Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
L
linux
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
Analytics
Analytics
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Commits
Issue Boards
Open sidebar
nexedi
linux
Commits
eca0bdd3
Commit
eca0bdd3
authored
Jan 11, 2011
by
Len Brown
Browse files
Options
Browse Files
Download
Plain Diff
Merge branches 'turbostat' and 'x86_energy_perf_policy' into tools
parents
3c0eee3f
103a8fea
d5532ee7
Changes
6
Show whitespace changes
Inline
Side-by-side
Showing
6 changed files
with
1665 additions
and
0 deletions
+1665
-0
tools/power/x86/turbostat/Makefile
tools/power/x86/turbostat/Makefile
+8
-0
tools/power/x86/turbostat/turbostat.8
tools/power/x86/turbostat/turbostat.8
+172
-0
tools/power/x86/turbostat/turbostat.c
tools/power/x86/turbostat/turbostat.c
+1048
-0
tools/power/x86/x86_energy_perf_policy/Makefile
tools/power/x86/x86_energy_perf_policy/Makefile
+8
-0
tools/power/x86/x86_energy_perf_policy/x86_energy_perf_policy.8
...power/x86/x86_energy_perf_policy/x86_energy_perf_policy.8
+104
-0
tools/power/x86/x86_energy_perf_policy/x86_energy_perf_policy.c
...power/x86/x86_energy_perf_policy/x86_energy_perf_policy.c
+325
-0
No files found.
tools/power/x86/turbostat/Makefile
0 → 100644
View file @
eca0bdd3
turbostat
:
turbostat.c
clean
:
rm
-f
turbostat
install
:
install
turbostat /usr/bin/turbostat
install
turbostat.8 /usr/share/man/man8
tools/power/x86/turbostat/turbostat.8
0 → 100644
View file @
eca0bdd3
.TH TURBOSTAT 8
.SH NAME
turbostat \- Report processor frequency and idle statistics
.SH SYNOPSIS
.ft B
.B turbostat
.RB [ "\-v" ]
.RB [ "\-M MSR#" ]
.RB command
.br
.B turbostat
.RB [ "\-v" ]
.RB [ "\-M MSR#" ]
.RB [ "\-i interval_sec" ]
.SH DESCRIPTION
\fBturbostat \fP reports processor topology, frequency
and idle power state statistics on modern X86 processors.
Either \fBcommand\fP is forked and statistics are printed
upon its completion, or statistics are printed periodically.
\fBturbostat \fP
requires that the processor
supports an "invariant" TSC, plus the APERF and MPERF MSRs.
\fBturbostat \fP will report idle cpu power state residency
on processors that additionally support C-state residency counters.
.SS Options
The \fB-v\fP option increases verbosity.
.PP
The \fB-M MSR#\fP option dumps the specified MSR,
in addition to the usual frequency and idle statistics.
.PP
The \fB-i interval_sec\fP option prints statistics every \fiinterval_sec\fP seconds.
The default is 5 seconds.
.PP
The \fBcommand\fP parameter forks \fBcommand\fP and upon its exit,
displays the statistics gathered since it was forked.
.PP
.SH FIELD DESCRIPTIONS
.nf
\fBpkg\fP processor package number.
\fBcore\fP processor core number.
\fBCPU\fP Linux CPU (logical processor) number.
\fB%c0\fP percent of the interval that the CPU retired instructions.
\fBGHz\fP average clock rate while the CPU was in c0 state.
\fBTSC\fP average GHz that the TSC ran during the entire interval.
\fB%c1, %c3, %c6\fP show the percentage residency in hardware core idle states.
\fB%pc3, %pc6\fP percentage residency in hardware package idle states.
.fi
.PP
.SH EXAMPLE
Without any parameters, turbostat prints out counters ever 5 seconds.
(override interval with "-i sec" option, or specify a command
for turbostat to fork).
The first row of statistics reflect the average for the entire system.
Subsequent rows show per-CPU statistics.
.nf
[root@x980]# ./turbostat
core CPU %c0 GHz TSC %c1 %c3 %c6 %pc3 %pc6
0.04 1.62 3.38 0.11 0.00 99.85 0.00 95.07
0 0 0.04 1.62 3.38 0.06 0.00 99.90 0.00 95.07
0 6 0.02 1.62 3.38 0.08 0.00 99.90 0.00 95.07
1 2 0.10 1.62 3.38 0.29 0.00 99.61 0.00 95.07
1 8 0.11 1.62 3.38 0.28 0.00 99.61 0.00 95.07
2 4 0.01 1.62 3.38 0.01 0.00 99.98 0.00 95.07
2 10 0.01 1.61 3.38 0.02 0.00 99.98 0.00 95.07
8 1 0.07 1.62 3.38 0.15 0.00 99.78 0.00 95.07
8 7 0.03 1.62 3.38 0.19 0.00 99.78 0.00 95.07
9 3 0.01 1.62 3.38 0.02 0.00 99.98 0.00 95.07
9 9 0.01 1.62 3.38 0.02 0.00 99.98 0.00 95.07
10 5 0.01 1.62 3.38 0.13 0.00 99.86 0.00 95.07
10 11 0.08 1.62 3.38 0.05 0.00 99.86 0.00 95.07
.fi
.SH VERBOSE EXAMPLE
The "-v" option adds verbosity to the output:
.nf
GenuineIntel 11 CPUID levels; family:model:stepping 0x6:2c:2 (6:44:2)
12 * 133 = 1600 MHz max efficiency
25 * 133 = 3333 MHz TSC frequency
26 * 133 = 3467 MHz max turbo 4 active cores
26 * 133 = 3467 MHz max turbo 3 active cores
27 * 133 = 3600 MHz max turbo 2 active cores
27 * 133 = 3600 MHz max turbo 1 active cores
.fi
The \fBmax efficiency\fP frequency, a.k.a. Low Frequency Mode, is the frequency
available at the minimum package voltage. The \fBTSC frequency\fP is the nominal
maximum frequency of the processor if turbo-mode were not available. This frequency
should be sustainable on all CPUs indefinitely, given nominal power and cooling.
The remaining rows show what maximum turbo frequency is possible
depending on the number of idle cores. Note that this information is
not available on all processors.
.SH FORK EXAMPLE
If turbostat is invoked with a command, it will fork that command
and output the statistics gathered when the command exits.
eg. Here a cycle soaker is run on 1 CPU (see %c0) for a few seconds
until ^C while the other CPUs are mostly idle:
.nf
[root@x980 lenb]# ./turbostat cat /dev/zero > /dev/null
^Ccore CPU %c0 GHz TSC %c1 %c3 %c6 %pc3 %pc6
8.49 3.63 3.38 16.23 0.66 74.63 0.00 0.00
0 0 1.22 3.62 3.38 32.18 0.00 66.60 0.00 0.00
0 6 0.40 3.61 3.38 33.00 0.00 66.60 0.00 0.00
1 2 0.11 3.14 3.38 0.19 3.95 95.75 0.00 0.00
1 8 0.05 2.88 3.38 0.25 3.95 95.75 0.00 0.00
2 4 0.00 3.13 3.38 0.02 0.00 99.98 0.00 0.00
2 10 0.00 3.09 3.38 0.02 0.00 99.98 0.00 0.00
8 1 0.04 3.50 3.38 14.43 0.00 85.54 0.00 0.00
8 7 0.03 2.98 3.38 14.43 0.00 85.54 0.00 0.00
9 3 0.00 3.16 3.38 100.00 0.00 0.00 0.00 0.00
9 9 99.93 3.63 3.38 0.06 0.00 0.00 0.00 0.00
10 5 0.01 2.82 3.38 0.08 0.00 99.91 0.00 0.00
10 11 0.02 3.36 3.38 0.06 0.00 99.91 0.00 0.00
6.950866 sec
.fi
Above the cycle soaker drives cpu9 up 3.6 Ghz turbo limit
while the other processors are generally in various states of idle.
Note that cpu3 is an HT sibling sharing core9
with cpu9, and thus it is unable to get to an idle state
deeper than c1 while cpu9 is busy.
Note that turbostat reports average GHz of 3.61, while
the arithmetic average of the GHz column above is 3.24.
This is a weighted average, where the weight is %c0. ie. it is the total number of
un-halted cycles elapsed per time divided by the number of CPUs.
.SH NOTES
.B "turbostat "
must be run as root.
.B "turbostat "
reads hardware counters, but doesn't write them.
So it will not interfere with the OS or other programs, including
multiple invocations of itself.
\fBturbostat \fP
may work poorly on Linux-2.6.20 through 2.6.29,
as \fBacpi-cpufreq \fPperiodically cleared the APERF and MPERF
in those kernels.
The APERF, MPERF MSRs are defined to count non-halted cycles.
Although it is not guaranteed by the architecture, turbostat assumes
that they count at TSC rate, which is true on all processors tested to date.
.SH REFERENCES
"Intel® Turbo Boost Technology
in Intel® Core™ Microarchitecture (Nehalem) Based Processors"
http://download.intel.com/design/processor/applnots/320354.pdf
"Intel® 64 and IA-32 Architectures Software Developer's Manual
Volume 3B: System Programming Guide"
http://www.intel.com/products/processor/manuals/
.SH FILES
.ta
.nf
/dev/cpu/*/msr
.fi
.SH "SEE ALSO"
msr(4), vmstat(8)
.PP
.SH AUTHORS
.nf
Written by Len Brown <len.brown@intel.com>
tools/power/x86/turbostat/turbostat.c
0 → 100644
View file @
eca0bdd3
/*
* turbostat -- show CPU frequency and C-state residency
* on modern Intel turbo-capable processors.
*
* Copyright (c) 2010, Intel Corporation.
* Len Brown <len.brown@intel.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <sys/stat.h>
#include <sys/resource.h>
#include <fcntl.h>
#include <signal.h>
#include <sys/time.h>
#include <stdlib.h>
#include <dirent.h>
#include <string.h>
#include <ctype.h>
#define MSR_TSC 0x10
#define MSR_NEHALEM_PLATFORM_INFO 0xCE
#define MSR_NEHALEM_TURBO_RATIO_LIMIT 0x1AD
#define MSR_APERF 0xE8
#define MSR_MPERF 0xE7
#define MSR_PKG_C2_RESIDENCY 0x60D
/* SNB only */
#define MSR_PKG_C3_RESIDENCY 0x3F8
#define MSR_PKG_C6_RESIDENCY 0x3F9
#define MSR_PKG_C7_RESIDENCY 0x3FA
/* SNB only */
#define MSR_CORE_C3_RESIDENCY 0x3FC
#define MSR_CORE_C6_RESIDENCY 0x3FD
#define MSR_CORE_C7_RESIDENCY 0x3FE
/* SNB only */
char
*
proc_stat
=
"/proc/stat"
;
unsigned
int
interval_sec
=
5
;
/* set with -i interval_sec */
unsigned
int
verbose
;
/* set with -v */
unsigned
int
skip_c0
;
unsigned
int
skip_c1
;
unsigned
int
do_nhm_cstates
;
unsigned
int
do_snb_cstates
;
unsigned
int
has_aperf
;
unsigned
int
units
=
1000000000
;
/* Ghz etc */
unsigned
int
genuine_intel
;
unsigned
int
has_invariant_tsc
;
unsigned
int
do_nehalem_platform_info
;
unsigned
int
do_nehalem_turbo_ratio_limit
;
unsigned
int
extra_msr_offset
;
double
bclk
;
unsigned
int
show_pkg
;
unsigned
int
show_core
;
unsigned
int
show_cpu
;
int
aperf_mperf_unstable
;
int
backwards_count
;
char
*
progname
;
int
need_reinitialize
;
int
num_cpus
;
typedef
struct
per_cpu_counters
{
unsigned
long
long
tsc
;
/* per thread */
unsigned
long
long
aperf
;
/* per thread */
unsigned
long
long
mperf
;
/* per thread */
unsigned
long
long
c1
;
/* per thread (calculated) */
unsigned
long
long
c3
;
/* per core */
unsigned
long
long
c6
;
/* per core */
unsigned
long
long
c7
;
/* per core */
unsigned
long
long
pc2
;
/* per package */
unsigned
long
long
pc3
;
/* per package */
unsigned
long
long
pc6
;
/* per package */
unsigned
long
long
pc7
;
/* per package */
unsigned
long
long
extra_msr
;
/* per thread */
int
pkg
;
int
core
;
int
cpu
;
struct
per_cpu_counters
*
next
;
}
PCC
;
PCC
*
pcc_even
;
PCC
*
pcc_odd
;
PCC
*
pcc_delta
;
PCC
*
pcc_average
;
struct
timeval
tv_even
;
struct
timeval
tv_odd
;
struct
timeval
tv_delta
;
unsigned
long
long
get_msr
(
int
cpu
,
off_t
offset
)
{
ssize_t
retval
;
unsigned
long
long
msr
;
char
pathname
[
32
];
int
fd
;
sprintf
(
pathname
,
"/dev/cpu/%d/msr"
,
cpu
);
fd
=
open
(
pathname
,
O_RDONLY
);
if
(
fd
<
0
)
{
perror
(
pathname
);
need_reinitialize
=
1
;
return
0
;
}
retval
=
pread
(
fd
,
&
msr
,
sizeof
msr
,
offset
);
if
(
retval
!=
sizeof
msr
)
{
fprintf
(
stderr
,
"cpu%d pread(..., 0x%zx) = %jd
\n
"
,
cpu
,
offset
,
retval
);
exit
(
-
2
);
}
close
(
fd
);
return
msr
;
}
void
print_header
()
{
if
(
show_pkg
)
fprintf
(
stderr
,
"pkg "
);
if
(
show_core
)
fprintf
(
stderr
,
"core"
);
if
(
show_cpu
)
fprintf
(
stderr
,
" CPU"
);
if
(
do_nhm_cstates
)
fprintf
(
stderr
,
" %%c0 "
);
if
(
has_aperf
)
fprintf
(
stderr
,
" GHz"
);
fprintf
(
stderr
,
" TSC"
);
if
(
do_nhm_cstates
)
fprintf
(
stderr
,
" %%c1 "
);
if
(
do_nhm_cstates
)
fprintf
(
stderr
,
" %%c3 "
);
if
(
do_nhm_cstates
)
fprintf
(
stderr
,
" %%c6 "
);
if
(
do_snb_cstates
)
fprintf
(
stderr
,
" %%c7 "
);
if
(
do_snb_cstates
)
fprintf
(
stderr
,
" %%pc2 "
);
if
(
do_nhm_cstates
)
fprintf
(
stderr
,
" %%pc3 "
);
if
(
do_nhm_cstates
)
fprintf
(
stderr
,
" %%pc6 "
);
if
(
do_snb_cstates
)
fprintf
(
stderr
,
" %%pc7 "
);
if
(
extra_msr_offset
)
fprintf
(
stderr
,
" MSR 0x%x "
,
extra_msr_offset
);
putc
(
'\n'
,
stderr
);
}
void
dump_pcc
(
PCC
*
pcc
)
{
fprintf
(
stderr
,
"package: %d "
,
pcc
->
pkg
);
fprintf
(
stderr
,
"core:: %d "
,
pcc
->
core
);
fprintf
(
stderr
,
"CPU: %d "
,
pcc
->
cpu
);
fprintf
(
stderr
,
"TSC: %016llX
\n
"
,
pcc
->
tsc
);
fprintf
(
stderr
,
"c3: %016llX
\n
"
,
pcc
->
c3
);
fprintf
(
stderr
,
"c6: %016llX
\n
"
,
pcc
->
c6
);
fprintf
(
stderr
,
"c7: %016llX
\n
"
,
pcc
->
c7
);
fprintf
(
stderr
,
"aperf: %016llX
\n
"
,
pcc
->
aperf
);
fprintf
(
stderr
,
"pc2: %016llX
\n
"
,
pcc
->
pc2
);
fprintf
(
stderr
,
"pc3: %016llX
\n
"
,
pcc
->
pc3
);
fprintf
(
stderr
,
"pc6: %016llX
\n
"
,
pcc
->
pc6
);
fprintf
(
stderr
,
"pc7: %016llX
\n
"
,
pcc
->
pc7
);
fprintf
(
stderr
,
"msr0x%x: %016llX
\n
"
,
extra_msr_offset
,
pcc
->
extra_msr
);
}
void
dump_list
(
PCC
*
pcc
)
{
printf
(
"dump_list 0x%p
\n
"
,
pcc
);
for
(;
pcc
;
pcc
=
pcc
->
next
)
dump_pcc
(
pcc
);
}
void
print_pcc
(
PCC
*
p
)
{
double
interval_float
;
interval_float
=
tv_delta
.
tv_sec
+
tv_delta
.
tv_usec
/
1000000
.
0
;
/* topology columns, print blanks on 1st (average) line */
if
(
p
==
pcc_average
)
{
if
(
show_pkg
)
fprintf
(
stderr
,
" "
);
if
(
show_core
)
fprintf
(
stderr
,
" "
);
if
(
show_cpu
)
fprintf
(
stderr
,
" "
);
}
else
{
if
(
show_pkg
)
fprintf
(
stderr
,
"%4d"
,
p
->
pkg
);
if
(
show_core
)
fprintf
(
stderr
,
"%4d"
,
p
->
core
);
if
(
show_cpu
)
fprintf
(
stderr
,
"%4d"
,
p
->
cpu
);
}
/* %c0 */
if
(
do_nhm_cstates
)
{
if
(
!
skip_c0
)
fprintf
(
stderr
,
"%7.2f"
,
100
.
0
*
p
->
mperf
/
p
->
tsc
);
else
fprintf
(
stderr
,
" ****"
);
}
/* GHz */
if
(
has_aperf
)
{
if
(
!
aperf_mperf_unstable
)
{
fprintf
(
stderr
,
"%5.2f"
,
1
.
0
*
p
->
tsc
/
units
*
p
->
aperf
/
p
->
mperf
/
interval_float
);
}
else
{
if
(
p
->
aperf
>
p
->
tsc
||
p
->
mperf
>
p
->
tsc
)
{
fprintf
(
stderr
,
" ****"
);
}
else
{
fprintf
(
stderr
,
"%4.1f*"
,
1
.
0
*
p
->
tsc
/
units
*
p
->
aperf
/
p
->
mperf
/
interval_float
);
}
}
}
/* TSC */
fprintf
(
stderr
,
"%5.2f"
,
1
.
0
*
p
->
tsc
/
units
/
interval_float
);
if
(
do_nhm_cstates
)
{
if
(
!
skip_c1
)
fprintf
(
stderr
,
"%7.2f"
,
100
.
0
*
p
->
c1
/
p
->
tsc
);
else
fprintf
(
stderr
,
" ****"
);
}
if
(
do_nhm_cstates
)
fprintf
(
stderr
,
"%7.2f"
,
100
.
0
*
p
->
c3
/
p
->
tsc
);
if
(
do_nhm_cstates
)
fprintf
(
stderr
,
"%7.2f"
,
100
.
0
*
p
->
c6
/
p
->
tsc
);
if
(
do_snb_cstates
)
fprintf
(
stderr
,
"%7.2f"
,
100
.
0
*
p
->
c7
/
p
->
tsc
);
if
(
do_snb_cstates
)
fprintf
(
stderr
,
"%7.2f"
,
100
.
0
*
p
->
pc2
/
p
->
tsc
);
if
(
do_nhm_cstates
)
fprintf
(
stderr
,
"%7.2f"
,
100
.
0
*
p
->
pc3
/
p
->
tsc
);
if
(
do_nhm_cstates
)
fprintf
(
stderr
,
"%7.2f"
,
100
.
0
*
p
->
pc6
/
p
->
tsc
);
if
(
do_snb_cstates
)
fprintf
(
stderr
,
"%7.2f"
,
100
.
0
*
p
->
pc7
/
p
->
tsc
);
if
(
extra_msr_offset
)
fprintf
(
stderr
,
" 0x%016llx"
,
p
->
extra_msr
);
putc
(
'\n'
,
stderr
);
}
void
print_counters
(
PCC
*
cnt
)
{
PCC
*
pcc
;
print_header
();
if
(
num_cpus
>
1
)
print_pcc
(
pcc_average
);
for
(
pcc
=
cnt
;
pcc
!=
NULL
;
pcc
=
pcc
->
next
)
print_pcc
(
pcc
);
}
#define SUBTRACT_COUNTER(after, before, delta) (delta = (after - before), (before > after))
int
compute_delta
(
PCC
*
after
,
PCC
*
before
,
PCC
*
delta
)
{
int
errors
=
0
;
int
perf_err
=
0
;
skip_c0
=
skip_c1
=
0
;
for
(
;
after
&&
before
&&
delta
;
after
=
after
->
next
,
before
=
before
->
next
,
delta
=
delta
->
next
)
{
if
(
before
->
cpu
!=
after
->
cpu
)
{
printf
(
"cpu configuration changed: %d != %d
\n
"
,
before
->
cpu
,
after
->
cpu
);
return
-
1
;
}
if
(
SUBTRACT_COUNTER
(
after
->
tsc
,
before
->
tsc
,
delta
->
tsc
))
{
fprintf
(
stderr
,
"cpu%d TSC went backwards %llX to %llX
\n
"
,
before
->
cpu
,
before
->
tsc
,
after
->
tsc
);
errors
++
;
}
/* check for TSC < 1 Mcycles over interval */
if
(
delta
->
tsc
<
(
1000
*
1000
))
{
fprintf
(
stderr
,
"Insanely slow TSC rate,"
" TSC stops in idle?
\n
"
);
fprintf
(
stderr
,
"You can disable all c-states"
" by booting with
\"
idle=poll
\"\n
"
);
fprintf
(
stderr
,
"or just the deep ones with"
"
\"
processor.max_cstate=1
\"\n
"
);
exit
(
-
3
);
}
if
(
SUBTRACT_COUNTER
(
after
->
c3
,
before
->
c3
,
delta
->
c3
))
{
fprintf
(
stderr
,
"cpu%d c3 counter went backwards %llX to %llX
\n
"
,
before
->
cpu
,
before
->
c3
,
after
->
c3
);
errors
++
;
}
if
(
SUBTRACT_COUNTER
(
after
->
c6
,
before
->
c6
,
delta
->
c6
))
{
fprintf
(
stderr
,
"cpu%d c6 counter went backwards %llX to %llX
\n
"
,
before
->
cpu
,
before
->
c6
,
after
->
c6
);
errors
++
;
}
if
(
SUBTRACT_COUNTER
(
after
->
c7
,
before
->
c7
,
delta
->
c7
))
{
fprintf
(
stderr
,
"cpu%d c7 counter went backwards %llX to %llX
\n
"
,
before
->
cpu
,
before
->
c7
,
after
->
c7
);
errors
++
;
}
if
(
SUBTRACT_COUNTER
(
after
->
pc2
,
before
->
pc2
,
delta
->
pc2
))
{
fprintf
(
stderr
,
"cpu%d pc2 counter went backwards %llX to %llX
\n
"
,
before
->
cpu
,
before
->
pc2
,
after
->
pc2
);
errors
++
;
}
if
(
SUBTRACT_COUNTER
(
after
->
pc3
,
before
->
pc3
,
delta
->
pc3
))
{
fprintf
(
stderr
,
"cpu%d pc3 counter went backwards %llX to %llX
\n
"
,
before
->
cpu
,
before
->
pc3
,
after
->
pc3
);
errors
++
;
}
if
(
SUBTRACT_COUNTER
(
after
->
pc6
,
before
->
pc6
,
delta
->
pc6
))
{
fprintf
(
stderr
,
"cpu%d pc6 counter went backwards %llX to %llX
\n
"
,
before
->
cpu
,
before
->
pc6
,
after
->
pc6
);
errors
++
;
}
if
(
SUBTRACT_COUNTER
(
after
->
pc7
,
before
->
pc7
,
delta
->
pc7
))
{
fprintf
(
stderr
,
"cpu%d pc7 counter went backwards %llX to %llX
\n
"
,
before
->
cpu
,
before
->
pc7
,
after
->
pc7
);
errors
++
;
}
perf_err
=
SUBTRACT_COUNTER
(
after
->
aperf
,
before
->
aperf
,
delta
->
aperf
);
if
(
perf_err
)
{
fprintf
(
stderr
,
"cpu%d aperf counter went backwards %llX to %llX
\n
"
,
before
->
cpu
,
before
->
aperf
,
after
->
aperf
);
}
perf_err
|=
SUBTRACT_COUNTER
(
after
->
mperf
,
before
->
mperf
,
delta
->
mperf
);
if
(
perf_err
)
{
fprintf
(
stderr
,
"cpu%d mperf counter went backwards %llX to %llX
\n
"
,
before
->
cpu
,
before
->
mperf
,
after
->
mperf
);
}
if
(
perf_err
)
{
if
(
!
aperf_mperf_unstable
)
{
fprintf
(
stderr
,
"%s: APERF or MPERF went backwards *
\n
"
,
progname
);
fprintf
(
stderr
,
"* Frequency results do not cover entire interval *
\n
"
);
fprintf
(
stderr
,
"* fix this by running Linux-2.6.30 or later *
\n
"
);
aperf_mperf_unstable
=
1
;
}
/*
* mperf delta is likely a huge "positive" number
* can not use it for calculating c0 time
*/
skip_c0
=
1
;
skip_c1
=
1
;
}
/*
* As mperf and tsc collection are not atomic,
* it is possible for mperf's non-halted cycles
* to exceed TSC's all cycles: show c1 = 0% in that case.
*/
if
(
delta
->
mperf
>
delta
->
tsc
)
delta
->
c1
=
0
;
else
/* normal case, derive c1 */
delta
->
c1
=
delta
->
tsc
-
delta
->
mperf
-
delta
->
c3
-
delta
->
c6
-
delta
->
c7
;
if
(
delta
->
mperf
==
0
)
delta
->
mperf
=
1
;
/* divide by 0 protection */
/*
* for "extra msr", just copy the latest w/o subtracting
*/
delta
->
extra_msr
=
after
->
extra_msr
;
if
(
errors
)
{
fprintf
(
stderr
,
"ERROR cpu%d before:
\n
"
,
before
->
cpu
);
dump_pcc
(
before
);
fprintf
(
stderr
,
"ERROR cpu%d after:
\n
"
,
before
->
cpu
);
dump_pcc
(
after
);
errors
=
0
;
}
}
return
0
;
}
void
compute_average
(
PCC
*
delta
,
PCC
*
avg
)
{
PCC
*
sum
;
sum
=
calloc
(
1
,
sizeof
(
PCC
));
if
(
sum
==
NULL
)
{
perror
(
"calloc sum"
);
exit
(
1
);
}
for
(;
delta
;
delta
=
delta
->
next
)
{
sum
->
tsc
+=
delta
->
tsc
;
sum
->
c1
+=
delta
->
c1
;
sum
->
c3
+=
delta
->
c3
;
sum
->
c6
+=
delta
->
c6
;
sum
->
c7
+=
delta
->
c7
;
sum
->
aperf
+=
delta
->
aperf
;
sum
->
mperf
+=
delta
->
mperf
;
sum
->
pc2
+=
delta
->
pc2
;
sum
->
pc3
+=
delta
->
pc3
;
sum
->
pc6
+=
delta
->
pc6
;
sum
->
pc7
+=
delta
->
pc7
;
}
avg
->
tsc
=
sum
->
tsc
/
num_cpus
;
avg
->
c1
=
sum
->
c1
/
num_cpus
;
avg
->
c3
=
sum
->
c3
/
num_cpus
;
avg
->
c6
=
sum
->
c6
/
num_cpus
;
avg
->
c7
=
sum
->
c7
/
num_cpus
;
avg
->
aperf
=
sum
->
aperf
/
num_cpus
;
avg
->
mperf
=
sum
->
mperf
/
num_cpus
;
avg
->
pc2
=
sum
->
pc2
/
num_cpus
;
avg
->
pc3
=
sum
->
pc3
/
num_cpus
;
avg
->
pc6
=
sum
->
pc6
/
num_cpus
;
avg
->
pc7
=
sum
->
pc7
/
num_cpus
;
free
(
sum
);
}
void
get_counters
(
PCC
*
pcc
)
{
for
(
;
pcc
;
pcc
=
pcc
->
next
)
{
pcc
->
tsc
=
get_msr
(
pcc
->
cpu
,
MSR_TSC
);
if
(
do_nhm_cstates
)
pcc
->
c3
=
get_msr
(
pcc
->
cpu
,
MSR_CORE_C3_RESIDENCY
);
if
(
do_nhm_cstates
)
pcc
->
c6
=
get_msr
(
pcc
->
cpu
,
MSR_CORE_C6_RESIDENCY
);
if
(
do_snb_cstates
)
pcc
->
c7
=
get_msr
(
pcc
->
cpu
,
MSR_CORE_C7_RESIDENCY
);
if
(
has_aperf
)
pcc
->
aperf
=
get_msr
(
pcc
->
cpu
,
MSR_APERF
);
if
(
has_aperf
)
pcc
->
mperf
=
get_msr
(
pcc
->
cpu
,
MSR_MPERF
);
if
(
do_snb_cstates
)
pcc
->
pc2
=
get_msr
(
pcc
->
cpu
,
MSR_PKG_C2_RESIDENCY
);
if
(
do_nhm_cstates
)
pcc
->
pc3
=
get_msr
(
pcc
->
cpu
,
MSR_PKG_C3_RESIDENCY
);
if
(
do_nhm_cstates
)
pcc
->
pc6
=
get_msr
(
pcc
->
cpu
,
MSR_PKG_C6_RESIDENCY
);
if
(
do_snb_cstates
)
pcc
->
pc7
=
get_msr
(
pcc
->
cpu
,
MSR_PKG_C7_RESIDENCY
);
if
(
extra_msr_offset
)
pcc
->
extra_msr
=
get_msr
(
pcc
->
cpu
,
extra_msr_offset
);
}
}
void
print_nehalem_info
()
{
unsigned
long
long
msr
;
unsigned
int
ratio
;
if
(
!
do_nehalem_platform_info
)
return
;
msr
=
get_msr
(
0
,
MSR_NEHALEM_PLATFORM_INFO
);
ratio
=
(
msr
>>
40
)
&
0xFF
;
fprintf
(
stderr
,
"%d * %.0f = %.0f MHz max efficiency
\n
"
,
ratio
,
bclk
,
ratio
*
bclk
);
ratio
=
(
msr
>>
8
)
&
0xFF
;
fprintf
(
stderr
,
"%d * %.0f = %.0f MHz TSC frequency
\n
"
,
ratio
,
bclk
,
ratio
*
bclk
);
if
(
verbose
>
1
)
fprintf
(
stderr
,
"MSR_NEHALEM_PLATFORM_INFO: 0x%llx
\n
"
,
msr
);
if
(
!
do_nehalem_turbo_ratio_limit
)
return
;
msr
=
get_msr
(
0
,
MSR_NEHALEM_TURBO_RATIO_LIMIT
);
ratio
=
(
msr
>>
24
)
&
0xFF
;
if
(
ratio
)
fprintf
(
stderr
,
"%d * %.0f = %.0f MHz max turbo 4 active cores
\n
"
,
ratio
,
bclk
,
ratio
*
bclk
);
ratio
=
(
msr
>>
16
)
&
0xFF
;
if
(
ratio
)
fprintf
(
stderr
,
"%d * %.0f = %.0f MHz max turbo 3 active cores
\n
"
,
ratio
,
bclk
,
ratio
*
bclk
);
ratio
=
(
msr
>>
8
)
&
0xFF
;
if
(
ratio
)
fprintf
(
stderr
,
"%d * %.0f = %.0f MHz max turbo 2 active cores
\n
"
,
ratio
,
bclk
,
ratio
*
bclk
);
ratio
=
(
msr
>>
0
)
&
0xFF
;
if
(
ratio
)
fprintf
(
stderr
,
"%d * %.0f = %.0f MHz max turbo 1 active cores
\n
"
,
ratio
,
bclk
,
ratio
*
bclk
);
}
void
free_counter_list
(
PCC
*
list
)
{
PCC
*
p
;
for
(
p
=
list
;
p
;
)
{
PCC
*
free_me
;
free_me
=
p
;
p
=
p
->
next
;
free
(
free_me
);
}
return
;
}
void
free_all_counters
(
void
)
{
free_counter_list
(
pcc_even
);
pcc_even
=
NULL
;
free_counter_list
(
pcc_odd
);
pcc_odd
=
NULL
;
free_counter_list
(
pcc_delta
);
pcc_delta
=
NULL
;
free_counter_list
(
pcc_average
);
pcc_average
=
NULL
;
}
void
insert_cpu_counters
(
PCC
**
list
,
PCC
*
new
)
{
PCC
*
prev
;
/*
* list was empty
*/
if
(
*
list
==
NULL
)
{
new
->
next
=
*
list
;
*
list
=
new
;
return
;
}
show_cpu
=
1
;
/* there is more than one CPU */
/*
* insert on front of list.
* It is sorted by ascending package#, core#, cpu#
*/
if
(((
*
list
)
->
pkg
>
new
->
pkg
)
||
(((
*
list
)
->
pkg
==
new
->
pkg
)
&&
((
*
list
)
->
core
>
new
->
core
))
||
(((
*
list
)
->
pkg
==
new
->
pkg
)
&&
((
*
list
)
->
core
==
new
->
core
)
&&
((
*
list
)
->
cpu
>
new
->
cpu
)))
{
new
->
next
=
*
list
;
*
list
=
new
;
return
;
}
prev
=
*
list
;
while
(
prev
->
next
&&
(
prev
->
next
->
pkg
<
new
->
pkg
))
{
prev
=
prev
->
next
;
show_pkg
=
1
;
/* there is more than 1 package */
}
while
(
prev
->
next
&&
(
prev
->
next
->
pkg
==
new
->
pkg
)
&&
(
prev
->
next
->
core
<
new
->
core
))
{
prev
=
prev
->
next
;
show_core
=
1
;
/* there is more than 1 core */
}
while
(
prev
->
next
&&
(
prev
->
next
->
pkg
==
new
->
pkg
)
&&
(
prev
->
next
->
core
==
new
->
core
)
&&
(
prev
->
next
->
cpu
<
new
->
cpu
))
{
prev
=
prev
->
next
;
}
/*
* insert after "prev"
*/
new
->
next
=
prev
->
next
;
prev
->
next
=
new
;
return
;
}
void
alloc_new_cpu_counters
(
int
pkg
,
int
core
,
int
cpu
)
{
PCC
*
new
;
if
(
verbose
>
1
)
printf
(
"pkg%d core%d, cpu%d
\n
"
,
pkg
,
core
,
cpu
);
new
=
(
PCC
*
)
calloc
(
1
,
sizeof
(
PCC
));
if
(
new
==
NULL
)
{
perror
(
"calloc"
);
exit
(
1
);
}
new
->
pkg
=
pkg
;
new
->
core
=
core
;
new
->
cpu
=
cpu
;
insert_cpu_counters
(
&
pcc_odd
,
new
);
new
=
(
PCC
*
)
calloc
(
1
,
sizeof
(
PCC
));
if
(
new
==
NULL
)
{
perror
(
"calloc"
);
exit
(
1
);
}
new
->
pkg
=
pkg
;
new
->
core
=
core
;
new
->
cpu
=
cpu
;
insert_cpu_counters
(
&
pcc_even
,
new
);
new
=
(
PCC
*
)
calloc
(
1
,
sizeof
(
PCC
));
if
(
new
==
NULL
)
{
perror
(
"calloc"
);
exit
(
1
);
}
new
->
pkg
=
pkg
;
new
->
core
=
core
;
new
->
cpu
=
cpu
;
insert_cpu_counters
(
&
pcc_delta
,
new
);
new
=
(
PCC
*
)
calloc
(
1
,
sizeof
(
PCC
));
if
(
new
==
NULL
)
{
perror
(
"calloc"
);
exit
(
1
);
}
new
->
pkg
=
pkg
;
new
->
core
=
core
;
new
->
cpu
=
cpu
;
pcc_average
=
new
;
}
int
get_physical_package_id
(
int
cpu
)
{
char
path
[
64
];
FILE
*
filep
;
int
pkg
;
sprintf
(
path
,
"/sys/devices/system/cpu/cpu%d/topology/physical_package_id"
,
cpu
);
filep
=
fopen
(
path
,
"r"
);
if
(
filep
==
NULL
)
{
perror
(
path
);
exit
(
1
);
}
fscanf
(
filep
,
"%d"
,
&
pkg
);
fclose
(
filep
);
return
pkg
;
}
int
get_core_id
(
int
cpu
)
{
char
path
[
64
];
FILE
*
filep
;
int
core
;
sprintf
(
path
,
"/sys/devices/system/cpu/cpu%d/topology/core_id"
,
cpu
);
filep
=
fopen
(
path
,
"r"
);
if
(
filep
==
NULL
)
{
perror
(
path
);
exit
(
1
);
}
fscanf
(
filep
,
"%d"
,
&
core
);
fclose
(
filep
);
return
core
;
}
/*
* run func(index, cpu) on every cpu in /proc/stat
*/
int
for_all_cpus
(
void
(
func
)(
int
,
int
,
int
))
{
FILE
*
fp
;
int
cpu_count
;
int
retval
;
fp
=
fopen
(
proc_stat
,
"r"
);
if
(
fp
==
NULL
)
{
perror
(
proc_stat
);
exit
(
1
);
}
retval
=
fscanf
(
fp
,
"cpu %*d %*d %*d %*d %*d %*d %*d %*d %*d %*d
\n
"
);
if
(
retval
!=
0
)
{
perror
(
"/proc/stat format"
);
exit
(
1
);
}
for
(
cpu_count
=
0
;
;
cpu_count
++
)
{
int
cpu
;
retval
=
fscanf
(
fp
,
"cpu%u %*d %*d %*d %*d %*d %*d %*d %*d %*d %*d
\n
"
,
&
cpu
);
if
(
retval
!=
1
)
break
;
func
(
get_physical_package_id
(
cpu
),
get_core_id
(
cpu
),
cpu
);
}
fclose
(
fp
);
return
cpu_count
;
}
void
re_initialize
(
void
)
{
printf
(
"turbostat: topology changed, re-initializing.
\n
"
);
free_all_counters
();
num_cpus
=
for_all_cpus
(
alloc_new_cpu_counters
);
need_reinitialize
=
0
;
printf
(
"num_cpus is now %d
\n
"
,
num_cpus
);
}
void
dummy
(
int
pkg
,
int
core
,
int
cpu
)
{
return
;
}
/*
* check to see if a cpu came on-line
*/
void
verify_num_cpus
()
{
int
new_num_cpus
;
new_num_cpus
=
for_all_cpus
(
dummy
);
if
(
new_num_cpus
!=
num_cpus
)
{
if
(
verbose
)
printf
(
"num_cpus was %d, is now %d
\n
"
,
num_cpus
,
new_num_cpus
);
need_reinitialize
=
1
;
}
return
;
}
void
turbostat_loop
()
{
restart:
get_counters
(
pcc_even
);
gettimeofday
(
&
tv_even
,
(
struct
timezone
*
)
NULL
);
while
(
1
)
{
verify_num_cpus
();
if
(
need_reinitialize
)
{
re_initialize
();
goto
restart
;
}
sleep
(
interval_sec
);
get_counters
(
pcc_odd
);
gettimeofday
(
&
tv_odd
,
(
struct
timezone
*
)
NULL
);
compute_delta
(
pcc_odd
,
pcc_even
,
pcc_delta
);
timersub
(
&
tv_odd
,
&
tv_even
,
&
tv_delta
);
compute_average
(
pcc_delta
,
pcc_average
);
print_counters
(
pcc_delta
);
if
(
need_reinitialize
)
{
re_initialize
();
goto
restart
;
}
sleep
(
interval_sec
);
get_counters
(
pcc_even
);
gettimeofday
(
&
tv_even
,
(
struct
timezone
*
)
NULL
);
compute_delta
(
pcc_even
,
pcc_odd
,
pcc_delta
);
timersub
(
&
tv_even
,
&
tv_odd
,
&
tv_delta
);
compute_average
(
pcc_delta
,
pcc_average
);
print_counters
(
pcc_delta
);
}
}
void
check_dev_msr
()
{
struct
stat
sb
;
if
(
stat
(
"/dev/cpu/0/msr"
,
&
sb
))
{
fprintf
(
stderr
,
"no /dev/cpu/0/msr
\n
"
);
fprintf
(
stderr
,
"Try
\"
# modprobe msr
\"\n
"
);
exit
(
-
5
);
}
}
void
check_super_user
()
{
if
(
getuid
()
!=
0
)
{
fprintf
(
stderr
,
"must be root
\n
"
);
exit
(
-
6
);
}
}
int
has_nehalem_turbo_ratio_limit
(
unsigned
int
family
,
unsigned
int
model
)
{
if
(
!
genuine_intel
)
return
0
;
if
(
family
!=
6
)
return
0
;
switch
(
model
)
{
case
0x1A
:
/* Core i7, Xeon 5500 series - Bloomfield, Gainstown NHM-EP */
case
0x1E
:
/* Core i7 and i5 Processor - Clarksfield, Lynnfield, Jasper Forest */
case
0x1F
:
/* Core i7 and i5 Processor - Nehalem */
case
0x25
:
/* Westmere Client - Clarkdale, Arrandale */
case
0x2C
:
/* Westmere EP - Gulftown */
case
0x2A
:
/* SNB */
case
0x2D
:
/* SNB Xeon */
return
1
;
case
0x2E
:
/* Nehalem-EX Xeon - Beckton */
case
0x2F
:
/* Westmere-EX Xeon - Eagleton */
default:
return
0
;
}
}
int
is_snb
(
unsigned
int
family
,
unsigned
int
model
)
{
if
(
!
genuine_intel
)
return
0
;
switch
(
model
)
{
case
0x2A
:
case
0x2D
:
return
1
;
}
return
0
;
}
double
discover_bclk
(
unsigned
int
family
,
unsigned
int
model
)
{
if
(
is_snb
(
family
,
model
))
return
100
.
00
;
else
return
133
.
33
;
}
void
check_cpuid
()
{
unsigned
int
eax
,
ebx
,
ecx
,
edx
,
max_level
;
unsigned
int
fms
,
family
,
model
,
stepping
;
eax
=
ebx
=
ecx
=
edx
=
0
;
asm
(
"cpuid"
:
"=a"
(
max_level
),
"=b"
(
ebx
),
"=c"
(
ecx
),
"=d"
(
edx
)
:
"a"
(
0
));
if
(
ebx
==
0x756e6547
&&
edx
==
0x49656e69
&&
ecx
==
0x6c65746e
)
genuine_intel
=
1
;
if
(
verbose
)
fprintf
(
stderr
,
"%.4s%.4s%.4s "
,
(
char
*
)
&
ebx
,
(
char
*
)
&
edx
,
(
char
*
)
&
ecx
);
asm
(
"cpuid"
:
"=a"
(
fms
),
"=c"
(
ecx
),
"=d"
(
edx
)
:
"a"
(
1
)
:
"ebx"
);
family
=
(
fms
>>
8
)
&
0xf
;
model
=
(
fms
>>
4
)
&
0xf
;
stepping
=
fms
&
0xf
;
if
(
family
==
6
||
family
==
0xf
)
model
+=
((
fms
>>
16
)
&
0xf
)
<<
4
;
if
(
verbose
)
fprintf
(
stderr
,
"%d CPUID levels; family:model:stepping 0x%x:%x:%x (%d:%d:%d)
\n
"
,
max_level
,
family
,
model
,
stepping
,
family
,
model
,
stepping
);
if
(
!
(
edx
&
(
1
<<
5
)))
{
fprintf
(
stderr
,
"CPUID: no MSR
\n
"
);
exit
(
1
);
}
/*
* check max extended function levels of CPUID.
* This is needed to check for invariant TSC.
* This check is valid for both Intel and AMD.
*/
ebx
=
ecx
=
edx
=
0
;
asm
(
"cpuid"
:
"=a"
(
max_level
),
"=b"
(
ebx
),
"=c"
(
ecx
),
"=d"
(
edx
)
:
"a"
(
0x80000000
));
if
(
max_level
<
0x80000007
)
{
fprintf
(
stderr
,
"CPUID: no invariant TSC (max_level 0x%x)
\n
"
,
max_level
);
exit
(
1
);
}
/*
* Non-Stop TSC is advertised by CPUID.EAX=0x80000007: EDX.bit8
* this check is valid for both Intel and AMD
*/
asm
(
"cpuid"
:
"=a"
(
eax
),
"=b"
(
ebx
),
"=c"
(
ecx
),
"=d"
(
edx
)
:
"a"
(
0x80000007
));
has_invariant_tsc
=
edx
&&
(
1
<<
8
);
if
(
!
has_invariant_tsc
)
{
fprintf
(
stderr
,
"No invariant TSC
\n
"
);
exit
(
1
);
}
/*
* APERF/MPERF is advertised by CPUID.EAX=0x6: ECX.bit0
* this check is valid for both Intel and AMD
*/
asm
(
"cpuid"
:
"=a"
(
eax
),
"=b"
(
ebx
),
"=c"
(
ecx
),
"=d"
(
edx
)
:
"a"
(
0x6
));
has_aperf
=
ecx
&&
(
1
<<
0
);
if
(
!
has_aperf
)
{
fprintf
(
stderr
,
"No APERF MSR
\n
"
);
exit
(
1
);
}
do_nehalem_platform_info
=
genuine_intel
&&
has_invariant_tsc
;
do_nhm_cstates
=
genuine_intel
;
/* all Intel w/ non-stop TSC have NHM counters */
do_snb_cstates
=
is_snb
(
family
,
model
);
bclk
=
discover_bclk
(
family
,
model
);
do_nehalem_turbo_ratio_limit
=
has_nehalem_turbo_ratio_limit
(
family
,
model
);
}
void
usage
()
{
fprintf
(
stderr
,
"%s: [-v] [-M MSR#] [-i interval_sec | command ...]
\n
"
,
progname
);
exit
(
1
);
}
/*
* in /dev/cpu/ return success for names that are numbers
* ie. filter out ".", "..", "microcode".
*/
int
dir_filter
(
const
struct
dirent
*
dirp
)
{
if
(
isdigit
(
dirp
->
d_name
[
0
]))
return
1
;
else
return
0
;
}
int
open_dev_cpu_msr
(
int
dummy1
)
{
return
0
;
}
void
turbostat_init
()
{
check_cpuid
();
check_dev_msr
();
check_super_user
();
num_cpus
=
for_all_cpus
(
alloc_new_cpu_counters
);
if
(
verbose
)
print_nehalem_info
();
}
int
fork_it
(
char
**
argv
)
{
int
retval
;
pid_t
child_pid
;
get_counters
(
pcc_even
);
gettimeofday
(
&
tv_even
,
(
struct
timezone
*
)
NULL
);
child_pid
=
fork
();
if
(
!
child_pid
)
{
/* child */
execvp
(
argv
[
0
],
argv
);
}
else
{
int
status
;
/* parent */
if
(
child_pid
==
-
1
)
{
perror
(
"fork"
);
exit
(
1
);
}
signal
(
SIGINT
,
SIG_IGN
);
signal
(
SIGQUIT
,
SIG_IGN
);
if
(
waitpid
(
child_pid
,
&
status
,
0
)
==
-
1
)
{
perror
(
"wait"
);
exit
(
1
);
}
}
get_counters
(
pcc_odd
);
gettimeofday
(
&
tv_odd
,
(
struct
timezone
*
)
NULL
);
retval
=
compute_delta
(
pcc_odd
,
pcc_even
,
pcc_delta
);
timersub
(
&
tv_odd
,
&
tv_even
,
&
tv_delta
);
compute_average
(
pcc_delta
,
pcc_average
);
if
(
!
retval
)
print_counters
(
pcc_delta
);
fprintf
(
stderr
,
"%.6f sec
\n
"
,
tv_delta
.
tv_sec
+
tv_delta
.
tv_usec
/
1000000
.
0
);;
return
0
;
}
void
cmdline
(
int
argc
,
char
**
argv
)
{
int
opt
;
progname
=
argv
[
0
];
while
((
opt
=
getopt
(
argc
,
argv
,
"+vi:M:"
))
!=
-
1
)
{
switch
(
opt
)
{
case
'v'
:
verbose
++
;
break
;
case
'i'
:
interval_sec
=
atoi
(
optarg
);
break
;
case
'M'
:
sscanf
(
optarg
,
"%x"
,
&
extra_msr_offset
);
if
(
verbose
>
1
)
fprintf
(
stderr
,
"MSR 0x%X
\n
"
,
extra_msr_offset
);
break
;
default:
usage
();
}
}
}
int
main
(
int
argc
,
char
**
argv
)
{
cmdline
(
argc
,
argv
);
if
(
verbose
>
1
)
fprintf
(
stderr
,
"turbostat Dec 6, 2010"
" - Len Brown <lenb@kernel.org>
\n
"
);
if
(
verbose
>
1
)
fprintf
(
stderr
,
"http://userweb.kernel.org/~lenb/acpi/utils/pmtools/turbostat/
\n
"
);
turbostat_init
();
/*
* if any params left, it must be a command to fork
*/
if
(
argc
-
optind
)
return
fork_it
(
argv
+
optind
);
else
turbostat_loop
();
return
0
;
}
tools/power/x86/x86_energy_perf_policy/Makefile
0 → 100644
View file @
eca0bdd3
x86_energy_perf_policy
:
x86_energy_perf_policy.c
clean
:
rm
-f
x86_energy_perf_policy
install
:
install
x86_energy_perf_policy /usr/bin/
install
x86_energy_perf_policy.8 /usr/share/man/man8/
tools/power/x86/x86_energy_perf_policy/x86_energy_perf_policy.8
0 → 100644
View file @
eca0bdd3
.\" This page Copyright (C) 2010 Len Brown <len.brown@intel.com>
.\" Distributed under the GPL, Copyleft 1994.
.TH X86_ENERGY_PERF_POLICY 8
.SH NAME
x86_energy_perf_policy \- read or write MSR_IA32_ENERGY_PERF_BIAS
.SH SYNOPSIS
.ft B
.B x86_energy_perf_policy
.RB [ "\-c cpu" ]
.RB [ "\-v" ]
.RB "\-r"
.br
.B x86_energy_perf_policy
.RB [ "\-c cpu" ]
.RB [ "\-v" ]
.RB 'performance'
.br
.B x86_energy_perf_policy
.RB [ "\-c cpu" ]
.RB [ "\-v" ]
.RB 'normal'
.br
.B x86_energy_perf_policy
.RB [ "\-c cpu" ]
.RB [ "\-v" ]
.RB 'powersave'
.br
.B x86_energy_perf_policy
.RB [ "\-c cpu" ]
.RB [ "\-v" ]
.RB n
.br
.SH DESCRIPTION
\fBx86_energy_perf_policy\fP
allows software to convey
its policy for the relative importance of performance
versus energy savings to the processor.
The processor uses this information in model-specific ways
when it must select trade-offs between performance and
energy efficiency.
This policy hint does not supersede Processor Performance states
(P-states) or CPU Idle power states (C-states), but allows
software to have influence where it would otherwise be unable
to express a preference.
For example, this setting may tell the hardware how
aggressively or conservatively to control frequency
in the "turbo range" above the explicitly OS-controlled
P-state frequency range. It may also tell the hardware
how aggressively is should enter the OS requested C-states.
Support for this feature is indicated by CPUID.06H.ECX.bit3
per the Intel Architectures Software Developer's Manual.
.SS Options
\fB-c\fP limits operation to a single CPU.
The default is to operate on all CPUs.
Note that MSR_IA32_ENERGY_PERF_BIAS is defined per
logical processor, but that the initial implementations
of the MSR were shared among all processors in each package.
.PP
\fB-v\fP increases verbosity. By default
x86_energy_perf_policy is silent.
.PP
\fB-r\fP is for "read-only" mode - the unchanged state
is read and displayed.
.PP
.I performance
Set a policy where performance is paramount.
The processor will be unwilling to sacrifice any performance
for the sake of energy saving. This is the hardware default.
.PP
.I normal
Set a policy with a normal balance between performance and energy efficiency.
The processor will tolerate minor performance compromise
for potentially significant energy savings.
This reasonable default for most desktops and servers.
.PP
.I powersave
Set a policy where the processor can accept
a measurable performance hit to maximize energy efficiency.
.PP
.I n
Set MSR_IA32_ENERGY_PERF_BIAS to the specified number.
The range of valid numbers is 0-15, where 0 is maximum
performance and 15 is maximum energy efficiency.
.SH NOTES
.B "x86_energy_perf_policy "
runs only as root.
.SH FILES
.ta
.nf
/dev/cpu/*/msr
.fi
.SH "SEE ALSO"
msr(4)
.PP
.SH AUTHORS
.nf
Written by Len Brown <len.brown@intel.com>
tools/power/x86/x86_energy_perf_policy/x86_energy_perf_policy.c
0 → 100644
View file @
eca0bdd3
/*
* x86_energy_perf_policy -- set the energy versus performance
* policy preference bias on recent X86 processors.
*/
/*
* Copyright (c) 2010, Intel Corporation.
* Len Brown <len.brown@intel.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/resource.h>
#include <fcntl.h>
#include <signal.h>
#include <sys/time.h>
#include <stdlib.h>
#include <string.h>
unsigned
int
verbose
;
/* set with -v */
unsigned
int
read_only
;
/* set with -r */
char
*
progname
;
unsigned
long
long
new_bias
;
int
cpu
=
-
1
;
/*
* Usage:
*
* -c cpu: limit action to a single CPU (default is all CPUs)
* -v: verbose output (can invoke more than once)
* -r: read-only, don't change any settings
*
* performance
* Performance is paramount.
* Unwilling to sacrafice any performance
* for the sake of energy saving. (hardware default)
*
* normal
* Can tolerate minor performance compromise
* for potentially significant energy savings.
* (reasonable default for most desktops and servers)
*
* powersave
* Can tolerate significant performance hit
* to maximize energy savings.
*
* n
* a numerical value to write to the underlying MSR.
*/
void
usage
(
void
)
{
printf
(
"%s: [-c cpu] [-v] "
"(-r | 'performance' | 'normal' | 'powersave' | n)
\n
"
,
progname
);
exit
(
1
);
}
#define MSR_IA32_ENERGY_PERF_BIAS 0x000001b0
#define BIAS_PERFORMANCE 0
#define BIAS_BALANCE 6
#define BIAS_POWERSAVE 15
void
cmdline
(
int
argc
,
char
**
argv
)
{
int
opt
;
progname
=
argv
[
0
];
while
((
opt
=
getopt
(
argc
,
argv
,
"+rvc:"
))
!=
-
1
)
{
switch
(
opt
)
{
case
'c'
:
cpu
=
atoi
(
optarg
);
break
;
case
'r'
:
read_only
=
1
;
break
;
case
'v'
:
verbose
++
;
break
;
default:
usage
();
}
}
/* if -r, then should be no additional optind */
if
(
read_only
&&
(
argc
>
optind
))
usage
();
/*
* if no -r , then must be one additional optind
*/
if
(
!
read_only
)
{
if
(
argc
!=
optind
+
1
)
{
printf
(
"must supply -r or policy param
\n
"
);
usage
();
}
if
(
!
strcmp
(
"performance"
,
argv
[
optind
]))
{
new_bias
=
BIAS_PERFORMANCE
;
}
else
if
(
!
strcmp
(
"normal"
,
argv
[
optind
]))
{
new_bias
=
BIAS_BALANCE
;
}
else
if
(
!
strcmp
(
"powersave"
,
argv
[
optind
]))
{
new_bias
=
BIAS_POWERSAVE
;
}
else
{
char
*
endptr
;
new_bias
=
strtoull
(
argv
[
optind
],
&
endptr
,
0
);
if
(
endptr
==
argv
[
optind
]
||
new_bias
>
BIAS_POWERSAVE
)
{
fprintf
(
stderr
,
"invalid value: %s
\n
"
,
argv
[
optind
]);
usage
();
}
}
}
}
/*
* validate_cpuid()
* returns on success, quietly exits on failure (make verbose with -v)
*/
void
validate_cpuid
(
void
)
{
unsigned
int
eax
,
ebx
,
ecx
,
edx
,
max_level
;
char
brand
[
16
];
unsigned
int
fms
,
family
,
model
,
stepping
;
eax
=
ebx
=
ecx
=
edx
=
0
;
asm
(
"cpuid"
:
"=a"
(
max_level
),
"=b"
(
ebx
),
"=c"
(
ecx
),
"=d"
(
edx
)
:
"a"
(
0
));
if
(
ebx
!=
0x756e6547
||
edx
!=
0x49656e69
||
ecx
!=
0x6c65746e
)
{
if
(
verbose
)
fprintf
(
stderr
,
"%.4s%.4s%.4s != GenuineIntel"
,
(
char
*
)
&
ebx
,
(
char
*
)
&
edx
,
(
char
*
)
&
ecx
);
exit
(
1
);
}
asm
(
"cpuid"
:
"=a"
(
fms
),
"=c"
(
ecx
),
"=d"
(
edx
)
:
"a"
(
1
)
:
"ebx"
);
family
=
(
fms
>>
8
)
&
0xf
;
model
=
(
fms
>>
4
)
&
0xf
;
stepping
=
fms
&
0xf
;
if
(
family
==
6
||
family
==
0xf
)
model
+=
((
fms
>>
16
)
&
0xf
)
<<
4
;
if
(
verbose
>
1
)
printf
(
"CPUID %s %d levels family:model:stepping "
"0x%x:%x:%x (%d:%d:%d)
\n
"
,
brand
,
max_level
,
family
,
model
,
stepping
,
family
,
model
,
stepping
);
if
(
!
(
edx
&
(
1
<<
5
)))
{
if
(
verbose
)
printf
(
"CPUID: no MSR
\n
"
);
exit
(
1
);
}
/*
* Support for MSR_IA32_ENERGY_PERF_BIAS
* is indicated by CPUID.06H.ECX.bit3
*/
asm
(
"cpuid"
:
"=a"
(
eax
),
"=b"
(
ebx
),
"=c"
(
ecx
),
"=d"
(
edx
)
:
"a"
(
6
));
if
(
verbose
)
printf
(
"CPUID.06H.ECX: 0x%x
\n
"
,
ecx
);
if
(
!
(
ecx
&
(
1
<<
3
)))
{
if
(
verbose
)
printf
(
"CPUID: No MSR_IA32_ENERGY_PERF_BIAS
\n
"
);
exit
(
1
);
}
return
;
/* success */
}
unsigned
long
long
get_msr
(
int
cpu
,
int
offset
)
{
unsigned
long
long
msr
;
char
msr_path
[
32
];
int
retval
;
int
fd
;
sprintf
(
msr_path
,
"/dev/cpu/%d/msr"
,
cpu
);
fd
=
open
(
msr_path
,
O_RDONLY
);
if
(
fd
<
0
)
{
printf
(
"Try
\"
# modprobe msr
\"\n
"
);
perror
(
msr_path
);
exit
(
1
);
}
retval
=
pread
(
fd
,
&
msr
,
sizeof
msr
,
offset
);
if
(
retval
!=
sizeof
msr
)
{
printf
(
"pread cpu%d 0x%x = %d
\n
"
,
cpu
,
offset
,
retval
);
exit
(
-
2
);
}
close
(
fd
);
return
msr
;
}
unsigned
long
long
put_msr
(
int
cpu
,
unsigned
long
long
new_msr
,
int
offset
)
{
unsigned
long
long
old_msr
;
char
msr_path
[
32
];
int
retval
;
int
fd
;
sprintf
(
msr_path
,
"/dev/cpu/%d/msr"
,
cpu
);
fd
=
open
(
msr_path
,
O_RDWR
);
if
(
fd
<
0
)
{
perror
(
msr_path
);
exit
(
1
);
}
retval
=
pread
(
fd
,
&
old_msr
,
sizeof
old_msr
,
offset
);
if
(
retval
!=
sizeof
old_msr
)
{
perror
(
"pwrite"
);
printf
(
"pread cpu%d 0x%x = %d
\n
"
,
cpu
,
offset
,
retval
);
exit
(
-
2
);
}
retval
=
pwrite
(
fd
,
&
new_msr
,
sizeof
new_msr
,
offset
);
if
(
retval
!=
sizeof
new_msr
)
{
perror
(
"pwrite"
);
printf
(
"pwrite cpu%d 0x%x = %d
\n
"
,
cpu
,
offset
,
retval
);
exit
(
-
2
);
}
close
(
fd
);
return
old_msr
;
}
void
print_msr
(
int
cpu
)
{
printf
(
"cpu%d: 0x%016llx
\n
"
,
cpu
,
get_msr
(
cpu
,
MSR_IA32_ENERGY_PERF_BIAS
));
}
void
update_msr
(
int
cpu
)
{
unsigned
long
long
previous_msr
;
previous_msr
=
put_msr
(
cpu
,
new_bias
,
MSR_IA32_ENERGY_PERF_BIAS
);
if
(
verbose
)
printf
(
"cpu%d msr0x%x 0x%016llx -> 0x%016llx
\n
"
,
cpu
,
MSR_IA32_ENERGY_PERF_BIAS
,
previous_msr
,
new_bias
);
return
;
}
char
*
proc_stat
=
"/proc/stat"
;
/*
* run func() on every cpu in /dev/cpu
*/
void
for_every_cpu
(
void
(
func
)(
int
))
{
FILE
*
fp
;
int
retval
;
fp
=
fopen
(
proc_stat
,
"r"
);
if
(
fp
==
NULL
)
{
perror
(
proc_stat
);
exit
(
1
);
}
retval
=
fscanf
(
fp
,
"cpu %*d %*d %*d %*d %*d %*d %*d %*d %*d %*d
\n
"
);
if
(
retval
!=
0
)
{
perror
(
"/proc/stat format"
);
exit
(
1
);
}
while
(
1
)
{
int
cpu
;
retval
=
fscanf
(
fp
,
"cpu%u %*d %*d %*d %*d %*d %*d %*d %*d %*d %*d
\n
"
,
&
cpu
);
if
(
retval
!=
1
)
return
;
func
(
cpu
);
}
fclose
(
fp
);
}
int
main
(
int
argc
,
char
**
argv
)
{
cmdline
(
argc
,
argv
);
if
(
verbose
>
1
)
printf
(
"x86_energy_perf_policy Nov 24, 2010"
" - Len Brown <lenb@kernel.org>
\n
"
);
if
(
verbose
>
1
&&
!
read_only
)
printf
(
"new_bias %lld
\n
"
,
new_bias
);
validate_cpuid
();
if
(
cpu
!=
-
1
)
{
if
(
read_only
)
print_msr
(
cpu
);
else
update_msr
(
cpu
);
}
else
{
if
(
read_only
)
for_every_cpu
(
print_msr
);
else
for_every_cpu
(
update_msr
);
}
return
0
;
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment