Commit e752058b authored by Krunoslav Kovac's avatar Krunoslav Kovac Committed by Alex Deucher

drm/amd/display: Optimize gamma calculations

[Why&How]

1. Stack usage is pretty high as fixed31_32 struct is 8 bytes and we
have functions with >30 vars on the stack.

2. Optimize gamma calculation by reducing number of calls to
dc_fixpt_pow Our X points are divided into 32 regions wth 16 pts each.
Each region is 2x the previous, meaning x[i] = 2*x[i-16] for i>=16.
Using (2x)^gamma = 2^gamma * x^gamma, we can recursively compute powers
of gamma, we just need first 16 pts to start it up. dc_fixpt_pow() is
expensive, it computes x^y by doing exp(y*logx) Exp is done by Taylor
series approximation, and log by Newton-like approximation that also
uses exp internally. In short, it's significantly heavier than
run-of-the-mill addition/subtraction/multiply.
Signed-off-by: default avatarKrunoslav Kovac <Krunoslav.Kovac@amd.com>
Reviewed-by: default avatarAnthony Koo <Anthony.Koo@amd.com>
Acked-by: default avatarAric Cyr <Aric.Cyr@amd.com>
Acked-by: default avatarLeo Li <sunpeng.li@amd.com>
Signed-off-by: default avatarAlex Deucher <alexander.deucher@amd.com>
parent c43f89f8
......@@ -482,7 +482,6 @@ struct dc_gamma {
* is_logical_identity indicates the given gamma ramp regardless of type is identity.
*/
bool is_identity;
bool is_logical_identity;
};
/* Used by both ipp amd opp functions*/
......
......@@ -40,6 +40,33 @@ static struct hw_x_point coordinates_x[MAX_HW_POINTS + 2];
static struct fixed31_32 pq_table[MAX_HW_POINTS + 2];
static struct fixed31_32 de_pq_table[MAX_HW_POINTS + 2];
// these are helpers for calculations to reduce stack usage
// do not depend on these being preserved across calls
static struct fixed31_32 scratch_1;
static struct fixed31_32 scratch_2;
static struct translate_from_linear_space_args scratch_gamma_args;
/* Helper to optimize gamma calculation, only use in translate_from_linear, in
* particular the dc_fixpt_pow function which is very expensive
* The idea is that our regions for X points are exponential and currently they all use
* the same number of points (NUM_PTS_IN_REGION) and in each region every point
* is exactly 2x the one at the same index in the previous region. In other words
* X[i] = 2 * X[i-NUM_PTS_IN_REGION] for i>=16
* The other fact is that (2x)^gamma = 2^gamma * x^gamma
* So we compute and save x^gamma for the first 16 regions, and for every next region
* just multiply with 2^gamma which can be computed once, and save the result so we
* recursively compute all the values.
*/
static struct fixed31_32 pow_buffer[NUM_PTS_IN_REGION];
static struct fixed31_32 gamma_of_2; // 2^gamma
int pow_buffer_ptr = -1;
static const int32_t gamma_numerator01[] = { 31308, 180000, 0};
static const int32_t gamma_numerator02[] = { 12920, 4500, 0};
static const int32_t gamma_numerator03[] = { 55, 99, 0};
static const int32_t gamma_numerator04[] = { 55, 99, 0};
static const int32_t gamma_numerator05[] = { 2400, 2200, 2200};
static bool pq_initialized; /* = false; */
static bool de_pq_initialized; /* = false; */
......@@ -251,11 +278,7 @@ enum gamma_type_index {
static void build_coefficients(struct gamma_coefficients *coefficients, enum gamma_type_index type)
{
static const int32_t numerator01[] = { 31308, 180000, 0};
static const int32_t numerator02[] = { 12920, 4500, 0};
static const int32_t numerator03[] = { 55, 99, 0};
static const int32_t numerator04[] = { 55, 99, 0};
static const int32_t numerator05[] = { 2400, 2200, 2200};
uint32_t i = 0;
uint32_t index = 0;
......@@ -267,69 +290,74 @@ static void build_coefficients(struct gamma_coefficients *coefficients, enum gam
do {
coefficients->a0[i] = dc_fixpt_from_fraction(
numerator01[index], 10000000);
gamma_numerator01[index], 10000000);
coefficients->a1[i] = dc_fixpt_from_fraction(
numerator02[index], 1000);
gamma_numerator02[index], 1000);
coefficients->a2[i] = dc_fixpt_from_fraction(
numerator03[index], 1000);
gamma_numerator03[index], 1000);
coefficients->a3[i] = dc_fixpt_from_fraction(
numerator04[index], 1000);
gamma_numerator04[index], 1000);
coefficients->user_gamma[i] = dc_fixpt_from_fraction(
numerator05[index], 1000);
gamma_numerator05[index], 1000);
++i;
} while (i != ARRAY_SIZE(coefficients->a0));
}
static struct fixed31_32 translate_from_linear_space(
struct fixed31_32 arg,
struct fixed31_32 a0,
struct fixed31_32 a1,
struct fixed31_32 a2,
struct fixed31_32 a3,
struct fixed31_32 gamma)
struct translate_from_linear_space_args *args)
{
const struct fixed31_32 one = dc_fixpt_from_int(1);
if (dc_fixpt_lt(one, arg))
if (dc_fixpt_le(one, args->arg))
return one;
if (dc_fixpt_le(arg, dc_fixpt_neg(a0)))
return dc_fixpt_sub(
a2,
dc_fixpt_mul(
dc_fixpt_add(
one,
a3),
dc_fixpt_pow(
dc_fixpt_neg(arg),
dc_fixpt_recip(gamma))));
else if (dc_fixpt_le(a0, arg))
return dc_fixpt_sub(
dc_fixpt_mul(
dc_fixpt_add(
one,
a3),
dc_fixpt_pow(
arg,
dc_fixpt_recip(gamma))),
a2);
if (dc_fixpt_le(args->arg, dc_fixpt_neg(args->a0))) {
scratch_1 = dc_fixpt_add(one, args->a3);
scratch_2 = dc_fixpt_pow(
dc_fixpt_neg(args->arg),
dc_fixpt_recip(args->gamma));
scratch_1 = dc_fixpt_mul(scratch_1, scratch_2);
scratch_1 = dc_fixpt_sub(args->a2, scratch_1);
return scratch_1;
} else if (dc_fixpt_le(args->a0, args->arg)) {
if (pow_buffer_ptr == 0) {
gamma_of_2 = dc_fixpt_pow(dc_fixpt_from_int(2),
dc_fixpt_recip(args->gamma));
}
scratch_1 = dc_fixpt_add(one, args->a3);
if (pow_buffer_ptr < 16)
scratch_2 = dc_fixpt_pow(args->arg,
dc_fixpt_recip(args->gamma));
else
return dc_fixpt_mul(
arg,
a1);
scratch_2 = dc_fixpt_mul(gamma_of_2,
pow_buffer[pow_buffer_ptr%16]);
pow_buffer[pow_buffer_ptr%16] = scratch_2;
pow_buffer_ptr++;
scratch_1 = dc_fixpt_mul(scratch_1, scratch_2);
scratch_1 = dc_fixpt_sub(scratch_1, args->a2);
return scratch_1;
}
else
return dc_fixpt_mul(args->arg, args->a1);
}
static struct fixed31_32 calculate_gamma22(struct fixed31_32 arg)
{
struct fixed31_32 gamma = dc_fixpt_from_fraction(22, 10);
return translate_from_linear_space(arg,
dc_fixpt_zero,
dc_fixpt_zero,
dc_fixpt_zero,
dc_fixpt_zero,
gamma);
scratch_gamma_args.arg = arg;
scratch_gamma_args.a0 = dc_fixpt_zero;
scratch_gamma_args.a1 = dc_fixpt_zero;
scratch_gamma_args.a2 = dc_fixpt_zero;
scratch_gamma_args.a3 = dc_fixpt_zero;
scratch_gamma_args.gamma = gamma;
return translate_from_linear_space(&scratch_gamma_args);
}
static struct fixed31_32 translate_to_linear_space(
......@@ -365,18 +393,19 @@ static struct fixed31_32 translate_to_linear_space(
return linear;
}
static inline struct fixed31_32 translate_from_linear_space_ex(
static struct fixed31_32 translate_from_linear_space_ex(
struct fixed31_32 arg,
struct gamma_coefficients *coeff,
uint32_t color_index)
{
return translate_from_linear_space(
arg,
coeff->a0[color_index],
coeff->a1[color_index],
coeff->a2[color_index],
coeff->a3[color_index],
coeff->user_gamma[color_index]);
scratch_gamma_args.arg = arg;
scratch_gamma_args.a0 = coeff->a0[color_index];
scratch_gamma_args.a1 = coeff->a1[color_index];
scratch_gamma_args.a2 = coeff->a2[color_index];
scratch_gamma_args.a3 = coeff->a3[color_index];
scratch_gamma_args.gamma = coeff->user_gamma[color_index];
return translate_from_linear_space(&scratch_gamma_args);
}
......@@ -715,24 +744,32 @@ static void build_regamma(struct pwl_float_data_ex *rgb_regamma,
{
uint32_t i;
struct gamma_coefficients coeff;
struct gamma_coefficients *coeff;
struct pwl_float_data_ex *rgb = rgb_regamma;
const struct hw_x_point *coord_x = coordinate_x;
build_coefficients(&coeff, type);
coeff = kvzalloc(sizeof(*coeff), GFP_KERNEL);
if (!coeff)
return;
i = 0;
build_coefficients(coeff, type);
while (i != hw_points_num + 1) {
memset(pow_buffer, 0, NUM_PTS_IN_REGION * sizeof(struct fixed31_32));
pow_buffer_ptr = 0; // see variable definition for more info
i = 0;
while (i <= hw_points_num) {
/*TODO use y vs r,g,b*/
rgb->r = translate_from_linear_space_ex(
coord_x->x, &coeff, 0);
coord_x->x, coeff, 0);
rgb->g = rgb->r;
rgb->b = rgb->r;
++coord_x;
++rgb;
++i;
}
pow_buffer_ptr = -1; // reset back to no optimize
kfree(coeff);
}
static void hermite_spline_eetf(struct fixed31_32 input_x,
......@@ -862,6 +899,8 @@ static bool build_freesync_hdr(struct pwl_float_data_ex *rgb_regamma,
else
max_content = max_display;
if (!use_eetf)
pow_buffer_ptr = 0; // see var definition for more info
rgb += 32; // first 32 points have problems with fixed point, too small
coord_x += 32;
for (i = 32; i <= hw_points_num; i++) {
......@@ -900,6 +939,7 @@ static bool build_freesync_hdr(struct pwl_float_data_ex *rgb_regamma,
++coord_x;
++rgb;
}
pow_buffer_ptr = -1;
return true;
}
......@@ -1572,14 +1612,15 @@ bool mod_color_calculate_regamma_params(struct dc_transfer_func *output_tf,
output_tf->tf == TRANSFER_FUNCTION_SRGB) {
if (ramp == NULL)
return true;
if ((ramp->is_logical_identity) ||
if ((ramp->is_identity && ramp->type != GAMMA_CS_TFM_1D) ||
(!mapUserRamp && ramp->type == GAMMA_RGB_256))
return true;
}
output_tf->type = TF_TYPE_DISTRIBUTED_POINTS;
if (ramp && (mapUserRamp || ramp->type != GAMMA_RGB_256)) {
if (ramp && ramp->type != GAMMA_CS_TFM_1D &&
(mapUserRamp || ramp->type != GAMMA_RGB_256)) {
rgb_user = kvcalloc(ramp->num_entries + _EXTRA_POINTS,
sizeof(*rgb_user),
GFP_KERNEL);
......
......@@ -82,6 +82,15 @@ struct freesync_hdr_tf_params {
unsigned int skip_tm; // skip tm
};
struct translate_from_linear_space_args {
struct fixed31_32 arg;
struct fixed31_32 a0;
struct fixed31_32 a1;
struct fixed31_32 a2;
struct fixed31_32 a3;
struct fixed31_32 gamma;
};
void setup_x_points_distribution(void);
void precompute_pq(void);
void precompute_de_pq(void);
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment