src_data > 6) {
DRM_DEBUG("Unhandled interrupt: %d %d\n", entry->src_id, entry->src_data);
return 0;
}
hpd = entry->src_data;
disp_int = RREG32(interrupt_status_offsets[hpd].reg);
mask = interrupt_status_offsets[hpd].hpd;
int_control = hpd_int_control_offsets[hpd];
if (disp_int & mask) {
tmp = RREG32(int_control);
tmp |= DC_HPD1_INT_CONTROL__DC_HPD1_INT_ACK_MASK;
WREG32(int_control, tmp);
schedule_work(&adev->hotplug_work);
DRM_INFO("IH: HPD%d\n", hpd + 1);
}
return 0;
}
static int dce_v6_0_set_clockgating_state(void *handle,
enum amd_clockgating_state state)
{
return 0;
}
static int dce_v6_0_set_powergating_state(void *handle,
enum amd_powergating_state state)
{
return 0;
}
const struct amd_ip_funcs dce_v6_0_ip_funcs = {
.name = "dce_v6_0",
.early_init = dce_v6_0_early_init,
.late_init = NULL,
.sw_init = dce_v6_0_sw_init,
.sw_fini = dce_v6_0_sw_fini,
.hw_init = dce_v6_0_hw_init,
.hw_fini = dce_v6_0_hw_fini,
.suspend = dce_v6_0_suspend,
.resume = dce_v6_0_resume,
.is_idle = dce_v6_0_is_idle,
.wait_for_idle = dce_v6_0_wait_for_idle,
.soft_reset = dce_v6_0_soft_reset,
.set_clockgating_state = dce_v6_0_set_clockgating_state,
.set_powergating_state = dce_v6_0_set_powergating_state,
};
static void
dce_v6_0_encoder_mode_set(struct drm_encoder *encoder,
struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder);
amdgpu_encoder->pixel_clock = adjusted_mode->clock;
/* need to call this here rather than in prepare() since we need some crtc info */
amdgpu_atombios_encoder_dpms(encoder, DRM_MODE_DPMS_OFF);
/* set scaler clears this on some chips */
dce_v6_0_set_interleave(encoder->crtc, mode);
if (amdgpu_atombios_encoder_get_encoder_mode(encoder) == ATOM_ENCODER_MODE_HDMI) {
dce_v6_0_afmt_enable(encoder, true);
dce_v6_0_afmt_setmode(encoder, adjusted_mode);
}
}
static void dce_v6_0_encoder_prepare(struct drm_encoder *encoder)
{
struct amdgpu_device *adev = encoder->dev->dev_private;
struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder);
struct drm_connector *connector = amdgpu_get_connector_for_encoder(encoder);
if ((amdgpu_encoder->active_device &
(ATOM_DEVICE_DFP_SUPPORT | ATOM_DEVICE_LCD_SUPPORT)) ||
(amdgpu_encoder_get_dp_bridge_encoder_id(encoder) !=
ENCODER_OBJECT_ID_NONE)) {
struct amdgpu_encoder_atom_dig *dig = amdgpu_encoder->enc_priv;
if (dig) {
dig->dig_encoder = dce_v6_0_pick_dig_encoder(encoder);
if (amdgpu_encoder->active_device & ATOM_DEVICE_DFP_SUPPORT)
dig->afmt = adev->mode_info.afmt[dig->dig_encoder];
}
}
amdgpu_atombios_scratch_regs_lock(adev, true);
if (connector) {
struct amdgpu_connector *amdgpu_connector = to_amdgpu_connector(connector);
/* select the clock/data port if it uses a router */
if (amdgpu_connector->router.cd_valid)
amdgpu_i2c_router_select_cd_port(amdgpu_connector);
/* turn eDP panel on for mode set */
if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
amdgpu_atombios_encoder_set_edp_panel_power(connector,
ATOM_TRANSMITTER_ACTION_POWER_ON);
}
/* this is needed for the pll/ss setup to work correctly in some cases */
amdgpu_atombios_encoder_set_crtc_source(encoder);
/* set up the FMT blocks */
dce_v6_0_program_fmt(encoder);
}
static void dce_v6_0_encoder_commit(struct drm_encoder *encoder)
{
struct drm_device *dev = encoder->dev;
struct amdgpu_device *adev = dev->dev_private;
/* need to call this here as we need the crtc set up */
amdgpu_atombios_encoder_dpms(encoder, DRM_MODE_DPMS_ON);
amdgpu_atombios_scratch_regs_lock(adev, false);
}
static void dce_v6_0_encoder_disable(struct drm_encoder *encoder)
{
struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder);
struct amdgpu_encoder_atom_dig *dig;
amdgpu_atombios_encoder_dpms(encoder, DRM_MODE_DPMS_OFF);
if (amdgpu_atombios_encoder_is_digital(encoder)) {
if (amdgpu_atombios_encoder_get_encoder_mode(encoder) == ATOM_ENCODER_MODE_HDMI)
dce_v6_0_afmt_enable(encoder, false);
dig = amdgpu_encoder->enc_priv;
dig->dig_encoder = -1;
}
amdgpu_encoder->active_device = 0;
}
/* these are handled by the primary encoders */
static void dce_v6_0_ext_prepare(struct drm_encoder *encoder)
{
}
static void dce_v6_0_ext_commit(struct drm_encoder *encoder)
{
}
static void
dce_v6_0_ext_mode_set(struct drm_encoder *encoder,
struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
}
static void dce_v6_0_ext_disable(struct drm_encoder *encoder)
{
}
static void
dce_v6_0_ext_dpms(struct drm_encoder *encoder, int mode)
{
}
static bool dce_v6_0_ext_mode_fixup(struct drm_encoder *encoder,
const struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
return true;
}
static const struct drm_encoder_helper_funcs dce_v6_0_ext_helper_funcs = {
.dpms = dce_v6_0_ext_dpms,
.mode_fixup = dce_v6_0_ext_mode_fixup,
.prepare = dce_v6_0_ext_prepare,
.mode_set = dce_v6_0_ext_mode_set,
.commit = dce_v6_0_ext_commit,
.disable = dce_v6_0_ext_disable,
/* no detect for TMDS/LVDS yet */
};
static const struct drm_encoder_helper_funcs dce_v6_0_dig_helper_funcs = {
.dpms = amdgpu_atombios_encoder_dpms,
.mode_fixup = amdgpu_atombios_encoder_mode_fixup,
.prepare = dce_v6_0_encoder_prepare,
.mode_set = dce_v6_0_encoder_mode_set,
.commit = dce_v6_0_encoder_commit,
.disable = dce_v6_0_encoder_disable,
.detect = amdgpu_atombios_encoder_dig_detect,
};
static const struct drm_encoder_helper_funcs dce_v6_0_dac_helper_funcs = {
.dpms = amdgpu_atombios_encoder_dpms,
.mode_fixup = amdgpu_atombios_encoder_mode_fixup,
.prepare = dce_v6_0_encoder_prepare,
.mode_set = dce_v6_0_encoder_mode_set,
.commit = dce_v6_0_encoder_commit,
.detect = amdgpu_atombios_encoder_dac_detect,
};
static void dce_v6_0_encoder_destroy(struct drm_encoder *encoder)
{
struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder);
if (amdgpu_encoder->devices & (ATOM_DEVICE_LCD_SUPPORT))
amdgpu_atombios_encoder_fini_backlight(amdgpu_encoder);
kfree(amdgpu_encoder->enc_priv);
drm_encoder_cleanup(encoder);
kfree(amdgpu_encoder);
}
static const struct drm_encoder_funcs dce_v6_0_encoder_funcs = {
.destroy = dce_v6_0_encoder_destroy,
};
static void dce_v6_0_encoder_add(struct amdgpu_device *adev,
uint32_t encoder_enum,
uint32_t supported_device,
u16 caps)
{
struct drm_device *dev = adev->ddev;
struct drm_encoder *encoder;
struct amdgpu_encoder *amdgpu_encoder;
/* see if we already added it */
list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
amdgpu_encoder = to_amdgpu_encoder(encoder);
if (amdgpu_encoder->encoder_enum == encoder_enum) {
amdgpu_encoder->devices |= supported_device;
return;
}
}
/* add a new one */
amdgpu_encoder = kzalloc(sizeof(struct amdgpu_encoder), GFP_KERNEL);
if (!amdgpu_encoder)
return;
encoder = &amdgpu_encoder->base;
switch (adev->mode_info.num_crtc) {
case 1:
encoder->possible_crtcs = 0x1;
break;
case 2:
default:
encoder->possible_crtcs = 0x3;
break;
case 4:
encoder->possible_crtcs = 0xf;
break;
case 6:
encoder->possible_crtcs = 0x3f;
break;
}
amdgpu_encoder->enc_priv = NULL;
amdgpu_encoder->encoder_enum = encoder_enum;
amdgpu_encoder->encoder_id = (encoder_enum & OBJECT_ID_MASK) >> OBJECT_ID_SHIFT;
amdgpu_encoder->devices = supported_device;
amdgpu_encoder->rmx_type = RMX_OFF;
amdgpu_encoder->underscan_type = UNDERSCAN_OFF;
amdgpu_encoder->is_ext_encoder = false;
amdgpu_encoder->caps = caps;
switch (amdgpu_encoder->encoder_id) {
case ENCODER_OBJECT_ID_INTERNAL_KLDSCP_DAC1:
case ENCODER_OBJECT_ID_INTERNAL_KLDSCP_DAC2:
drm_encoder_init(dev, encoder, &dce_v6_0_encoder_funcs,
DRM_MODE_ENCODER_DAC, NULL);
drm_encoder_helper_add(encoder, &dce_v6_0_dac_helper_funcs);
break;
case ENCODER_OBJECT_ID_INTERNAL_KLDSCP_DVO1:
case ENCODER_OBJECT_ID_INTERNAL_UNIPHY:
case ENCODER_OBJECT_ID_INTERNAL_UNIPHY1:
case ENCODER_OBJECT_ID_INTERNAL_UNIPHY2:
case ENCODER_OBJECT_ID_INTERNAL_UNIPHY3:
if (amdgpu_encoder->devices & (ATOM_DEVICE_LCD_SUPPORT)) {
amdgpu_encoder->rmx_type = RMX_FULL;
drm_encoder_init(dev, encoder, &dce_v6_0_encoder_funcs,
DRM_MODE_ENCODER_LVDS, NULL);
amdgpu_encoder->enc_priv = amdgpu_atombios_encoder_get_lcd_info(amdgpu_encoder);
} else if (amdgpu_encoder->devices & (ATOM_DEVICE_CRT_SUPPORT)) {
drm_encoder_init(dev, encoder, &dce_v6_0_encoder_funcs,
DRM_MODE_ENCODER_DAC, NULL);
amdgpu_encoder->enc_priv = amdgpu_atombios_encoder_get_dig_info(amdgpu_encoder);
} else {
drm_encoder_init(dev, encoder, &dce_v6_0_encoder_funcs,
DRM_MODE_ENCODER_TMDS, NULL);
amdgpu_encoder->enc_priv = amdgpu_atombios_encoder_get_dig_info(amdgpu_encoder);
}
drm_encoder_helper_add(encoder, &dce_v6_0_dig_helper_funcs);
break;
case ENCODER_OBJECT_ID_SI170B:
case ENCODER_OBJECT_ID_CH7303:
case ENCODER_OBJECT_ID_EXTERNAL_SDVOA:
case ENCODER_OBJECT_ID_EXTERNAL_SDVOB:
case ENCODER_OBJECT_ID_TITFP513:
case ENCODER_OBJECT_ID_VT1623:
case ENCODER_OBJECT_ID_HDMI_SI1930:
case ENCODER_OBJECT_ID_TRAVIS:
case ENCODER_OBJECT_ID_NUTMEG:
/* these are handled by the primary encoders */
amdgpu_encoder->is_ext_encoder = true;
if (amdgpu_encoder->devices & (ATOM_DEVICE_LCD_SUPPORT))
drm_encoder_init(dev, encoder, &dce_v6_0_encoder_funcs,
DRM_MODE_ENCODER_LVDS, NULL);
else if (amdgpu_encoder->devices & (ATOM_DEVICE_CRT_SUPPORT))
drm_encoder_init(dev, encoder, &dce_v6_0_encoder_funcs,
DRM_MODE_ENCODER_DAC, NULL);
else
drm_encoder_init(dev, encoder, &dce_v6_0_encoder_funcs,
DRM_MODE_ENCODER_TMDS, NULL);
drm_encoder_helper_add(encoder, &dce_v6_0_ext_helper_funcs);
break;
}
}
static const struct amdgpu_display_funcs dce_v6_0_display_funcs = {
.set_vga_render_state = &dce_v6_0_set_vga_render_state,
.bandwidth_update = &dce_v6_0_bandwidth_update,
.vblank_get_counter = &dce_v6_0_vblank_get_counter,
.vblank_wait = &dce_v6_0_vblank_wait,
.is_display_hung = &dce_v6_0_is_display_hung,
.backlight_set_level = &amdgpu_atombios_encoder_set_backlight_level,
.backlight_get_level = &amdgpu_atombios_encoder_get_backlight_level,
.hpd_sense = &dce_v6_0_hpd_sense,
.hpd_set_polarity = &dce_v6_0_hpd_set_polarity,
.hpd_get_gpio_reg = &dce_v6_0_hpd_get_gpio_reg,
.page_flip = &dce_v6_0_page_flip,
.page_flip_get_scanoutpos = &dce_v6_0_crtc_get_scanoutpos,
.add_encoder = &dce_v6_0_encoder_add,
.add_connector = &amdgpu_connector_add,
.stop_mc_access = &dce_v6_0_stop_mc_access,
.resume_mc_access = &dce_v6_0_resume_mc_access,
};
static void dce_v6_0_set_display_funcs(struct amdgpu_device *adev)
{
if (adev->mode_info.funcs == NULL)
adev->mode_info.funcs = &dce_v6_0_display_funcs;
}
static const struct amdgpu_irq_src_funcs dce_v6_0_crtc_irq_funcs = {
.set = dce_v6_0_set_crtc_interrupt_state,
.process = dce_v6_0_crtc_irq,
};
static const struct amdgpu_irq_src_funcs dce_v6_0_pageflip_irq_funcs = {
.set = dce_v6_0_set_pageflip_interrupt_state,
.process = dce_v6_0_pageflip_irq,
};
static const struct amdgpu_irq_src_funcs dce_v6_0_hpd_irq_funcs = {
.set = dce_v6_0_set_hpd_interrupt_state,
.process = dce_v6_0_hpd_irq,
};
static void dce_v6_0_set_irq_funcs(struct amdgpu_device *adev)
{
adev->crtc_irq.num_types = AMDGPU_CRTC_IRQ_LAST;
adev->crtc_irq.funcs = &dce_v6_0_crtc_irq_funcs;
adev->pageflip_irq.num_types = AMDGPU_PAGEFLIP_IRQ_LAST;
adev->pageflip_irq.funcs = &dce_v6_0_pageflip_irq_funcs;
adev->hpd_irq.num_types = AMDGPU_HPD_LAST;
adev->hpd_irq.funcs = &dce_v6_0_hpd_irq_funcs;
}
/*
* Copyright 2015 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
#ifndef __DCE_V6_0_H__
#define __DCE_V6_0_H__
extern const struct amd_ip_funcs dce_v6_0_ip_funcs;
#endif
......@@ -1976,9 +1976,6 @@
#define R600_D1GRPH_ARRAY_MODE_1D_TILED_THIN1 (2 << 20)
#define R600_D1GRPH_ARRAY_MODE_2D_TILED_THIN1 (4 << 20)
#define AMDGPU_TILING_MACRO 0x1
#define AMDGPU_TILING_MICRO 0x2
#define R700_D1GRPH_PRIMARY_SURFACE_ADDRESS_HIGH 0x1a45
#define R700_D2GRPH_PRIMARY_SURFACE_ADDRESS_HIGH 0x1845
......@@ -2118,36 +2115,10 @@
#define EVERGREEN_GRPH_SWAP_CONTROL 0x1a03
#define EVERGREEN_GRPH_ENDIAN_SWAP(x) (((x) & 0x3) << 0)
#define EVERGREEN_GRPH_ENDIAN_NONE 0
/* this object requires a surface when mapped - i.e. front buffer */
#define RADEON_TILING_SURFACE 0x10
#define RADEON_TILING_MICRO_SQUARE 0x20
#define RADEON_TILING_EG_BANKW_SHIFT 8
#define RADEON_TILING_EG_BANKW_MASK 0xf
#define RADEON_TILING_EG_BANKH_SHIFT 12
#define RADEON_TILING_EG_BANKH_MASK 0xf
#define RADEON_TILING_EG_MACRO_TILE_ASPECT_SHIFT 16
#define RADEON_TILING_EG_MACRO_TILE_ASPECT_MASK 0xf
#define RADEON_TILING_EG_TILE_SPLIT_SHIFT 24
#define RADEON_TILING_EG_TILE_SPLIT_MASK 0xf
#define RADEON_TILING_EG_STENCIL_TILE_SPLIT_SHIFT 28
#define RADEON_TILING_EG_STENCIL_TILE_SPLIT_MASK 0xf
#define SI_TILE_MODE_COLOR_LINEAR_ALIGNED 8
#define SI_TILE_MODE_COLOR_1D 13
#define SI_TILE_MODE_COLOR_1D_SCANOUT 9
#define SI_TILE_MODE_COLOR_2D_8BPP 14
#define SI_TILE_MODE_COLOR_2D_16BPP 15
#define SI_TILE_MODE_COLOR_2D_32BPP 16
#define SI_TILE_MODE_COLOR_2D_64BPP 17
#define SI_TILE_MODE_COLOR_2D_SCANOUT_16BPP 11
#define SI_TILE_MODE_COLOR_2D_SCANOUT_32BPP 12
#define SI_TILE_MODE_DEPTH_STENCIL_1D 4
#define SI_TILE_MODE_DEPTH_STENCIL_2D 0
#define SI_TILE_MODE_DEPTH_STENCIL_2D_2AA 3
#define SI_TILE_MODE_DEPTH_STENCIL_2D_4AA 3
#define SI_TILE_MODE_DEPTH_STENCIL_2D_8AA 2
# define EVERGREEN_GRPH_ENDIAN_NONE 0
# define EVERGREEN_GRPH_ENDIAN_8IN16 1
# define EVERGREEN_GRPH_ENDIAN_8IN32 2
# define EVERGREEN_GRPH_ENDIAN_8IN64 3
#define EVERGREEN_D3VGA_CONTROL 0xf8
#define EVERGREEN_D4VGA_CONTROL 0xf9
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment