Commit f3fbaf34 authored by Ben Skeggs's avatar Ben Skeggs

drm/nv50/pm: rewrite clock management, and switch to the new pm hooks

This area is horrifically complicated on these chipsets, and it's likely we
will need at least a few more tweaks yet.

Oh yes, and it's completely disabled on IGPs for the moment.  From traces,
things look potentially different there yet again.  Sigh...
Signed-off-by: default avatarBen Skeggs <bskeggs@redhat.com>
parent d4cca9e1
...@@ -493,6 +493,7 @@ struct nouveau_pm_level { ...@@ -493,6 +493,7 @@ struct nouveau_pm_level {
u32 copy; u32 copy;
u32 daemon; u32 daemon;
u32 vdec; u32 vdec;
u32 dom6;
u32 unka0; /* nva3:nvc0 */ u32 unka0; /* nva3:nvc0 */
u32 hub01; /* nvc0- */ u32 hub01; /* nvc0- */
u32 hub06; /* nvc0- */ u32 hub06; /* nvc0- */
......
...@@ -302,6 +302,7 @@ nouveau_perf_init(struct drm_device *dev) ...@@ -302,6 +302,7 @@ nouveau_perf_init(struct drm_device *dev)
perflvl->shader = ROM16(entry[10]) * 1000; perflvl->shader = ROM16(entry[10]) * 1000;
perflvl->memory = ROM16(entry[12]) * 1000; perflvl->memory = ROM16(entry[12]) * 1000;
perflvl->vdec = ROM16(entry[16]) * 1000; perflvl->vdec = ROM16(entry[16]) * 1000;
perflvl->dom6 = ROM16(entry[20]) * 1000;
break; break;
case 0x40: case 0x40:
#define subent(n) (ROM16(entry[perf[2] + ((n) * perf[3])]) & 0xfff) * 1000 #define subent(n) (ROM16(entry[perf[2] + ((n) * perf[3])]) & 0xfff) * 1000
......
...@@ -60,10 +60,9 @@ int nv40_pm_pwm_get(struct drm_device *, struct dcb_gpio_entry *, u32*, u32*); ...@@ -60,10 +60,9 @@ int nv40_pm_pwm_get(struct drm_device *, struct dcb_gpio_entry *, u32*, u32*);
int nv40_pm_pwm_set(struct drm_device *, struct dcb_gpio_entry *, u32, u32); int nv40_pm_pwm_set(struct drm_device *, struct dcb_gpio_entry *, u32, u32);
/* nv50_pm.c */ /* nv50_pm.c */
int nv50_pm_clock_get(struct drm_device *, u32 id); int nv50_pm_clocks_get(struct drm_device *, struct nouveau_pm_level *);
void *nv50_pm_clock_pre(struct drm_device *, struct nouveau_pm_level *, void *nv50_pm_clocks_pre(struct drm_device *, struct nouveau_pm_level *);
u32 id, int khz); int nv50_pm_clocks_set(struct drm_device *, void *);
void nv50_pm_clock_set(struct drm_device *, void *);
int nv50_pm_pwm_get(struct drm_device *, struct dcb_gpio_entry *, u32*, u32*); int nv50_pm_pwm_get(struct drm_device *, struct dcb_gpio_entry *, u32*, u32*);
int nv50_pm_pwm_set(struct drm_device *, struct dcb_gpio_entry *, u32, u32); int nv50_pm_pwm_set(struct drm_device *, struct dcb_gpio_entry *, u32, u32);
......
...@@ -356,9 +356,9 @@ static int nouveau_init_engine_ptrs(struct drm_device *dev) ...@@ -356,9 +356,9 @@ static int nouveau_init_engine_ptrs(struct drm_device *dev)
case 0xaa: case 0xaa:
case 0xac: case 0xac:
case 0x50: case 0x50:
engine->pm.clock_get = nv50_pm_clock_get; engine->pm.clocks_get = nv50_pm_clocks_get;
engine->pm.clock_pre = nv50_pm_clock_pre; engine->pm.clocks_pre = nv50_pm_clocks_pre;
engine->pm.clock_set = nv50_pm_clock_set; engine->pm.clocks_set = nv50_pm_clocks_set;
break; break;
default: default:
engine->pm.clocks_get = nva3_pm_clocks_get; engine->pm.clocks_get = nva3_pm_clocks_get;
......
...@@ -25,123 +25,601 @@ ...@@ -25,123 +25,601 @@
#include "drmP.h" #include "drmP.h"
#include "nouveau_drv.h" #include "nouveau_drv.h"
#include "nouveau_bios.h" #include "nouveau_bios.h"
#include "nouveau_hw.h"
#include "nouveau_pm.h" #include "nouveau_pm.h"
struct nv50_pm_state { enum clk_src {
struct nouveau_pm_level *perflvl; clk_src_crystal,
struct pll_lims pll; clk_src_href,
enum pll_types type; clk_src_hclk,
int N, M, P; clk_src_hclkm3,
clk_src_hclkm3d2,
clk_src_host,
clk_src_nvclk,
clk_src_sclk,
clk_src_mclk,
clk_src_vdec,
clk_src_dom6
}; };
static u32 read_clk(struct drm_device *, enum clk_src);
static u32
read_div(struct drm_device *dev)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
switch (dev_priv->chipset) {
case 0x50: /* it exists, but only has bit 31, not the dividers.. */
case 0x84:
case 0x86:
case 0x98:
case 0xa0:
return nv_rd32(dev, 0x004700);
case 0x92:
case 0x94:
case 0x96:
return nv_rd32(dev, 0x004800);
default:
return 0x00000000;
}
}
static u32
read_pll_ref(struct drm_device *dev, u32 base)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
u32 coef, ref = read_clk(dev, clk_src_crystal);
u32 rsel = nv_rd32(dev, 0x00e18c);
int P, N, M, id;
switch (dev_priv->chipset) {
case 0x50:
case 0xa0:
switch (base) {
case 0x4020:
case 0x4028: id = !!(rsel & 0x00000004); break;
case 0x4008: id = !!(rsel & 0x00000008); break;
case 0x4030: id = 0; break;
default:
NV_ERROR(dev, "ref: bad pll 0x%06x\n", base);
return 0;
}
coef = nv_rd32(dev, 0x00e81c + (id * 0x0c));
ref *= (coef & 0x01000000) ? 2 : 4;
P = (coef & 0x00070000) >> 16;
N = ((coef & 0x0000ff00) >> 8) + 1;
M = ((coef & 0x000000ff) >> 0) + 1;
break;
case 0x84:
case 0x86:
case 0x92:
coef = nv_rd32(dev, 0x00e81c);
P = (coef & 0x00070000) >> 16;
N = (coef & 0x0000ff00) >> 8;
M = (coef & 0x000000ff) >> 0;
break;
case 0x94:
case 0x96:
case 0x98:
rsel = nv_rd32(dev, 0x00c050);
switch (base) {
case 0x4020: rsel = (rsel & 0x00000003) >> 0; break;
case 0x4008: rsel = (rsel & 0x0000000c) >> 2; break;
case 0x4028: rsel = (rsel & 0x00001800) >> 11; break;
case 0x4030: rsel = 3; break;
default:
NV_ERROR(dev, "ref: bad pll 0x%06x\n", base);
return 0;
}
switch (rsel) {
case 0: id = 1; break;
case 1: return read_clk(dev, clk_src_crystal);
case 2: return read_clk(dev, clk_src_href);
case 3: id = 0; break;
}
coef = nv_rd32(dev, 0x00e81c + (id * 0x28));
P = (nv_rd32(dev, 0x00e824 + (id * 0x28)) >> 16) & 7;
P += (coef & 0x00070000) >> 16;
N = (coef & 0x0000ff00) >> 8;
M = (coef & 0x000000ff) >> 0;
break;
default:
BUG_ON(1);
}
if (M)
return (ref * N / M) >> P;
return 0;
}
static u32
read_pll(struct drm_device *dev, u32 base)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
u32 mast = nv_rd32(dev, 0x00c040);
u32 src = 0, ref = 0, clk = 0;
u32 ctrl, coef;
int N1, N2, M1, M2;
switch (base) {
case 0x004028:
if (mast & 0x00100000) {
/* wtf, appears to only disable post-divider on nva0 */
if (dev_priv->chipset != 0xa0)
return read_clk(dev, clk_src_dom6);
}
src = !!(mast & 0x00200000);
break;
case 0x004020:
src = !!(mast & 0x00400000);
break;
case 0x004008:
src = !!(mast & 0x00010000);
break;
case 0x004030:
src = !!(mast & 0x02000000);
break;
case 0x00e810:
ref = read_clk(dev, clk_src_crystal);
break;
default:
NV_ERROR(dev, "bad pll 0x%06x\n", base);
return 0;
}
if (ref == 0) {
if (src)
ref = read_clk(dev, clk_src_href);
else
ref = read_pll_ref(dev, base);
}
ctrl = nv_rd32(dev, base + 0);
coef = nv_rd32(dev, base + 4);
N2 = (coef & 0xff000000) >> 24;
M2 = (coef & 0x00ff0000) >> 16;
N1 = (coef & 0x0000ff00) >> 8;
M1 = (coef & 0x000000ff);
if ((ctrl & 0x80000000) && M1) {
clk = ref * N1 / M1;
if ((ctrl & 0x40000100) == 0x40000000) {
if (M2)
clk = clk * N2 / M2;
else
clk = 0;
}
}
return clk;
}
static u32
read_clk(struct drm_device *dev, enum clk_src src)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
u32 mast = nv_rd32(dev, 0x00c040);
u32 P = 0;
switch (src) {
case clk_src_crystal:
return dev_priv->crystal;
case clk_src_href:
return 100000; /* PCIE reference clock */
case clk_src_hclk:
return read_clk(dev, clk_src_href) * 27778 / 10000;
case clk_src_hclkm3:
return read_clk(dev, clk_src_hclk) * 3;
case clk_src_hclkm3d2:
return read_clk(dev, clk_src_hclk) * 3 / 2;
case clk_src_host:
switch (mast & 0x30000000) {
case 0x00000000: return read_clk(dev, clk_src_href);
case 0x10000000: break;
case 0x20000000: /* !0x50 */
case 0x30000000: return read_clk(dev, clk_src_hclk);
}
break;
case clk_src_nvclk:
if (!(mast & 0x00100000))
P = (nv_rd32(dev, 0x004028) & 0x00070000) >> 16;
switch (mast & 0x00000003) {
case 0x00000000: return read_clk(dev, clk_src_crystal) >> P;
case 0x00000001: return read_clk(dev, clk_src_dom6);
case 0x00000002: return read_pll(dev, 0x004020) >> P;
case 0x00000003: return read_pll(dev, 0x004028) >> P;
}
break;
case clk_src_sclk:
P = (nv_rd32(dev, 0x004020) & 0x00070000) >> 16;
switch (mast & 0x00000030) {
case 0x00000000:
if (mast & 0x00000080)
return read_clk(dev, clk_src_host) >> P;
return read_clk(dev, clk_src_crystal) >> P;
case 0x00000010: break;
case 0x00000020: return read_pll(dev, 0x004028) >> P;
case 0x00000030: return read_pll(dev, 0x004020) >> P;
}
break;
case clk_src_mclk:
P = (nv_rd32(dev, 0x004008) & 0x00070000) >> 16;
if (nv_rd32(dev, 0x004008) & 0x00000200) {
switch (mast & 0x0000c000) {
case 0x00000000:
return read_clk(dev, clk_src_crystal) >> P;
case 0x00008000:
case 0x0000c000:
return read_clk(dev, clk_src_href) >> P;
}
} else {
return read_pll(dev, 0x004008) >> P;
}
break;
case clk_src_vdec:
P = (read_div(dev) & 0x00000700) >> 8;
switch (dev_priv->chipset) {
case 0x84:
case 0x86:
case 0x92:
case 0x94:
case 0x96:
case 0xa0:
switch (mast & 0x00000c00) {
case 0x00000000:
if (dev_priv->chipset == 0xa0) /* wtf?? */
return read_clk(dev, clk_src_nvclk) >> P;
return read_clk(dev, clk_src_crystal) >> P;
case 0x00000400:
return 0;
case 0x00000800:
if (mast & 0x01000000)
return read_pll(dev, 0x004028) >> P;
return read_pll(dev, 0x004030) >> P;
case 0x00000c00:
return read_clk(dev, clk_src_nvclk) >> P;
}
break;
case 0x98:
switch (mast & 0x00000c00) {
case 0x00000000:
return read_clk(dev, clk_src_nvclk) >> P;
case 0x00000400:
return 0;
case 0x00000800:
return read_clk(dev, clk_src_hclkm3d2) >> P;
case 0x00000c00:
return read_pll(dev, clk_src_mclk) >> P;
}
break;
}
break;
case clk_src_dom6:
switch (dev_priv->chipset) {
case 0x50:
case 0xa0:
return read_pll(dev, 0x00e810) >> 2;
case 0x84:
case 0x86:
case 0x92:
case 0x94:
case 0x96:
case 0x98:
P = (read_div(dev) & 0x00000007) >> 0;
switch (mast & 0x0c000000) {
case 0x00000000: return read_clk(dev, clk_src_href);
case 0x04000000: break;
case 0x08000000: return read_clk(dev, clk_src_hclk);
case 0x0c000000:
return read_clk(dev, clk_src_hclkm3) >> P;
}
break;
default:
break;
}
default:
break;
}
NV_DEBUG(dev, "unknown clock source %d 0x%08x\n", src, mast);
return 0;
}
int int
nv50_pm_clock_get(struct drm_device *dev, u32 id) nv50_pm_clocks_get(struct drm_device *dev, struct nouveau_pm_level *perflvl)
{ {
struct pll_lims pll; struct drm_nouveau_private *dev_priv = dev->dev_private;
int P, N, M, ret; if (dev_priv->chipset == 0xaa ||
u32 reg0, reg1; dev_priv->chipset == 0xac)
return 0;
perflvl->core = read_clk(dev, clk_src_nvclk);
perflvl->shader = read_clk(dev, clk_src_sclk);
perflvl->memory = read_clk(dev, clk_src_mclk);
if (dev_priv->chipset != 0x50) {
perflvl->vdec = read_clk(dev, clk_src_vdec);
perflvl->dom6 = read_clk(dev, clk_src_dom6);
}
ret = get_pll_limits(dev, id, &pll); return 0;
}
struct nv50_pm_state {
u32 emast;
u32 nctrl;
u32 ncoef;
u32 sctrl;
u32 scoef;
u32 amast;
u32 pdivs;
u32 mscript;
u32 mctrl;
u32 mcoef;
};
static u32
calc_pll(struct drm_device *dev, u32 reg, struct pll_lims *pll,
u32 clk, int *N1, int *M1, int *log2P)
{
struct nouveau_pll_vals coef;
int ret;
ret = get_pll_limits(dev, reg, pll);
if (ret) if (ret)
return ret; return 0;
pll->vco2.maxfreq = 0;
pll->refclk = read_pll_ref(dev, reg);
if (!pll->refclk)
return 0;
ret = nouveau_calc_pll_mnp(dev, pll, clk, &coef);
if (ret == 0)
return 0;
reg0 = nv_rd32(dev, pll.reg + 0); *N1 = coef.N1;
reg1 = nv_rd32(dev, pll.reg + 4); *M1 = coef.M1;
*log2P = coef.log2P;
if ((reg0 & 0x80000000) == 0) { return ret;
if (id == PLL_SHADER) { }
NV_DEBUG(dev, "Shader PLL is disabled. "
"Shader clock is twice the core\n"); static inline u32
ret = nv50_pm_clock_get(dev, PLL_CORE); calc_div(u32 src, u32 target, int *div)
if (ret > 0) {
return ret << 1; u32 clk0 = src, clk1 = src;
} else if (id == PLL_MEMORY) { for (*div = 0; *div <= 7; (*div)++) {
NV_DEBUG(dev, "Memory PLL is disabled. " if (clk0 <= target) {
"Memory clock is equal to the ref_clk\n"); clk1 = clk0 << (*div ? 1 : 0);
return pll.refclk; break;
} }
clk0 >>= 1;
} }
P = (reg0 & 0x00070000) >> 16; if (target - clk0 <= clk1 - target)
N = (reg1 & 0x0000ff00) >> 8; return clk0;
M = (reg1 & 0x000000ff); (*div)--;
return clk1;
}
return ((pll.refclk * N / M) >> P); static inline u32
clk_same(u32 a, u32 b)
{
return ((a / 1000) == (b / 1000));
} }
void * void *
nv50_pm_clock_pre(struct drm_device *dev, struct nouveau_pm_level *perflvl, nv50_pm_clocks_pre(struct drm_device *dev, struct nouveau_pm_level *perflvl)
u32 id, int khz)
{ {
struct nv50_pm_state *state; struct drm_nouveau_private *dev_priv = dev->dev_private;
int dummy, ret; struct nv50_pm_state *info;
struct pll_lims pll;
int ret = -EINVAL;
int N, M, P1, P2;
u32 clk, out;
if (dev_priv->chipset == 0xaa ||
dev_priv->chipset == 0xac)
return ERR_PTR(-ENODEV);
state = kzalloc(sizeof(*state), GFP_KERNEL); info = kmalloc(sizeof(*info), GFP_KERNEL);
if (!state) if (!info)
return ERR_PTR(-ENOMEM); return ERR_PTR(-ENOMEM);
state->type = id;
state->perflvl = perflvl;
ret = get_pll_limits(dev, id, &state->pll); /* core: for the moment at least, always use nvpll */
if (ret < 0) { clk = calc_pll(dev, 0x4028, &pll, perflvl->core, &N, &M, &P1);
kfree(state); if (clk == 0)
return (ret == -ENOENT) ? NULL : ERR_PTR(ret); goto error;
info->emast = 0x00000003;
info->nctrl = 0x80000000 | (P1 << 19) | (P1 << 16);
info->ncoef = (N << 8) | M;
/* shader: tie to nvclk if possible, otherwise use spll. have to be
* very careful that the shader clock is at least twice the core, or
* some chipsets will be very unhappy. i expect most or all of these
* cases will be handled by tying to nvclk, but it's possible there's
* corners
*/
if (P1-- && perflvl->shader == (perflvl->core << 1)) {
info->emast |= 0x00000020;
info->sctrl = 0x00000000 | (P1 << 19) | (P1 << 16);
info->scoef = nv_rd32(dev, 0x004024);
} else {
clk = calc_pll(dev, 0x4020, &pll, perflvl->shader, &N, &M, &P1);
if (clk == 0)
goto error;
info->emast |= 0x00000030;
info->sctrl = 0x80000000 | (P1 << 19) | (P1 << 16);
info->scoef = (N << 8) | M;
} }
ret = nv50_calc_pll(dev, &state->pll, khz, &state->N, &state->M, /* memory: use pcie refclock if possible, otherwise use mpll */
&dummy, &dummy, &state->P); info->mscript = perflvl->memscript;
if (ret < 0) { if (clk_same(perflvl->memory, read_clk(dev, clk_src_href))) {
kfree(state); info->mctrl = nv_rd32(dev, 0x4008) | 0x00000200;
return ERR_PTR(ret); info->mcoef = nv_rd32(dev, 0x400c);
} else
if (perflvl->memory) {
clk = calc_pll(dev, 0x4008, &pll, perflvl->memory,
&N, &M, &P1);
if (clk == 0)
goto error;
info->mctrl = 0x80000000 | (P1 << 22) | (P1 << 16);
info->mctrl |= pll.log2p_bias << 19;
info->mcoef = (N << 8) | M;
} else {
info->mctrl = 0x00000000;
} }
return state; /* vdec: avoid modifying xpll until we know exactly how the other
* clock domains work, i suspect at least some of them can also be
* tied to xpll...
*/
info->amast = info->pdivs = 0;
if (perflvl->vdec) {
/* see how close we can get using nvclk as a source */
clk = calc_div(perflvl->core, perflvl->vdec, &P1);
/* see how close we can get using xpll/hclk as a source */
if (dev_priv->chipset != 0x98)
out = read_pll(dev, 0x004030);
else
out = read_clk(dev, clk_src_hclkm3d2);
out = calc_div(out, perflvl->vdec, &P2);
/* select whichever gets us closest */
if (abs((int)perflvl->vdec - clk) <=
abs((int)perflvl->vdec - out)) {
if (dev_priv->chipset != 0x98)
info->amast |= 0x00000c00;
else
info->amast |= 0x00000000;
info->pdivs |= P1 << 8;
} else {
info->amast |= 0x00000800;
info->pdivs |= P2 << 8;
}
}
/* dom6: nfi what this is, but we're limited to various combinations
* of the host clock frequency
*/
if (clk_same(perflvl->dom6, read_clk(dev, clk_src_href))) {
info->amast |= 0x00000000;
info->pdivs |= read_div(dev) & 0x00000007;
} else
if (clk_same(perflvl->dom6, read_clk(dev, clk_src_hclk))) {
info->amast |= 0x08000000;
info->pdivs |= read_div(dev) & 0x00000007;
} else
if (perflvl->dom6) {
clk = read_clk(dev, clk_src_hclk) * 3;
clk = calc_div(clk, perflvl->dom6, &P1);
info->amast |= 0x0c000000;
info->pdivs |= P1;
}
return info;
error:
kfree(info);
return ERR_PTR(ret);
} }
void int
nv50_pm_clock_set(struct drm_device *dev, void *pre_state) nv50_pm_clocks_set(struct drm_device *dev, void *data)
{ {
struct nv50_pm_state *state = pre_state; struct drm_nouveau_private *dev_priv = dev->dev_private;
struct nouveau_pm_level *perflvl = state->perflvl; struct nv50_pm_state *info = data;
u32 reg = state->pll.reg, tmp; struct bit_entry M;
struct bit_entry BIT_M; int ret = 0;
u16 script;
int N = state->N; /* halt and idle execution engines */
int M = state->M; nv_mask(dev, 0x002504, 0x00000001, 0x00000001);
int P = state->P; if (!nv_wait(dev, 0x002504, 0x00000010, 0x00000010))
goto error;
if (state->type == PLL_MEMORY && perflvl->memscript &&
bit_table(dev, 'M', &BIT_M) == 0 && /* reclock vdec/dom6 */
BIT_M.version == 1 && BIT_M.length >= 0x0b) { nv_mask(dev, 0x00c040, 0x00000c00, 0x00000000);
script = ROM16(BIT_M.data[0x05]); switch (dev_priv->chipset) {
if (script) case 0x92:
nouveau_bios_run_init_table(dev, script, NULL, -1); case 0x94:
script = ROM16(BIT_M.data[0x07]); case 0x96:
if (script) nv_mask(dev, 0x004800, 0x00000707, info->pdivs);
nouveau_bios_run_init_table(dev, script, NULL, -1); break;
script = ROM16(BIT_M.data[0x09]); default:
if (script) nv_mask(dev, 0x004700, 0x00000707, info->pdivs);
nouveau_bios_run_init_table(dev, script, NULL, -1); break;
}
nouveau_bios_run_init_table(dev, perflvl->memscript, NULL, -1); nv_mask(dev, 0x00c040, 0x0c000c00, info->amast);
}
/* core/shader: switch core to dom6, shader to hclk */
if (state->type == PLL_MEMORY) { if (dev_priv->chipset == 0x50)
nv_wr32(dev, 0x100210, 0); nv_mask(dev, 0x00c040, 0x001000b0, 0x00100080); /* grrr! */
nv_wr32(dev, 0x1002dc, 1); else
} nv_mask(dev, 0x00c040, 0x000000b3, 0x00000081);
nv_mask(dev, 0x004020, 0xc03f0100, info->sctrl);
tmp = nv_rd32(dev, reg + 0) & 0xfff8ffff; nv_wr32(dev, 0x004024, info->scoef);
tmp |= 0x80000000 | (P << 16); nv_mask(dev, 0x004028, 0xc03f0100, info->nctrl);
nv_wr32(dev, reg + 0, tmp); nv_wr32(dev, 0x00402c, info->ncoef);
nv_wr32(dev, reg + 4, (N << 8) | M); nv_mask(dev, 0x00c040, 0x00100033, info->emast);
if (state->type == PLL_MEMORY) { /* memory */
nv_wr32(dev, 0x1002dc, 0); if (!info->mctrl)
nv_wr32(dev, 0x100210, 0x80000000); goto resume;
}
/* execute some scripts that do ??? from the vbios.. */
kfree(state); if (!bit_table(dev, 'M', &M) && M.version == 1) {
if (M.length >= 6)
nouveau_bios_init_exec(dev, ROM16(M.data[5]));
if (M.length >= 8)
nouveau_bios_init_exec(dev, ROM16(M.data[7]));
if (M.length >= 10)
nouveau_bios_init_exec(dev, ROM16(M.data[9]));
nouveau_bios_init_exec(dev, info->mscript);
}
/* disable display */
nv_wr32(dev, 0x611200, 0x00003300);
udelay(100);
/* prepare ram for reclocking */
nv_wr32(dev, 0x1002d4, 0x00000001); /* precharge */
nv_wr32(dev, 0x1002d0, 0x00000001); /* refresh */
nv_wr32(dev, 0x1002d0, 0x00000001); /* refresh */
nv_mask(dev, 0x100210, 0x80000000, 0x00000000); /* no auto-refresh */
nv_wr32(dev, 0x1002dc, 0x00000001); /* enable self-refresh */
/* modify mpll */
nv_mask(dev, 0x00c040, 0x0000c000, 0x0000c000);
nv_mask(dev, 0x004008, 0x81ff0200, 0x00000200 | info->mctrl);
nv_wr32(dev, 0x00400c, info->mcoef);
udelay(100);
nv_mask(dev, 0x004008, 0x81ff0200, info->mctrl);
/* re-enable normal operation of memory controller */
nv_wr32(dev, 0x1002dc, 0x00000000);
nv_mask(dev, 0x100210, 0x80000000, 0x80000000);
udelay(100);
/* re-enable display */
nv_wr32(dev, 0x611200, 0x00003330);
goto resume;
error:
ret = -EBUSY;
resume:
nv_mask(dev, 0x002504, 0x00000001, 0x00000000);
return ret;
} }
static int static int
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment