Commit e2f3496e authored by Chris Wilson's avatar Chris Wilson

drm/i915: Pull scheduling under standalone lock

Currently, the backend scheduling code abuses struct_mutex into order to
have a global lock to manipulate a temporary list (without widespread
allocation) and to protect against list modifications. This is an
extraneous coupling to struct_mutex and further can not extend beyond
the local device.

Pull all the code that needs to be under the one true lock into
i915_scheduler.c, and make it so.
Signed-off-by: default avatarChris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: default avatarTvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20181001144755.7978-2-chris@chris-wilson.co.uk
parent b16c7651
...@@ -75,6 +75,7 @@ i915-y += i915_cmd_parser.o \ ...@@ -75,6 +75,7 @@ i915-y += i915_cmd_parser.o \
i915_gemfs.o \ i915_gemfs.o \
i915_query.o \ i915_query.o \
i915_request.o \ i915_request.o \
i915_scheduler.o \
i915_timeline.o \ i915_timeline.o \
i915_trace_points.o \ i915_trace_points.o \
i915_vma.o \ i915_vma.o \
......
...@@ -111,91 +111,6 @@ i915_request_remove_from_client(struct i915_request *request) ...@@ -111,91 +111,6 @@ i915_request_remove_from_client(struct i915_request *request)
spin_unlock(&file_priv->mm.lock); spin_unlock(&file_priv->mm.lock);
} }
static struct i915_dependency *
i915_dependency_alloc(struct drm_i915_private *i915)
{
return kmem_cache_alloc(i915->dependencies, GFP_KERNEL);
}
static void
i915_dependency_free(struct drm_i915_private *i915,
struct i915_dependency *dep)
{
kmem_cache_free(i915->dependencies, dep);
}
static void
__i915_sched_node_add_dependency(struct i915_sched_node *node,
struct i915_sched_node *signal,
struct i915_dependency *dep,
unsigned long flags)
{
INIT_LIST_HEAD(&dep->dfs_link);
list_add(&dep->wait_link, &signal->waiters_list);
list_add(&dep->signal_link, &node->signalers_list);
dep->signaler = signal;
dep->flags = flags;
}
static int
i915_sched_node_add_dependency(struct drm_i915_private *i915,
struct i915_sched_node *node,
struct i915_sched_node *signal)
{
struct i915_dependency *dep;
dep = i915_dependency_alloc(i915);
if (!dep)
return -ENOMEM;
__i915_sched_node_add_dependency(node, signal, dep,
I915_DEPENDENCY_ALLOC);
return 0;
}
static void
i915_sched_node_fini(struct drm_i915_private *i915,
struct i915_sched_node *node)
{
struct i915_dependency *dep, *tmp;
GEM_BUG_ON(!list_empty(&node->link));
/*
* Everyone we depended upon (the fences we wait to be signaled)
* should retire before us and remove themselves from our list.
* However, retirement is run independently on each timeline and
* so we may be called out-of-order.
*/
list_for_each_entry_safe(dep, tmp, &node->signalers_list, signal_link) {
GEM_BUG_ON(!i915_sched_node_signaled(dep->signaler));
GEM_BUG_ON(!list_empty(&dep->dfs_link));
list_del(&dep->wait_link);
if (dep->flags & I915_DEPENDENCY_ALLOC)
i915_dependency_free(i915, dep);
}
/* Remove ourselves from everyone who depends upon us */
list_for_each_entry_safe(dep, tmp, &node->waiters_list, wait_link) {
GEM_BUG_ON(dep->signaler != node);
GEM_BUG_ON(!list_empty(&dep->dfs_link));
list_del(&dep->signal_link);
if (dep->flags & I915_DEPENDENCY_ALLOC)
i915_dependency_free(i915, dep);
}
}
static void
i915_sched_node_init(struct i915_sched_node *node)
{
INIT_LIST_HEAD(&node->signalers_list);
INIT_LIST_HEAD(&node->waiters_list);
INIT_LIST_HEAD(&node->link);
node->attr.priority = I915_PRIORITY_INVALID;
}
static int reset_all_global_seqno(struct drm_i915_private *i915, u32 seqno) static int reset_all_global_seqno(struct drm_i915_private *i915, u32 seqno)
{ {
struct intel_engine_cs *engine; struct intel_engine_cs *engine;
......
...@@ -332,14 +332,6 @@ static inline bool i915_request_completed(const struct i915_request *rq) ...@@ -332,14 +332,6 @@ static inline bool i915_request_completed(const struct i915_request *rq)
return __i915_request_completed(rq, seqno); return __i915_request_completed(rq, seqno);
} }
static inline bool i915_sched_node_signaled(const struct i915_sched_node *node)
{
const struct i915_request *rq =
container_of(node, const struct i915_request, sched);
return i915_request_completed(rq);
}
void i915_retire_requests(struct drm_i915_private *i915); void i915_retire_requests(struct drm_i915_private *i915);
/* /*
......
/*
* SPDX-License-Identifier: MIT
*
* Copyright © 2018 Intel Corporation
*/
#include <linux/mutex.h>
#include "i915_drv.h"
#include "i915_request.h"
#include "i915_scheduler.h"
static DEFINE_SPINLOCK(schedule_lock);
static const struct i915_request *
node_to_request(const struct i915_sched_node *node)
{
return container_of(node, const struct i915_request, sched);
}
static inline bool node_signaled(const struct i915_sched_node *node)
{
return i915_request_completed(node_to_request(node));
}
void i915_sched_node_init(struct i915_sched_node *node)
{
INIT_LIST_HEAD(&node->signalers_list);
INIT_LIST_HEAD(&node->waiters_list);
INIT_LIST_HEAD(&node->link);
node->attr.priority = I915_PRIORITY_INVALID;
}
static struct i915_dependency *
i915_dependency_alloc(struct drm_i915_private *i915)
{
return kmem_cache_alloc(i915->dependencies, GFP_KERNEL);
}
static void
i915_dependency_free(struct drm_i915_private *i915,
struct i915_dependency *dep)
{
kmem_cache_free(i915->dependencies, dep);
}
bool __i915_sched_node_add_dependency(struct i915_sched_node *node,
struct i915_sched_node *signal,
struct i915_dependency *dep,
unsigned long flags)
{
bool ret = false;
spin_lock(&schedule_lock);
if (!node_signaled(signal)) {
INIT_LIST_HEAD(&dep->dfs_link);
list_add(&dep->wait_link, &signal->waiters_list);
list_add(&dep->signal_link, &node->signalers_list);
dep->signaler = signal;
dep->flags = flags;
ret = true;
}
spin_unlock(&schedule_lock);
return ret;
}
int i915_sched_node_add_dependency(struct drm_i915_private *i915,
struct i915_sched_node *node,
struct i915_sched_node *signal)
{
struct i915_dependency *dep;
dep = i915_dependency_alloc(i915);
if (!dep)
return -ENOMEM;
if (!__i915_sched_node_add_dependency(node, signal, dep,
I915_DEPENDENCY_ALLOC))
i915_dependency_free(i915, dep);
return 0;
}
void i915_sched_node_fini(struct drm_i915_private *i915,
struct i915_sched_node *node)
{
struct i915_dependency *dep, *tmp;
GEM_BUG_ON(!list_empty(&node->link));
spin_lock(&schedule_lock);
/*
* Everyone we depended upon (the fences we wait to be signaled)
* should retire before us and remove themselves from our list.
* However, retirement is run independently on each timeline and
* so we may be called out-of-order.
*/
list_for_each_entry_safe(dep, tmp, &node->signalers_list, signal_link) {
GEM_BUG_ON(!node_signaled(dep->signaler));
GEM_BUG_ON(!list_empty(&dep->dfs_link));
list_del(&dep->wait_link);
if (dep->flags & I915_DEPENDENCY_ALLOC)
i915_dependency_free(i915, dep);
}
/* Remove ourselves from everyone who depends upon us */
list_for_each_entry_safe(dep, tmp, &node->waiters_list, wait_link) {
GEM_BUG_ON(dep->signaler != node);
GEM_BUG_ON(!list_empty(&dep->dfs_link));
list_del(&dep->signal_link);
if (dep->flags & I915_DEPENDENCY_ALLOC)
i915_dependency_free(i915, dep);
}
spin_unlock(&schedule_lock);
}
static inline struct i915_priolist *to_priolist(struct rb_node *rb)
{
return rb_entry(rb, struct i915_priolist, node);
}
static void assert_priolists(struct intel_engine_execlists * const execlists,
long queue_priority)
{
struct rb_node *rb;
long last_prio, i;
if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
return;
GEM_BUG_ON(rb_first_cached(&execlists->queue) !=
rb_first(&execlists->queue.rb_root));
last_prio = (queue_priority >> I915_USER_PRIORITY_SHIFT) + 1;
for (rb = rb_first_cached(&execlists->queue); rb; rb = rb_next(rb)) {
const struct i915_priolist *p = to_priolist(rb);
GEM_BUG_ON(p->priority >= last_prio);
last_prio = p->priority;
GEM_BUG_ON(!p->used);
for (i = 0; i < ARRAY_SIZE(p->requests); i++) {
if (list_empty(&p->requests[i]))
continue;
GEM_BUG_ON(!(p->used & BIT(i)));
}
}
}
struct list_head *
i915_sched_lookup_priolist(struct intel_engine_cs *engine, int prio)
{
struct intel_engine_execlists * const execlists = &engine->execlists;
struct i915_priolist *p;
struct rb_node **parent, *rb;
bool first = true;
int idx, i;
lockdep_assert_held(&engine->timeline.lock);
assert_priolists(execlists, INT_MAX);
/* buckets sorted from highest [in slot 0] to lowest priority */
idx = I915_PRIORITY_COUNT - (prio & I915_PRIORITY_MASK) - 1;
prio >>= I915_USER_PRIORITY_SHIFT;
if (unlikely(execlists->no_priolist))
prio = I915_PRIORITY_NORMAL;
find_priolist:
/* most positive priority is scheduled first, equal priorities fifo */
rb = NULL;
parent = &execlists->queue.rb_root.rb_node;
while (*parent) {
rb = *parent;
p = to_priolist(rb);
if (prio > p->priority) {
parent = &rb->rb_left;
} else if (prio < p->priority) {
parent = &rb->rb_right;
first = false;
} else {
goto out;
}
}
if (prio == I915_PRIORITY_NORMAL) {
p = &execlists->default_priolist;
} else {
p = kmem_cache_alloc(engine->i915->priorities, GFP_ATOMIC);
/* Convert an allocation failure to a priority bump */
if (unlikely(!p)) {
prio = I915_PRIORITY_NORMAL; /* recurses just once */
/* To maintain ordering with all rendering, after an
* allocation failure we have to disable all scheduling.
* Requests will then be executed in fifo, and schedule
* will ensure that dependencies are emitted in fifo.
* There will be still some reordering with existing
* requests, so if userspace lied about their
* dependencies that reordering may be visible.
*/
execlists->no_priolist = true;
goto find_priolist;
}
}
p->priority = prio;
for (i = 0; i < ARRAY_SIZE(p->requests); i++)
INIT_LIST_HEAD(&p->requests[i]);
rb_link_node(&p->node, rb, parent);
rb_insert_color_cached(&p->node, &execlists->queue, first);
p->used = 0;
out:
p->used |= BIT(idx);
return &p->requests[idx];
}
static struct intel_engine_cs *
sched_lock_engine(struct i915_sched_node *node, struct intel_engine_cs *locked)
{
struct intel_engine_cs *engine = node_to_request(node)->engine;
GEM_BUG_ON(!locked);
if (engine != locked) {
spin_unlock(&locked->timeline.lock);
spin_lock(&engine->timeline.lock);
}
return engine;
}
void i915_schedule(struct i915_request *rq, const struct i915_sched_attr *attr)
{
struct list_head *uninitialized_var(pl);
struct intel_engine_cs *engine, *last;
struct i915_dependency *dep, *p;
struct i915_dependency stack;
const int prio = attr->priority;
LIST_HEAD(dfs);
GEM_BUG_ON(prio == I915_PRIORITY_INVALID);
if (i915_request_completed(rq))
return;
if (prio <= READ_ONCE(rq->sched.attr.priority))
return;
/* Needed in order to use the temporary link inside i915_dependency */
spin_lock(&schedule_lock);
stack.signaler = &rq->sched;
list_add(&stack.dfs_link, &dfs);
/*
* Recursively bump all dependent priorities to match the new request.
*
* A naive approach would be to use recursion:
* static void update_priorities(struct i915_sched_node *node, prio) {
* list_for_each_entry(dep, &node->signalers_list, signal_link)
* update_priorities(dep->signal, prio)
* queue_request(node);
* }
* but that may have unlimited recursion depth and so runs a very
* real risk of overunning the kernel stack. Instead, we build
* a flat list of all dependencies starting with the current request.
* As we walk the list of dependencies, we add all of its dependencies
* to the end of the list (this may include an already visited
* request) and continue to walk onwards onto the new dependencies. The
* end result is a topological list of requests in reverse order, the
* last element in the list is the request we must execute first.
*/
list_for_each_entry(dep, &dfs, dfs_link) {
struct i915_sched_node *node = dep->signaler;
/*
* Within an engine, there can be no cycle, but we may
* refer to the same dependency chain multiple times
* (redundant dependencies are not eliminated) and across
* engines.
*/
list_for_each_entry(p, &node->signalers_list, signal_link) {
GEM_BUG_ON(p == dep); /* no cycles! */
if (node_signaled(p->signaler))
continue;
GEM_BUG_ON(p->signaler->attr.priority < node->attr.priority);
if (prio > READ_ONCE(p->signaler->attr.priority))
list_move_tail(&p->dfs_link, &dfs);
}
}
/*
* If we didn't need to bump any existing priorities, and we haven't
* yet submitted this request (i.e. there is no potential race with
* execlists_submit_request()), we can set our own priority and skip
* acquiring the engine locks.
*/
if (rq->sched.attr.priority == I915_PRIORITY_INVALID) {
GEM_BUG_ON(!list_empty(&rq->sched.link));
rq->sched.attr = *attr;
if (stack.dfs_link.next == stack.dfs_link.prev)
goto out_unlock;
__list_del_entry(&stack.dfs_link);
}
last = NULL;
engine = rq->engine;
spin_lock_irq(&engine->timeline.lock);
/* Fifo and depth-first replacement ensure our deps execute before us */
list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
struct i915_sched_node *node = dep->signaler;
INIT_LIST_HEAD(&dep->dfs_link);
engine = sched_lock_engine(node, engine);
/* Recheck after acquiring the engine->timeline.lock */
if (prio <= node->attr.priority || node_signaled(node))
continue;
node->attr.priority = prio;
if (!list_empty(&node->link)) {
if (last != engine) {
pl = i915_sched_lookup_priolist(engine, prio);
last = engine;
}
list_move_tail(&node->link, pl);
} else {
/*
* If the request is not in the priolist queue because
* it is not yet runnable, then it doesn't contribute
* to our preemption decisions. On the other hand,
* if the request is on the HW, it too is not in the
* queue; but in that case we may still need to reorder
* the inflight requests.
*/
if (!i915_sw_fence_done(&node_to_request(node)->submit))
continue;
}
if (prio <= engine->execlists.queue_priority)
continue;
/*
* If we are already the currently executing context, don't
* bother evaluating if we should preempt ourselves.
*/
if (node_to_request(node)->global_seqno &&
i915_seqno_passed(port_request(engine->execlists.port)->global_seqno,
node_to_request(node)->global_seqno))
continue;
/* Defer (tasklet) submission until after all of our updates. */
engine->execlists.queue_priority = prio;
tasklet_hi_schedule(&engine->execlists.tasklet);
}
spin_unlock_irq(&engine->timeline.lock);
out_unlock:
spin_unlock(&schedule_lock);
}
...@@ -8,9 +8,14 @@ ...@@ -8,9 +8,14 @@
#define _I915_SCHEDULER_H_ #define _I915_SCHEDULER_H_
#include <linux/bitops.h> #include <linux/bitops.h>
#include <linux/kernel.h>
#include <uapi/drm/i915_drm.h> #include <uapi/drm/i915_drm.h>
struct drm_i915_private;
struct i915_request;
struct intel_engine_cs;
enum { enum {
I915_PRIORITY_MIN = I915_CONTEXT_MIN_USER_PRIORITY - 1, I915_PRIORITY_MIN = I915_CONTEXT_MIN_USER_PRIORITY - 1,
I915_PRIORITY_NORMAL = I915_CONTEXT_DEFAULT_PRIORITY, I915_PRIORITY_NORMAL = I915_CONTEXT_DEFAULT_PRIORITY,
...@@ -77,4 +82,24 @@ struct i915_dependency { ...@@ -77,4 +82,24 @@ struct i915_dependency {
#define I915_DEPENDENCY_ALLOC BIT(0) #define I915_DEPENDENCY_ALLOC BIT(0)
}; };
void i915_sched_node_init(struct i915_sched_node *node);
bool __i915_sched_node_add_dependency(struct i915_sched_node *node,
struct i915_sched_node *signal,
struct i915_dependency *dep,
unsigned long flags);
int i915_sched_node_add_dependency(struct drm_i915_private *i915,
struct i915_sched_node *node,
struct i915_sched_node *signal);
void i915_sched_node_fini(struct drm_i915_private *i915,
struct i915_sched_node *node);
void i915_schedule(struct i915_request *request,
const struct i915_sched_attr *attr);
struct list_head *
i915_sched_lookup_priolist(struct intel_engine_cs *engine, int prio);
#endif /* _I915_SCHEDULER_H_ */ #endif /* _I915_SCHEDULER_H_ */
...@@ -13188,13 +13188,12 @@ intel_prepare_plane_fb(struct drm_plane *plane, ...@@ -13188,13 +13188,12 @@ intel_prepare_plane_fb(struct drm_plane *plane,
ret = intel_plane_pin_fb(to_intel_plane_state(new_state)); ret = intel_plane_pin_fb(to_intel_plane_state(new_state));
fb_obj_bump_render_priority(obj);
mutex_unlock(&dev_priv->drm.struct_mutex); mutex_unlock(&dev_priv->drm.struct_mutex);
i915_gem_object_unpin_pages(obj); i915_gem_object_unpin_pages(obj);
if (ret) if (ret)
return ret; return ret;
fb_obj_bump_render_priority(obj);
intel_fb_obj_flush(obj, ORIGIN_DIRTYFB); intel_fb_obj_flush(obj, ORIGIN_DIRTYFB);
if (!new_state->fence) { /* implicit fencing */ if (!new_state->fence) { /* implicit fencing */
......
...@@ -259,102 +259,6 @@ intel_lr_context_descriptor_update(struct i915_gem_context *ctx, ...@@ -259,102 +259,6 @@ intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
ce->lrc_desc = desc; ce->lrc_desc = desc;
} }
static void assert_priolists(struct intel_engine_execlists * const execlists,
long queue_priority)
{
struct rb_node *rb;
long last_prio, i;
if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
return;
GEM_BUG_ON(rb_first_cached(&execlists->queue) !=
rb_first(&execlists->queue.rb_root));
last_prio = (queue_priority >> I915_USER_PRIORITY_SHIFT) + 1;
for (rb = rb_first_cached(&execlists->queue); rb; rb = rb_next(rb)) {
struct i915_priolist *p = to_priolist(rb);
GEM_BUG_ON(p->priority >= last_prio);
last_prio = p->priority;
GEM_BUG_ON(!p->used);
for (i = 0; i < ARRAY_SIZE(p->requests); i++) {
if (list_empty(&p->requests[i]))
continue;
GEM_BUG_ON(!(p->used & BIT(i)));
}
}
}
static struct list_head *
lookup_priolist(struct intel_engine_cs *engine, int prio)
{
struct intel_engine_execlists * const execlists = &engine->execlists;
struct i915_priolist *p;
struct rb_node **parent, *rb;
bool first = true;
int idx, i;
assert_priolists(execlists, INT_MAX);
/* buckets sorted from highest [in slot 0] to lowest priority */
idx = I915_PRIORITY_COUNT - (prio & I915_PRIORITY_MASK) - 1;
prio >>= I915_USER_PRIORITY_SHIFT;
if (unlikely(execlists->no_priolist))
prio = I915_PRIORITY_NORMAL;
find_priolist:
/* most positive priority is scheduled first, equal priorities fifo */
rb = NULL;
parent = &execlists->queue.rb_root.rb_node;
while (*parent) {
rb = *parent;
p = to_priolist(rb);
if (prio > p->priority) {
parent = &rb->rb_left;
} else if (prio < p->priority) {
parent = &rb->rb_right;
first = false;
} else {
goto out;
}
}
if (prio == I915_PRIORITY_NORMAL) {
p = &execlists->default_priolist;
} else {
p = kmem_cache_alloc(engine->i915->priorities, GFP_ATOMIC);
/* Convert an allocation failure to a priority bump */
if (unlikely(!p)) {
prio = I915_PRIORITY_NORMAL; /* recurses just once */
/* To maintain ordering with all rendering, after an
* allocation failure we have to disable all scheduling.
* Requests will then be executed in fifo, and schedule
* will ensure that dependencies are emitted in fifo.
* There will be still some reordering with existing
* requests, so if userspace lied about their
* dependencies that reordering may be visible.
*/
execlists->no_priolist = true;
goto find_priolist;
}
}
p->priority = prio;
for (i = 0; i < ARRAY_SIZE(p->requests); i++)
INIT_LIST_HEAD(&p->requests[i]);
rb_link_node(&p->node, rb, parent);
rb_insert_color_cached(&p->node, &execlists->queue, first);
p->used = 0;
out:
p->used |= BIT(idx);
return &p->requests[idx];
}
static void unwind_wa_tail(struct i915_request *rq) static void unwind_wa_tail(struct i915_request *rq)
{ {
rq->tail = intel_ring_wrap(rq->ring, rq->wa_tail - WA_TAIL_BYTES); rq->tail = intel_ring_wrap(rq->ring, rq->wa_tail - WA_TAIL_BYTES);
...@@ -381,7 +285,7 @@ static void __unwind_incomplete_requests(struct intel_engine_cs *engine) ...@@ -381,7 +285,7 @@ static void __unwind_incomplete_requests(struct intel_engine_cs *engine)
GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID); GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
if (rq_prio(rq) != prio) { if (rq_prio(rq) != prio) {
prio = rq_prio(rq); prio = rq_prio(rq);
pl = lookup_priolist(engine, prio); pl = i915_sched_lookup_priolist(engine, prio);
} }
GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root)); GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root));
...@@ -398,7 +302,7 @@ static void __unwind_incomplete_requests(struct intel_engine_cs *engine) ...@@ -398,7 +302,7 @@ static void __unwind_incomplete_requests(struct intel_engine_cs *engine)
if (!(prio & I915_PRIORITY_NEWCLIENT)) { if (!(prio & I915_PRIORITY_NEWCLIENT)) {
prio |= I915_PRIORITY_NEWCLIENT; prio |= I915_PRIORITY_NEWCLIENT;
list_move_tail(&active->sched.link, list_move_tail(&active->sched.link,
lookup_priolist(engine, prio)); i915_sched_lookup_priolist(engine, prio));
} }
} }
...@@ -792,7 +696,6 @@ static void execlists_dequeue(struct intel_engine_cs *engine) ...@@ -792,7 +696,6 @@ static void execlists_dequeue(struct intel_engine_cs *engine)
*/ */
execlists->queue_priority = execlists->queue_priority =
port != execlists->port ? rq_prio(last) : INT_MIN; port != execlists->port ? rq_prio(last) : INT_MIN;
assert_priolists(execlists, execlists->queue_priority);
if (submit) { if (submit) {
port_assign(port, last); port_assign(port, last);
...@@ -1119,12 +1022,7 @@ static void queue_request(struct intel_engine_cs *engine, ...@@ -1119,12 +1022,7 @@ static void queue_request(struct intel_engine_cs *engine,
struct i915_sched_node *node, struct i915_sched_node *node,
int prio) int prio)
{ {
list_add_tail(&node->link, lookup_priolist(engine, prio)); list_add_tail(&node->link, i915_sched_lookup_priolist(engine, prio));
}
static void __update_queue(struct intel_engine_cs *engine, int prio)
{
engine->execlists.queue_priority = prio;
} }
static void __submit_queue_imm(struct intel_engine_cs *engine) static void __submit_queue_imm(struct intel_engine_cs *engine)
...@@ -1143,7 +1041,7 @@ static void __submit_queue_imm(struct intel_engine_cs *engine) ...@@ -1143,7 +1041,7 @@ static void __submit_queue_imm(struct intel_engine_cs *engine)
static void submit_queue(struct intel_engine_cs *engine, int prio) static void submit_queue(struct intel_engine_cs *engine, int prio)
{ {
if (prio > engine->execlists.queue_priority) { if (prio > engine->execlists.queue_priority) {
__update_queue(engine, prio); engine->execlists.queue_priority = prio;
__submit_queue_imm(engine); __submit_queue_imm(engine);
} }
} }
...@@ -1166,162 +1064,6 @@ static void execlists_submit_request(struct i915_request *request) ...@@ -1166,162 +1064,6 @@ static void execlists_submit_request(struct i915_request *request)
spin_unlock_irqrestore(&engine->timeline.lock, flags); spin_unlock_irqrestore(&engine->timeline.lock, flags);
} }
static struct i915_request *sched_to_request(struct i915_sched_node *node)
{
return container_of(node, struct i915_request, sched);
}
static struct intel_engine_cs *
sched_lock_engine(struct i915_sched_node *node, struct intel_engine_cs *locked)
{
struct intel_engine_cs *engine = sched_to_request(node)->engine;
GEM_BUG_ON(!locked);
if (engine != locked) {
spin_unlock(&locked->timeline.lock);
spin_lock(&engine->timeline.lock);
}
return engine;
}
static void execlists_schedule(struct i915_request *request,
const struct i915_sched_attr *attr)
{
struct list_head *uninitialized_var(pl);
struct intel_engine_cs *engine, *last;
struct i915_dependency *dep, *p;
struct i915_dependency stack;
const int prio = attr->priority;
LIST_HEAD(dfs);
GEM_BUG_ON(prio == I915_PRIORITY_INVALID);
if (i915_request_completed(request))
return;
if (prio <= READ_ONCE(request->sched.attr.priority))
return;
/* Need BKL in order to use the temporary link inside i915_dependency */
lockdep_assert_held(&request->i915->drm.struct_mutex);
stack.signaler = &request->sched;
list_add(&stack.dfs_link, &dfs);
/*
* Recursively bump all dependent priorities to match the new request.
*
* A naive approach would be to use recursion:
* static void update_priorities(struct i915_sched_node *node, prio) {
* list_for_each_entry(dep, &node->signalers_list, signal_link)
* update_priorities(dep->signal, prio)
* queue_request(node);
* }
* but that may have unlimited recursion depth and so runs a very
* real risk of overunning the kernel stack. Instead, we build
* a flat list of all dependencies starting with the current request.
* As we walk the list of dependencies, we add all of its dependencies
* to the end of the list (this may include an already visited
* request) and continue to walk onwards onto the new dependencies. The
* end result is a topological list of requests in reverse order, the
* last element in the list is the request we must execute first.
*/
list_for_each_entry(dep, &dfs, dfs_link) {
struct i915_sched_node *node = dep->signaler;
/*
* Within an engine, there can be no cycle, but we may
* refer to the same dependency chain multiple times
* (redundant dependencies are not eliminated) and across
* engines.
*/
list_for_each_entry(p, &node->signalers_list, signal_link) {
GEM_BUG_ON(p == dep); /* no cycles! */
if (i915_sched_node_signaled(p->signaler))
continue;
GEM_BUG_ON(p->signaler->attr.priority < node->attr.priority);
if (prio > READ_ONCE(p->signaler->attr.priority))
list_move_tail(&p->dfs_link, &dfs);
}
}
/*
* If we didn't need to bump any existing priorities, and we haven't
* yet submitted this request (i.e. there is no potential race with
* execlists_submit_request()), we can set our own priority and skip
* acquiring the engine locks.
*/
if (request->sched.attr.priority == I915_PRIORITY_INVALID) {
GEM_BUG_ON(!list_empty(&request->sched.link));
request->sched.attr = *attr;
if (stack.dfs_link.next == stack.dfs_link.prev)
return;
__list_del_entry(&stack.dfs_link);
}
last = NULL;
engine = request->engine;
spin_lock_irq(&engine->timeline.lock);
/* Fifo and depth-first replacement ensure our deps execute before us */
list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
struct i915_sched_node *node = dep->signaler;
INIT_LIST_HEAD(&dep->dfs_link);
engine = sched_lock_engine(node, engine);
/* Recheck after acquiring the engine->timeline.lock */
if (prio <= node->attr.priority)
continue;
if (i915_sched_node_signaled(node))
continue;
node->attr.priority = prio;
if (!list_empty(&node->link)) {
if (last != engine) {
pl = lookup_priolist(engine, prio);
last = engine;
}
list_move_tail(&node->link, pl);
} else {
/*
* If the request is not in the priolist queue because
* it is not yet runnable, then it doesn't contribute
* to our preemption decisions. On the other hand,
* if the request is on the HW, it too is not in the
* queue; but in that case we may still need to reorder
* the inflight requests.
*/
if (!i915_sw_fence_done(&sched_to_request(node)->submit))
continue;
}
if (prio <= engine->execlists.queue_priority)
continue;
/*
* If we are already the currently executing context, don't
* bother evaluating if we should preempt ourselves.
*/
if (sched_to_request(node)->global_seqno &&
i915_seqno_passed(port_request(engine->execlists.port)->global_seqno,
sched_to_request(node)->global_seqno))
continue;
/* Defer (tasklet) submission until after all of our updates. */
__update_queue(engine, prio);
tasklet_hi_schedule(&engine->execlists.tasklet);
}
spin_unlock_irq(&engine->timeline.lock);
}
static void execlists_context_destroy(struct intel_context *ce) static void execlists_context_destroy(struct intel_context *ce)
{ {
GEM_BUG_ON(ce->pin_count); GEM_BUG_ON(ce->pin_count);
...@@ -2359,7 +2101,7 @@ void intel_execlists_set_default_submission(struct intel_engine_cs *engine) ...@@ -2359,7 +2101,7 @@ void intel_execlists_set_default_submission(struct intel_engine_cs *engine)
{ {
engine->submit_request = execlists_submit_request; engine->submit_request = execlists_submit_request;
engine->cancel_requests = execlists_cancel_requests; engine->cancel_requests = execlists_cancel_requests;
engine->schedule = execlists_schedule; engine->schedule = i915_schedule;
engine->execlists.tasklet.func = execlists_submission_tasklet; engine->execlists.tasklet.func = execlists_submission_tasklet;
engine->reset.prepare = execlists_reset_prepare; engine->reset.prepare = execlists_reset_prepare;
......
...@@ -498,11 +498,10 @@ struct intel_engine_cs { ...@@ -498,11 +498,10 @@ struct intel_engine_cs {
*/ */
void (*submit_request)(struct i915_request *rq); void (*submit_request)(struct i915_request *rq);
/* Call when the priority on a request has changed and it and its /*
* Call when the priority on a request has changed and it and its
* dependencies may need rescheduling. Note the request itself may * dependencies may need rescheduling. Note the request itself may
* not be ready to run! * not be ready to run!
*
* Called under the struct_mutex.
*/ */
void (*schedule)(struct i915_request *request, void (*schedule)(struct i915_request *request,
const struct i915_sched_attr *attr); const struct i915_sched_attr *attr);
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment