Commit e6b043d5 authored by Bryan Wu's avatar Bryan Wu Committed by David S. Miller

netdev/fec.c: add phylib supporting to enable carrier detection (v2)

BugLink: http://bugs.launchpad.net/bugs/457878

v2:
 - remove duplicated phy_speed caculation
 - fix the phy_speed caculation according to the DataSheet

v1:
 - removed old MII phy control code
 - add phylib supporting
 - add ethtool interface to make user space NetworkManager works

Tested on Freescale i.MX51 Babbage board.

This patch is based on a patch from Frederic Rodo <fred.rodo@gmail.com>

Cc: Frederic Rodo <fred.rodo@gmail.com>
Signed-off-by: default avatarBryan Wu <bryan.wu@canonical.com>
Acked-by: default avatarAmit Kucheria <amit.kucheria@canonical.com>
Acked-by: default avatarSascha Hauer <s.hauer@pengutronix.de>
Signed-off-by: default avatarDavid S. Miller <davem@davemloft.net>
parent 5acbbd42
...@@ -1916,6 +1916,7 @@ config FEC ...@@ -1916,6 +1916,7 @@ config FEC
bool "FEC ethernet controller (of ColdFire and some i.MX CPUs)" bool "FEC ethernet controller (of ColdFire and some i.MX CPUs)"
depends on M523x || M527x || M5272 || M528x || M520x || M532x || \ depends on M523x || M527x || M5272 || M528x || M520x || M532x || \
MACH_MX27 || ARCH_MX35 || ARCH_MX25 || ARCH_MX5 MACH_MX27 || ARCH_MX35 || ARCH_MX25 || ARCH_MX5
select PHYLIB
help help
Say Y here if you want to use the built-in 10/100 Fast ethernet Say Y here if you want to use the built-in 10/100 Fast ethernet
controller on some Motorola ColdFire and Freescale i.MX processors. controller on some Motorola ColdFire and Freescale i.MX processors.
......
...@@ -40,6 +40,7 @@ ...@@ -40,6 +40,7 @@
#include <linux/irq.h> #include <linux/irq.h>
#include <linux/clk.h> #include <linux/clk.h>
#include <linux/platform_device.h> #include <linux/platform_device.h>
#include <linux/phy.h>
#include <asm/cacheflush.h> #include <asm/cacheflush.h>
...@@ -61,7 +62,6 @@ ...@@ -61,7 +62,6 @@
* Define the fixed address of the FEC hardware. * Define the fixed address of the FEC hardware.
*/ */
#if defined(CONFIG_M5272) #if defined(CONFIG_M5272)
#define HAVE_mii_link_interrupt
static unsigned char fec_mac_default[] = { static unsigned char fec_mac_default[] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
...@@ -86,23 +86,6 @@ static unsigned char fec_mac_default[] = { ...@@ -86,23 +86,6 @@ static unsigned char fec_mac_default[] = {
#endif #endif
#endif /* CONFIG_M5272 */ #endif /* CONFIG_M5272 */
/* Forward declarations of some structures to support different PHYs */
typedef struct {
uint mii_data;
void (*funct)(uint mii_reg, struct net_device *dev);
} phy_cmd_t;
typedef struct {
uint id;
char *name;
const phy_cmd_t *config;
const phy_cmd_t *startup;
const phy_cmd_t *ack_int;
const phy_cmd_t *shutdown;
} phy_info_t;
/* The number of Tx and Rx buffers. These are allocated from the page /* The number of Tx and Rx buffers. These are allocated from the page
* pool. The code may assume these are power of two, so it it best * pool. The code may assume these are power of two, so it it best
* to keep them that size. * to keep them that size.
...@@ -189,29 +172,21 @@ struct fec_enet_private { ...@@ -189,29 +172,21 @@ struct fec_enet_private {
uint tx_full; uint tx_full;
/* hold while accessing the HW like ringbuffer for tx/rx but not MAC */ /* hold while accessing the HW like ringbuffer for tx/rx but not MAC */
spinlock_t hw_lock; spinlock_t hw_lock;
/* hold while accessing the mii_list_t() elements */
spinlock_t mii_lock;
uint phy_id;
uint phy_id_done;
uint phy_status;
uint phy_speed;
phy_info_t const *phy;
struct work_struct phy_task;
uint sequence_done; struct platform_device *pdev;
uint mii_phy_task_queued;
uint phy_addr; int opened;
/* Phylib and MDIO interface */
struct mii_bus *mii_bus;
struct phy_device *phy_dev;
int mii_timeout;
uint phy_speed;
int index; int index;
int opened;
int link; int link;
int old_link;
int full_duplex; int full_duplex;
}; };
static void fec_enet_mii(struct net_device *dev);
static irqreturn_t fec_enet_interrupt(int irq, void * dev_id); static irqreturn_t fec_enet_interrupt(int irq, void * dev_id);
static void fec_enet_tx(struct net_device *dev); static void fec_enet_tx(struct net_device *dev);
static void fec_enet_rx(struct net_device *dev); static void fec_enet_rx(struct net_device *dev);
...@@ -219,67 +194,20 @@ static int fec_enet_close(struct net_device *dev); ...@@ -219,67 +194,20 @@ static int fec_enet_close(struct net_device *dev);
static void fec_restart(struct net_device *dev, int duplex); static void fec_restart(struct net_device *dev, int duplex);
static void fec_stop(struct net_device *dev); static void fec_stop(struct net_device *dev);
/* FEC MII MMFR bits definition */
#define FEC_MMFR_ST (1 << 30)
#define FEC_MMFR_OP_READ (2 << 28)
#define FEC_MMFR_OP_WRITE (1 << 28)
#define FEC_MMFR_PA(v) ((v & 0x1f) << 23)
#define FEC_MMFR_RA(v) ((v & 0x1f) << 18)
#define FEC_MMFR_TA (2 << 16)
#define FEC_MMFR_DATA(v) (v & 0xffff)
/* MII processing. We keep this as simple as possible. Requests are #define FEC_MII_TIMEOUT 10000
* placed on the list (if there is room). When the request is finished
* by the MII, an optional function may be called.
*/
typedef struct mii_list {
uint mii_regval;
void (*mii_func)(uint val, struct net_device *dev);
struct mii_list *mii_next;
} mii_list_t;
#define NMII 20
static mii_list_t mii_cmds[NMII];
static mii_list_t *mii_free;
static mii_list_t *mii_head;
static mii_list_t *mii_tail;
static int mii_queue(struct net_device *dev, int request,
void (*func)(uint, struct net_device *));
/* Make MII read/write commands for the FEC */
#define mk_mii_read(REG) (0x60020000 | ((REG & 0x1f) << 18))
#define mk_mii_write(REG, VAL) (0x50020000 | ((REG & 0x1f) << 18) | \
(VAL & 0xffff))
#define mk_mii_end 0
/* Transmitter timeout */ /* Transmitter timeout */
#define TX_TIMEOUT (2 * HZ) #define TX_TIMEOUT (2 * HZ)
/* Register definitions for the PHY */
#define MII_REG_CR 0 /* Control Register */
#define MII_REG_SR 1 /* Status Register */
#define MII_REG_PHYIR1 2 /* PHY Identification Register 1 */
#define MII_REG_PHYIR2 3 /* PHY Identification Register 2 */
#define MII_REG_ANAR 4 /* A-N Advertisement Register */
#define MII_REG_ANLPAR 5 /* A-N Link Partner Ability Register */
#define MII_REG_ANER 6 /* A-N Expansion Register */
#define MII_REG_ANNPTR 7 /* A-N Next Page Transmit Register */
#define MII_REG_ANLPRNPR 8 /* A-N Link Partner Received Next Page Reg. */
/* values for phy_status */
#define PHY_CONF_ANE 0x0001 /* 1 auto-negotiation enabled */
#define PHY_CONF_LOOP 0x0002 /* 1 loopback mode enabled */
#define PHY_CONF_SPMASK 0x00f0 /* mask for speed */
#define PHY_CONF_10HDX 0x0010 /* 10 Mbit half duplex supported */
#define PHY_CONF_10FDX 0x0020 /* 10 Mbit full duplex supported */
#define PHY_CONF_100HDX 0x0040 /* 100 Mbit half duplex supported */
#define PHY_CONF_100FDX 0x0080 /* 100 Mbit full duplex supported */
#define PHY_STAT_LINK 0x0100 /* 1 up - 0 down */
#define PHY_STAT_FAULT 0x0200 /* 1 remote fault */
#define PHY_STAT_ANC 0x0400 /* 1 auto-negotiation complete */
#define PHY_STAT_SPMASK 0xf000 /* mask for speed */
#define PHY_STAT_10HDX 0x1000 /* 10 Mbit half duplex selected */
#define PHY_STAT_10FDX 0x2000 /* 10 Mbit full duplex selected */
#define PHY_STAT_100HDX 0x4000 /* 100 Mbit half duplex selected */
#define PHY_STAT_100FDX 0x8000 /* 100 Mbit full duplex selected */
static int static int
fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev) fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
{ {
...@@ -406,12 +334,6 @@ fec_enet_interrupt(int irq, void * dev_id) ...@@ -406,12 +334,6 @@ fec_enet_interrupt(int irq, void * dev_id)
ret = IRQ_HANDLED; ret = IRQ_HANDLED;
fec_enet_tx(dev); fec_enet_tx(dev);
} }
if (int_events & FEC_ENET_MII) {
ret = IRQ_HANDLED;
fec_enet_mii(dev);
}
} while (int_events); } while (int_events);
return ret; return ret;
...@@ -607,827 +529,311 @@ fec_enet_rx(struct net_device *dev) ...@@ -607,827 +529,311 @@ fec_enet_rx(struct net_device *dev)
spin_unlock(&fep->hw_lock); spin_unlock(&fep->hw_lock);
} }
/* called from interrupt context */ /* ------------------------------------------------------------------------- */
static void #ifdef CONFIG_M5272
fec_enet_mii(struct net_device *dev) static void __inline__ fec_get_mac(struct net_device *dev)
{
struct fec_enet_private *fep;
mii_list_t *mip;
fep = netdev_priv(dev);
spin_lock(&fep->mii_lock);
if ((mip = mii_head) == NULL) {
printk("MII and no head!\n");
goto unlock;
}
if (mip->mii_func != NULL)
(*(mip->mii_func))(readl(fep->hwp + FEC_MII_DATA), dev);
mii_head = mip->mii_next;
mip->mii_next = mii_free;
mii_free = mip;
if ((mip = mii_head) != NULL)
writel(mip->mii_regval, fep->hwp + FEC_MII_DATA);
unlock:
spin_unlock(&fep->mii_lock);
}
static int
mii_queue_unlocked(struct net_device *dev, int regval,
void (*func)(uint, struct net_device *))
{ {
struct fec_enet_private *fep; struct fec_enet_private *fep = netdev_priv(dev);
mii_list_t *mip; unsigned char *iap, tmpaddr[ETH_ALEN];
int retval;
/* Add PHY address to register command */
fep = netdev_priv(dev);
regval |= fep->phy_addr << 23; if (FEC_FLASHMAC) {
retval = 0; /*
* Get MAC address from FLASH.
if ((mip = mii_free) != NULL) { * If it is all 1's or 0's, use the default.
mii_free = mip->mii_next; */
mip->mii_regval = regval; iap = (unsigned char *)FEC_FLASHMAC;
mip->mii_func = func; if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
mip->mii_next = NULL; (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
if (mii_head) { iap = fec_mac_default;
mii_tail->mii_next = mip; if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
mii_tail = mip; (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
} else { iap = fec_mac_default;
mii_head = mii_tail = mip;
writel(regval, fep->hwp + FEC_MII_DATA);
}
} else { } else {
retval = 1; *((unsigned long *) &tmpaddr[0]) = readl(fep->hwp + FEC_ADDR_LOW);
*((unsigned short *) &tmpaddr[4]) = (readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
iap = &tmpaddr[0];
} }
return retval; memcpy(dev->dev_addr, iap, ETH_ALEN);
}
static int
mii_queue(struct net_device *dev, int regval,
void (*func)(uint, struct net_device *))
{
struct fec_enet_private *fep;
unsigned long flags;
int retval;
fep = netdev_priv(dev);
spin_lock_irqsave(&fep->mii_lock, flags);
retval = mii_queue_unlocked(dev, regval, func);
spin_unlock_irqrestore(&fep->mii_lock, flags);
return retval;
}
static void mii_do_cmd(struct net_device *dev, const phy_cmd_t *c)
{
if(!c)
return;
for (; c->mii_data != mk_mii_end; c++) /* Adjust MAC if using default MAC address */
mii_queue(dev, c->mii_data, c->funct); if (iap == fec_mac_default)
dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
} }
#endif
static void mii_parse_sr(uint mii_reg, struct net_device *dev) /* ------------------------------------------------------------------------- */
{
struct fec_enet_private *fep = netdev_priv(dev);
volatile uint *s = &(fep->phy_status);
uint status;
status = *s & ~(PHY_STAT_LINK | PHY_STAT_FAULT | PHY_STAT_ANC);
if (mii_reg & 0x0004)
status |= PHY_STAT_LINK;
if (mii_reg & 0x0010)
status |= PHY_STAT_FAULT;
if (mii_reg & 0x0020)
status |= PHY_STAT_ANC;
*s = status;
}
static void mii_parse_cr(uint mii_reg, struct net_device *dev) /*
* Phy section
*/
static void fec_enet_adjust_link(struct net_device *dev)
{ {
struct fec_enet_private *fep = netdev_priv(dev); struct fec_enet_private *fep = netdev_priv(dev);
volatile uint *s = &(fep->phy_status); struct phy_device *phy_dev = fep->phy_dev;
uint status; unsigned long flags;
status = *s & ~(PHY_CONF_ANE | PHY_CONF_LOOP);
if (mii_reg & 0x1000)
status |= PHY_CONF_ANE;
if (mii_reg & 0x4000)
status |= PHY_CONF_LOOP;
*s = status;
}
static void mii_parse_anar(uint mii_reg, struct net_device *dev) int status_change = 0;
{
struct fec_enet_private *fep = netdev_priv(dev);
volatile uint *s = &(fep->phy_status);
uint status;
status = *s & ~(PHY_CONF_SPMASK);
if (mii_reg & 0x0020)
status |= PHY_CONF_10HDX;
if (mii_reg & 0x0040)
status |= PHY_CONF_10FDX;
if (mii_reg & 0x0080)
status |= PHY_CONF_100HDX;
if (mii_reg & 0x00100)
status |= PHY_CONF_100FDX;
*s = status;
}
/* ------------------------------------------------------------------------- */ spin_lock_irqsave(&fep->hw_lock, flags);
/* The Level one LXT970 is used by many boards */
#define MII_LXT970_MIRROR 16 /* Mirror register */ /* Prevent a state halted on mii error */
#define MII_LXT970_IER 17 /* Interrupt Enable Register */ if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
#define MII_LXT970_ISR 18 /* Interrupt Status Register */ phy_dev->state = PHY_RESUMING;
#define MII_LXT970_CONFIG 19 /* Configuration Register */ goto spin_unlock;
#define MII_LXT970_CSR 20 /* Chip Status Register */ }
static void mii_parse_lxt970_csr(uint mii_reg, struct net_device *dev) /* Duplex link change */
{ if (phy_dev->link) {
struct fec_enet_private *fep = netdev_priv(dev); if (fep->full_duplex != phy_dev->duplex) {
volatile uint *s = &(fep->phy_status); fec_restart(dev, phy_dev->duplex);
uint status; status_change = 1;
}
}
status = *s & ~(PHY_STAT_SPMASK); /* Link on or off change */
if (mii_reg & 0x0800) { if (phy_dev->link != fep->link) {
if (mii_reg & 0x1000) fep->link = phy_dev->link;
status |= PHY_STAT_100FDX; if (phy_dev->link)
fec_restart(dev, phy_dev->duplex);
else else
status |= PHY_STAT_100HDX; fec_stop(dev);
} else { status_change = 1;
if (mii_reg & 0x1000)
status |= PHY_STAT_10FDX;
else
status |= PHY_STAT_10HDX;
} }
*s = status;
}
static phy_cmd_t const phy_cmd_lxt970_config[] = {
{ mk_mii_read(MII_REG_CR), mii_parse_cr },
{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
{ mk_mii_end, }
};
static phy_cmd_t const phy_cmd_lxt970_startup[] = { /* enable interrupts */
{ mk_mii_write(MII_LXT970_IER, 0x0002), NULL },
{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
{ mk_mii_end, }
};
static phy_cmd_t const phy_cmd_lxt970_ack_int[] = {
/* read SR and ISR to acknowledge */
{ mk_mii_read(MII_REG_SR), mii_parse_sr },
{ mk_mii_read(MII_LXT970_ISR), NULL },
/* find out the current status */
{ mk_mii_read(MII_LXT970_CSR), mii_parse_lxt970_csr },
{ mk_mii_end, }
};
static phy_cmd_t const phy_cmd_lxt970_shutdown[] = { /* disable interrupts */
{ mk_mii_write(MII_LXT970_IER, 0x0000), NULL },
{ mk_mii_end, }
};
static phy_info_t const phy_info_lxt970 = {
.id = 0x07810000,
.name = "LXT970",
.config = phy_cmd_lxt970_config,
.startup = phy_cmd_lxt970_startup,
.ack_int = phy_cmd_lxt970_ack_int,
.shutdown = phy_cmd_lxt970_shutdown
};
/* ------------------------------------------------------------------------- */ spin_unlock:
/* The Level one LXT971 is used on some of my custom boards */ spin_unlock_irqrestore(&fep->hw_lock, flags);
/* register definitions for the 971 */
#define MII_LXT971_PCR 16 /* Port Control Register */ if (status_change)
#define MII_LXT971_SR2 17 /* Status Register 2 */ phy_print_status(phy_dev);
#define MII_LXT971_IER 18 /* Interrupt Enable Register */ }
#define MII_LXT971_ISR 19 /* Interrupt Status Register */
#define MII_LXT971_LCR 20 /* LED Control Register */
#define MII_LXT971_TCR 30 /* Transmit Control Register */
/* /*
* I had some nice ideas of running the MDIO faster... * NOTE: a MII transaction is during around 25 us, so polling it...
* The 971 should support 8MHz and I tried it, but things acted really
* weird, so 2.5 MHz ought to be enough for anyone...
*/ */
static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
static void mii_parse_lxt971_sr2(uint mii_reg, struct net_device *dev)
{ {
struct fec_enet_private *fep = netdev_priv(dev); struct fec_enet_private *fep = bus->priv;
volatile uint *s = &(fep->phy_status); int timeout = FEC_MII_TIMEOUT;
uint status;
status = *s & ~(PHY_STAT_SPMASK | PHY_STAT_LINK | PHY_STAT_ANC); fep->mii_timeout = 0;
if (mii_reg & 0x0400) { /* clear MII end of transfer bit*/
fep->link = 1; writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
status |= PHY_STAT_LINK;
} else { /* start a read op */
fep->link = 0; writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
} FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
if (mii_reg & 0x0080) FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
status |= PHY_STAT_ANC;
if (mii_reg & 0x4000) { /* wait for end of transfer */
if (mii_reg & 0x0200) while (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_MII)) {
status |= PHY_STAT_100FDX; cpu_relax();
else if (timeout-- < 0) {
status |= PHY_STAT_100HDX; fep->mii_timeout = 1;
} else { printk(KERN_ERR "FEC: MDIO read timeout\n");
if (mii_reg & 0x0200) return -ETIMEDOUT;
status |= PHY_STAT_10FDX; }
else
status |= PHY_STAT_10HDX;
} }
if (mii_reg & 0x0008)
status |= PHY_STAT_FAULT;
*s = status; /* return value */
return FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
} }
static phy_cmd_t const phy_cmd_lxt971_config[] = { static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
/* limit to 10MBit because my prototype board u16 value)
* doesn't work with 100. */
{ mk_mii_read(MII_REG_CR), mii_parse_cr },
{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
{ mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 },
{ mk_mii_end, }
};
static phy_cmd_t const phy_cmd_lxt971_startup[] = { /* enable interrupts */
{ mk_mii_write(MII_LXT971_IER, 0x00f2), NULL },
{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
{ mk_mii_write(MII_LXT971_LCR, 0xd422), NULL }, /* LED config */
/* Somehow does the 971 tell me that the link is down
* the first read after power-up.
* read here to get a valid value in ack_int */
{ mk_mii_read(MII_REG_SR), mii_parse_sr },
{ mk_mii_end, }
};
static phy_cmd_t const phy_cmd_lxt971_ack_int[] = {
/* acknowledge the int before reading status ! */
{ mk_mii_read(MII_LXT971_ISR), NULL },
/* find out the current status */
{ mk_mii_read(MII_REG_SR), mii_parse_sr },
{ mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 },
{ mk_mii_end, }
};
static phy_cmd_t const phy_cmd_lxt971_shutdown[] = { /* disable interrupts */
{ mk_mii_write(MII_LXT971_IER, 0x0000), NULL },
{ mk_mii_end, }
};
static phy_info_t const phy_info_lxt971 = {
.id = 0x0001378e,
.name = "LXT971",
.config = phy_cmd_lxt971_config,
.startup = phy_cmd_lxt971_startup,
.ack_int = phy_cmd_lxt971_ack_int,
.shutdown = phy_cmd_lxt971_shutdown
};
/* ------------------------------------------------------------------------- */
/* The Quality Semiconductor QS6612 is used on the RPX CLLF */
/* register definitions */
#define MII_QS6612_MCR 17 /* Mode Control Register */
#define MII_QS6612_FTR 27 /* Factory Test Register */
#define MII_QS6612_MCO 28 /* Misc. Control Register */
#define MII_QS6612_ISR 29 /* Interrupt Source Register */
#define MII_QS6612_IMR 30 /* Interrupt Mask Register */
#define MII_QS6612_PCR 31 /* 100BaseTx PHY Control Reg. */
static void mii_parse_qs6612_pcr(uint mii_reg, struct net_device *dev)
{ {
struct fec_enet_private *fep = netdev_priv(dev); struct fec_enet_private *fep = bus->priv;
volatile uint *s = &(fep->phy_status); int timeout = FEC_MII_TIMEOUT;
uint status;
status = *s & ~(PHY_STAT_SPMASK); fep->mii_timeout = 0;
switch((mii_reg >> 2) & 7) { /* clear MII end of transfer bit*/
case 1: status |= PHY_STAT_10HDX; break; writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
case 2: status |= PHY_STAT_100HDX; break;
case 5: status |= PHY_STAT_10FDX; break;
case 6: status |= PHY_STAT_100FDX; break;
}
*s = status;
}
static phy_cmd_t const phy_cmd_qs6612_config[] = {
/* The PHY powers up isolated on the RPX,
* so send a command to allow operation.
*/
{ mk_mii_write(MII_QS6612_PCR, 0x0dc0), NULL },
/* parse cr and anar to get some info */
{ mk_mii_read(MII_REG_CR), mii_parse_cr },
{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
{ mk_mii_end, }
};
static phy_cmd_t const phy_cmd_qs6612_startup[] = { /* enable interrupts */
{ mk_mii_write(MII_QS6612_IMR, 0x003a), NULL },
{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
{ mk_mii_end, }
};
static phy_cmd_t const phy_cmd_qs6612_ack_int[] = {
/* we need to read ISR, SR and ANER to acknowledge */
{ mk_mii_read(MII_QS6612_ISR), NULL },
{ mk_mii_read(MII_REG_SR), mii_parse_sr },
{ mk_mii_read(MII_REG_ANER), NULL },
/* read pcr to get info */
{ mk_mii_read(MII_QS6612_PCR), mii_parse_qs6612_pcr },
{ mk_mii_end, }
};
static phy_cmd_t const phy_cmd_qs6612_shutdown[] = { /* disable interrupts */
{ mk_mii_write(MII_QS6612_IMR, 0x0000), NULL },
{ mk_mii_end, }
};
static phy_info_t const phy_info_qs6612 = {
.id = 0x00181440,
.name = "QS6612",
.config = phy_cmd_qs6612_config,
.startup = phy_cmd_qs6612_startup,
.ack_int = phy_cmd_qs6612_ack_int,
.shutdown = phy_cmd_qs6612_shutdown
};
/* ------------------------------------------------------------------------- */
/* AMD AM79C874 phy */
/* register definitions for the 874 */ /* start a read op */
writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
FEC_MMFR_TA | FEC_MMFR_DATA(value),
fep->hwp + FEC_MII_DATA);
/* wait for end of transfer */
while (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_MII)) {
cpu_relax();
if (timeout-- < 0) {
fep->mii_timeout = 1;
printk(KERN_ERR "FEC: MDIO write timeout\n");
return -ETIMEDOUT;
}
}
#define MII_AM79C874_MFR 16 /* Miscellaneous Feature Register */ return 0;
#define MII_AM79C874_ICSR 17 /* Interrupt/Status Register */ }
#define MII_AM79C874_DR 18 /* Diagnostic Register */
#define MII_AM79C874_PMLR 19 /* Power and Loopback Register */
#define MII_AM79C874_MCR 21 /* ModeControl Register */
#define MII_AM79C874_DC 23 /* Disconnect Counter */
#define MII_AM79C874_REC 24 /* Recieve Error Counter */
static void mii_parse_am79c874_dr(uint mii_reg, struct net_device *dev) static int fec_enet_mdio_reset(struct mii_bus *bus)
{ {
struct fec_enet_private *fep = netdev_priv(dev); return 0;
volatile uint *s = &(fep->phy_status);
uint status;
status = *s & ~(PHY_STAT_SPMASK | PHY_STAT_ANC);
if (mii_reg & 0x0080)
status |= PHY_STAT_ANC;
if (mii_reg & 0x0400)
status |= ((mii_reg & 0x0800) ? PHY_STAT_100FDX : PHY_STAT_100HDX);
else
status |= ((mii_reg & 0x0800) ? PHY_STAT_10FDX : PHY_STAT_10HDX);
*s = status;
} }
static phy_cmd_t const phy_cmd_am79c874_config[] = { static int fec_enet_mii_probe(struct net_device *dev)
{ mk_mii_read(MII_REG_CR), mii_parse_cr },
{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
{ mk_mii_read(MII_AM79C874_DR), mii_parse_am79c874_dr },
{ mk_mii_end, }
};
static phy_cmd_t const phy_cmd_am79c874_startup[] = { /* enable interrupts */
{ mk_mii_write(MII_AM79C874_ICSR, 0xff00), NULL },
{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
{ mk_mii_read(MII_REG_SR), mii_parse_sr },
{ mk_mii_end, }
};
static phy_cmd_t const phy_cmd_am79c874_ack_int[] = {
/* find out the current status */
{ mk_mii_read(MII_REG_SR), mii_parse_sr },
{ mk_mii_read(MII_AM79C874_DR), mii_parse_am79c874_dr },
/* we only need to read ISR to acknowledge */
{ mk_mii_read(MII_AM79C874_ICSR), NULL },
{ mk_mii_end, }
};
static phy_cmd_t const phy_cmd_am79c874_shutdown[] = { /* disable interrupts */
{ mk_mii_write(MII_AM79C874_ICSR, 0x0000), NULL },
{ mk_mii_end, }
};
static phy_info_t const phy_info_am79c874 = {
.id = 0x00022561,
.name = "AM79C874",
.config = phy_cmd_am79c874_config,
.startup = phy_cmd_am79c874_startup,
.ack_int = phy_cmd_am79c874_ack_int,
.shutdown = phy_cmd_am79c874_shutdown
};
/* ------------------------------------------------------------------------- */
/* Kendin KS8721BL phy */
/* register definitions for the 8721 */
#define MII_KS8721BL_RXERCR 21
#define MII_KS8721BL_ICSR 27
#define MII_KS8721BL_PHYCR 31
static phy_cmd_t const phy_cmd_ks8721bl_config[] = {
{ mk_mii_read(MII_REG_CR), mii_parse_cr },
{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
{ mk_mii_end, }
};
static phy_cmd_t const phy_cmd_ks8721bl_startup[] = { /* enable interrupts */
{ mk_mii_write(MII_KS8721BL_ICSR, 0xff00), NULL },
{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
{ mk_mii_read(MII_REG_SR), mii_parse_sr },
{ mk_mii_end, }
};
static phy_cmd_t const phy_cmd_ks8721bl_ack_int[] = {
/* find out the current status */
{ mk_mii_read(MII_REG_SR), mii_parse_sr },
/* we only need to read ISR to acknowledge */
{ mk_mii_read(MII_KS8721BL_ICSR), NULL },
{ mk_mii_end, }
};
static phy_cmd_t const phy_cmd_ks8721bl_shutdown[] = { /* disable interrupts */
{ mk_mii_write(MII_KS8721BL_ICSR, 0x0000), NULL },
{ mk_mii_end, }
};
static phy_info_t const phy_info_ks8721bl = {
.id = 0x00022161,
.name = "KS8721BL",
.config = phy_cmd_ks8721bl_config,
.startup = phy_cmd_ks8721bl_startup,
.ack_int = phy_cmd_ks8721bl_ack_int,
.shutdown = phy_cmd_ks8721bl_shutdown
};
/* ------------------------------------------------------------------------- */
/* register definitions for the DP83848 */
#define MII_DP8384X_PHYSTST 16 /* PHY Status Register */
static void mii_parse_dp8384x_sr2(uint mii_reg, struct net_device *dev)
{ {
struct fec_enet_private *fep = netdev_priv(dev); struct fec_enet_private *fep = netdev_priv(dev);
volatile uint *s = &(fep->phy_status); struct phy_device *phy_dev = NULL;
int phy_addr;
*s &= ~(PHY_STAT_SPMASK | PHY_STAT_LINK | PHY_STAT_ANC);
/* Link up */
if (mii_reg & 0x0001) {
fep->link = 1;
*s |= PHY_STAT_LINK;
} else
fep->link = 0;
/* Status of link */
if (mii_reg & 0x0010) /* Autonegotioation complete */
*s |= PHY_STAT_ANC;
if (mii_reg & 0x0002) { /* 10MBps? */
if (mii_reg & 0x0004) /* Full Duplex? */
*s |= PHY_STAT_10FDX;
else
*s |= PHY_STAT_10HDX;
} else { /* 100 Mbps? */
if (mii_reg & 0x0004) /* Full Duplex? */
*s |= PHY_STAT_100FDX;
else
*s |= PHY_STAT_100HDX;
}
if (mii_reg & 0x0008)
*s |= PHY_STAT_FAULT;
}
static phy_info_t phy_info_dp83848= {
0x020005c9,
"DP83848",
(const phy_cmd_t []) { /* config */ /* find the first phy */
{ mk_mii_read(MII_REG_CR), mii_parse_cr }, for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++) {
{ mk_mii_read(MII_REG_ANAR), mii_parse_anar }, if (fep->mii_bus->phy_map[phy_addr]) {
{ mk_mii_read(MII_DP8384X_PHYSTST), mii_parse_dp8384x_sr2 }, phy_dev = fep->mii_bus->phy_map[phy_addr];
{ mk_mii_end, } break;
}, }
(const phy_cmd_t []) { /* startup - enable interrupts */ }
{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
{ mk_mii_read(MII_REG_SR), mii_parse_sr },
{ mk_mii_end, }
},
(const phy_cmd_t []) { /* ack_int - never happens, no interrupt */
{ mk_mii_end, }
},
(const phy_cmd_t []) { /* shutdown */
{ mk_mii_end, }
},
};
static phy_info_t phy_info_lan8700 = { if (!phy_dev) {
0x0007C0C, printk(KERN_ERR "%s: no PHY found\n", dev->name);
"LAN8700", return -ENODEV;
(const phy_cmd_t []) { /* config */ }
{ mk_mii_read(MII_REG_CR), mii_parse_cr },
{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
{ mk_mii_end, }
},
(const phy_cmd_t []) { /* startup */
{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
{ mk_mii_read(MII_REG_SR), mii_parse_sr },
{ mk_mii_end, }
},
(const phy_cmd_t []) { /* act_int */
{ mk_mii_end, }
},
(const phy_cmd_t []) { /* shutdown */
{ mk_mii_end, }
},
};
/* ------------------------------------------------------------------------- */
static phy_info_t const * const phy_info[] = { /* attach the mac to the phy */
&phy_info_lxt970, phy_dev = phy_connect(dev, dev_name(&phy_dev->dev),
&phy_info_lxt971, &fec_enet_adjust_link, 0,
&phy_info_qs6612, PHY_INTERFACE_MODE_MII);
&phy_info_am79c874, if (IS_ERR(phy_dev)) {
&phy_info_ks8721bl, printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
&phy_info_dp83848, return PTR_ERR(phy_dev);
&phy_info_lan8700, }
NULL
};
/* ------------------------------------------------------------------------- */ /* mask with MAC supported features */
#ifdef HAVE_mii_link_interrupt phy_dev->supported &= PHY_BASIC_FEATURES;
static irqreturn_t phy_dev->advertising = phy_dev->supported;
mii_link_interrupt(int irq, void * dev_id);
/* fep->phy_dev = phy_dev;
* This is specific to the MII interrupt setup of the M5272EVB. fep->link = 0;
*/ fep->full_duplex = 0;
static void __inline__ fec_request_mii_intr(struct net_device *dev)
{
if (request_irq(66, mii_link_interrupt, IRQF_DISABLED, "fec(MII)", dev) != 0)
printk("FEC: Could not allocate fec(MII) IRQ(66)!\n");
}
static void __inline__ fec_disable_phy_intr(struct net_device *dev) return 0;
{
free_irq(66, dev);
} }
#endif
#ifdef CONFIG_M5272 static int fec_enet_mii_init(struct platform_device *pdev)
static void __inline__ fec_get_mac(struct net_device *dev)
{ {
struct net_device *dev = platform_get_drvdata(pdev);
struct fec_enet_private *fep = netdev_priv(dev); struct fec_enet_private *fep = netdev_priv(dev);
unsigned char *iap, tmpaddr[ETH_ALEN]; int err = -ENXIO, i;
if (FEC_FLASHMAC) { fep->mii_timeout = 0;
/*
* Get MAC address from FLASH.
* If it is all 1's or 0's, use the default.
*/
iap = (unsigned char *)FEC_FLASHMAC;
if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
(iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
iap = fec_mac_default;
if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
(iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
iap = fec_mac_default;
} else {
*((unsigned long *) &tmpaddr[0]) = readl(fep->hwp + FEC_ADDR_LOW);
*((unsigned short *) &tmpaddr[4]) = (readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
iap = &tmpaddr[0];
}
memcpy(dev->dev_addr, iap, ETH_ALEN);
/* Adjust MAC if using default MAC address */
if (iap == fec_mac_default)
dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
}
#endif
/* ------------------------------------------------------------------------- */ /*
* Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
static void mii_display_status(struct net_device *dev) */
{ fep->phy_speed = DIV_ROUND_UP(clk_get_rate(fep->clk), 5000000) << 1;
struct fec_enet_private *fep = netdev_priv(dev); writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
volatile uint *s = &(fep->phy_status);
if (!fep->link && !fep->old_link) { fep->mii_bus = mdiobus_alloc();
/* Link is still down - don't print anything */ if (fep->mii_bus == NULL) {
return; err = -ENOMEM;
goto err_out;
} }
printk("%s: status: ", dev->name); fep->mii_bus->name = "fec_enet_mii_bus";
fep->mii_bus->read = fec_enet_mdio_read;
if (!fep->link) { fep->mii_bus->write = fec_enet_mdio_write;
printk("link down"); fep->mii_bus->reset = fec_enet_mdio_reset;
} else { snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%x", pdev->id);
printk("link up"); fep->mii_bus->priv = fep;
fep->mii_bus->parent = &pdev->dev;
switch(*s & PHY_STAT_SPMASK) {
case PHY_STAT_100FDX: printk(", 100MBit Full Duplex"); break; fep->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
case PHY_STAT_100HDX: printk(", 100MBit Half Duplex"); break; if (!fep->mii_bus->irq) {
case PHY_STAT_10FDX: printk(", 10MBit Full Duplex"); break; err = -ENOMEM;
case PHY_STAT_10HDX: printk(", 10MBit Half Duplex"); break; goto err_out_free_mdiobus;
default:
printk(", Unknown speed/duplex");
}
if (*s & PHY_STAT_ANC)
printk(", auto-negotiation complete");
} }
if (*s & PHY_STAT_FAULT) for (i = 0; i < PHY_MAX_ADDR; i++)
printk(", remote fault"); fep->mii_bus->irq[i] = PHY_POLL;
printk(".\n");
}
static void mii_display_config(struct work_struct *work)
{
struct fec_enet_private *fep = container_of(work, struct fec_enet_private, phy_task);
struct net_device *dev = fep->netdev;
uint status = fep->phy_status;
/* platform_set_drvdata(dev, fep->mii_bus);
** When we get here, phy_task is already removed from
** the workqueue. It is thus safe to allow to reuse it.
*/
fep->mii_phy_task_queued = 0;
printk("%s: config: auto-negotiation ", dev->name);
if (status & PHY_CONF_ANE)
printk("on");
else
printk("off");
if (status & PHY_CONF_100FDX) if (mdiobus_register(fep->mii_bus))
printk(", 100FDX"); goto err_out_free_mdio_irq;
if (status & PHY_CONF_100HDX)
printk(", 100HDX");
if (status & PHY_CONF_10FDX)
printk(", 10FDX");
if (status & PHY_CONF_10HDX)
printk(", 10HDX");
if (!(status & PHY_CONF_SPMASK))
printk(", No speed/duplex selected?");
if (status & PHY_CONF_LOOP) if (fec_enet_mii_probe(dev) != 0)
printk(", loopback enabled"); goto err_out_unregister_bus;
printk(".\n"); return 0;
fep->sequence_done = 1; err_out_unregister_bus:
mdiobus_unregister(fep->mii_bus);
err_out_free_mdio_irq:
kfree(fep->mii_bus->irq);
err_out_free_mdiobus:
mdiobus_free(fep->mii_bus);
err_out:
return err;
} }
static void mii_relink(struct work_struct *work) static void fec_enet_mii_remove(struct fec_enet_private *fep)
{ {
struct fec_enet_private *fep = container_of(work, struct fec_enet_private, phy_task); if (fep->phy_dev)
struct net_device *dev = fep->netdev; phy_disconnect(fep->phy_dev);
int duplex; mdiobus_unregister(fep->mii_bus);
kfree(fep->mii_bus->irq);
/* mdiobus_free(fep->mii_bus);
** When we get here, phy_task is already removed from
** the workqueue. It is thus safe to allow to reuse it.
*/
fep->mii_phy_task_queued = 0;
fep->link = (fep->phy_status & PHY_STAT_LINK) ? 1 : 0;
mii_display_status(dev);
fep->old_link = fep->link;
if (fep->link) {
duplex = 0;
if (fep->phy_status
& (PHY_STAT_100FDX | PHY_STAT_10FDX))
duplex = 1;
fec_restart(dev, duplex);
} else
fec_stop(dev);
} }
/* mii_queue_relink is called in interrupt context from mii_link_interrupt */ static int fec_enet_get_settings(struct net_device *dev,
static void mii_queue_relink(uint mii_reg, struct net_device *dev) struct ethtool_cmd *cmd)
{ {
struct fec_enet_private *fep = netdev_priv(dev); struct fec_enet_private *fep = netdev_priv(dev);
struct phy_device *phydev = fep->phy_dev;
/* if (!phydev)
* We cannot queue phy_task twice in the workqueue. It return -ENODEV;
* would cause an endless loop in the workqueue.
* Fortunately, if the last mii_relink entry has not yet been
* executed now, it will do the job for the current interrupt,
* which is just what we want.
*/
if (fep->mii_phy_task_queued)
return;
fep->mii_phy_task_queued = 1; return phy_ethtool_gset(phydev, cmd);
INIT_WORK(&fep->phy_task, mii_relink);
schedule_work(&fep->phy_task);
} }
/* mii_queue_config is called in interrupt context from fec_enet_mii */ static int fec_enet_set_settings(struct net_device *dev,
static void mii_queue_config(uint mii_reg, struct net_device *dev) struct ethtool_cmd *cmd)
{ {
struct fec_enet_private *fep = netdev_priv(dev); struct fec_enet_private *fep = netdev_priv(dev);
struct phy_device *phydev = fep->phy_dev;
if (fep->mii_phy_task_queued) if (!phydev)
return; return -ENODEV;
fep->mii_phy_task_queued = 1; return phy_ethtool_sset(phydev, cmd);
INIT_WORK(&fep->phy_task, mii_display_config);
schedule_work(&fep->phy_task);
} }
phy_cmd_t const phy_cmd_relink[] = { static void fec_enet_get_drvinfo(struct net_device *dev,
{ mk_mii_read(MII_REG_CR), mii_queue_relink }, struct ethtool_drvinfo *info)
{ mk_mii_end, }
};
phy_cmd_t const phy_cmd_config[] = {
{ mk_mii_read(MII_REG_CR), mii_queue_config },
{ mk_mii_end, }
};
/* Read remainder of PHY ID. */
static void
mii_discover_phy3(uint mii_reg, struct net_device *dev)
{ {
struct fec_enet_private *fep; struct fec_enet_private *fep = netdev_priv(dev);
int i;
fep = netdev_priv(dev);
fep->phy_id |= (mii_reg & 0xffff);
printk("fec: PHY @ 0x%x, ID 0x%08x", fep->phy_addr, fep->phy_id);
for(i = 0; phy_info[i]; i++) {
if(phy_info[i]->id == (fep->phy_id >> 4))
break;
}
if (phy_info[i])
printk(" -- %s\n", phy_info[i]->name);
else
printk(" -- unknown PHY!\n");
fep->phy = phy_info[i]; strcpy(info->driver, fep->pdev->dev.driver->name);
fep->phy_id_done = 1; strcpy(info->version, "Revision: 1.0");
strcpy(info->bus_info, dev_name(&dev->dev));
} }
/* Scan all of the MII PHY addresses looking for someone to respond static struct ethtool_ops fec_enet_ethtool_ops = {
* with a valid ID. This usually happens quickly. .get_settings = fec_enet_get_settings,
*/ .set_settings = fec_enet_set_settings,
static void .get_drvinfo = fec_enet_get_drvinfo,
mii_discover_phy(uint mii_reg, struct net_device *dev) .get_link = ethtool_op_get_link,
{ };
struct fec_enet_private *fep;
uint phytype;
fep = netdev_priv(dev);
if (fep->phy_addr < 32) {
if ((phytype = (mii_reg & 0xffff)) != 0xffff && phytype != 0) {
/* Got first part of ID, now get remainder */
fep->phy_id = phytype << 16;
mii_queue_unlocked(dev, mk_mii_read(MII_REG_PHYIR2),
mii_discover_phy3);
} else {
fep->phy_addr++;
mii_queue_unlocked(dev, mk_mii_read(MII_REG_PHYIR1),
mii_discover_phy);
}
} else {
printk("FEC: No PHY device found.\n");
/* Disable external MII interface */
writel(0, fep->hwp + FEC_MII_SPEED);
fep->phy_speed = 0;
#ifdef HAVE_mii_link_interrupt
fec_disable_phy_intr(dev);
#endif
}
}
/* This interrupt occurs when the PHY detects a link change */ static int fec_enet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
#ifdef HAVE_mii_link_interrupt
static irqreturn_t
mii_link_interrupt(int irq, void * dev_id)
{ {
struct net_device *dev = dev_id;
struct fec_enet_private *fep = netdev_priv(dev); struct fec_enet_private *fep = netdev_priv(dev);
struct phy_device *phydev = fep->phy_dev;
if (!netif_running(dev))
return -EINVAL;
mii_do_cmd(dev, fep->phy->ack_int); if (!phydev)
mii_do_cmd(dev, phy_cmd_relink); /* restart and display status */ return -ENODEV;
return IRQ_HANDLED; return phy_mii_ioctl(phydev, if_mii(rq), cmd);
} }
#endif
static void fec_enet_free_buffers(struct net_device *dev) static void fec_enet_free_buffers(struct net_device *dev)
{ {
...@@ -1509,35 +915,8 @@ fec_enet_open(struct net_device *dev) ...@@ -1509,35 +915,8 @@ fec_enet_open(struct net_device *dev)
if (ret) if (ret)
return ret; return ret;
fep->sequence_done = 0; /* schedule a link state check */
fep->link = 0; phy_start(fep->phy_dev);
fec_restart(dev, 1);
if (fep->phy) {
mii_do_cmd(dev, fep->phy->ack_int);
mii_do_cmd(dev, fep->phy->config);
mii_do_cmd(dev, phy_cmd_config); /* display configuration */
/* Poll until the PHY tells us its configuration
* (not link state).
* Request is initiated by mii_do_cmd above, but answer
* comes by interrupt.
* This should take about 25 usec per register at 2.5 MHz,
* and we read approximately 5 registers.
*/
while(!fep->sequence_done)
schedule();
mii_do_cmd(dev, fep->phy->startup);
}
/* Set the initial link state to true. A lot of hardware
* based on this device does not implement a PHY interrupt,
* so we are never notified of link change.
*/
fep->link = 1;
netif_start_queue(dev); netif_start_queue(dev);
fep->opened = 1; fep->opened = 1;
return 0; return 0;
...@@ -1550,6 +929,7 @@ fec_enet_close(struct net_device *dev) ...@@ -1550,6 +929,7 @@ fec_enet_close(struct net_device *dev)
/* Don't know what to do yet. */ /* Don't know what to do yet. */
fep->opened = 0; fep->opened = 0;
phy_stop(fep->phy_dev);
netif_stop_queue(dev); netif_stop_queue(dev);
fec_stop(dev); fec_stop(dev);
...@@ -1666,6 +1046,7 @@ static const struct net_device_ops fec_netdev_ops = { ...@@ -1666,6 +1046,7 @@ static const struct net_device_ops fec_netdev_ops = {
.ndo_validate_addr = eth_validate_addr, .ndo_validate_addr = eth_validate_addr,
.ndo_tx_timeout = fec_timeout, .ndo_tx_timeout = fec_timeout,
.ndo_set_mac_address = fec_set_mac_address, .ndo_set_mac_address = fec_set_mac_address,
.ndo_do_ioctl = fec_enet_ioctl,
}; };
/* /*
...@@ -1689,7 +1070,6 @@ static int fec_enet_init(struct net_device *dev, int index) ...@@ -1689,7 +1070,6 @@ static int fec_enet_init(struct net_device *dev, int index)
} }
spin_lock_init(&fep->hw_lock); spin_lock_init(&fep->hw_lock);
spin_lock_init(&fep->mii_lock);
fep->index = index; fep->index = index;
fep->hwp = (void __iomem *)dev->base_addr; fep->hwp = (void __iomem *)dev->base_addr;
...@@ -1716,20 +1096,10 @@ static int fec_enet_init(struct net_device *dev, int index) ...@@ -1716,20 +1096,10 @@ static int fec_enet_init(struct net_device *dev, int index)
fep->rx_bd_base = cbd_base; fep->rx_bd_base = cbd_base;
fep->tx_bd_base = cbd_base + RX_RING_SIZE; fep->tx_bd_base = cbd_base + RX_RING_SIZE;
#ifdef HAVE_mii_link_interrupt
fec_request_mii_intr(dev);
#endif
/* The FEC Ethernet specific entries in the device structure */ /* The FEC Ethernet specific entries in the device structure */
dev->watchdog_timeo = TX_TIMEOUT; dev->watchdog_timeo = TX_TIMEOUT;
dev->netdev_ops = &fec_netdev_ops; dev->netdev_ops = &fec_netdev_ops;
dev->ethtool_ops = &fec_enet_ethtool_ops;
for (i=0; i<NMII-1; i++)
mii_cmds[i].mii_next = &mii_cmds[i+1];
mii_free = mii_cmds;
/* Set MII speed to 2.5 MHz */
fep->phy_speed = ((((clk_get_rate(fep->clk) / 2 + 4999999)
/ 2500000) / 2) & 0x3F) << 1;
/* Initialize the receive buffer descriptors. */ /* Initialize the receive buffer descriptors. */
bdp = fep->rx_bd_base; bdp = fep->rx_bd_base;
...@@ -1760,13 +1130,6 @@ static int fec_enet_init(struct net_device *dev, int index) ...@@ -1760,13 +1130,6 @@ static int fec_enet_init(struct net_device *dev, int index)
fec_restart(dev, 0); fec_restart(dev, 0);
/* Queue up command to detect the PHY and initialize the
* remainder of the interface.
*/
fep->phy_id_done = 0;
fep->phy_addr = 0;
mii_queue(dev, mk_mii_read(MII_REG_PHYIR1), mii_discover_phy);
return 0; return 0;
} }
...@@ -1835,8 +1198,7 @@ fec_restart(struct net_device *dev, int duplex) ...@@ -1835,8 +1198,7 @@ fec_restart(struct net_device *dev, int duplex)
writel(0, fep->hwp + FEC_R_DES_ACTIVE); writel(0, fep->hwp + FEC_R_DES_ACTIVE);
/* Enable interrupts we wish to service */ /* Enable interrupts we wish to service */
writel(FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII, writel(FEC_ENET_TXF | FEC_ENET_RXF, fep->hwp + FEC_IMASK);
fep->hwp + FEC_IMASK);
} }
static void static void
...@@ -1859,7 +1221,6 @@ fec_stop(struct net_device *dev) ...@@ -1859,7 +1221,6 @@ fec_stop(struct net_device *dev)
/* Clear outstanding MII command interrupts. */ /* Clear outstanding MII command interrupts. */
writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT); writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
writel(FEC_ENET_MII, fep->hwp + FEC_IMASK);
writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
} }
...@@ -1891,6 +1252,7 @@ fec_probe(struct platform_device *pdev) ...@@ -1891,6 +1252,7 @@ fec_probe(struct platform_device *pdev)
memset(fep, 0, sizeof(*fep)); memset(fep, 0, sizeof(*fep));
ndev->base_addr = (unsigned long)ioremap(r->start, resource_size(r)); ndev->base_addr = (unsigned long)ioremap(r->start, resource_size(r));
fep->pdev = pdev;
if (!ndev->base_addr) { if (!ndev->base_addr) {
ret = -ENOMEM; ret = -ENOMEM;
...@@ -1926,13 +1288,24 @@ fec_probe(struct platform_device *pdev) ...@@ -1926,13 +1288,24 @@ fec_probe(struct platform_device *pdev)
if (ret) if (ret)
goto failed_init; goto failed_init;
ret = fec_enet_mii_init(pdev);
if (ret)
goto failed_mii_init;
ret = register_netdev(ndev); ret = register_netdev(ndev);
if (ret) if (ret)
goto failed_register; goto failed_register;
printk(KERN_INFO "%s: Freescale FEC PHY driver [%s] "
"(mii_bus:phy_addr=%s, irq=%d)\n", ndev->name,
fep->phy_dev->drv->name, dev_name(&fep->phy_dev->dev),
fep->phy_dev->irq);
return 0; return 0;
failed_register: failed_register:
fec_enet_mii_remove(fep);
failed_mii_init:
failed_init: failed_init:
clk_disable(fep->clk); clk_disable(fep->clk);
clk_put(fep->clk); clk_put(fep->clk);
...@@ -1959,6 +1332,7 @@ fec_drv_remove(struct platform_device *pdev) ...@@ -1959,6 +1332,7 @@ fec_drv_remove(struct platform_device *pdev)
platform_set_drvdata(pdev, NULL); platform_set_drvdata(pdev, NULL);
fec_stop(ndev); fec_stop(ndev);
fec_enet_mii_remove(fep);
clk_disable(fep->clk); clk_disable(fep->clk);
clk_put(fep->clk); clk_put(fep->clk);
iounmap((void __iomem *)ndev->base_addr); iounmap((void __iomem *)ndev->base_addr);
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment