Commit fa37a8c8 authored by Dave Airlie's avatar Dave Airlie

Merge branch 'msm-next' of git://people.freedesktop.org/~robclark/linux into drm-next

1) support for "stolen mem" for splash-screen take-over
2) additional hdmi pixel clks
3) various pipe flush related fixes
4) support for snapdragon 410 (8x16)
5) support for DSI and dual-DSI

It includes one small patch to export tile-group functions (which was ack'd
by you), as these are used to explain to userspace dual-dsi configurations
(with left and right tile).

* 'msm-next' of git://people.freedesktop.org/~robclark/linux: (24 commits)
  drm/msm/mdp5: Enable DSI connector in msm drm driver
  drm/msm: Initial add DSI connector support
  drm/msm: Add split display interface
  drm/msm/mdp5: Move *_modeset_init out of construct_encoder function
  drm: export tile-group functions
  drm/msm/mdp5: Remove CTL flush dummy bits
  drm/msm/mdp5: Update headers (add CTL flush bits)
  drm/msm/mdp5: Add hardware configuration for msm8x16
  drm/msm/mdp5: Get SMP client list from mdp5_cfg
  drm/msm/mdp5: Update headers (remove enum mdp5_client_id)
  drm/msm/mdp5: Separate MDP5 domain from MDSS domain
  drm/msm/mdp5: Update headers (introduce MDP5 domain)
  drm/msm/dsi: Update generated DSI header file
  drm/msm/mdp5: Fix PIPE source image size settings
  drm/msm/mdp5: Update generated mdp5 header file with DSI support
  drm/msm/mdp5: Add pingpong entry to mdp5 config table
  drm/msm/mdp5: Make the intf connection in config module
  drm/msm/mdp5: Add START signal to kick off certain pipelines
  drm/msm/mdp5: Enhance operation mode for pipeline configuration
  drm/msm/mdp5: Update generated header files
  ...
parents a08aad54 d5af49c9
...@@ -5599,6 +5599,7 @@ struct drm_tile_group *drm_mode_get_tile_group(struct drm_device *dev, ...@@ -5599,6 +5599,7 @@ struct drm_tile_group *drm_mode_get_tile_group(struct drm_device *dev,
mutex_unlock(&dev->mode_config.idr_mutex); mutex_unlock(&dev->mode_config.idr_mutex);
return NULL; return NULL;
} }
EXPORT_SYMBOL(drm_mode_get_tile_group);
/** /**
* drm_mode_create_tile_group - create a tile group from a displayid description * drm_mode_create_tile_group - create a tile group from a displayid description
...@@ -5637,3 +5638,4 @@ struct drm_tile_group *drm_mode_create_tile_group(struct drm_device *dev, ...@@ -5637,3 +5638,4 @@ struct drm_tile_group *drm_mode_create_tile_group(struct drm_device *dev,
mutex_unlock(&dev->mode_config.idr_mutex); mutex_unlock(&dev->mode_config.idr_mutex);
return tg; return tg;
} }
EXPORT_SYMBOL(drm_mode_create_tile_group);
...@@ -35,3 +35,14 @@ config DRM_MSM_REGISTER_LOGGING ...@@ -35,3 +35,14 @@ config DRM_MSM_REGISTER_LOGGING
Compile in support for logging register reads/writes in a format Compile in support for logging register reads/writes in a format
that can be parsed by envytools demsm tool. If enabled, register that can be parsed by envytools demsm tool. If enabled, register
logging can be switched on via msm.reglog=y module param. logging can be switched on via msm.reglog=y module param.
config DRM_MSM_DSI
bool "Enable DSI support in MSM DRM driver"
depends on DRM_MSM
select DRM_PANEL
select DRM_MIPI_DSI
default y
help
Choose this option if you have a need for MIPI DSI connector
support.
...@@ -50,5 +50,10 @@ msm-y := \ ...@@ -50,5 +50,10 @@ msm-y := \
msm-$(CONFIG_DRM_MSM_FBDEV) += msm_fbdev.o msm-$(CONFIG_DRM_MSM_FBDEV) += msm_fbdev.o
msm-$(CONFIG_COMMON_CLK) += mdp/mdp4/mdp4_lvds_pll.o msm-$(CONFIG_COMMON_CLK) += mdp/mdp4/mdp4_lvds_pll.o
msm-$(CONFIG_DRM_MSM_DSI) += dsi/dsi.o \
dsi/dsi_host.o \
dsi/dsi_manager.o \
dsi/dsi_phy.o \
mdp/mdp5/mdp5_cmd_encoder.o
obj-$(CONFIG_DRM_MSM) += msm.o obj-$(CONFIG_DRM_MSM) += msm.o
/*
* Copyright (c) 2015, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include "dsi.h"
struct drm_encoder *msm_dsi_get_encoder(struct msm_dsi *msm_dsi)
{
if (!msm_dsi || !msm_dsi->panel)
return NULL;
return (msm_dsi->panel_flags & MIPI_DSI_MODE_VIDEO) ?
msm_dsi->encoders[MSM_DSI_VIDEO_ENCODER_ID] :
msm_dsi->encoders[MSM_DSI_CMD_ENCODER_ID];
}
static void dsi_destroy(struct msm_dsi *msm_dsi)
{
if (!msm_dsi)
return;
msm_dsi_manager_unregister(msm_dsi);
if (msm_dsi->host) {
msm_dsi_host_destroy(msm_dsi->host);
msm_dsi->host = NULL;
}
platform_set_drvdata(msm_dsi->pdev, NULL);
}
static struct msm_dsi *dsi_init(struct platform_device *pdev)
{
struct msm_dsi *msm_dsi = NULL;
int ret;
if (!pdev) {
dev_err(&pdev->dev, "no dsi device\n");
ret = -ENXIO;
goto fail;
}
msm_dsi = devm_kzalloc(&pdev->dev, sizeof(*msm_dsi), GFP_KERNEL);
if (!msm_dsi) {
ret = -ENOMEM;
goto fail;
}
DBG("dsi probed=%p", msm_dsi);
msm_dsi->pdev = pdev;
platform_set_drvdata(pdev, msm_dsi);
/* Init dsi host */
ret = msm_dsi_host_init(msm_dsi);
if (ret)
goto fail;
/* Register to dsi manager */
ret = msm_dsi_manager_register(msm_dsi);
if (ret)
goto fail;
return msm_dsi;
fail:
if (msm_dsi)
dsi_destroy(msm_dsi);
return ERR_PTR(ret);
}
static int dsi_bind(struct device *dev, struct device *master, void *data)
{
struct drm_device *drm = dev_get_drvdata(master);
struct msm_drm_private *priv = drm->dev_private;
struct platform_device *pdev = to_platform_device(dev);
struct msm_dsi *msm_dsi;
DBG("");
msm_dsi = dsi_init(pdev);
if (IS_ERR(msm_dsi))
return PTR_ERR(msm_dsi);
priv->dsi[msm_dsi->id] = msm_dsi;
return 0;
}
static void dsi_unbind(struct device *dev, struct device *master,
void *data)
{
struct drm_device *drm = dev_get_drvdata(master);
struct msm_drm_private *priv = drm->dev_private;
struct msm_dsi *msm_dsi = dev_get_drvdata(dev);
int id = msm_dsi->id;
if (priv->dsi[id]) {
dsi_destroy(msm_dsi);
priv->dsi[id] = NULL;
}
}
static const struct component_ops dsi_ops = {
.bind = dsi_bind,
.unbind = dsi_unbind,
};
static int dsi_dev_probe(struct platform_device *pdev)
{
return component_add(&pdev->dev, &dsi_ops);
}
static int dsi_dev_remove(struct platform_device *pdev)
{
DBG("");
component_del(&pdev->dev, &dsi_ops);
return 0;
}
static const struct of_device_id dt_match[] = {
{ .compatible = "qcom,mdss-dsi-ctrl" },
{}
};
static struct platform_driver dsi_driver = {
.probe = dsi_dev_probe,
.remove = dsi_dev_remove,
.driver = {
.name = "msm_dsi",
.of_match_table = dt_match,
},
};
void __init msm_dsi_register(void)
{
DBG("");
platform_driver_register(&dsi_driver);
}
void __exit msm_dsi_unregister(void)
{
DBG("");
platform_driver_unregister(&dsi_driver);
}
int msm_dsi_modeset_init(struct msm_dsi *msm_dsi, struct drm_device *dev,
struct drm_encoder *encoders[MSM_DSI_ENCODER_NUM])
{
struct msm_drm_private *priv = dev->dev_private;
int ret, i;
if (WARN_ON(!encoders[MSM_DSI_VIDEO_ENCODER_ID] ||
!encoders[MSM_DSI_CMD_ENCODER_ID]))
return -EINVAL;
msm_dsi->dev = dev;
ret = msm_dsi_host_modeset_init(msm_dsi->host, dev);
if (ret) {
dev_err(dev->dev, "failed to modeset init host: %d\n", ret);
goto fail;
}
msm_dsi->bridge = msm_dsi_manager_bridge_init(msm_dsi->id);
if (IS_ERR(msm_dsi->bridge)) {
ret = PTR_ERR(msm_dsi->bridge);
dev_err(dev->dev, "failed to create dsi bridge: %d\n", ret);
msm_dsi->bridge = NULL;
goto fail;
}
msm_dsi->connector = msm_dsi_manager_connector_init(msm_dsi->id);
if (IS_ERR(msm_dsi->connector)) {
ret = PTR_ERR(msm_dsi->connector);
dev_err(dev->dev, "failed to create dsi connector: %d\n", ret);
msm_dsi->connector = NULL;
goto fail;
}
for (i = 0; i < MSM_DSI_ENCODER_NUM; i++) {
encoders[i]->bridge = msm_dsi->bridge;
msm_dsi->encoders[i] = encoders[i];
}
priv->bridges[priv->num_bridges++] = msm_dsi->bridge;
priv->connectors[priv->num_connectors++] = msm_dsi->connector;
return 0;
fail:
if (msm_dsi) {
/* bridge/connector are normally destroyed by drm: */
if (msm_dsi->bridge) {
msm_dsi_manager_bridge_destroy(msm_dsi->bridge);
msm_dsi->bridge = NULL;
}
if (msm_dsi->connector) {
msm_dsi->connector->funcs->destroy(msm_dsi->connector);
msm_dsi->connector = NULL;
}
}
return ret;
}
/*
* Copyright (c) 2015, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#ifndef __DSI_CONNECTOR_H__
#define __DSI_CONNECTOR_H__
#include <linux/platform_device.h>
#include "drm_crtc.h"
#include "drm_mipi_dsi.h"
#include "drm_panel.h"
#include "msm_drv.h"
#define DSI_0 0
#define DSI_1 1
#define DSI_MAX 2
#define DSI_CLOCK_MASTER DSI_0
#define DSI_CLOCK_SLAVE DSI_1
#define DSI_LEFT DSI_0
#define DSI_RIGHT DSI_1
/* According to the current drm framework sequence, take the encoder of
* DSI_1 as master encoder
*/
#define DSI_ENCODER_MASTER DSI_1
#define DSI_ENCODER_SLAVE DSI_0
struct msm_dsi {
struct drm_device *dev;
struct platform_device *pdev;
struct drm_connector *connector;
struct drm_bridge *bridge;
struct mipi_dsi_host *host;
struct msm_dsi_phy *phy;
struct drm_panel *panel;
unsigned long panel_flags;
bool phy_enabled;
/* the encoders we are hooked to (outside of dsi block) */
struct drm_encoder *encoders[MSM_DSI_ENCODER_NUM];
int id;
};
/* dsi manager */
struct drm_bridge *msm_dsi_manager_bridge_init(u8 id);
void msm_dsi_manager_bridge_destroy(struct drm_bridge *bridge);
struct drm_connector *msm_dsi_manager_connector_init(u8 id);
int msm_dsi_manager_phy_enable(int id,
const unsigned long bit_rate, const unsigned long esc_rate,
u32 *clk_pre, u32 *clk_post);
void msm_dsi_manager_phy_disable(int id);
int msm_dsi_manager_cmd_xfer(int id, const struct mipi_dsi_msg *msg);
bool msm_dsi_manager_cmd_xfer_trigger(int id, u32 iova, u32 len);
int msm_dsi_manager_register(struct msm_dsi *msm_dsi);
void msm_dsi_manager_unregister(struct msm_dsi *msm_dsi);
/* msm dsi */
struct drm_encoder *msm_dsi_get_encoder(struct msm_dsi *msm_dsi);
/* dsi host */
int msm_dsi_host_xfer_prepare(struct mipi_dsi_host *host,
const struct mipi_dsi_msg *msg);
void msm_dsi_host_xfer_restore(struct mipi_dsi_host *host,
const struct mipi_dsi_msg *msg);
int msm_dsi_host_cmd_tx(struct mipi_dsi_host *host,
const struct mipi_dsi_msg *msg);
int msm_dsi_host_cmd_rx(struct mipi_dsi_host *host,
const struct mipi_dsi_msg *msg);
void msm_dsi_host_cmd_xfer_commit(struct mipi_dsi_host *host,
u32 iova, u32 len);
int msm_dsi_host_enable(struct mipi_dsi_host *host);
int msm_dsi_host_disable(struct mipi_dsi_host *host);
int msm_dsi_host_power_on(struct mipi_dsi_host *host);
int msm_dsi_host_power_off(struct mipi_dsi_host *host);
int msm_dsi_host_set_display_mode(struct mipi_dsi_host *host,
struct drm_display_mode *mode);
struct drm_panel *msm_dsi_host_get_panel(struct mipi_dsi_host *host,
unsigned long *panel_flags);
int msm_dsi_host_register(struct mipi_dsi_host *host, bool check_defer);
void msm_dsi_host_unregister(struct mipi_dsi_host *host);
void msm_dsi_host_destroy(struct mipi_dsi_host *host);
int msm_dsi_host_modeset_init(struct mipi_dsi_host *host,
struct drm_device *dev);
int msm_dsi_host_init(struct msm_dsi *msm_dsi);
/* dsi phy */
struct msm_dsi_phy;
enum msm_dsi_phy_type {
MSM_DSI_PHY_UNKNOWN,
MSM_DSI_PHY_28NM,
MSM_DSI_PHY_MAX
};
struct msm_dsi_phy *msm_dsi_phy_init(struct platform_device *pdev,
enum msm_dsi_phy_type type, int id);
int msm_dsi_phy_enable(struct msm_dsi_phy *phy, bool is_dual_panel,
const unsigned long bit_rate, const unsigned long esc_rate);
int msm_dsi_phy_disable(struct msm_dsi_phy *phy);
void msm_dsi_phy_get_clk_pre_post(struct msm_dsi_phy *phy,
u32 *clk_pre, u32 *clk_post);
#endif /* __DSI_CONNECTOR_H__ */
...@@ -8,19 +8,10 @@ This file was generated by the rules-ng-ng headergen tool in this git repository ...@@ -8,19 +8,10 @@ This file was generated by the rules-ng-ng headergen tool in this git repository
git clone https://github.com/freedreno/envytools.git git clone https://github.com/freedreno/envytools.git
The rules-ng-ng source files this header was generated from are: The rules-ng-ng source files this header was generated from are:
- /home/robclark/src/freedreno/envytools/rnndb/msm.xml ( 676 bytes, from 2014-12-05 15:34:49) - /usr2/hali/local/envytools/envytools/rnndb/dsi/dsi.xml ( 18681 bytes, from 2015-03-04 23:08:31)
- /home/robclark/src/freedreno/envytools/rnndb/freedreno_copyright.xml ( 1453 bytes, from 2013-03-31 16:51:27) - /usr2/hali/local/envytools/envytools/rnndb/freedreno_copyright.xml ( 1453 bytes, from 2015-01-28 21:43:22)
- /home/robclark/src/freedreno/envytools/rnndb/mdp/mdp4.xml ( 20908 bytes, from 2014-12-08 16:13:00)
- /home/robclark/src/freedreno/envytools/rnndb/mdp/mdp_common.xml ( 2357 bytes, from 2014-12-08 16:13:00) Copyright (C) 2013-2015 by the following authors:
- /home/robclark/src/freedreno/envytools/rnndb/mdp/mdp5.xml ( 27208 bytes, from 2015-01-13 23:56:11)
- /home/robclark/src/freedreno/envytools/rnndb/dsi/dsi.xml ( 11712 bytes, from 2013-08-17 17:13:43)
- /home/robclark/src/freedreno/envytools/rnndb/dsi/sfpb.xml ( 344 bytes, from 2013-08-11 19:26:32)
- /home/robclark/src/freedreno/envytools/rnndb/dsi/mmss_cc.xml ( 1686 bytes, from 2014-10-31 16:48:57)
- /home/robclark/src/freedreno/envytools/rnndb/hdmi/qfprom.xml ( 600 bytes, from 2013-07-05 19:21:12)
- /home/robclark/src/freedreno/envytools/rnndb/hdmi/hdmi.xml ( 26848 bytes, from 2015-01-13 23:55:57)
- /home/robclark/src/freedreno/envytools/rnndb/edp/edp.xml ( 8253 bytes, from 2014-12-08 16:13:00)
Copyright (C) 2013 by the following authors:
- Rob Clark <robdclark@gmail.com> (robclark) - Rob Clark <robdclark@gmail.com> (robclark)
Permission is hereby granted, free of charge, to any person obtaining Permission is hereby granted, free of charge, to any person obtaining
...@@ -51,11 +42,11 @@ enum dsi_traffic_mode { ...@@ -51,11 +42,11 @@ enum dsi_traffic_mode {
BURST_MODE = 2, BURST_MODE = 2,
}; };
enum dsi_dst_format { enum dsi_vid_dst_format {
DST_FORMAT_RGB565 = 0, VID_DST_FORMAT_RGB565 = 0,
DST_FORMAT_RGB666 = 1, VID_DST_FORMAT_RGB666 = 1,
DST_FORMAT_RGB666_LOOSE = 2, VID_DST_FORMAT_RGB666_LOOSE = 2,
DST_FORMAT_RGB888 = 3, VID_DST_FORMAT_RGB888 = 3,
}; };
enum dsi_rgb_swap { enum dsi_rgb_swap {
...@@ -69,20 +60,63 @@ enum dsi_rgb_swap { ...@@ -69,20 +60,63 @@ enum dsi_rgb_swap {
enum dsi_cmd_trigger { enum dsi_cmd_trigger {
TRIGGER_NONE = 0, TRIGGER_NONE = 0,
TRIGGER_SEOF = 1,
TRIGGER_TE = 2, TRIGGER_TE = 2,
TRIGGER_SW = 4, TRIGGER_SW = 4,
TRIGGER_SW_SEOF = 5, TRIGGER_SW_SEOF = 5,
TRIGGER_SW_TE = 6, TRIGGER_SW_TE = 6,
}; };
enum dsi_cmd_dst_format {
CMD_DST_FORMAT_RGB111 = 0,
CMD_DST_FORMAT_RGB332 = 3,
CMD_DST_FORMAT_RGB444 = 4,
CMD_DST_FORMAT_RGB565 = 6,
CMD_DST_FORMAT_RGB666 = 7,
CMD_DST_FORMAT_RGB888 = 8,
};
enum dsi_lane_swap {
LANE_SWAP_0123 = 0,
LANE_SWAP_3012 = 1,
LANE_SWAP_2301 = 2,
LANE_SWAP_1230 = 3,
LANE_SWAP_0321 = 4,
LANE_SWAP_1032 = 5,
LANE_SWAP_2103 = 6,
LANE_SWAP_3210 = 7,
};
#define DSI_IRQ_CMD_DMA_DONE 0x00000001 #define DSI_IRQ_CMD_DMA_DONE 0x00000001
#define DSI_IRQ_MASK_CMD_DMA_DONE 0x00000002 #define DSI_IRQ_MASK_CMD_DMA_DONE 0x00000002
#define DSI_IRQ_CMD_MDP_DONE 0x00000100 #define DSI_IRQ_CMD_MDP_DONE 0x00000100
#define DSI_IRQ_MASK_CMD_MDP_DONE 0x00000200 #define DSI_IRQ_MASK_CMD_MDP_DONE 0x00000200
#define DSI_IRQ_VIDEO_DONE 0x00010000 #define DSI_IRQ_VIDEO_DONE 0x00010000
#define DSI_IRQ_MASK_VIDEO_DONE 0x00020000 #define DSI_IRQ_MASK_VIDEO_DONE 0x00020000
#define DSI_IRQ_BTA_DONE 0x00100000
#define DSI_IRQ_MASK_BTA_DONE 0x00200000
#define DSI_IRQ_ERROR 0x01000000 #define DSI_IRQ_ERROR 0x01000000
#define DSI_IRQ_MASK_ERROR 0x02000000 #define DSI_IRQ_MASK_ERROR 0x02000000
#define REG_DSI_6G_HW_VERSION 0x00000000
#define DSI_6G_HW_VERSION_MAJOR__MASK 0xf0000000
#define DSI_6G_HW_VERSION_MAJOR__SHIFT 28
static inline uint32_t DSI_6G_HW_VERSION_MAJOR(uint32_t val)
{
return ((val) << DSI_6G_HW_VERSION_MAJOR__SHIFT) & DSI_6G_HW_VERSION_MAJOR__MASK;
}
#define DSI_6G_HW_VERSION_MINOR__MASK 0x0fff0000
#define DSI_6G_HW_VERSION_MINOR__SHIFT 16
static inline uint32_t DSI_6G_HW_VERSION_MINOR(uint32_t val)
{
return ((val) << DSI_6G_HW_VERSION_MINOR__SHIFT) & DSI_6G_HW_VERSION_MINOR__MASK;
}
#define DSI_6G_HW_VERSION_STEP__MASK 0x0000ffff
#define DSI_6G_HW_VERSION_STEP__SHIFT 0
static inline uint32_t DSI_6G_HW_VERSION_STEP(uint32_t val)
{
return ((val) << DSI_6G_HW_VERSION_STEP__SHIFT) & DSI_6G_HW_VERSION_STEP__MASK;
}
#define REG_DSI_CTRL 0x00000000 #define REG_DSI_CTRL 0x00000000
#define DSI_CTRL_ENABLE 0x00000001 #define DSI_CTRL_ENABLE 0x00000001
#define DSI_CTRL_VID_MODE_EN 0x00000002 #define DSI_CTRL_VID_MODE_EN 0x00000002
...@@ -96,11 +130,15 @@ enum dsi_cmd_trigger { ...@@ -96,11 +130,15 @@ enum dsi_cmd_trigger {
#define DSI_CTRL_CRC_CHECK 0x01000000 #define DSI_CTRL_CRC_CHECK 0x01000000
#define REG_DSI_STATUS0 0x00000004 #define REG_DSI_STATUS0 0x00000004
#define DSI_STATUS0_CMD_MODE_ENGINE_BUSY 0x00000001
#define DSI_STATUS0_CMD_MODE_DMA_BUSY 0x00000002 #define DSI_STATUS0_CMD_MODE_DMA_BUSY 0x00000002
#define DSI_STATUS0_CMD_MODE_MDP_BUSY 0x00000004
#define DSI_STATUS0_VIDEO_MODE_ENGINE_BUSY 0x00000008 #define DSI_STATUS0_VIDEO_MODE_ENGINE_BUSY 0x00000008
#define DSI_STATUS0_DSI_BUSY 0x00000010 #define DSI_STATUS0_DSI_BUSY 0x00000010
#define DSI_STATUS0_INTERLEAVE_OP_CONTENTION 0x80000000
#define REG_DSI_FIFO_STATUS 0x00000008 #define REG_DSI_FIFO_STATUS 0x00000008
#define DSI_FIFO_STATUS_CMD_MDP_FIFO_UNDERFLOW 0x00000080
#define REG_DSI_VID_CFG0 0x0000000c #define REG_DSI_VID_CFG0 0x0000000c
#define DSI_VID_CFG0_VIRT_CHANNEL__MASK 0x00000003 #define DSI_VID_CFG0_VIRT_CHANNEL__MASK 0x00000003
...@@ -111,7 +149,7 @@ static inline uint32_t DSI_VID_CFG0_VIRT_CHANNEL(uint32_t val) ...@@ -111,7 +149,7 @@ static inline uint32_t DSI_VID_CFG0_VIRT_CHANNEL(uint32_t val)
} }
#define DSI_VID_CFG0_DST_FORMAT__MASK 0x00000030 #define DSI_VID_CFG0_DST_FORMAT__MASK 0x00000030
#define DSI_VID_CFG0_DST_FORMAT__SHIFT 4 #define DSI_VID_CFG0_DST_FORMAT__SHIFT 4
static inline uint32_t DSI_VID_CFG0_DST_FORMAT(enum dsi_dst_format val) static inline uint32_t DSI_VID_CFG0_DST_FORMAT(enum dsi_vid_dst_format val)
{ {
return ((val) << DSI_VID_CFG0_DST_FORMAT__SHIFT) & DSI_VID_CFG0_DST_FORMAT__MASK; return ((val) << DSI_VID_CFG0_DST_FORMAT__SHIFT) & DSI_VID_CFG0_DST_FORMAT__MASK;
} }
...@@ -129,21 +167,15 @@ static inline uint32_t DSI_VID_CFG0_TRAFFIC_MODE(enum dsi_traffic_mode val) ...@@ -129,21 +167,15 @@ static inline uint32_t DSI_VID_CFG0_TRAFFIC_MODE(enum dsi_traffic_mode val)
#define DSI_VID_CFG0_PULSE_MODE_HSA_HE 0x10000000 #define DSI_VID_CFG0_PULSE_MODE_HSA_HE 0x10000000
#define REG_DSI_VID_CFG1 0x0000001c #define REG_DSI_VID_CFG1 0x0000001c
#define DSI_VID_CFG1_R_SEL 0x00000010 #define DSI_VID_CFG1_R_SEL 0x00000001
#define DSI_VID_CFG1_G_SEL 0x00000100 #define DSI_VID_CFG1_G_SEL 0x00000010
#define DSI_VID_CFG1_B_SEL 0x00001000 #define DSI_VID_CFG1_B_SEL 0x00000100
#define DSI_VID_CFG1_RGB_SWAP__MASK 0x00070000 #define DSI_VID_CFG1_RGB_SWAP__MASK 0x00007000
#define DSI_VID_CFG1_RGB_SWAP__SHIFT 16 #define DSI_VID_CFG1_RGB_SWAP__SHIFT 12
static inline uint32_t DSI_VID_CFG1_RGB_SWAP(enum dsi_rgb_swap val) static inline uint32_t DSI_VID_CFG1_RGB_SWAP(enum dsi_rgb_swap val)
{ {
return ((val) << DSI_VID_CFG1_RGB_SWAP__SHIFT) & DSI_VID_CFG1_RGB_SWAP__MASK; return ((val) << DSI_VID_CFG1_RGB_SWAP__SHIFT) & DSI_VID_CFG1_RGB_SWAP__MASK;
} }
#define DSI_VID_CFG1_INTERLEAVE_MAX__MASK 0x00f00000
#define DSI_VID_CFG1_INTERLEAVE_MAX__SHIFT 20
static inline uint32_t DSI_VID_CFG1_INTERLEAVE_MAX(uint32_t val)
{
return ((val) << DSI_VID_CFG1_INTERLEAVE_MAX__SHIFT) & DSI_VID_CFG1_INTERLEAVE_MAX__MASK;
}
#define REG_DSI_ACTIVE_H 0x00000020 #define REG_DSI_ACTIVE_H 0x00000020
#define DSI_ACTIVE_H_START__MASK 0x00000fff #define DSI_ACTIVE_H_START__MASK 0x00000fff
...@@ -201,32 +233,115 @@ static inline uint32_t DSI_ACTIVE_HSYNC_END(uint32_t val) ...@@ -201,32 +233,115 @@ static inline uint32_t DSI_ACTIVE_HSYNC_END(uint32_t val)
return ((val) << DSI_ACTIVE_HSYNC_END__SHIFT) & DSI_ACTIVE_HSYNC_END__MASK; return ((val) << DSI_ACTIVE_HSYNC_END__SHIFT) & DSI_ACTIVE_HSYNC_END__MASK;
} }
#define REG_DSI_ACTIVE_VSYNC 0x00000034 #define REG_DSI_ACTIVE_VSYNC_HPOS 0x00000030
#define DSI_ACTIVE_VSYNC_START__MASK 0x00000fff #define DSI_ACTIVE_VSYNC_HPOS_START__MASK 0x00000fff
#define DSI_ACTIVE_VSYNC_START__SHIFT 0 #define DSI_ACTIVE_VSYNC_HPOS_START__SHIFT 0
static inline uint32_t DSI_ACTIVE_VSYNC_START(uint32_t val) static inline uint32_t DSI_ACTIVE_VSYNC_HPOS_START(uint32_t val)
{ {
return ((val) << DSI_ACTIVE_VSYNC_START__SHIFT) & DSI_ACTIVE_VSYNC_START__MASK; return ((val) << DSI_ACTIVE_VSYNC_HPOS_START__SHIFT) & DSI_ACTIVE_VSYNC_HPOS_START__MASK;
} }
#define DSI_ACTIVE_VSYNC_END__MASK 0x0fff0000 #define DSI_ACTIVE_VSYNC_HPOS_END__MASK 0x0fff0000
#define DSI_ACTIVE_VSYNC_END__SHIFT 16 #define DSI_ACTIVE_VSYNC_HPOS_END__SHIFT 16
static inline uint32_t DSI_ACTIVE_VSYNC_END(uint32_t val) static inline uint32_t DSI_ACTIVE_VSYNC_HPOS_END(uint32_t val)
{ {
return ((val) << DSI_ACTIVE_VSYNC_END__SHIFT) & DSI_ACTIVE_VSYNC_END__MASK; return ((val) << DSI_ACTIVE_VSYNC_HPOS_END__SHIFT) & DSI_ACTIVE_VSYNC_HPOS_END__MASK;
}
#define REG_DSI_ACTIVE_VSYNC_VPOS 0x00000034
#define DSI_ACTIVE_VSYNC_VPOS_START__MASK 0x00000fff
#define DSI_ACTIVE_VSYNC_VPOS_START__SHIFT 0
static inline uint32_t DSI_ACTIVE_VSYNC_VPOS_START(uint32_t val)
{
return ((val) << DSI_ACTIVE_VSYNC_VPOS_START__SHIFT) & DSI_ACTIVE_VSYNC_VPOS_START__MASK;
}
#define DSI_ACTIVE_VSYNC_VPOS_END__MASK 0x0fff0000
#define DSI_ACTIVE_VSYNC_VPOS_END__SHIFT 16
static inline uint32_t DSI_ACTIVE_VSYNC_VPOS_END(uint32_t val)
{
return ((val) << DSI_ACTIVE_VSYNC_VPOS_END__SHIFT) & DSI_ACTIVE_VSYNC_VPOS_END__MASK;
} }
#define REG_DSI_CMD_DMA_CTRL 0x00000038 #define REG_DSI_CMD_DMA_CTRL 0x00000038
#define DSI_CMD_DMA_CTRL_BROADCAST_EN 0x80000000
#define DSI_CMD_DMA_CTRL_FROM_FRAME_BUFFER 0x10000000 #define DSI_CMD_DMA_CTRL_FROM_FRAME_BUFFER 0x10000000
#define DSI_CMD_DMA_CTRL_LOW_POWER 0x04000000 #define DSI_CMD_DMA_CTRL_LOW_POWER 0x04000000
#define REG_DSI_CMD_CFG0 0x0000003c #define REG_DSI_CMD_CFG0 0x0000003c
#define DSI_CMD_CFG0_DST_FORMAT__MASK 0x0000000f
#define DSI_CMD_CFG0_DST_FORMAT__SHIFT 0
static inline uint32_t DSI_CMD_CFG0_DST_FORMAT(enum dsi_cmd_dst_format val)
{
return ((val) << DSI_CMD_CFG0_DST_FORMAT__SHIFT) & DSI_CMD_CFG0_DST_FORMAT__MASK;
}
#define DSI_CMD_CFG0_R_SEL 0x00000010
#define DSI_CMD_CFG0_G_SEL 0x00000100
#define DSI_CMD_CFG0_B_SEL 0x00001000
#define DSI_CMD_CFG0_INTERLEAVE_MAX__MASK 0x00f00000
#define DSI_CMD_CFG0_INTERLEAVE_MAX__SHIFT 20
static inline uint32_t DSI_CMD_CFG0_INTERLEAVE_MAX(uint32_t val)
{
return ((val) << DSI_CMD_CFG0_INTERLEAVE_MAX__SHIFT) & DSI_CMD_CFG0_INTERLEAVE_MAX__MASK;
}
#define DSI_CMD_CFG0_RGB_SWAP__MASK 0x00070000
#define DSI_CMD_CFG0_RGB_SWAP__SHIFT 16
static inline uint32_t DSI_CMD_CFG0_RGB_SWAP(enum dsi_rgb_swap val)
{
return ((val) << DSI_CMD_CFG0_RGB_SWAP__SHIFT) & DSI_CMD_CFG0_RGB_SWAP__MASK;
}
#define REG_DSI_CMD_CFG1 0x00000040 #define REG_DSI_CMD_CFG1 0x00000040
#define DSI_CMD_CFG1_WR_MEM_START__MASK 0x000000ff
#define DSI_CMD_CFG1_WR_MEM_START__SHIFT 0
static inline uint32_t DSI_CMD_CFG1_WR_MEM_START(uint32_t val)
{
return ((val) << DSI_CMD_CFG1_WR_MEM_START__SHIFT) & DSI_CMD_CFG1_WR_MEM_START__MASK;
}
#define DSI_CMD_CFG1_WR_MEM_CONTINUE__MASK 0x0000ff00
#define DSI_CMD_CFG1_WR_MEM_CONTINUE__SHIFT 8
static inline uint32_t DSI_CMD_CFG1_WR_MEM_CONTINUE(uint32_t val)
{
return ((val) << DSI_CMD_CFG1_WR_MEM_CONTINUE__SHIFT) & DSI_CMD_CFG1_WR_MEM_CONTINUE__MASK;
}
#define DSI_CMD_CFG1_INSERT_DCS_COMMAND 0x00010000
#define REG_DSI_DMA_BASE 0x00000044 #define REG_DSI_DMA_BASE 0x00000044
#define REG_DSI_DMA_LEN 0x00000048 #define REG_DSI_DMA_LEN 0x00000048
#define REG_DSI_CMD_MDP_STREAM_CTRL 0x00000054
#define DSI_CMD_MDP_STREAM_CTRL_DATA_TYPE__MASK 0x0000003f
#define DSI_CMD_MDP_STREAM_CTRL_DATA_TYPE__SHIFT 0
static inline uint32_t DSI_CMD_MDP_STREAM_CTRL_DATA_TYPE(uint32_t val)
{
return ((val) << DSI_CMD_MDP_STREAM_CTRL_DATA_TYPE__SHIFT) & DSI_CMD_MDP_STREAM_CTRL_DATA_TYPE__MASK;
}
#define DSI_CMD_MDP_STREAM_CTRL_VIRTUAL_CHANNEL__MASK 0x00000300
#define DSI_CMD_MDP_STREAM_CTRL_VIRTUAL_CHANNEL__SHIFT 8
static inline uint32_t DSI_CMD_MDP_STREAM_CTRL_VIRTUAL_CHANNEL(uint32_t val)
{
return ((val) << DSI_CMD_MDP_STREAM_CTRL_VIRTUAL_CHANNEL__SHIFT) & DSI_CMD_MDP_STREAM_CTRL_VIRTUAL_CHANNEL__MASK;
}
#define DSI_CMD_MDP_STREAM_CTRL_WORD_COUNT__MASK 0xffff0000
#define DSI_CMD_MDP_STREAM_CTRL_WORD_COUNT__SHIFT 16
static inline uint32_t DSI_CMD_MDP_STREAM_CTRL_WORD_COUNT(uint32_t val)
{
return ((val) << DSI_CMD_MDP_STREAM_CTRL_WORD_COUNT__SHIFT) & DSI_CMD_MDP_STREAM_CTRL_WORD_COUNT__MASK;
}
#define REG_DSI_CMD_MDP_STREAM_TOTAL 0x00000058
#define DSI_CMD_MDP_STREAM_TOTAL_H_TOTAL__MASK 0x00000fff
#define DSI_CMD_MDP_STREAM_TOTAL_H_TOTAL__SHIFT 0
static inline uint32_t DSI_CMD_MDP_STREAM_TOTAL_H_TOTAL(uint32_t val)
{
return ((val) << DSI_CMD_MDP_STREAM_TOTAL_H_TOTAL__SHIFT) & DSI_CMD_MDP_STREAM_TOTAL_H_TOTAL__MASK;
}
#define DSI_CMD_MDP_STREAM_TOTAL_V_TOTAL__MASK 0x0fff0000
#define DSI_CMD_MDP_STREAM_TOTAL_V_TOTAL__SHIFT 16
static inline uint32_t DSI_CMD_MDP_STREAM_TOTAL_V_TOTAL(uint32_t val)
{
return ((val) << DSI_CMD_MDP_STREAM_TOTAL_V_TOTAL__SHIFT) & DSI_CMD_MDP_STREAM_TOTAL_V_TOTAL__MASK;
}
#define REG_DSI_ACK_ERR_STATUS 0x00000064 #define REG_DSI_ACK_ERR_STATUS 0x00000064
static inline uint32_t REG_DSI_RDBK(uint32_t i0) { return 0x00000068 + 0x4*i0; } static inline uint32_t REG_DSI_RDBK(uint32_t i0) { return 0x00000068 + 0x4*i0; }
...@@ -234,19 +349,25 @@ static inline uint32_t REG_DSI_RDBK(uint32_t i0) { return 0x00000068 + 0x4*i0; } ...@@ -234,19 +349,25 @@ static inline uint32_t REG_DSI_RDBK(uint32_t i0) { return 0x00000068 + 0x4*i0; }
static inline uint32_t REG_DSI_RDBK_DATA(uint32_t i0) { return 0x00000068 + 0x4*i0; } static inline uint32_t REG_DSI_RDBK_DATA(uint32_t i0) { return 0x00000068 + 0x4*i0; }
#define REG_DSI_TRIG_CTRL 0x00000080 #define REG_DSI_TRIG_CTRL 0x00000080
#define DSI_TRIG_CTRL_DMA_TRIGGER__MASK 0x0000000f #define DSI_TRIG_CTRL_DMA_TRIGGER__MASK 0x00000007
#define DSI_TRIG_CTRL_DMA_TRIGGER__SHIFT 0 #define DSI_TRIG_CTRL_DMA_TRIGGER__SHIFT 0
static inline uint32_t DSI_TRIG_CTRL_DMA_TRIGGER(enum dsi_cmd_trigger val) static inline uint32_t DSI_TRIG_CTRL_DMA_TRIGGER(enum dsi_cmd_trigger val)
{ {
return ((val) << DSI_TRIG_CTRL_DMA_TRIGGER__SHIFT) & DSI_TRIG_CTRL_DMA_TRIGGER__MASK; return ((val) << DSI_TRIG_CTRL_DMA_TRIGGER__SHIFT) & DSI_TRIG_CTRL_DMA_TRIGGER__MASK;
} }
#define DSI_TRIG_CTRL_MDP_TRIGGER__MASK 0x000000f0 #define DSI_TRIG_CTRL_MDP_TRIGGER__MASK 0x00000070
#define DSI_TRIG_CTRL_MDP_TRIGGER__SHIFT 4 #define DSI_TRIG_CTRL_MDP_TRIGGER__SHIFT 4
static inline uint32_t DSI_TRIG_CTRL_MDP_TRIGGER(enum dsi_cmd_trigger val) static inline uint32_t DSI_TRIG_CTRL_MDP_TRIGGER(enum dsi_cmd_trigger val)
{ {
return ((val) << DSI_TRIG_CTRL_MDP_TRIGGER__SHIFT) & DSI_TRIG_CTRL_MDP_TRIGGER__MASK; return ((val) << DSI_TRIG_CTRL_MDP_TRIGGER__SHIFT) & DSI_TRIG_CTRL_MDP_TRIGGER__MASK;
} }
#define DSI_TRIG_CTRL_STREAM 0x00000100 #define DSI_TRIG_CTRL_STREAM__MASK 0x00000300
#define DSI_TRIG_CTRL_STREAM__SHIFT 8
static inline uint32_t DSI_TRIG_CTRL_STREAM(uint32_t val)
{
return ((val) << DSI_TRIG_CTRL_STREAM__SHIFT) & DSI_TRIG_CTRL_STREAM__MASK;
}
#define DSI_TRIG_CTRL_BLOCK_DMA_WITHIN_FRAME 0x00001000
#define DSI_TRIG_CTRL_TE 0x80000000 #define DSI_TRIG_CTRL_TE 0x80000000
#define REG_DSI_TRIG_DMA 0x0000008c #define REG_DSI_TRIG_DMA 0x0000008c
...@@ -274,6 +395,12 @@ static inline uint32_t DSI_CLKOUT_TIMING_CTRL_T_CLK_POST(uint32_t val) ...@@ -274,6 +395,12 @@ static inline uint32_t DSI_CLKOUT_TIMING_CTRL_T_CLK_POST(uint32_t val)
#define DSI_EOT_PACKET_CTRL_RX_EOT_IGNORE 0x00000010 #define DSI_EOT_PACKET_CTRL_RX_EOT_IGNORE 0x00000010
#define REG_DSI_LANE_SWAP_CTRL 0x000000ac #define REG_DSI_LANE_SWAP_CTRL 0x000000ac
#define DSI_LANE_SWAP_CTRL_DLN_SWAP_SEL__MASK 0x00000007
#define DSI_LANE_SWAP_CTRL_DLN_SWAP_SEL__SHIFT 0
static inline uint32_t DSI_LANE_SWAP_CTRL_DLN_SWAP_SEL(enum dsi_lane_swap val)
{
return ((val) << DSI_LANE_SWAP_CTRL_DLN_SWAP_SEL__SHIFT) & DSI_LANE_SWAP_CTRL_DLN_SWAP_SEL__MASK;
}
#define REG_DSI_ERR_INT_MASK0 0x00000108 #define REG_DSI_ERR_INT_MASK0 0x00000108
...@@ -282,8 +409,36 @@ static inline uint32_t DSI_CLKOUT_TIMING_CTRL_T_CLK_POST(uint32_t val) ...@@ -282,8 +409,36 @@ static inline uint32_t DSI_CLKOUT_TIMING_CTRL_T_CLK_POST(uint32_t val)
#define REG_DSI_RESET 0x00000114 #define REG_DSI_RESET 0x00000114
#define REG_DSI_CLK_CTRL 0x00000118 #define REG_DSI_CLK_CTRL 0x00000118
#define DSI_CLK_CTRL_AHBS_HCLK_ON 0x00000001
#define DSI_CLK_CTRL_AHBM_SCLK_ON 0x00000002
#define DSI_CLK_CTRL_PCLK_ON 0x00000004
#define DSI_CLK_CTRL_DSICLK_ON 0x00000008
#define DSI_CLK_CTRL_BYTECLK_ON 0x00000010
#define DSI_CLK_CTRL_ESCCLK_ON 0x00000020
#define DSI_CLK_CTRL_FORCE_ON_DYN_AHBM_HCLK 0x00000200
#define REG_DSI_CLK_STATUS 0x0000011c
#define DSI_CLK_STATUS_PLL_UNLOCKED 0x00010000
#define REG_DSI_PHY_RESET 0x00000128 #define REG_DSI_PHY_RESET 0x00000128
#define DSI_PHY_RESET_RESET 0x00000001
#define REG_DSI_RDBK_DATA_CTRL 0x000001d0
#define DSI_RDBK_DATA_CTRL_COUNT__MASK 0x00ff0000
#define DSI_RDBK_DATA_CTRL_COUNT__SHIFT 16
static inline uint32_t DSI_RDBK_DATA_CTRL_COUNT(uint32_t val)
{
return ((val) << DSI_RDBK_DATA_CTRL_COUNT__SHIFT) & DSI_RDBK_DATA_CTRL_COUNT__MASK;
}
#define DSI_RDBK_DATA_CTRL_CLR 0x00000001
#define REG_DSI_VERSION 0x000001f0
#define DSI_VERSION_MAJOR__MASK 0xff000000
#define DSI_VERSION_MAJOR__SHIFT 24
static inline uint32_t DSI_VERSION_MAJOR(uint32_t val)
{
return ((val) << DSI_VERSION_MAJOR__SHIFT) & DSI_VERSION_MAJOR__MASK;
}
#define REG_DSI_PHY_PLL_CTRL_0 0x00000200 #define REG_DSI_PHY_PLL_CTRL_0 0x00000200
#define DSI_PHY_PLL_CTRL_0_ENABLE 0x00000001 #define DSI_PHY_PLL_CTRL_0_ENABLE 0x00000001
...@@ -501,5 +656,184 @@ static inline uint32_t REG_DSI_8960_LN_TEST_STR_1(uint32_t i0) { return 0x000003 ...@@ -501,5 +656,184 @@ static inline uint32_t REG_DSI_8960_LN_TEST_STR_1(uint32_t i0) { return 0x000003
#define REG_DSI_8960_PHY_CAL_STATUS 0x00000550 #define REG_DSI_8960_PHY_CAL_STATUS 0x00000550
#define DSI_8960_PHY_CAL_STATUS_CAL_BUSY 0x00000010 #define DSI_8960_PHY_CAL_STATUS_CAL_BUSY 0x00000010
static inline uint32_t REG_DSI_28nm_PHY_LN(uint32_t i0) { return 0x00000000 + 0x40*i0; }
static inline uint32_t REG_DSI_28nm_PHY_LN_CFG_0(uint32_t i0) { return 0x00000000 + 0x40*i0; }
static inline uint32_t REG_DSI_28nm_PHY_LN_CFG_1(uint32_t i0) { return 0x00000004 + 0x40*i0; }
static inline uint32_t REG_DSI_28nm_PHY_LN_CFG_2(uint32_t i0) { return 0x00000008 + 0x40*i0; }
static inline uint32_t REG_DSI_28nm_PHY_LN_CFG_3(uint32_t i0) { return 0x0000000c + 0x40*i0; }
static inline uint32_t REG_DSI_28nm_PHY_LN_CFG_4(uint32_t i0) { return 0x00000010 + 0x40*i0; }
static inline uint32_t REG_DSI_28nm_PHY_LN_TEST_DATAPATH(uint32_t i0) { return 0x00000014 + 0x40*i0; }
static inline uint32_t REG_DSI_28nm_PHY_LN_DEBUG_SEL(uint32_t i0) { return 0x00000018 + 0x40*i0; }
static inline uint32_t REG_DSI_28nm_PHY_LN_TEST_STR_0(uint32_t i0) { return 0x0000001c + 0x40*i0; }
static inline uint32_t REG_DSI_28nm_PHY_LN_TEST_STR_1(uint32_t i0) { return 0x00000020 + 0x40*i0; }
#define REG_DSI_28nm_PHY_LNCK_CFG_0 0x00000100
#define REG_DSI_28nm_PHY_LNCK_CFG_1 0x00000104
#define REG_DSI_28nm_PHY_LNCK_CFG_2 0x00000108
#define REG_DSI_28nm_PHY_LNCK_CFG_3 0x0000010c
#define REG_DSI_28nm_PHY_LNCK_CFG_4 0x00000110
#define REG_DSI_28nm_PHY_LNCK_TEST_DATAPATH 0x00000114
#define REG_DSI_28nm_PHY_LNCK_DEBUG_SEL 0x00000118
#define REG_DSI_28nm_PHY_LNCK_TEST_STR0 0x0000011c
#define REG_DSI_28nm_PHY_LNCK_TEST_STR1 0x00000120
#define REG_DSI_28nm_PHY_TIMING_CTRL_0 0x00000140
#define DSI_28nm_PHY_TIMING_CTRL_0_CLK_ZERO__MASK 0x000000ff
#define DSI_28nm_PHY_TIMING_CTRL_0_CLK_ZERO__SHIFT 0
static inline uint32_t DSI_28nm_PHY_TIMING_CTRL_0_CLK_ZERO(uint32_t val)
{
return ((val) << DSI_28nm_PHY_TIMING_CTRL_0_CLK_ZERO__SHIFT) & DSI_28nm_PHY_TIMING_CTRL_0_CLK_ZERO__MASK;
}
#define REG_DSI_28nm_PHY_TIMING_CTRL_1 0x00000144
#define DSI_28nm_PHY_TIMING_CTRL_1_CLK_TRAIL__MASK 0x000000ff
#define DSI_28nm_PHY_TIMING_CTRL_1_CLK_TRAIL__SHIFT 0
static inline uint32_t DSI_28nm_PHY_TIMING_CTRL_1_CLK_TRAIL(uint32_t val)
{
return ((val) << DSI_28nm_PHY_TIMING_CTRL_1_CLK_TRAIL__SHIFT) & DSI_28nm_PHY_TIMING_CTRL_1_CLK_TRAIL__MASK;
}
#define REG_DSI_28nm_PHY_TIMING_CTRL_2 0x00000148
#define DSI_28nm_PHY_TIMING_CTRL_2_CLK_PREPARE__MASK 0x000000ff
#define DSI_28nm_PHY_TIMING_CTRL_2_CLK_PREPARE__SHIFT 0
static inline uint32_t DSI_28nm_PHY_TIMING_CTRL_2_CLK_PREPARE(uint32_t val)
{
return ((val) << DSI_28nm_PHY_TIMING_CTRL_2_CLK_PREPARE__SHIFT) & DSI_28nm_PHY_TIMING_CTRL_2_CLK_PREPARE__MASK;
}
#define REG_DSI_28nm_PHY_TIMING_CTRL_3 0x0000014c
#define DSI_28nm_PHY_TIMING_CTRL_3_CLK_ZERO_8 0x00000001
#define REG_DSI_28nm_PHY_TIMING_CTRL_4 0x00000150
#define DSI_28nm_PHY_TIMING_CTRL_4_HS_EXIT__MASK 0x000000ff
#define DSI_28nm_PHY_TIMING_CTRL_4_HS_EXIT__SHIFT 0
static inline uint32_t DSI_28nm_PHY_TIMING_CTRL_4_HS_EXIT(uint32_t val)
{
return ((val) << DSI_28nm_PHY_TIMING_CTRL_4_HS_EXIT__SHIFT) & DSI_28nm_PHY_TIMING_CTRL_4_HS_EXIT__MASK;
}
#define REG_DSI_28nm_PHY_TIMING_CTRL_5 0x00000154
#define DSI_28nm_PHY_TIMING_CTRL_5_HS_ZERO__MASK 0x000000ff
#define DSI_28nm_PHY_TIMING_CTRL_5_HS_ZERO__SHIFT 0
static inline uint32_t DSI_28nm_PHY_TIMING_CTRL_5_HS_ZERO(uint32_t val)
{
return ((val) << DSI_28nm_PHY_TIMING_CTRL_5_HS_ZERO__SHIFT) & DSI_28nm_PHY_TIMING_CTRL_5_HS_ZERO__MASK;
}
#define REG_DSI_28nm_PHY_TIMING_CTRL_6 0x00000158
#define DSI_28nm_PHY_TIMING_CTRL_6_HS_PREPARE__MASK 0x000000ff
#define DSI_28nm_PHY_TIMING_CTRL_6_HS_PREPARE__SHIFT 0
static inline uint32_t DSI_28nm_PHY_TIMING_CTRL_6_HS_PREPARE(uint32_t val)
{
return ((val) << DSI_28nm_PHY_TIMING_CTRL_6_HS_PREPARE__SHIFT) & DSI_28nm_PHY_TIMING_CTRL_6_HS_PREPARE__MASK;
}
#define REG_DSI_28nm_PHY_TIMING_CTRL_7 0x0000015c
#define DSI_28nm_PHY_TIMING_CTRL_7_HS_TRAIL__MASK 0x000000ff
#define DSI_28nm_PHY_TIMING_CTRL_7_HS_TRAIL__SHIFT 0
static inline uint32_t DSI_28nm_PHY_TIMING_CTRL_7_HS_TRAIL(uint32_t val)
{
return ((val) << DSI_28nm_PHY_TIMING_CTRL_7_HS_TRAIL__SHIFT) & DSI_28nm_PHY_TIMING_CTRL_7_HS_TRAIL__MASK;
}
#define REG_DSI_28nm_PHY_TIMING_CTRL_8 0x00000160
#define DSI_28nm_PHY_TIMING_CTRL_8_HS_RQST__MASK 0x000000ff
#define DSI_28nm_PHY_TIMING_CTRL_8_HS_RQST__SHIFT 0
static inline uint32_t DSI_28nm_PHY_TIMING_CTRL_8_HS_RQST(uint32_t val)
{
return ((val) << DSI_28nm_PHY_TIMING_CTRL_8_HS_RQST__SHIFT) & DSI_28nm_PHY_TIMING_CTRL_8_HS_RQST__MASK;
}
#define REG_DSI_28nm_PHY_TIMING_CTRL_9 0x00000164
#define DSI_28nm_PHY_TIMING_CTRL_9_TA_GO__MASK 0x00000007
#define DSI_28nm_PHY_TIMING_CTRL_9_TA_GO__SHIFT 0
static inline uint32_t DSI_28nm_PHY_TIMING_CTRL_9_TA_GO(uint32_t val)
{
return ((val) << DSI_28nm_PHY_TIMING_CTRL_9_TA_GO__SHIFT) & DSI_28nm_PHY_TIMING_CTRL_9_TA_GO__MASK;
}
#define DSI_28nm_PHY_TIMING_CTRL_9_TA_SURE__MASK 0x00000070
#define DSI_28nm_PHY_TIMING_CTRL_9_TA_SURE__SHIFT 4
static inline uint32_t DSI_28nm_PHY_TIMING_CTRL_9_TA_SURE(uint32_t val)
{
return ((val) << DSI_28nm_PHY_TIMING_CTRL_9_TA_SURE__SHIFT) & DSI_28nm_PHY_TIMING_CTRL_9_TA_SURE__MASK;
}
#define REG_DSI_28nm_PHY_TIMING_CTRL_10 0x00000168
#define DSI_28nm_PHY_TIMING_CTRL_10_TA_GET__MASK 0x00000007
#define DSI_28nm_PHY_TIMING_CTRL_10_TA_GET__SHIFT 0
static inline uint32_t DSI_28nm_PHY_TIMING_CTRL_10_TA_GET(uint32_t val)
{
return ((val) << DSI_28nm_PHY_TIMING_CTRL_10_TA_GET__SHIFT) & DSI_28nm_PHY_TIMING_CTRL_10_TA_GET__MASK;
}
#define REG_DSI_28nm_PHY_TIMING_CTRL_11 0x0000016c
#define DSI_28nm_PHY_TIMING_CTRL_11_TRIG3_CMD__MASK 0x000000ff
#define DSI_28nm_PHY_TIMING_CTRL_11_TRIG3_CMD__SHIFT 0
static inline uint32_t DSI_28nm_PHY_TIMING_CTRL_11_TRIG3_CMD(uint32_t val)
{
return ((val) << DSI_28nm_PHY_TIMING_CTRL_11_TRIG3_CMD__SHIFT) & DSI_28nm_PHY_TIMING_CTRL_11_TRIG3_CMD__MASK;
}
#define REG_DSI_28nm_PHY_CTRL_0 0x00000170
#define REG_DSI_28nm_PHY_CTRL_1 0x00000174
#define REG_DSI_28nm_PHY_CTRL_2 0x00000178
#define REG_DSI_28nm_PHY_CTRL_3 0x0000017c
#define REG_DSI_28nm_PHY_CTRL_4 0x00000180
#define REG_DSI_28nm_PHY_STRENGTH_0 0x00000184
#define REG_DSI_28nm_PHY_STRENGTH_1 0x00000188
#define REG_DSI_28nm_PHY_BIST_CTRL_0 0x000001b4
#define REG_DSI_28nm_PHY_BIST_CTRL_1 0x000001b8
#define REG_DSI_28nm_PHY_BIST_CTRL_2 0x000001bc
#define REG_DSI_28nm_PHY_BIST_CTRL_3 0x000001c0
#define REG_DSI_28nm_PHY_BIST_CTRL_4 0x000001c4
#define REG_DSI_28nm_PHY_BIST_CTRL_5 0x000001c8
#define REG_DSI_28nm_PHY_GLBL_TEST_CTRL 0x000001d4
#define REG_DSI_28nm_PHY_LDO_CNTRL 0x000001dc
#define REG_DSI_28nm_PHY_REGULATOR_CTRL_0 0x00000000
#define REG_DSI_28nm_PHY_REGULATOR_CTRL_1 0x00000004
#define REG_DSI_28nm_PHY_REGULATOR_CTRL_2 0x00000008
#define REG_DSI_28nm_PHY_REGULATOR_CTRL_3 0x0000000c
#define REG_DSI_28nm_PHY_REGULATOR_CTRL_4 0x00000010
#define REG_DSI_28nm_PHY_REGULATOR_CTRL_5 0x00000014
#define REG_DSI_28nm_PHY_REGULATOR_CAL_PWR_CFG 0x00000018
#endif /* DSI_XML */ #endif /* DSI_XML */
/*
* Copyright (c) 2015, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/gpio.h>
#include <linux/interrupt.h>
#include <linux/of_device.h>
#include <linux/of_gpio.h>
#include <linux/of_irq.h>
#include <linux/regulator/consumer.h>
#include <linux/spinlock.h>
#include <video/mipi_display.h>
#include "dsi.h"
#include "dsi.xml.h"
#define MSM_DSI_VER_MAJOR_V2 0x02
#define MSM_DSI_VER_MAJOR_6G 0x03
#define MSM_DSI_6G_VER_MINOR_V1_0 0x10000000
#define MSM_DSI_6G_VER_MINOR_V1_1 0x10010000
#define MSM_DSI_6G_VER_MINOR_V1_1_1 0x10010001
#define MSM_DSI_6G_VER_MINOR_V1_2 0x10020000
#define MSM_DSI_6G_VER_MINOR_V1_3_1 0x10030001
#define DSI_6G_REG_SHIFT 4
#define DSI_REGULATOR_MAX 8
struct dsi_reg_entry {
char name[32];
int min_voltage;
int max_voltage;
int enable_load;
int disable_load;
};
struct dsi_reg_config {
int num;
struct dsi_reg_entry regs[DSI_REGULATOR_MAX];
};
struct dsi_config {
u32 major;
u32 minor;
u32 io_offset;
enum msm_dsi_phy_type phy_type;
struct dsi_reg_config reg_cfg;
};
static const struct dsi_config dsi_cfgs[] = {
{MSM_DSI_VER_MAJOR_V2, 0, 0, MSM_DSI_PHY_UNKNOWN},
{ /* 8974 v1 */
.major = MSM_DSI_VER_MAJOR_6G,
.minor = MSM_DSI_6G_VER_MINOR_V1_0,
.io_offset = DSI_6G_REG_SHIFT,
.phy_type = MSM_DSI_PHY_28NM,
.reg_cfg = {
.num = 4,
.regs = {
{"gdsc", -1, -1, -1, -1},
{"vdd", 3000000, 3000000, 150000, 100},
{"vdda", 1200000, 1200000, 100000, 100},
{"vddio", 1800000, 1800000, 100000, 100},
},
},
},
{ /* 8974 v2 */
.major = MSM_DSI_VER_MAJOR_6G,
.minor = MSM_DSI_6G_VER_MINOR_V1_1,
.io_offset = DSI_6G_REG_SHIFT,
.phy_type = MSM_DSI_PHY_28NM,
.reg_cfg = {
.num = 4,
.regs = {
{"gdsc", -1, -1, -1, -1},
{"vdd", 3000000, 3000000, 150000, 100},
{"vdda", 1200000, 1200000, 100000, 100},
{"vddio", 1800000, 1800000, 100000, 100},
},
},
},
{ /* 8974 v3 */
.major = MSM_DSI_VER_MAJOR_6G,
.minor = MSM_DSI_6G_VER_MINOR_V1_1_1,
.io_offset = DSI_6G_REG_SHIFT,
.phy_type = MSM_DSI_PHY_28NM,
.reg_cfg = {
.num = 4,
.regs = {
{"gdsc", -1, -1, -1, -1},
{"vdd", 3000000, 3000000, 150000, 100},
{"vdda", 1200000, 1200000, 100000, 100},
{"vddio", 1800000, 1800000, 100000, 100},
},
},
},
{ /* 8084 */
.major = MSM_DSI_VER_MAJOR_6G,
.minor = MSM_DSI_6G_VER_MINOR_V1_2,
.io_offset = DSI_6G_REG_SHIFT,
.phy_type = MSM_DSI_PHY_28NM,
.reg_cfg = {
.num = 4,
.regs = {
{"gdsc", -1, -1, -1, -1},
{"vdd", 3000000, 3000000, 150000, 100},
{"vdda", 1200000, 1200000, 100000, 100},
{"vddio", 1800000, 1800000, 100000, 100},
},
},
},
{ /* 8916 */
.major = MSM_DSI_VER_MAJOR_6G,
.minor = MSM_DSI_6G_VER_MINOR_V1_3_1,
.io_offset = DSI_6G_REG_SHIFT,
.phy_type = MSM_DSI_PHY_28NM,
.reg_cfg = {
.num = 4,
.regs = {
{"gdsc", -1, -1, -1, -1},
{"vdd", 2850000, 2850000, 100000, 100},
{"vdda", 1200000, 1200000, 100000, 100},
{"vddio", 1800000, 1800000, 100000, 100},
},
},
},
};
static int dsi_get_version(const void __iomem *base, u32 *major, u32 *minor)
{
u32 ver;
u32 ver_6g;
if (!major || !minor)
return -EINVAL;
/* From DSI6G(v3), addition of a 6G_HW_VERSION register at offset 0
* makes all other registers 4-byte shifted down.
*/
ver_6g = msm_readl(base + REG_DSI_6G_HW_VERSION);
if (ver_6g == 0) {
ver = msm_readl(base + REG_DSI_VERSION);
ver = FIELD(ver, DSI_VERSION_MAJOR);
if (ver <= MSM_DSI_VER_MAJOR_V2) {
/* old versions */
*major = ver;
*minor = 0;
return 0;
} else {
return -EINVAL;
}
} else {
ver = msm_readl(base + DSI_6G_REG_SHIFT + REG_DSI_VERSION);
ver = FIELD(ver, DSI_VERSION_MAJOR);
if (ver == MSM_DSI_VER_MAJOR_6G) {
/* 6G version */
*major = ver;
*minor = ver_6g;
return 0;
} else {
return -EINVAL;
}
}
}
#define DSI_ERR_STATE_ACK 0x0000
#define DSI_ERR_STATE_TIMEOUT 0x0001
#define DSI_ERR_STATE_DLN0_PHY 0x0002
#define DSI_ERR_STATE_FIFO 0x0004
#define DSI_ERR_STATE_MDP_FIFO_UNDERFLOW 0x0008
#define DSI_ERR_STATE_INTERLEAVE_OP_CONTENTION 0x0010
#define DSI_ERR_STATE_PLL_UNLOCKED 0x0020
#define DSI_CLK_CTRL_ENABLE_CLKS \
(DSI_CLK_CTRL_AHBS_HCLK_ON | DSI_CLK_CTRL_AHBM_SCLK_ON | \
DSI_CLK_CTRL_PCLK_ON | DSI_CLK_CTRL_DSICLK_ON | \
DSI_CLK_CTRL_BYTECLK_ON | DSI_CLK_CTRL_ESCCLK_ON | \
DSI_CLK_CTRL_FORCE_ON_DYN_AHBM_HCLK)
struct msm_dsi_host {
struct mipi_dsi_host base;
struct platform_device *pdev;
struct drm_device *dev;
int id;
void __iomem *ctrl_base;
struct regulator_bulk_data supplies[DSI_REGULATOR_MAX];
struct clk *mdp_core_clk;
struct clk *ahb_clk;
struct clk *axi_clk;
struct clk *mmss_misc_ahb_clk;
struct clk *byte_clk;
struct clk *esc_clk;
struct clk *pixel_clk;
u32 byte_clk_rate;
struct gpio_desc *disp_en_gpio;
struct gpio_desc *te_gpio;
const struct dsi_config *cfg;
struct completion dma_comp;
struct completion video_comp;
struct mutex dev_mutex;
struct mutex cmd_mutex;
struct mutex clk_mutex;
spinlock_t intr_lock; /* Protect interrupt ctrl register */
u32 err_work_state;
struct work_struct err_work;
struct workqueue_struct *workqueue;
struct drm_gem_object *tx_gem_obj;
u8 *rx_buf;
struct drm_display_mode *mode;
/* Panel info */
struct device_node *panel_node;
unsigned int channel;
unsigned int lanes;
enum mipi_dsi_pixel_format format;
unsigned long mode_flags;
u32 dma_cmd_ctrl_restore;
bool registered;
bool power_on;
int irq;
};
static u32 dsi_get_bpp(const enum mipi_dsi_pixel_format fmt)
{
switch (fmt) {
case MIPI_DSI_FMT_RGB565: return 16;
case MIPI_DSI_FMT_RGB666_PACKED: return 18;
case MIPI_DSI_FMT_RGB666:
case MIPI_DSI_FMT_RGB888:
default: return 24;
}
}
static inline u32 dsi_read(struct msm_dsi_host *msm_host, u32 reg)
{
return msm_readl(msm_host->ctrl_base + msm_host->cfg->io_offset + reg);
}
static inline void dsi_write(struct msm_dsi_host *msm_host, u32 reg, u32 data)
{
msm_writel(data, msm_host->ctrl_base + msm_host->cfg->io_offset + reg);
}
static int dsi_host_regulator_enable(struct msm_dsi_host *msm_host);
static void dsi_host_regulator_disable(struct msm_dsi_host *msm_host);
static const struct dsi_config *dsi_get_config(struct msm_dsi_host *msm_host)
{
const struct dsi_config *cfg;
struct regulator *gdsc_reg;
int i, ret;
u32 major = 0, minor = 0;
gdsc_reg = regulator_get(&msm_host->pdev->dev, "gdsc");
if (IS_ERR_OR_NULL(gdsc_reg)) {
pr_err("%s: cannot get gdsc\n", __func__);
goto fail;
}
ret = regulator_enable(gdsc_reg);
if (ret) {
pr_err("%s: unable to enable gdsc\n", __func__);
regulator_put(gdsc_reg);
goto fail;
}
ret = clk_prepare_enable(msm_host->ahb_clk);
if (ret) {
pr_err("%s: unable to enable ahb_clk\n", __func__);
regulator_disable(gdsc_reg);
regulator_put(gdsc_reg);
goto fail;
}
ret = dsi_get_version(msm_host->ctrl_base, &major, &minor);
clk_disable_unprepare(msm_host->ahb_clk);
regulator_disable(gdsc_reg);
regulator_put(gdsc_reg);
if (ret) {
pr_err("%s: Invalid version\n", __func__);
goto fail;
}
for (i = 0; i < ARRAY_SIZE(dsi_cfgs); i++) {
cfg = dsi_cfgs + i;
if ((cfg->major == major) && (cfg->minor == minor))
return cfg;
}
pr_err("%s: Version %x:%x not support\n", __func__, major, minor);
fail:
return NULL;
}
static inline struct msm_dsi_host *to_msm_dsi_host(struct mipi_dsi_host *host)
{
return container_of(host, struct msm_dsi_host, base);
}
static void dsi_host_regulator_disable(struct msm_dsi_host *msm_host)
{
struct regulator_bulk_data *s = msm_host->supplies;
const struct dsi_reg_entry *regs = msm_host->cfg->reg_cfg.regs;
int num = msm_host->cfg->reg_cfg.num;
int i;
DBG("");
for (i = num - 1; i >= 0; i--)
if (regs[i].disable_load >= 0)
regulator_set_optimum_mode(s[i].consumer,
regs[i].disable_load);
regulator_bulk_disable(num, s);
}
static int dsi_host_regulator_enable(struct msm_dsi_host *msm_host)
{
struct regulator_bulk_data *s = msm_host->supplies;
const struct dsi_reg_entry *regs = msm_host->cfg->reg_cfg.regs;
int num = msm_host->cfg->reg_cfg.num;
int ret, i;
DBG("");
for (i = 0; i < num; i++) {
if (regs[i].enable_load >= 0) {
ret = regulator_set_optimum_mode(s[i].consumer,
regs[i].enable_load);
if (ret < 0) {
pr_err("regulator %d set op mode failed, %d\n",
i, ret);
goto fail;
}
}
}
ret = regulator_bulk_enable(num, s);
if (ret < 0) {
pr_err("regulator enable failed, %d\n", ret);
goto fail;
}
return 0;
fail:
for (i--; i >= 0; i--)
regulator_set_optimum_mode(s[i].consumer, regs[i].disable_load);
return ret;
}
static int dsi_regulator_init(struct msm_dsi_host *msm_host)
{
struct regulator_bulk_data *s = msm_host->supplies;
const struct dsi_reg_entry *regs = msm_host->cfg->reg_cfg.regs;
int num = msm_host->cfg->reg_cfg.num;
int i, ret;
for (i = 0; i < num; i++)
s[i].supply = regs[i].name;
ret = devm_regulator_bulk_get(&msm_host->pdev->dev, num, s);
if (ret < 0) {
pr_err("%s: failed to init regulator, ret=%d\n",
__func__, ret);
return ret;
}
for (i = 0; i < num; i++) {
if ((regs[i].min_voltage >= 0) && (regs[i].max_voltage >= 0)) {
ret = regulator_set_voltage(s[i].consumer,
regs[i].min_voltage, regs[i].max_voltage);
if (ret < 0) {
pr_err("regulator %d set voltage failed, %d\n",
i, ret);
return ret;
}
}
}
return 0;
}
static int dsi_clk_init(struct msm_dsi_host *msm_host)
{
struct device *dev = &msm_host->pdev->dev;
int ret = 0;
msm_host->mdp_core_clk = devm_clk_get(dev, "mdp_core_clk");
if (IS_ERR(msm_host->mdp_core_clk)) {
ret = PTR_ERR(msm_host->mdp_core_clk);
pr_err("%s: Unable to get mdp core clk. ret=%d\n",
__func__, ret);
goto exit;
}
msm_host->ahb_clk = devm_clk_get(dev, "iface_clk");
if (IS_ERR(msm_host->ahb_clk)) {
ret = PTR_ERR(msm_host->ahb_clk);
pr_err("%s: Unable to get mdss ahb clk. ret=%d\n",
__func__, ret);
goto exit;
}
msm_host->axi_clk = devm_clk_get(dev, "bus_clk");
if (IS_ERR(msm_host->axi_clk)) {
ret = PTR_ERR(msm_host->axi_clk);
pr_err("%s: Unable to get axi bus clk. ret=%d\n",
__func__, ret);
goto exit;
}
msm_host->mmss_misc_ahb_clk = devm_clk_get(dev, "core_mmss_clk");
if (IS_ERR(msm_host->mmss_misc_ahb_clk)) {
ret = PTR_ERR(msm_host->mmss_misc_ahb_clk);
pr_err("%s: Unable to get mmss misc ahb clk. ret=%d\n",
__func__, ret);
goto exit;
}
msm_host->byte_clk = devm_clk_get(dev, "byte_clk");
if (IS_ERR(msm_host->byte_clk)) {
ret = PTR_ERR(msm_host->byte_clk);
pr_err("%s: can't find dsi_byte_clk. ret=%d\n",
__func__, ret);
msm_host->byte_clk = NULL;
goto exit;
}
msm_host->pixel_clk = devm_clk_get(dev, "pixel_clk");
if (IS_ERR(msm_host->pixel_clk)) {
ret = PTR_ERR(msm_host->pixel_clk);
pr_err("%s: can't find dsi_pixel_clk. ret=%d\n",
__func__, ret);
msm_host->pixel_clk = NULL;
goto exit;
}
msm_host->esc_clk = devm_clk_get(dev, "core_clk");
if (IS_ERR(msm_host->esc_clk)) {
ret = PTR_ERR(msm_host->esc_clk);
pr_err("%s: can't find dsi_esc_clk. ret=%d\n",
__func__, ret);
msm_host->esc_clk = NULL;
goto exit;
}
exit:
return ret;
}
static int dsi_bus_clk_enable(struct msm_dsi_host *msm_host)
{
int ret;
DBG("id=%d", msm_host->id);
ret = clk_prepare_enable(msm_host->mdp_core_clk);
if (ret) {
pr_err("%s: failed to enable mdp_core_clock, %d\n",
__func__, ret);
goto core_clk_err;
}
ret = clk_prepare_enable(msm_host->ahb_clk);
if (ret) {
pr_err("%s: failed to enable ahb clock, %d\n", __func__, ret);
goto ahb_clk_err;
}
ret = clk_prepare_enable(msm_host->axi_clk);
if (ret) {
pr_err("%s: failed to enable ahb clock, %d\n", __func__, ret);
goto axi_clk_err;
}
ret = clk_prepare_enable(msm_host->mmss_misc_ahb_clk);
if (ret) {
pr_err("%s: failed to enable mmss misc ahb clk, %d\n",
__func__, ret);
goto misc_ahb_clk_err;
}
return 0;
misc_ahb_clk_err:
clk_disable_unprepare(msm_host->axi_clk);
axi_clk_err:
clk_disable_unprepare(msm_host->ahb_clk);
ahb_clk_err:
clk_disable_unprepare(msm_host->mdp_core_clk);
core_clk_err:
return ret;
}
static void dsi_bus_clk_disable(struct msm_dsi_host *msm_host)
{
DBG("");
clk_disable_unprepare(msm_host->mmss_misc_ahb_clk);
clk_disable_unprepare(msm_host->axi_clk);
clk_disable_unprepare(msm_host->ahb_clk);
clk_disable_unprepare(msm_host->mdp_core_clk);
}
static int dsi_link_clk_enable(struct msm_dsi_host *msm_host)
{
int ret;
DBG("Set clk rates: pclk=%d, byteclk=%d",
msm_host->mode->clock, msm_host->byte_clk_rate);
ret = clk_set_rate(msm_host->byte_clk, msm_host->byte_clk_rate);
if (ret) {
pr_err("%s: Failed to set rate byte clk, %d\n", __func__, ret);
goto error;
}
ret = clk_set_rate(msm_host->pixel_clk, msm_host->mode->clock * 1000);
if (ret) {
pr_err("%s: Failed to set rate pixel clk, %d\n", __func__, ret);
goto error;
}
ret = clk_prepare_enable(msm_host->esc_clk);
if (ret) {
pr_err("%s: Failed to enable dsi esc clk\n", __func__);
goto error;
}
ret = clk_prepare_enable(msm_host->byte_clk);
if (ret) {
pr_err("%s: Failed to enable dsi byte clk\n", __func__);
goto byte_clk_err;
}
ret = clk_prepare_enable(msm_host->pixel_clk);
if (ret) {
pr_err("%s: Failed to enable dsi pixel clk\n", __func__);
goto pixel_clk_err;
}
return 0;
pixel_clk_err:
clk_disable_unprepare(msm_host->byte_clk);
byte_clk_err:
clk_disable_unprepare(msm_host->esc_clk);
error:
return ret;
}
static void dsi_link_clk_disable(struct msm_dsi_host *msm_host)
{
clk_disable_unprepare(msm_host->esc_clk);
clk_disable_unprepare(msm_host->pixel_clk);
clk_disable_unprepare(msm_host->byte_clk);
}
static int dsi_clk_ctrl(struct msm_dsi_host *msm_host, bool enable)
{
int ret = 0;
mutex_lock(&msm_host->clk_mutex);
if (enable) {
ret = dsi_bus_clk_enable(msm_host);
if (ret) {
pr_err("%s: Can not enable bus clk, %d\n",
__func__, ret);
goto unlock_ret;
}
ret = dsi_link_clk_enable(msm_host);
if (ret) {
pr_err("%s: Can not enable link clk, %d\n",
__func__, ret);
dsi_bus_clk_disable(msm_host);
goto unlock_ret;
}
} else {
dsi_link_clk_disable(msm_host);
dsi_bus_clk_disable(msm_host);
}
unlock_ret:
mutex_unlock(&msm_host->clk_mutex);
return ret;
}
static int dsi_calc_clk_rate(struct msm_dsi_host *msm_host)
{
struct drm_display_mode *mode = msm_host->mode;
u8 lanes = msm_host->lanes;
u32 bpp = dsi_get_bpp(msm_host->format);
u32 pclk_rate;
if (!mode) {
pr_err("%s: mode not set\n", __func__);
return -EINVAL;
}
pclk_rate = mode->clock * 1000;
if (lanes > 0) {
msm_host->byte_clk_rate = (pclk_rate * bpp) / (8 * lanes);
} else {
pr_err("%s: forcing mdss_dsi lanes to 1\n", __func__);
msm_host->byte_clk_rate = (pclk_rate * bpp) / 8;
}
DBG("pclk=%d, bclk=%d", pclk_rate, msm_host->byte_clk_rate);
return 0;
}
static void dsi_phy_sw_reset(struct msm_dsi_host *msm_host)
{
DBG("");
dsi_write(msm_host, REG_DSI_PHY_RESET, DSI_PHY_RESET_RESET);
/* Make sure fully reset */
wmb();
udelay(1000);
dsi_write(msm_host, REG_DSI_PHY_RESET, 0);
udelay(100);
}
static void dsi_intr_ctrl(struct msm_dsi_host *msm_host, u32 mask, int enable)
{
u32 intr;
unsigned long flags;
spin_lock_irqsave(&msm_host->intr_lock, flags);
intr = dsi_read(msm_host, REG_DSI_INTR_CTRL);
if (enable)
intr |= mask;
else
intr &= ~mask;
DBG("intr=%x enable=%d", intr, enable);
dsi_write(msm_host, REG_DSI_INTR_CTRL, intr);
spin_unlock_irqrestore(&msm_host->intr_lock, flags);
}
static inline enum dsi_traffic_mode dsi_get_traffic_mode(const u32 mode_flags)
{
if (mode_flags & MIPI_DSI_MODE_VIDEO_BURST)
return BURST_MODE;
else if (mode_flags & MIPI_DSI_MODE_VIDEO_SYNC_PULSE)
return NON_BURST_SYNCH_PULSE;
return NON_BURST_SYNCH_EVENT;
}
static inline enum dsi_vid_dst_format dsi_get_vid_fmt(
const enum mipi_dsi_pixel_format mipi_fmt)
{
switch (mipi_fmt) {
case MIPI_DSI_FMT_RGB888: return VID_DST_FORMAT_RGB888;
case MIPI_DSI_FMT_RGB666: return VID_DST_FORMAT_RGB666_LOOSE;
case MIPI_DSI_FMT_RGB666_PACKED: return VID_DST_FORMAT_RGB666;
case MIPI_DSI_FMT_RGB565: return VID_DST_FORMAT_RGB565;
default: return VID_DST_FORMAT_RGB888;
}
}
static inline enum dsi_cmd_dst_format dsi_get_cmd_fmt(
const enum mipi_dsi_pixel_format mipi_fmt)
{
switch (mipi_fmt) {
case MIPI_DSI_FMT_RGB888: return CMD_DST_FORMAT_RGB888;
case MIPI_DSI_FMT_RGB666_PACKED:
case MIPI_DSI_FMT_RGB666: return VID_DST_FORMAT_RGB666;
case MIPI_DSI_FMT_RGB565: return CMD_DST_FORMAT_RGB565;
default: return CMD_DST_FORMAT_RGB888;
}
}
static void dsi_ctrl_config(struct msm_dsi_host *msm_host, bool enable,
u32 clk_pre, u32 clk_post)
{
u32 flags = msm_host->mode_flags;
enum mipi_dsi_pixel_format mipi_fmt = msm_host->format;
u32 data = 0;
if (!enable) {
dsi_write(msm_host, REG_DSI_CTRL, 0);
return;
}
if (flags & MIPI_DSI_MODE_VIDEO) {
if (flags & MIPI_DSI_MODE_VIDEO_HSE)
data |= DSI_VID_CFG0_PULSE_MODE_HSA_HE;
if (flags & MIPI_DSI_MODE_VIDEO_HFP)
data |= DSI_VID_CFG0_HFP_POWER_STOP;
if (flags & MIPI_DSI_MODE_VIDEO_HBP)
data |= DSI_VID_CFG0_HBP_POWER_STOP;
if (flags & MIPI_DSI_MODE_VIDEO_HSA)
data |= DSI_VID_CFG0_HSA_POWER_STOP;
/* Always set low power stop mode for BLLP
* to let command engine send packets
*/
data |= DSI_VID_CFG0_EOF_BLLP_POWER_STOP |
DSI_VID_CFG0_BLLP_POWER_STOP;
data |= DSI_VID_CFG0_TRAFFIC_MODE(dsi_get_traffic_mode(flags));
data |= DSI_VID_CFG0_DST_FORMAT(dsi_get_vid_fmt(mipi_fmt));
data |= DSI_VID_CFG0_VIRT_CHANNEL(msm_host->channel);
dsi_write(msm_host, REG_DSI_VID_CFG0, data);
/* Do not swap RGB colors */
data = DSI_VID_CFG1_RGB_SWAP(SWAP_RGB);
dsi_write(msm_host, REG_DSI_VID_CFG1, 0);
} else {
/* Do not swap RGB colors */
data = DSI_CMD_CFG0_RGB_SWAP(SWAP_RGB);
data |= DSI_CMD_CFG0_DST_FORMAT(dsi_get_cmd_fmt(mipi_fmt));
dsi_write(msm_host, REG_DSI_CMD_CFG0, data);
data = DSI_CMD_CFG1_WR_MEM_START(MIPI_DCS_WRITE_MEMORY_START) |
DSI_CMD_CFG1_WR_MEM_CONTINUE(
MIPI_DCS_WRITE_MEMORY_CONTINUE);
/* Always insert DCS command */
data |= DSI_CMD_CFG1_INSERT_DCS_COMMAND;
dsi_write(msm_host, REG_DSI_CMD_CFG1, data);
}
dsi_write(msm_host, REG_DSI_CMD_DMA_CTRL,
DSI_CMD_DMA_CTRL_FROM_FRAME_BUFFER |
DSI_CMD_DMA_CTRL_LOW_POWER);
data = 0;
/* Always assume dedicated TE pin */
data |= DSI_TRIG_CTRL_TE;
data |= DSI_TRIG_CTRL_MDP_TRIGGER(TRIGGER_NONE);
data |= DSI_TRIG_CTRL_DMA_TRIGGER(TRIGGER_SW);
data |= DSI_TRIG_CTRL_STREAM(msm_host->channel);
if ((msm_host->cfg->major == MSM_DSI_VER_MAJOR_6G) &&
(msm_host->cfg->minor >= MSM_DSI_6G_VER_MINOR_V1_2))
data |= DSI_TRIG_CTRL_BLOCK_DMA_WITHIN_FRAME;
dsi_write(msm_host, REG_DSI_TRIG_CTRL, data);
data = DSI_CLKOUT_TIMING_CTRL_T_CLK_POST(clk_post) |
DSI_CLKOUT_TIMING_CTRL_T_CLK_PRE(clk_pre);
dsi_write(msm_host, REG_DSI_CLKOUT_TIMING_CTRL, data);
data = 0;
if (!(flags & MIPI_DSI_MODE_EOT_PACKET))
data |= DSI_EOT_PACKET_CTRL_TX_EOT_APPEND;
dsi_write(msm_host, REG_DSI_EOT_PACKET_CTRL, data);
/* allow only ack-err-status to generate interrupt */
dsi_write(msm_host, REG_DSI_ERR_INT_MASK0, 0x13ff3fe0);
dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_ERROR, 1);
dsi_write(msm_host, REG_DSI_CLK_CTRL, DSI_CLK_CTRL_ENABLE_CLKS);
data = DSI_CTRL_CLK_EN;
DBG("lane number=%d", msm_host->lanes);
if (msm_host->lanes == 2) {
data |= DSI_CTRL_LANE1 | DSI_CTRL_LANE2;
/* swap lanes for 2-lane panel for better performance */
dsi_write(msm_host, REG_DSI_LANE_SWAP_CTRL,
DSI_LANE_SWAP_CTRL_DLN_SWAP_SEL(LANE_SWAP_1230));
} else {
/* Take 4 lanes as default */
data |= DSI_CTRL_LANE0 | DSI_CTRL_LANE1 | DSI_CTRL_LANE2 |
DSI_CTRL_LANE3;
/* Do not swap lanes for 4-lane panel */
dsi_write(msm_host, REG_DSI_LANE_SWAP_CTRL,
DSI_LANE_SWAP_CTRL_DLN_SWAP_SEL(LANE_SWAP_0123));
}
data |= DSI_CTRL_ENABLE;
dsi_write(msm_host, REG_DSI_CTRL, data);
}
static void dsi_timing_setup(struct msm_dsi_host *msm_host)
{
struct drm_display_mode *mode = msm_host->mode;
u32 hs_start = 0, vs_start = 0; /* take sync start as 0 */
u32 h_total = mode->htotal;
u32 v_total = mode->vtotal;
u32 hs_end = mode->hsync_end - mode->hsync_start;
u32 vs_end = mode->vsync_end - mode->vsync_start;
u32 ha_start = h_total - mode->hsync_start;
u32 ha_end = ha_start + mode->hdisplay;
u32 va_start = v_total - mode->vsync_start;
u32 va_end = va_start + mode->vdisplay;
u32 wc;
DBG("");
if (msm_host->mode_flags & MIPI_DSI_MODE_VIDEO) {
dsi_write(msm_host, REG_DSI_ACTIVE_H,
DSI_ACTIVE_H_START(ha_start) |
DSI_ACTIVE_H_END(ha_end));
dsi_write(msm_host, REG_DSI_ACTIVE_V,
DSI_ACTIVE_V_START(va_start) |
DSI_ACTIVE_V_END(va_end));
dsi_write(msm_host, REG_DSI_TOTAL,
DSI_TOTAL_H_TOTAL(h_total - 1) |
DSI_TOTAL_V_TOTAL(v_total - 1));
dsi_write(msm_host, REG_DSI_ACTIVE_HSYNC,
DSI_ACTIVE_HSYNC_START(hs_start) |
DSI_ACTIVE_HSYNC_END(hs_end));
dsi_write(msm_host, REG_DSI_ACTIVE_VSYNC_HPOS, 0);
dsi_write(msm_host, REG_DSI_ACTIVE_VSYNC_VPOS,
DSI_ACTIVE_VSYNC_VPOS_START(vs_start) |
DSI_ACTIVE_VSYNC_VPOS_END(vs_end));
} else { /* command mode */
/* image data and 1 byte write_memory_start cmd */
wc = mode->hdisplay * dsi_get_bpp(msm_host->format) / 8 + 1;
dsi_write(msm_host, REG_DSI_CMD_MDP_STREAM_CTRL,
DSI_CMD_MDP_STREAM_CTRL_WORD_COUNT(wc) |
DSI_CMD_MDP_STREAM_CTRL_VIRTUAL_CHANNEL(
msm_host->channel) |
DSI_CMD_MDP_STREAM_CTRL_DATA_TYPE(
MIPI_DSI_DCS_LONG_WRITE));
dsi_write(msm_host, REG_DSI_CMD_MDP_STREAM_TOTAL,
DSI_CMD_MDP_STREAM_TOTAL_H_TOTAL(mode->hdisplay) |
DSI_CMD_MDP_STREAM_TOTAL_V_TOTAL(mode->vdisplay));
}
}
static void dsi_sw_reset(struct msm_dsi_host *msm_host)
{
dsi_write(msm_host, REG_DSI_CLK_CTRL, DSI_CLK_CTRL_ENABLE_CLKS);
wmb(); /* clocks need to be enabled before reset */
dsi_write(msm_host, REG_DSI_RESET, 1);
wmb(); /* make sure reset happen */
dsi_write(msm_host, REG_DSI_RESET, 0);
}
static void dsi_op_mode_config(struct msm_dsi_host *msm_host,
bool video_mode, bool enable)
{
u32 dsi_ctrl;
dsi_ctrl = dsi_read(msm_host, REG_DSI_CTRL);
if (!enable) {
dsi_ctrl &= ~(DSI_CTRL_ENABLE | DSI_CTRL_VID_MODE_EN |
DSI_CTRL_CMD_MODE_EN);
dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_CMD_MDP_DONE |
DSI_IRQ_MASK_VIDEO_DONE, 0);
} else {
if (video_mode) {
dsi_ctrl |= DSI_CTRL_VID_MODE_EN;
} else { /* command mode */
dsi_ctrl |= DSI_CTRL_CMD_MODE_EN;
dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_CMD_MDP_DONE, 1);
}
dsi_ctrl |= DSI_CTRL_ENABLE;
}
dsi_write(msm_host, REG_DSI_CTRL, dsi_ctrl);
}
static void dsi_set_tx_power_mode(int mode, struct msm_dsi_host *msm_host)
{
u32 data;
data = dsi_read(msm_host, REG_DSI_CMD_DMA_CTRL);
if (mode == 0)
data &= ~DSI_CMD_DMA_CTRL_LOW_POWER;
else
data |= DSI_CMD_DMA_CTRL_LOW_POWER;
dsi_write(msm_host, REG_DSI_CMD_DMA_CTRL, data);
}
static void dsi_wait4video_done(struct msm_dsi_host *msm_host)
{
dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_VIDEO_DONE, 1);
reinit_completion(&msm_host->video_comp);
wait_for_completion_timeout(&msm_host->video_comp,
msecs_to_jiffies(70));
dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_VIDEO_DONE, 0);
}
static void dsi_wait4video_eng_busy(struct msm_dsi_host *msm_host)
{
if (!(msm_host->mode_flags & MIPI_DSI_MODE_VIDEO))
return;
if (msm_host->power_on) {
dsi_wait4video_done(msm_host);
/* delay 4 ms to skip BLLP */
usleep_range(2000, 4000);
}
}
/* dsi_cmd */
static int dsi_tx_buf_alloc(struct msm_dsi_host *msm_host, int size)
{
struct drm_device *dev = msm_host->dev;
int ret;
u32 iova;
mutex_lock(&dev->struct_mutex);
msm_host->tx_gem_obj = msm_gem_new(dev, size, MSM_BO_UNCACHED);
if (IS_ERR(msm_host->tx_gem_obj)) {
ret = PTR_ERR(msm_host->tx_gem_obj);
pr_err("%s: failed to allocate gem, %d\n", __func__, ret);
msm_host->tx_gem_obj = NULL;
mutex_unlock(&dev->struct_mutex);
return ret;
}
ret = msm_gem_get_iova_locked(msm_host->tx_gem_obj, 0, &iova);
if (ret) {
pr_err("%s: failed to get iova, %d\n", __func__, ret);
return ret;
}
mutex_unlock(&dev->struct_mutex);
if (iova & 0x07) {
pr_err("%s: buf NOT 8 bytes aligned\n", __func__);
return -EINVAL;
}
return 0;
}
static void dsi_tx_buf_free(struct msm_dsi_host *msm_host)
{
struct drm_device *dev = msm_host->dev;
if (msm_host->tx_gem_obj) {
msm_gem_put_iova(msm_host->tx_gem_obj, 0);
mutex_lock(&dev->struct_mutex);
msm_gem_free_object(msm_host->tx_gem_obj);
msm_host->tx_gem_obj = NULL;
mutex_unlock(&dev->struct_mutex);
}
}
/*
* prepare cmd buffer to be txed
*/
static int dsi_cmd_dma_add(struct drm_gem_object *tx_gem,
const struct mipi_dsi_msg *msg)
{
struct mipi_dsi_packet packet;
int len;
int ret;
u8 *data;
ret = mipi_dsi_create_packet(&packet, msg);
if (ret) {
pr_err("%s: create packet failed, %d\n", __func__, ret);
return ret;
}
len = (packet.size + 3) & (~0x3);
if (len > tx_gem->size) {
pr_err("%s: packet size is too big\n", __func__);
return -EINVAL;
}
data = msm_gem_vaddr(tx_gem);
if (IS_ERR(data)) {
ret = PTR_ERR(data);
pr_err("%s: get vaddr failed, %d\n", __func__, ret);
return ret;
}
/* MSM specific command format in memory */
data[0] = packet.header[1];
data[1] = packet.header[2];
data[2] = packet.header[0];
data[3] = BIT(7); /* Last packet */
if (mipi_dsi_packet_format_is_long(msg->type))
data[3] |= BIT(6);
if (msg->rx_buf && msg->rx_len)
data[3] |= BIT(5);
/* Long packet */
if (packet.payload && packet.payload_length)
memcpy(data + 4, packet.payload, packet.payload_length);
/* Append 0xff to the end */
if (packet.size < len)
memset(data + packet.size, 0xff, len - packet.size);
return len;
}
/*
* dsi_short_read1_resp: 1 parameter
*/
static int dsi_short_read1_resp(u8 *buf, const struct mipi_dsi_msg *msg)
{
u8 *data = msg->rx_buf;
if (data && (msg->rx_len >= 1)) {
*data = buf[1]; /* strip out dcs type */
return 1;
} else {
pr_err("%s: read data does not match with rx_buf len %d\n",
__func__, msg->rx_len);
return -EINVAL;
}
}
/*
* dsi_short_read2_resp: 2 parameter
*/
static int dsi_short_read2_resp(u8 *buf, const struct mipi_dsi_msg *msg)
{
u8 *data = msg->rx_buf;
if (data && (msg->rx_len >= 2)) {
data[0] = buf[1]; /* strip out dcs type */
data[1] = buf[2];
return 2;
} else {
pr_err("%s: read data does not match with rx_buf len %d\n",
__func__, msg->rx_len);
return -EINVAL;
}
}
static int dsi_long_read_resp(u8 *buf, const struct mipi_dsi_msg *msg)
{
/* strip out 4 byte dcs header */
if (msg->rx_buf && msg->rx_len)
memcpy(msg->rx_buf, buf + 4, msg->rx_len);
return msg->rx_len;
}
static int dsi_cmd_dma_tx(struct msm_dsi_host *msm_host, int len)
{
int ret;
u32 iova;
bool triggered;
ret = msm_gem_get_iova(msm_host->tx_gem_obj, 0, &iova);
if (ret) {
pr_err("%s: failed to get iova: %d\n", __func__, ret);
return ret;
}
reinit_completion(&msm_host->dma_comp);
dsi_wait4video_eng_busy(msm_host);
triggered = msm_dsi_manager_cmd_xfer_trigger(
msm_host->id, iova, len);
if (triggered) {
ret = wait_for_completion_timeout(&msm_host->dma_comp,
msecs_to_jiffies(200));
DBG("ret=%d", ret);
if (ret == 0)
ret = -ETIMEDOUT;
else
ret = len;
} else
ret = len;
return ret;
}
static int dsi_cmd_dma_rx(struct msm_dsi_host *msm_host,
u8 *buf, int rx_byte, int pkt_size)
{
u32 *lp, *temp, data;
int i, j = 0, cnt;
bool ack_error = false;
u32 read_cnt;
u8 reg[16];
int repeated_bytes = 0;
int buf_offset = buf - msm_host->rx_buf;
lp = (u32 *)buf;
temp = (u32 *)reg;
cnt = (rx_byte + 3) >> 2;
if (cnt > 4)
cnt = 4; /* 4 x 32 bits registers only */
/* Calculate real read data count */
read_cnt = dsi_read(msm_host, 0x1d4) >> 16;
ack_error = (rx_byte == 4) ?
(read_cnt == 8) : /* short pkt + 4-byte error pkt */
(read_cnt == (pkt_size + 6 + 4)); /* long pkt+4-byte error pkt*/
if (ack_error)
read_cnt -= 4; /* Remove 4 byte error pkt */
/*
* In case of multiple reads from the panel, after the first read, there
* is possibility that there are some bytes in the payload repeating in
* the RDBK_DATA registers. Since we read all the parameters from the
* panel right from the first byte for every pass. We need to skip the
* repeating bytes and then append the new parameters to the rx buffer.
*/
if (read_cnt > 16) {
int bytes_shifted;
/* Any data more than 16 bytes will be shifted out.
* The temp read buffer should already contain these bytes.
* The remaining bytes in read buffer are the repeated bytes.
*/
bytes_shifted = read_cnt - 16;
repeated_bytes = buf_offset - bytes_shifted;
}
for (i = cnt - 1; i >= 0; i--) {
data = dsi_read(msm_host, REG_DSI_RDBK_DATA(i));
*temp++ = ntohl(data); /* to host byte order */
DBG("data = 0x%x and ntohl(data) = 0x%x", data, ntohl(data));
}
for (i = repeated_bytes; i < 16; i++)
buf[j++] = reg[i];
return j;
}
static int dsi_cmds2buf_tx(struct msm_dsi_host *msm_host,
const struct mipi_dsi_msg *msg)
{
int len, ret;
int bllp_len = msm_host->mode->hdisplay *
dsi_get_bpp(msm_host->format) / 8;
len = dsi_cmd_dma_add(msm_host->tx_gem_obj, msg);
if (!len) {
pr_err("%s: failed to add cmd type = 0x%x\n",
__func__, msg->type);
return -EINVAL;
}
/* for video mode, do not send cmds more than
* one pixel line, since it only transmit it
* during BLLP.
*/
/* TODO: if the command is sent in LP mode, the bit rate is only
* half of esc clk rate. In this case, if the video is already
* actively streaming, we need to check more carefully if the
* command can be fit into one BLLP.
*/
if ((msm_host->mode_flags & MIPI_DSI_MODE_VIDEO) && (len > bllp_len)) {
pr_err("%s: cmd cannot fit into BLLP period, len=%d\n",
__func__, len);
return -EINVAL;
}
ret = dsi_cmd_dma_tx(msm_host, len);
if (ret < len) {
pr_err("%s: cmd dma tx failed, type=0x%x, data0=0x%x, len=%d\n",
__func__, msg->type, (*(u8 *)(msg->tx_buf)), len);
return -ECOMM;
}
return len;
}
static void dsi_sw_reset_restore(struct msm_dsi_host *msm_host)
{
u32 data0, data1;
data0 = dsi_read(msm_host, REG_DSI_CTRL);
data1 = data0;
data1 &= ~DSI_CTRL_ENABLE;
dsi_write(msm_host, REG_DSI_CTRL, data1);
/*
* dsi controller need to be disabled before
* clocks turned on
*/
wmb();
dsi_write(msm_host, REG_DSI_CLK_CTRL, DSI_CLK_CTRL_ENABLE_CLKS);
wmb(); /* make sure clocks enabled */
/* dsi controller can only be reset while clocks are running */
dsi_write(msm_host, REG_DSI_RESET, 1);
wmb(); /* make sure reset happen */
dsi_write(msm_host, REG_DSI_RESET, 0);
wmb(); /* controller out of reset */
dsi_write(msm_host, REG_DSI_CTRL, data0);
wmb(); /* make sure dsi controller enabled again */
}
static void dsi_err_worker(struct work_struct *work)
{
struct msm_dsi_host *msm_host =
container_of(work, struct msm_dsi_host, err_work);
u32 status = msm_host->err_work_state;
pr_err("%s: status=%x\n", __func__, status);
if (status & DSI_ERR_STATE_MDP_FIFO_UNDERFLOW)
dsi_sw_reset_restore(msm_host);
/* It is safe to clear here because error irq is disabled. */
msm_host->err_work_state = 0;
/* enable dsi error interrupt */
dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_ERROR, 1);
}
static void dsi_ack_err_status(struct msm_dsi_host *msm_host)
{
u32 status;
status = dsi_read(msm_host, REG_DSI_ACK_ERR_STATUS);
if (status) {
dsi_write(msm_host, REG_DSI_ACK_ERR_STATUS, status);
/* Writing of an extra 0 needed to clear error bits */
dsi_write(msm_host, REG_DSI_ACK_ERR_STATUS, 0);
msm_host->err_work_state |= DSI_ERR_STATE_ACK;
}
}
static void dsi_timeout_status(struct msm_dsi_host *msm_host)
{
u32 status;
status = dsi_read(msm_host, REG_DSI_TIMEOUT_STATUS);
if (status) {
dsi_write(msm_host, REG_DSI_TIMEOUT_STATUS, status);
msm_host->err_work_state |= DSI_ERR_STATE_TIMEOUT;
}
}
static void dsi_dln0_phy_err(struct msm_dsi_host *msm_host)
{
u32 status;
status = dsi_read(msm_host, REG_DSI_DLN0_PHY_ERR);
if (status) {
dsi_write(msm_host, REG_DSI_DLN0_PHY_ERR, status);
msm_host->err_work_state |= DSI_ERR_STATE_DLN0_PHY;
}
}
static void dsi_fifo_status(struct msm_dsi_host *msm_host)
{
u32 status;
status = dsi_read(msm_host, REG_DSI_FIFO_STATUS);
/* fifo underflow, overflow */
if (status) {
dsi_write(msm_host, REG_DSI_FIFO_STATUS, status);
msm_host->err_work_state |= DSI_ERR_STATE_FIFO;
if (status & DSI_FIFO_STATUS_CMD_MDP_FIFO_UNDERFLOW)
msm_host->err_work_state |=
DSI_ERR_STATE_MDP_FIFO_UNDERFLOW;
}
}
static void dsi_status(struct msm_dsi_host *msm_host)
{
u32 status;
status = dsi_read(msm_host, REG_DSI_STATUS0);
if (status & DSI_STATUS0_INTERLEAVE_OP_CONTENTION) {
dsi_write(msm_host, REG_DSI_STATUS0, status);
msm_host->err_work_state |=
DSI_ERR_STATE_INTERLEAVE_OP_CONTENTION;
}
}
static void dsi_clk_status(struct msm_dsi_host *msm_host)
{
u32 status;
status = dsi_read(msm_host, REG_DSI_CLK_STATUS);
if (status & DSI_CLK_STATUS_PLL_UNLOCKED) {
dsi_write(msm_host, REG_DSI_CLK_STATUS, status);
msm_host->err_work_state |= DSI_ERR_STATE_PLL_UNLOCKED;
}
}
static void dsi_error(struct msm_dsi_host *msm_host)
{
/* disable dsi error interrupt */
dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_ERROR, 0);
dsi_clk_status(msm_host);
dsi_fifo_status(msm_host);
dsi_ack_err_status(msm_host);
dsi_timeout_status(msm_host);
dsi_status(msm_host);
dsi_dln0_phy_err(msm_host);
queue_work(msm_host->workqueue, &msm_host->err_work);
}
static irqreturn_t dsi_host_irq(int irq, void *ptr)
{
struct msm_dsi_host *msm_host = ptr;
u32 isr;
unsigned long flags;
if (!msm_host->ctrl_base)
return IRQ_HANDLED;
spin_lock_irqsave(&msm_host->intr_lock, flags);
isr = dsi_read(msm_host, REG_DSI_INTR_CTRL);
dsi_write(msm_host, REG_DSI_INTR_CTRL, isr);
spin_unlock_irqrestore(&msm_host->intr_lock, flags);
DBG("isr=0x%x, id=%d", isr, msm_host->id);
if (isr & DSI_IRQ_ERROR)
dsi_error(msm_host);
if (isr & DSI_IRQ_VIDEO_DONE)
complete(&msm_host->video_comp);
if (isr & DSI_IRQ_CMD_DMA_DONE)
complete(&msm_host->dma_comp);
return IRQ_HANDLED;
}
static int dsi_host_init_panel_gpios(struct msm_dsi_host *msm_host,
struct device *panel_device)
{
int ret;
msm_host->disp_en_gpio = devm_gpiod_get(panel_device,
"disp-enable");
if (IS_ERR(msm_host->disp_en_gpio)) {
DBG("cannot get disp-enable-gpios %ld",
PTR_ERR(msm_host->disp_en_gpio));
msm_host->disp_en_gpio = NULL;
}
if (msm_host->disp_en_gpio) {
ret = gpiod_direction_output(msm_host->disp_en_gpio, 0);
if (ret) {
pr_err("cannot set dir to disp-en-gpios %d\n", ret);
return ret;
}
}
msm_host->te_gpio = devm_gpiod_get(panel_device, "disp-te");
if (IS_ERR(msm_host->te_gpio)) {
DBG("cannot get disp-te-gpios %ld", PTR_ERR(msm_host->te_gpio));
msm_host->te_gpio = NULL;
}
if (msm_host->te_gpio) {
ret = gpiod_direction_input(msm_host->te_gpio);
if (ret) {
pr_err("%s: cannot set dir to disp-te-gpios, %d\n",
__func__, ret);
return ret;
}
}
return 0;
}
static int dsi_host_attach(struct mipi_dsi_host *host,
struct mipi_dsi_device *dsi)
{
struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
int ret;
msm_host->channel = dsi->channel;
msm_host->lanes = dsi->lanes;
msm_host->format = dsi->format;
msm_host->mode_flags = dsi->mode_flags;
msm_host->panel_node = dsi->dev.of_node;
/* Some gpios defined in panel DT need to be controlled by host */
ret = dsi_host_init_panel_gpios(msm_host, &dsi->dev);
if (ret)
return ret;
DBG("id=%d", msm_host->id);
if (msm_host->dev)
drm_helper_hpd_irq_event(msm_host->dev);
return 0;
}
static int dsi_host_detach(struct mipi_dsi_host *host,
struct mipi_dsi_device *dsi)
{
struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
msm_host->panel_node = NULL;
DBG("id=%d", msm_host->id);
if (msm_host->dev)
drm_helper_hpd_irq_event(msm_host->dev);
return 0;
}
static ssize_t dsi_host_transfer(struct mipi_dsi_host *host,
const struct mipi_dsi_msg *msg)
{
struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
int ret;
if (!msg || !msm_host->power_on)
return -EINVAL;
mutex_lock(&msm_host->cmd_mutex);
ret = msm_dsi_manager_cmd_xfer(msm_host->id, msg);
mutex_unlock(&msm_host->cmd_mutex);
return ret;
}
static struct mipi_dsi_host_ops dsi_host_ops = {
.attach = dsi_host_attach,
.detach = dsi_host_detach,
.transfer = dsi_host_transfer,
};
int msm_dsi_host_init(struct msm_dsi *msm_dsi)
{
struct msm_dsi_host *msm_host = NULL;
struct platform_device *pdev = msm_dsi->pdev;
int ret;
msm_host = devm_kzalloc(&pdev->dev, sizeof(*msm_host), GFP_KERNEL);
if (!msm_host) {
pr_err("%s: FAILED: cannot alloc dsi host\n",
__func__);
ret = -ENOMEM;
goto fail;
}
ret = of_property_read_u32(pdev->dev.of_node,
"qcom,dsi-host-index", &msm_host->id);
if (ret) {
dev_err(&pdev->dev,
"%s: host index not specified, ret=%d\n",
__func__, ret);
goto fail;
}
msm_host->pdev = pdev;
ret = dsi_clk_init(msm_host);
if (ret) {
pr_err("%s: unable to initialize dsi clks\n", __func__);
goto fail;
}
msm_host->ctrl_base = msm_ioremap(pdev, "dsi_ctrl", "DSI CTRL");
if (IS_ERR(msm_host->ctrl_base)) {
pr_err("%s: unable to map Dsi ctrl base\n", __func__);
ret = PTR_ERR(msm_host->ctrl_base);
goto fail;
}
msm_host->cfg = dsi_get_config(msm_host);
if (!msm_host->cfg) {
ret = -EINVAL;
pr_err("%s: get config failed\n", __func__);
goto fail;
}
ret = dsi_regulator_init(msm_host);
if (ret) {
pr_err("%s: regulator init failed\n", __func__);
goto fail;
}
msm_host->rx_buf = devm_kzalloc(&pdev->dev, SZ_4K, GFP_KERNEL);
if (!msm_host->rx_buf) {
pr_err("%s: alloc rx temp buf failed\n", __func__);
goto fail;
}
init_completion(&msm_host->dma_comp);
init_completion(&msm_host->video_comp);
mutex_init(&msm_host->dev_mutex);
mutex_init(&msm_host->cmd_mutex);
mutex_init(&msm_host->clk_mutex);
spin_lock_init(&msm_host->intr_lock);
/* setup workqueue */
msm_host->workqueue = alloc_ordered_workqueue("dsi_drm_work", 0);
INIT_WORK(&msm_host->err_work, dsi_err_worker);
msm_dsi->phy = msm_dsi_phy_init(pdev, msm_host->cfg->phy_type,
msm_host->id);
if (!msm_dsi->phy) {
ret = -EINVAL;
pr_err("%s: phy init failed\n", __func__);
goto fail;
}
msm_dsi->host = &msm_host->base;
msm_dsi->id = msm_host->id;
DBG("Dsi Host %d initialized", msm_host->id);
return 0;
fail:
return ret;
}
void msm_dsi_host_destroy(struct mipi_dsi_host *host)
{
struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
DBG("");
dsi_tx_buf_free(msm_host);
if (msm_host->workqueue) {
flush_workqueue(msm_host->workqueue);
destroy_workqueue(msm_host->workqueue);
msm_host->workqueue = NULL;
}
mutex_destroy(&msm_host->clk_mutex);
mutex_destroy(&msm_host->cmd_mutex);
mutex_destroy(&msm_host->dev_mutex);
}
int msm_dsi_host_modeset_init(struct mipi_dsi_host *host,
struct drm_device *dev)
{
struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
struct platform_device *pdev = msm_host->pdev;
int ret;
msm_host->irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
if (msm_host->irq < 0) {
ret = msm_host->irq;
dev_err(dev->dev, "failed to get irq: %d\n", ret);
return ret;
}
ret = devm_request_irq(&pdev->dev, msm_host->irq,
dsi_host_irq, IRQF_TRIGGER_HIGH | IRQF_ONESHOT,
"dsi_isr", msm_host);
if (ret < 0) {
dev_err(&pdev->dev, "failed to request IRQ%u: %d\n",
msm_host->irq, ret);
return ret;
}
msm_host->dev = dev;
ret = dsi_tx_buf_alloc(msm_host, SZ_4K);
if (ret) {
pr_err("%s: alloc tx gem obj failed, %d\n", __func__, ret);
return ret;
}
return 0;
}
int msm_dsi_host_register(struct mipi_dsi_host *host, bool check_defer)
{
struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
struct device_node *node;
int ret;
/* Register mipi dsi host */
if (!msm_host->registered) {
host->dev = &msm_host->pdev->dev;
host->ops = &dsi_host_ops;
ret = mipi_dsi_host_register(host);
if (ret)
return ret;
msm_host->registered = true;
/* If the panel driver has not been probed after host register,
* we should defer the host's probe.
* It makes sure panel is connected when fbcon detects
* connector status and gets the proper display mode to
* create framebuffer.
*/
if (check_defer) {
node = of_get_child_by_name(msm_host->pdev->dev.of_node,
"panel");
if (node) {
if (!of_drm_find_panel(node))
return -EPROBE_DEFER;
}
}
}
return 0;
}
void msm_dsi_host_unregister(struct mipi_dsi_host *host)
{
struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
if (msm_host->registered) {
mipi_dsi_host_unregister(host);
host->dev = NULL;
host->ops = NULL;
msm_host->registered = false;
}
}
int msm_dsi_host_xfer_prepare(struct mipi_dsi_host *host,
const struct mipi_dsi_msg *msg)
{
struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
/* TODO: make sure dsi_cmd_mdp is idle.
* Since DSI6G v1.2.0, we can set DSI_TRIG_CTRL.BLOCK_DMA_WITHIN_FRAME
* to ask H/W to wait until cmd mdp is idle. S/W wait is not needed.
* How to handle the old versions? Wait for mdp cmd done?
*/
/*
* mdss interrupt is generated in mdp core clock domain
* mdp clock need to be enabled to receive dsi interrupt
*/
dsi_clk_ctrl(msm_host, 1);
/* TODO: vote for bus bandwidth */
if (!(msg->flags & MIPI_DSI_MSG_USE_LPM))
dsi_set_tx_power_mode(0, msm_host);
msm_host->dma_cmd_ctrl_restore = dsi_read(msm_host, REG_DSI_CTRL);
dsi_write(msm_host, REG_DSI_CTRL,
msm_host->dma_cmd_ctrl_restore |
DSI_CTRL_CMD_MODE_EN |
DSI_CTRL_ENABLE);
dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_CMD_DMA_DONE, 1);
return 0;
}
void msm_dsi_host_xfer_restore(struct mipi_dsi_host *host,
const struct mipi_dsi_msg *msg)
{
struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_CMD_DMA_DONE, 0);
dsi_write(msm_host, REG_DSI_CTRL, msm_host->dma_cmd_ctrl_restore);
if (!(msg->flags & MIPI_DSI_MSG_USE_LPM))
dsi_set_tx_power_mode(1, msm_host);
/* TODO: unvote for bus bandwidth */
dsi_clk_ctrl(msm_host, 0);
}
int msm_dsi_host_cmd_tx(struct mipi_dsi_host *host,
const struct mipi_dsi_msg *msg)
{
struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
return dsi_cmds2buf_tx(msm_host, msg);
}
int msm_dsi_host_cmd_rx(struct mipi_dsi_host *host,
const struct mipi_dsi_msg *msg)
{
struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
int data_byte, rx_byte, dlen, end;
int short_response, diff, pkt_size, ret = 0;
char cmd;
int rlen = msg->rx_len;
u8 *buf;
if (rlen <= 2) {
short_response = 1;
pkt_size = rlen;
rx_byte = 4;
} else {
short_response = 0;
data_byte = 10; /* first read */
if (rlen < data_byte)
pkt_size = rlen;
else
pkt_size = data_byte;
rx_byte = data_byte + 6; /* 4 header + 2 crc */
}
buf = msm_host->rx_buf;
end = 0;
while (!end) {
u8 tx[2] = {pkt_size & 0xff, pkt_size >> 8};
struct mipi_dsi_msg max_pkt_size_msg = {
.channel = msg->channel,
.type = MIPI_DSI_SET_MAXIMUM_RETURN_PACKET_SIZE,
.tx_len = 2,
.tx_buf = tx,
};
DBG("rlen=%d pkt_size=%d rx_byte=%d",
rlen, pkt_size, rx_byte);
ret = dsi_cmds2buf_tx(msm_host, &max_pkt_size_msg);
if (ret < 2) {
pr_err("%s: Set max pkt size failed, %d\n",
__func__, ret);
return -EINVAL;
}
if ((msm_host->cfg->major == MSM_DSI_VER_MAJOR_6G) &&
(msm_host->cfg->minor >= MSM_DSI_6G_VER_MINOR_V1_1)) {
/* Clear the RDBK_DATA registers */
dsi_write(msm_host, REG_DSI_RDBK_DATA_CTRL,
DSI_RDBK_DATA_CTRL_CLR);
wmb(); /* make sure the RDBK registers are cleared */
dsi_write(msm_host, REG_DSI_RDBK_DATA_CTRL, 0);
wmb(); /* release cleared status before transfer */
}
ret = dsi_cmds2buf_tx(msm_host, msg);
if (ret < msg->tx_len) {
pr_err("%s: Read cmd Tx failed, %d\n", __func__, ret);
return ret;
}
/*
* once cmd_dma_done interrupt received,
* return data from client is ready and stored
* at RDBK_DATA register already
* since rx fifo is 16 bytes, dcs header is kept at first loop,
* after that dcs header lost during shift into registers
*/
dlen = dsi_cmd_dma_rx(msm_host, buf, rx_byte, pkt_size);
if (dlen <= 0)
return 0;
if (short_response)
break;
if (rlen <= data_byte) {
diff = data_byte - rlen;
end = 1;
} else {
diff = 0;
rlen -= data_byte;
}
if (!end) {
dlen -= 2; /* 2 crc */
dlen -= diff;
buf += dlen; /* next start position */
data_byte = 14; /* NOT first read */
if (rlen < data_byte)
pkt_size += rlen;
else
pkt_size += data_byte;
DBG("buf=%p dlen=%d diff=%d", buf, dlen, diff);
}
}
/*
* For single Long read, if the requested rlen < 10,
* we need to shift the start position of rx
* data buffer to skip the bytes which are not
* updated.
*/
if (pkt_size < 10 && !short_response)
buf = msm_host->rx_buf + (10 - rlen);
else
buf = msm_host->rx_buf;
cmd = buf[0];
switch (cmd) {
case MIPI_DSI_RX_ACKNOWLEDGE_AND_ERROR_REPORT:
pr_err("%s: rx ACK_ERR_PACLAGE\n", __func__);
ret = 0;
case MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_1BYTE:
case MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_1BYTE:
ret = dsi_short_read1_resp(buf, msg);
break;
case MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_2BYTE:
case MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_2BYTE:
ret = dsi_short_read2_resp(buf, msg);
break;
case MIPI_DSI_RX_GENERIC_LONG_READ_RESPONSE:
case MIPI_DSI_RX_DCS_LONG_READ_RESPONSE:
ret = dsi_long_read_resp(buf, msg);
break;
default:
pr_warn("%s:Invalid response cmd\n", __func__);
ret = 0;
}
return ret;
}
void msm_dsi_host_cmd_xfer_commit(struct mipi_dsi_host *host, u32 iova, u32 len)
{
struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
dsi_write(msm_host, REG_DSI_DMA_BASE, iova);
dsi_write(msm_host, REG_DSI_DMA_LEN, len);
dsi_write(msm_host, REG_DSI_TRIG_DMA, 1);
/* Make sure trigger happens */
wmb();
}
int msm_dsi_host_enable(struct mipi_dsi_host *host)
{
struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
dsi_op_mode_config(msm_host,
!!(msm_host->mode_flags & MIPI_DSI_MODE_VIDEO), true);
/* TODO: clock should be turned off for command mode,
* and only turned on before MDP START.
* This part of code should be enabled once mdp driver support it.
*/
/* if (msm_panel->mode == MSM_DSI_CMD_MODE)
dsi_clk_ctrl(msm_host, 0); */
return 0;
}
int msm_dsi_host_disable(struct mipi_dsi_host *host)
{
struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
dsi_op_mode_config(msm_host,
!!(msm_host->mode_flags & MIPI_DSI_MODE_VIDEO), false);
/* Since we have disabled INTF, the video engine won't stop so that
* the cmd engine will be blocked.
* Reset to disable video engine so that we can send off cmd.
*/
dsi_sw_reset(msm_host);
return 0;
}
int msm_dsi_host_power_on(struct mipi_dsi_host *host)
{
struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
u32 clk_pre = 0, clk_post = 0;
int ret = 0;
mutex_lock(&msm_host->dev_mutex);
if (msm_host->power_on) {
DBG("dsi host already on");
goto unlock_ret;
}
ret = dsi_calc_clk_rate(msm_host);
if (ret) {
pr_err("%s: unable to calc clk rate, %d\n", __func__, ret);
goto unlock_ret;
}
ret = dsi_host_regulator_enable(msm_host);
if (ret) {
pr_err("%s:Failed to enable vregs.ret=%d\n",
__func__, ret);
goto unlock_ret;
}
ret = dsi_bus_clk_enable(msm_host);
if (ret) {
pr_err("%s: failed to enable bus clocks, %d\n", __func__, ret);
goto fail_disable_reg;
}
dsi_phy_sw_reset(msm_host);
ret = msm_dsi_manager_phy_enable(msm_host->id,
msm_host->byte_clk_rate * 8,
clk_get_rate(msm_host->esc_clk),
&clk_pre, &clk_post);
dsi_bus_clk_disable(msm_host);
if (ret) {
pr_err("%s: failed to enable phy, %d\n", __func__, ret);
goto fail_disable_reg;
}
ret = dsi_clk_ctrl(msm_host, 1);
if (ret) {
pr_err("%s: failed to enable clocks. ret=%d\n", __func__, ret);
goto fail_disable_reg;
}
dsi_timing_setup(msm_host);
dsi_sw_reset(msm_host);
dsi_ctrl_config(msm_host, true, clk_pre, clk_post);
if (msm_host->disp_en_gpio)
gpiod_set_value(msm_host->disp_en_gpio, 1);
msm_host->power_on = true;
mutex_unlock(&msm_host->dev_mutex);
return 0;
fail_disable_reg:
dsi_host_regulator_disable(msm_host);
unlock_ret:
mutex_unlock(&msm_host->dev_mutex);
return ret;
}
int msm_dsi_host_power_off(struct mipi_dsi_host *host)
{
struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
mutex_lock(&msm_host->dev_mutex);
if (!msm_host->power_on) {
DBG("dsi host already off");
goto unlock_ret;
}
dsi_ctrl_config(msm_host, false, 0, 0);
if (msm_host->disp_en_gpio)
gpiod_set_value(msm_host->disp_en_gpio, 0);
msm_dsi_manager_phy_disable(msm_host->id);
dsi_clk_ctrl(msm_host, 0);
dsi_host_regulator_disable(msm_host);
DBG("-");
msm_host->power_on = false;
unlock_ret:
mutex_unlock(&msm_host->dev_mutex);
return 0;
}
int msm_dsi_host_set_display_mode(struct mipi_dsi_host *host,
struct drm_display_mode *mode)
{
struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
if (msm_host->mode) {
drm_mode_destroy(msm_host->dev, msm_host->mode);
msm_host->mode = NULL;
}
msm_host->mode = drm_mode_duplicate(msm_host->dev, mode);
if (IS_ERR(msm_host->mode)) {
pr_err("%s: cannot duplicate mode\n", __func__);
return PTR_ERR(msm_host->mode);
}
return 0;
}
struct drm_panel *msm_dsi_host_get_panel(struct mipi_dsi_host *host,
unsigned long *panel_flags)
{
struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
struct drm_panel *panel;
panel = of_drm_find_panel(msm_host->panel_node);
if (panel_flags)
*panel_flags = msm_host->mode_flags;
return panel;
}
/*
* Copyright (c) 2015, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include "msm_kms.h"
#include "dsi.h"
struct msm_dsi_manager {
struct msm_dsi *dsi[DSI_MAX];
bool is_dual_panel;
bool is_sync_needed;
int master_panel_id;
};
static struct msm_dsi_manager msm_dsim_glb;
#define IS_DUAL_PANEL() (msm_dsim_glb.is_dual_panel)
#define IS_SYNC_NEEDED() (msm_dsim_glb.is_sync_needed)
#define IS_MASTER_PANEL(id) (msm_dsim_glb.master_panel_id == id)
static inline struct msm_dsi *dsi_mgr_get_dsi(int id)
{
return msm_dsim_glb.dsi[id];
}
static inline struct msm_dsi *dsi_mgr_get_other_dsi(int id)
{
return msm_dsim_glb.dsi[(id + 1) % DSI_MAX];
}
static int dsi_mgr_parse_dual_panel(struct device_node *np, int id)
{
struct msm_dsi_manager *msm_dsim = &msm_dsim_glb;
/* We assume 2 dsi nodes have the same information of dual-panel and
* sync-mode, and only one node specifies master in case of dual mode.
*/
if (!msm_dsim->is_dual_panel)
msm_dsim->is_dual_panel = of_property_read_bool(
np, "qcom,dual-panel-mode");
if (msm_dsim->is_dual_panel) {
if (of_property_read_bool(np, "qcom,master-panel"))
msm_dsim->master_panel_id = id;
if (!msm_dsim->is_sync_needed)
msm_dsim->is_sync_needed = of_property_read_bool(
np, "qcom,sync-dual-panel");
}
return 0;
}
struct dsi_connector {
struct drm_connector base;
int id;
};
struct dsi_bridge {
struct drm_bridge base;
int id;
};
#define to_dsi_connector(x) container_of(x, struct dsi_connector, base)
#define to_dsi_bridge(x) container_of(x, struct dsi_bridge, base)
static inline int dsi_mgr_connector_get_id(struct drm_connector *connector)
{
struct dsi_connector *dsi_connector = to_dsi_connector(connector);
return dsi_connector->id;
}
static int dsi_mgr_bridge_get_id(struct drm_bridge *bridge)
{
struct dsi_bridge *dsi_bridge = to_dsi_bridge(bridge);
return dsi_bridge->id;
}
static enum drm_connector_status dsi_mgr_connector_detect(
struct drm_connector *connector, bool force)
{
int id = dsi_mgr_connector_get_id(connector);
struct msm_dsi *msm_dsi = dsi_mgr_get_dsi(id);
struct msm_dsi *other_dsi = dsi_mgr_get_other_dsi(id);
struct msm_drm_private *priv = connector->dev->dev_private;
struct msm_kms *kms = priv->kms;
DBG("id=%d", id);
if (!msm_dsi->panel) {
msm_dsi->panel = msm_dsi_host_get_panel(msm_dsi->host,
&msm_dsi->panel_flags);
/* There is only 1 panel in the global panel list
* for dual panel mode. Therefore slave dsi should get
* the drm_panel instance from master dsi, and
* keep using the panel flags got from the current DSI link.
*/
if (!msm_dsi->panel && IS_DUAL_PANEL() &&
!IS_MASTER_PANEL(id) && other_dsi)
msm_dsi->panel = msm_dsi_host_get_panel(
other_dsi->host, NULL);
if (msm_dsi->panel && IS_DUAL_PANEL())
drm_object_attach_property(&connector->base,
connector->dev->mode_config.tile_property, 0);
/* Set split display info to kms once dual panel is connected
* to both hosts
*/
if (msm_dsi->panel && IS_DUAL_PANEL() &&
other_dsi && other_dsi->panel) {
bool cmd_mode = !(msm_dsi->panel_flags &
MIPI_DSI_MODE_VIDEO);
struct drm_encoder *encoder = msm_dsi_get_encoder(
dsi_mgr_get_dsi(DSI_ENCODER_MASTER));
struct drm_encoder *slave_enc = msm_dsi_get_encoder(
dsi_mgr_get_dsi(DSI_ENCODER_SLAVE));
if (kms->funcs->set_split_display)
kms->funcs->set_split_display(kms, encoder,
slave_enc, cmd_mode);
else
pr_err("mdp does not support dual panel\n");
}
}
return msm_dsi->panel ? connector_status_connected :
connector_status_disconnected;
}
static void dsi_mgr_connector_destroy(struct drm_connector *connector)
{
DBG("");
drm_connector_unregister(connector);
drm_connector_cleanup(connector);
}
static void dsi_dual_connector_fix_modes(struct drm_connector *connector)
{
struct drm_display_mode *mode, *m;
/* Only support left-right mode */
list_for_each_entry_safe(mode, m, &connector->probed_modes, head) {
mode->clock >>= 1;
mode->hdisplay >>= 1;
mode->hsync_start >>= 1;
mode->hsync_end >>= 1;
mode->htotal >>= 1;
drm_mode_set_name(mode);
}
}
static int dsi_dual_connector_tile_init(
struct drm_connector *connector, int id)
{
struct drm_display_mode *mode;
/* Fake topology id */
char topo_id[8] = {'M', 'S', 'M', 'D', 'U', 'D', 'S', 'I'};
if (connector->tile_group) {
DBG("Tile property has been initialized");
return 0;
}
/* Use the first mode only for now */
mode = list_first_entry(&connector->probed_modes,
struct drm_display_mode,
head);
if (!mode)
return -EINVAL;
connector->tile_group = drm_mode_get_tile_group(
connector->dev, topo_id);
if (!connector->tile_group)
connector->tile_group = drm_mode_create_tile_group(
connector->dev, topo_id);
if (!connector->tile_group) {
pr_err("%s: failed to create tile group\n", __func__);
return -ENOMEM;
}
connector->has_tile = true;
connector->tile_is_single_monitor = true;
/* mode has been fixed */
connector->tile_h_size = mode->hdisplay;
connector->tile_v_size = mode->vdisplay;
/* Only support left-right mode */
connector->num_h_tile = 2;
connector->num_v_tile = 1;
connector->tile_v_loc = 0;
connector->tile_h_loc = (id == DSI_RIGHT) ? 1 : 0;
return 0;
}
static int dsi_mgr_connector_get_modes(struct drm_connector *connector)
{
int id = dsi_mgr_connector_get_id(connector);
struct msm_dsi *msm_dsi = dsi_mgr_get_dsi(id);
struct drm_panel *panel = msm_dsi->panel;
int ret, num;
if (!panel)
return 0;
/* Since we have 2 connectors, but only 1 drm_panel in dual DSI mode,
* panel should not attach to any connector.
* Only temporarily attach panel to the current connector here,
* to let panel set mode to this connector.
*/
drm_panel_attach(panel, connector);
num = drm_panel_get_modes(panel);
drm_panel_detach(panel);
if (!num)
return 0;
if (IS_DUAL_PANEL()) {
/* report half resolution to user */
dsi_dual_connector_fix_modes(connector);
ret = dsi_dual_connector_tile_init(connector, id);
if (ret)
return ret;
ret = drm_mode_connector_set_tile_property(connector);
if (ret) {
pr_err("%s: set tile property failed, %d\n",
__func__, ret);
return ret;
}
}
return num;
}
static int dsi_mgr_connector_mode_valid(struct drm_connector *connector,
struct drm_display_mode *mode)
{
int id = dsi_mgr_connector_get_id(connector);
struct msm_dsi *msm_dsi = dsi_mgr_get_dsi(id);
struct drm_encoder *encoder = msm_dsi_get_encoder(msm_dsi);
struct msm_drm_private *priv = connector->dev->dev_private;
struct msm_kms *kms = priv->kms;
long actual, requested;
DBG("");
requested = 1000 * mode->clock;
actual = kms->funcs->round_pixclk(kms, requested, encoder);
DBG("requested=%ld, actual=%ld", requested, actual);
if (actual != requested)
return MODE_CLOCK_RANGE;
return MODE_OK;
}
static struct drm_encoder *
dsi_mgr_connector_best_encoder(struct drm_connector *connector)
{
int id = dsi_mgr_connector_get_id(connector);
struct msm_dsi *msm_dsi = dsi_mgr_get_dsi(id);
DBG("");
return msm_dsi_get_encoder(msm_dsi);
}
static void dsi_mgr_bridge_pre_enable(struct drm_bridge *bridge)
{
int id = dsi_mgr_bridge_get_id(bridge);
struct msm_dsi *msm_dsi = dsi_mgr_get_dsi(id);
struct msm_dsi *msm_dsi1 = dsi_mgr_get_dsi(DSI_1);
struct mipi_dsi_host *host = msm_dsi->host;
struct drm_panel *panel = msm_dsi->panel;
bool is_dual_panel = IS_DUAL_PANEL();
int ret;
DBG("id=%d", id);
if (!panel || (is_dual_panel && (DSI_1 == id)))
return;
ret = msm_dsi_host_power_on(host);
if (ret) {
pr_err("%s: power on host %d failed, %d\n", __func__, id, ret);
goto host_on_fail;
}
if (is_dual_panel && msm_dsi1) {
ret = msm_dsi_host_power_on(msm_dsi1->host);
if (ret) {
pr_err("%s: power on host1 failed, %d\n",
__func__, ret);
goto host1_on_fail;
}
}
/* Always call panel functions once, because even for dual panels,
* there is only one drm_panel instance.
*/
ret = drm_panel_prepare(panel);
if (ret) {
pr_err("%s: prepare panel %d failed, %d\n", __func__, id, ret);
goto panel_prep_fail;
}
ret = msm_dsi_host_enable(host);
if (ret) {
pr_err("%s: enable host %d failed, %d\n", __func__, id, ret);
goto host_en_fail;
}
if (is_dual_panel && msm_dsi1) {
ret = msm_dsi_host_enable(msm_dsi1->host);
if (ret) {
pr_err("%s: enable host1 failed, %d\n", __func__, ret);
goto host1_en_fail;
}
}
ret = drm_panel_enable(panel);
if (ret) {
pr_err("%s: enable panel %d failed, %d\n", __func__, id, ret);
goto panel_en_fail;
}
return;
panel_en_fail:
if (is_dual_panel && msm_dsi1)
msm_dsi_host_disable(msm_dsi1->host);
host1_en_fail:
msm_dsi_host_disable(host);
host_en_fail:
drm_panel_unprepare(panel);
panel_prep_fail:
if (is_dual_panel && msm_dsi1)
msm_dsi_host_power_off(msm_dsi1->host);
host1_on_fail:
msm_dsi_host_power_off(host);
host_on_fail:
return;
}
static void dsi_mgr_bridge_enable(struct drm_bridge *bridge)
{
DBG("");
}
static void dsi_mgr_bridge_disable(struct drm_bridge *bridge)
{
DBG("");
}
static void dsi_mgr_bridge_post_disable(struct drm_bridge *bridge)
{
int id = dsi_mgr_bridge_get_id(bridge);
struct msm_dsi *msm_dsi = dsi_mgr_get_dsi(id);
struct msm_dsi *msm_dsi1 = dsi_mgr_get_dsi(DSI_1);
struct mipi_dsi_host *host = msm_dsi->host;
struct drm_panel *panel = msm_dsi->panel;
bool is_dual_panel = IS_DUAL_PANEL();
int ret;
DBG("id=%d", id);
if (!panel || (is_dual_panel && (DSI_1 == id)))
return;
ret = drm_panel_disable(panel);
if (ret)
pr_err("%s: Panel %d OFF failed, %d\n", __func__, id, ret);
ret = msm_dsi_host_disable(host);
if (ret)
pr_err("%s: host %d disable failed, %d\n", __func__, id, ret);
if (is_dual_panel && msm_dsi1) {
ret = msm_dsi_host_disable(msm_dsi1->host);
if (ret)
pr_err("%s: host1 disable failed, %d\n", __func__, ret);
}
ret = drm_panel_unprepare(panel);
if (ret)
pr_err("%s: Panel %d unprepare failed,%d\n", __func__, id, ret);
ret = msm_dsi_host_power_off(host);
if (ret)
pr_err("%s: host %d power off failed,%d\n", __func__, id, ret);
if (is_dual_panel && msm_dsi1) {
ret = msm_dsi_host_power_off(msm_dsi1->host);
if (ret)
pr_err("%s: host1 power off failed, %d\n",
__func__, ret);
}
}
static void dsi_mgr_bridge_mode_set(struct drm_bridge *bridge,
struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
int id = dsi_mgr_bridge_get_id(bridge);
struct msm_dsi *msm_dsi = dsi_mgr_get_dsi(id);
struct msm_dsi *other_dsi = dsi_mgr_get_other_dsi(id);
struct mipi_dsi_host *host = msm_dsi->host;
bool is_dual_panel = IS_DUAL_PANEL();
DBG("set mode: %d:\"%s\" %d %d %d %d %d %d %d %d %d %d 0x%x 0x%x",
mode->base.id, mode->name,
mode->vrefresh, mode->clock,
mode->hdisplay, mode->hsync_start,
mode->hsync_end, mode->htotal,
mode->vdisplay, mode->vsync_start,
mode->vsync_end, mode->vtotal,
mode->type, mode->flags);
if (is_dual_panel && (DSI_1 == id))
return;
msm_dsi_host_set_display_mode(host, adjusted_mode);
if (is_dual_panel && other_dsi)
msm_dsi_host_set_display_mode(other_dsi->host, adjusted_mode);
}
static const struct drm_connector_funcs dsi_mgr_connector_funcs = {
.dpms = drm_atomic_helper_connector_dpms,
.detect = dsi_mgr_connector_detect,
.fill_modes = drm_helper_probe_single_connector_modes,
.destroy = dsi_mgr_connector_destroy,
.reset = drm_atomic_helper_connector_reset,
.atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
};
static const struct drm_connector_helper_funcs dsi_mgr_conn_helper_funcs = {
.get_modes = dsi_mgr_connector_get_modes,
.mode_valid = dsi_mgr_connector_mode_valid,
.best_encoder = dsi_mgr_connector_best_encoder,
};
static const struct drm_bridge_funcs dsi_mgr_bridge_funcs = {
.pre_enable = dsi_mgr_bridge_pre_enable,
.enable = dsi_mgr_bridge_enable,
.disable = dsi_mgr_bridge_disable,
.post_disable = dsi_mgr_bridge_post_disable,
.mode_set = dsi_mgr_bridge_mode_set,
};
/* initialize connector */
struct drm_connector *msm_dsi_manager_connector_init(u8 id)
{
struct msm_dsi *msm_dsi = dsi_mgr_get_dsi(id);
struct drm_connector *connector = NULL;
struct dsi_connector *dsi_connector;
int ret;
dsi_connector = devm_kzalloc(msm_dsi->dev->dev,
sizeof(*dsi_connector), GFP_KERNEL);
if (!dsi_connector) {
ret = -ENOMEM;
goto fail;
}
dsi_connector->id = id;
connector = &dsi_connector->base;
ret = drm_connector_init(msm_dsi->dev, connector,
&dsi_mgr_connector_funcs, DRM_MODE_CONNECTOR_DSI);
if (ret)
goto fail;
drm_connector_helper_add(connector, &dsi_mgr_conn_helper_funcs);
/* Enable HPD to let hpd event is handled
* when panel is attached to the host.
*/
connector->polled = DRM_CONNECTOR_POLL_HPD;
/* Display driver doesn't support interlace now. */
connector->interlace_allowed = 0;
connector->doublescan_allowed = 0;
ret = drm_connector_register(connector);
if (ret)
goto fail;
return connector;
fail:
if (connector)
dsi_mgr_connector_destroy(connector);
return ERR_PTR(ret);
}
/* initialize bridge */
struct drm_bridge *msm_dsi_manager_bridge_init(u8 id)
{
struct msm_dsi *msm_dsi = dsi_mgr_get_dsi(id);
struct drm_bridge *bridge = NULL;
struct dsi_bridge *dsi_bridge;
int ret;
dsi_bridge = devm_kzalloc(msm_dsi->dev->dev,
sizeof(*dsi_bridge), GFP_KERNEL);
if (!dsi_bridge) {
ret = -ENOMEM;
goto fail;
}
dsi_bridge->id = id;
bridge = &dsi_bridge->base;
bridge->funcs = &dsi_mgr_bridge_funcs;
ret = drm_bridge_attach(msm_dsi->dev, bridge);
if (ret)
goto fail;
return bridge;
fail:
if (bridge)
msm_dsi_manager_bridge_destroy(bridge);
return ERR_PTR(ret);
}
void msm_dsi_manager_bridge_destroy(struct drm_bridge *bridge)
{
}
int msm_dsi_manager_phy_enable(int id,
const unsigned long bit_rate, const unsigned long esc_rate,
u32 *clk_pre, u32 *clk_post)
{
struct msm_dsi *msm_dsi = dsi_mgr_get_dsi(id);
struct msm_dsi_phy *phy = msm_dsi->phy;
int ret;
ret = msm_dsi_phy_enable(phy, IS_DUAL_PANEL(), bit_rate, esc_rate);
if (ret)
return ret;
msm_dsi->phy_enabled = true;
msm_dsi_phy_get_clk_pre_post(phy, clk_pre, clk_post);
return 0;
}
void msm_dsi_manager_phy_disable(int id)
{
struct msm_dsi *msm_dsi = dsi_mgr_get_dsi(id);
struct msm_dsi *mdsi = dsi_mgr_get_dsi(DSI_CLOCK_MASTER);
struct msm_dsi *sdsi = dsi_mgr_get_dsi(DSI_CLOCK_SLAVE);
struct msm_dsi_phy *phy = msm_dsi->phy;
/* disable DSI phy
* In dual-dsi configuration, the phy should be disabled for the
* first controller only when the second controller is disabled.
*/
msm_dsi->phy_enabled = false;
if (IS_DUAL_PANEL() && mdsi && sdsi) {
if (!mdsi->phy_enabled && !sdsi->phy_enabled) {
msm_dsi_phy_disable(sdsi->phy);
msm_dsi_phy_disable(mdsi->phy);
}
} else {
msm_dsi_phy_disable(phy);
}
}
int msm_dsi_manager_cmd_xfer(int id, const struct mipi_dsi_msg *msg)
{
struct msm_dsi *msm_dsi = dsi_mgr_get_dsi(id);
struct msm_dsi *msm_dsi0 = dsi_mgr_get_dsi(DSI_0);
struct mipi_dsi_host *host = msm_dsi->host;
bool is_read = (msg->rx_buf && msg->rx_len);
bool need_sync = (IS_SYNC_NEEDED() && !is_read);
int ret;
if (!msg->tx_buf || !msg->tx_len)
return 0;
/* In dual master case, panel requires the same commands sent to
* both DSI links. Host issues the command trigger to both links
* when DSI_1 calls the cmd transfer function, no matter it happens
* before or after DSI_0 cmd transfer.
*/
if (need_sync && (id == DSI_0))
return is_read ? msg->rx_len : msg->tx_len;
if (need_sync && msm_dsi0) {
ret = msm_dsi_host_xfer_prepare(msm_dsi0->host, msg);
if (ret) {
pr_err("%s: failed to prepare non-trigger host, %d\n",
__func__, ret);
return ret;
}
}
ret = msm_dsi_host_xfer_prepare(host, msg);
if (ret) {
pr_err("%s: failed to prepare host, %d\n", __func__, ret);
goto restore_host0;
}
ret = is_read ? msm_dsi_host_cmd_rx(host, msg) :
msm_dsi_host_cmd_tx(host, msg);
msm_dsi_host_xfer_restore(host, msg);
restore_host0:
if (need_sync && msm_dsi0)
msm_dsi_host_xfer_restore(msm_dsi0->host, msg);
return ret;
}
bool msm_dsi_manager_cmd_xfer_trigger(int id, u32 iova, u32 len)
{
struct msm_dsi *msm_dsi = dsi_mgr_get_dsi(id);
struct msm_dsi *msm_dsi0 = dsi_mgr_get_dsi(DSI_0);
struct mipi_dsi_host *host = msm_dsi->host;
if (IS_SYNC_NEEDED() && (id == DSI_0))
return false;
if (IS_SYNC_NEEDED() && msm_dsi0)
msm_dsi_host_cmd_xfer_commit(msm_dsi0->host, iova, len);
msm_dsi_host_cmd_xfer_commit(host, iova, len);
return true;
}
int msm_dsi_manager_register(struct msm_dsi *msm_dsi)
{
struct msm_dsi_manager *msm_dsim = &msm_dsim_glb;
int id = msm_dsi->id;
struct msm_dsi *other_dsi = dsi_mgr_get_other_dsi(id);
int ret;
if (id > DSI_MAX) {
pr_err("%s: invalid id %d\n", __func__, id);
return -EINVAL;
}
if (msm_dsim->dsi[id]) {
pr_err("%s: dsi%d already registered\n", __func__, id);
return -EBUSY;
}
msm_dsim->dsi[id] = msm_dsi;
ret = dsi_mgr_parse_dual_panel(msm_dsi->pdev->dev.of_node, id);
if (ret) {
pr_err("%s: failed to parse dual panel info\n", __func__);
return ret;
}
if (!IS_DUAL_PANEL()) {
ret = msm_dsi_host_register(msm_dsi->host, true);
} else if (!other_dsi) {
return 0;
} else {
struct msm_dsi *mdsi = IS_MASTER_PANEL(id) ?
msm_dsi : other_dsi;
struct msm_dsi *sdsi = IS_MASTER_PANEL(id) ?
other_dsi : msm_dsi;
/* Register slave host first, so that slave DSI device
* has a chance to probe, and do not block the master
* DSI device's probe.
* Also, do not check defer for the slave host,
* because only master DSI device adds the panel to global
* panel list. The panel's device is the master DSI device.
*/
ret = msm_dsi_host_register(sdsi->host, false);
if (ret)
return ret;
ret = msm_dsi_host_register(mdsi->host, true);
}
return ret;
}
void msm_dsi_manager_unregister(struct msm_dsi *msm_dsi)
{
struct msm_dsi_manager *msm_dsim = &msm_dsim_glb;
if (msm_dsi->host)
msm_dsi_host_unregister(msm_dsi->host);
msm_dsim->dsi[msm_dsi->id] = NULL;
}
/*
* Copyright (c) 2015, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include "dsi.h"
#include "dsi.xml.h"
#define dsi_phy_read(offset) msm_readl((offset))
#define dsi_phy_write(offset, data) msm_writel((data), (offset))
struct dsi_dphy_timing {
u32 clk_pre;
u32 clk_post;
u32 clk_zero;
u32 clk_trail;
u32 clk_prepare;
u32 hs_exit;
u32 hs_zero;
u32 hs_prepare;
u32 hs_trail;
u32 hs_rqst;
u32 ta_go;
u32 ta_sure;
u32 ta_get;
};
struct msm_dsi_phy {
void __iomem *base;
void __iomem *reg_base;
int id;
struct dsi_dphy_timing timing;
int (*enable)(struct msm_dsi_phy *phy, bool is_dual_panel,
const unsigned long bit_rate, const unsigned long esc_rate);
int (*disable)(struct msm_dsi_phy *phy);
};
#define S_DIV_ROUND_UP(n, d) \
(((n) >= 0) ? (((n) + (d) - 1) / (d)) : (((n) - (d) + 1) / (d)))
static inline s32 linear_inter(s32 tmax, s32 tmin, s32 percent,
s32 min_result, bool even)
{
s32 v;
v = (tmax - tmin) * percent;
v = S_DIV_ROUND_UP(v, 100) + tmin;
if (even && (v & 0x1))
return max_t(s32, min_result, v - 1);
else
return max_t(s32, min_result, v);
}
static void dsi_dphy_timing_calc_clk_zero(struct dsi_dphy_timing *timing,
s32 ui, s32 coeff, s32 pcnt)
{
s32 tmax, tmin, clk_z;
s32 temp;
/* reset */
temp = 300 * coeff - ((timing->clk_prepare >> 1) + 1) * 2 * ui;
tmin = S_DIV_ROUND_UP(temp, ui) - 2;
if (tmin > 255) {
tmax = 511;
clk_z = linear_inter(2 * tmin, tmin, pcnt, 0, true);
} else {
tmax = 255;
clk_z = linear_inter(tmax, tmin, pcnt, 0, true);
}
/* adjust */
temp = (timing->hs_rqst + timing->clk_prepare + clk_z) & 0x7;
timing->clk_zero = clk_z + 8 - temp;
}
static int dsi_dphy_timing_calc(struct dsi_dphy_timing *timing,
const unsigned long bit_rate, const unsigned long esc_rate)
{
s32 ui, lpx;
s32 tmax, tmin;
s32 pcnt0 = 10;
s32 pcnt1 = (bit_rate > 1200000000) ? 15 : 10;
s32 pcnt2 = 10;
s32 pcnt3 = (bit_rate > 180000000) ? 10 : 40;
s32 coeff = 1000; /* Precision, should avoid overflow */
s32 temp;
if (!bit_rate || !esc_rate)
return -EINVAL;
ui = mult_frac(NSEC_PER_MSEC, coeff, bit_rate / 1000);
lpx = mult_frac(NSEC_PER_MSEC, coeff, esc_rate / 1000);
tmax = S_DIV_ROUND_UP(95 * coeff, ui) - 2;
tmin = S_DIV_ROUND_UP(38 * coeff, ui) - 2;
timing->clk_prepare = linear_inter(tmax, tmin, pcnt0, 0, true);
temp = lpx / ui;
if (temp & 0x1)
timing->hs_rqst = temp;
else
timing->hs_rqst = max_t(s32, 0, temp - 2);
/* Calculate clk_zero after clk_prepare and hs_rqst */
dsi_dphy_timing_calc_clk_zero(timing, ui, coeff, pcnt2);
temp = 105 * coeff + 12 * ui - 20 * coeff;
tmax = S_DIV_ROUND_UP(temp, ui) - 2;
tmin = S_DIV_ROUND_UP(60 * coeff, ui) - 2;
timing->clk_trail = linear_inter(tmax, tmin, pcnt3, 0, true);
temp = 85 * coeff + 6 * ui;
tmax = S_DIV_ROUND_UP(temp, ui) - 2;
temp = 40 * coeff + 4 * ui;
tmin = S_DIV_ROUND_UP(temp, ui) - 2;
timing->hs_prepare = linear_inter(tmax, tmin, pcnt1, 0, true);
tmax = 255;
temp = ((timing->hs_prepare >> 1) + 1) * 2 * ui + 2 * ui;
temp = 145 * coeff + 10 * ui - temp;
tmin = S_DIV_ROUND_UP(temp, ui) - 2;
timing->hs_zero = linear_inter(tmax, tmin, pcnt2, 24, true);
temp = 105 * coeff + 12 * ui - 20 * coeff;
tmax = S_DIV_ROUND_UP(temp, ui) - 2;
temp = 60 * coeff + 4 * ui;
tmin = DIV_ROUND_UP(temp, ui) - 2;
timing->hs_trail = linear_inter(tmax, tmin, pcnt3, 0, true);
tmax = 255;
tmin = S_DIV_ROUND_UP(100 * coeff, ui) - 2;
timing->hs_exit = linear_inter(tmax, tmin, pcnt2, 0, true);
tmax = 63;
temp = ((timing->hs_exit >> 1) + 1) * 2 * ui;
temp = 60 * coeff + 52 * ui - 24 * ui - temp;
tmin = S_DIV_ROUND_UP(temp, 8 * ui) - 1;
timing->clk_post = linear_inter(tmax, tmin, pcnt2, 0, false);
tmax = 63;
temp = ((timing->clk_prepare >> 1) + 1) * 2 * ui;
temp += ((timing->clk_zero >> 1) + 1) * 2 * ui;
temp += 8 * ui + lpx;
tmin = S_DIV_ROUND_UP(temp, 8 * ui) - 1;
if (tmin > tmax) {
temp = linear_inter(2 * tmax, tmin, pcnt2, 0, false) >> 1;
timing->clk_pre = temp >> 1;
temp = (2 * tmax - tmin) * pcnt2;
} else {
timing->clk_pre = linear_inter(tmax, tmin, pcnt2, 0, false);
}
timing->ta_go = 3;
timing->ta_sure = 0;
timing->ta_get = 4;
DBG("PHY timings: %d, %d, %d, %d, %d, %d, %d, %d, %d, %d",
timing->clk_pre, timing->clk_post, timing->clk_zero,
timing->clk_trail, timing->clk_prepare, timing->hs_exit,
timing->hs_zero, timing->hs_prepare, timing->hs_trail,
timing->hs_rqst);
return 0;
}
static void dsi_28nm_phy_regulator_ctrl(struct msm_dsi_phy *phy, bool enable)
{
void __iomem *base = phy->reg_base;
if (!enable) {
dsi_phy_write(base + REG_DSI_28nm_PHY_REGULATOR_CAL_PWR_CFG, 0);
return;
}
dsi_phy_write(base + REG_DSI_28nm_PHY_REGULATOR_CTRL_0, 0x0);
dsi_phy_write(base + REG_DSI_28nm_PHY_REGULATOR_CAL_PWR_CFG, 1);
dsi_phy_write(base + REG_DSI_28nm_PHY_REGULATOR_CTRL_5, 0);
dsi_phy_write(base + REG_DSI_28nm_PHY_REGULATOR_CTRL_3, 0);
dsi_phy_write(base + REG_DSI_28nm_PHY_REGULATOR_CTRL_2, 0x3);
dsi_phy_write(base + REG_DSI_28nm_PHY_REGULATOR_CTRL_1, 0x9);
dsi_phy_write(base + REG_DSI_28nm_PHY_REGULATOR_CTRL_0, 0x7);
dsi_phy_write(base + REG_DSI_28nm_PHY_REGULATOR_CTRL_4, 0x20);
}
static int dsi_28nm_phy_enable(struct msm_dsi_phy *phy, bool is_dual_panel,
const unsigned long bit_rate, const unsigned long esc_rate)
{
struct dsi_dphy_timing *timing = &phy->timing;
int i;
void __iomem *base = phy->base;
DBG("");
if (dsi_dphy_timing_calc(timing, bit_rate, esc_rate)) {
pr_err("%s: D-PHY timing calculation failed\n", __func__);
return -EINVAL;
}
dsi_phy_write(base + REG_DSI_28nm_PHY_STRENGTH_0, 0xff);
dsi_28nm_phy_regulator_ctrl(phy, true);
dsi_phy_write(base + REG_DSI_28nm_PHY_LDO_CNTRL, 0x00);
dsi_phy_write(base + REG_DSI_28nm_PHY_TIMING_CTRL_0,
DSI_28nm_PHY_TIMING_CTRL_0_CLK_ZERO(timing->clk_zero));
dsi_phy_write(base + REG_DSI_28nm_PHY_TIMING_CTRL_1,
DSI_28nm_PHY_TIMING_CTRL_1_CLK_TRAIL(timing->clk_trail));
dsi_phy_write(base + REG_DSI_28nm_PHY_TIMING_CTRL_2,
DSI_28nm_PHY_TIMING_CTRL_2_CLK_PREPARE(timing->clk_prepare));
if (timing->clk_zero & BIT(8))
dsi_phy_write(base + REG_DSI_28nm_PHY_TIMING_CTRL_3,
DSI_28nm_PHY_TIMING_CTRL_3_CLK_ZERO_8);
dsi_phy_write(base + REG_DSI_28nm_PHY_TIMING_CTRL_4,
DSI_28nm_PHY_TIMING_CTRL_4_HS_EXIT(timing->hs_exit));
dsi_phy_write(base + REG_DSI_28nm_PHY_TIMING_CTRL_5,
DSI_28nm_PHY_TIMING_CTRL_5_HS_ZERO(timing->hs_zero));
dsi_phy_write(base + REG_DSI_28nm_PHY_TIMING_CTRL_6,
DSI_28nm_PHY_TIMING_CTRL_6_HS_PREPARE(timing->hs_prepare));
dsi_phy_write(base + REG_DSI_28nm_PHY_TIMING_CTRL_7,
DSI_28nm_PHY_TIMING_CTRL_7_HS_TRAIL(timing->hs_trail));
dsi_phy_write(base + REG_DSI_28nm_PHY_TIMING_CTRL_8,
DSI_28nm_PHY_TIMING_CTRL_8_HS_RQST(timing->hs_rqst));
dsi_phy_write(base + REG_DSI_28nm_PHY_TIMING_CTRL_9,
DSI_28nm_PHY_TIMING_CTRL_9_TA_GO(timing->ta_go) |
DSI_28nm_PHY_TIMING_CTRL_9_TA_SURE(timing->ta_sure));
dsi_phy_write(base + REG_DSI_28nm_PHY_TIMING_CTRL_10,
DSI_28nm_PHY_TIMING_CTRL_10_TA_GET(timing->ta_get));
dsi_phy_write(base + REG_DSI_28nm_PHY_TIMING_CTRL_11,
DSI_28nm_PHY_TIMING_CTRL_11_TRIG3_CMD(0));
dsi_phy_write(base + REG_DSI_28nm_PHY_CTRL_1, 0x00);
dsi_phy_write(base + REG_DSI_28nm_PHY_CTRL_0, 0x5f);
dsi_phy_write(base + REG_DSI_28nm_PHY_STRENGTH_1, 0x6);
for (i = 0; i < 4; i++) {
dsi_phy_write(base + REG_DSI_28nm_PHY_LN_CFG_0(i), 0);
dsi_phy_write(base + REG_DSI_28nm_PHY_LN_CFG_1(i), 0);
dsi_phy_write(base + REG_DSI_28nm_PHY_LN_CFG_2(i), 0);
dsi_phy_write(base + REG_DSI_28nm_PHY_LN_CFG_3(i), 0);
dsi_phy_write(base + REG_DSI_28nm_PHY_LN_TEST_DATAPATH(i), 0);
dsi_phy_write(base + REG_DSI_28nm_PHY_LN_DEBUG_SEL(i), 0);
dsi_phy_write(base + REG_DSI_28nm_PHY_LN_TEST_STR_0(i), 0x1);
dsi_phy_write(base + REG_DSI_28nm_PHY_LN_TEST_STR_1(i), 0x97);
}
dsi_phy_write(base + REG_DSI_28nm_PHY_LN_CFG_4(0), 0);
dsi_phy_write(base + REG_DSI_28nm_PHY_LN_CFG_4(1), 0x5);
dsi_phy_write(base + REG_DSI_28nm_PHY_LN_CFG_4(2), 0xa);
dsi_phy_write(base + REG_DSI_28nm_PHY_LN_CFG_4(3), 0xf);
dsi_phy_write(base + REG_DSI_28nm_PHY_LNCK_CFG_1, 0xc0);
dsi_phy_write(base + REG_DSI_28nm_PHY_LNCK_TEST_STR0, 0x1);
dsi_phy_write(base + REG_DSI_28nm_PHY_LNCK_TEST_STR1, 0xbb);
dsi_phy_write(base + REG_DSI_28nm_PHY_CTRL_0, 0x5f);
if (is_dual_panel && (phy->id != DSI_CLOCK_MASTER))
dsi_phy_write(base + REG_DSI_28nm_PHY_GLBL_TEST_CTRL, 0x00);
else
dsi_phy_write(base + REG_DSI_28nm_PHY_GLBL_TEST_CTRL, 0x01);
return 0;
}
static int dsi_28nm_phy_disable(struct msm_dsi_phy *phy)
{
dsi_phy_write(phy->base + REG_DSI_28nm_PHY_CTRL_0, 0);
dsi_28nm_phy_regulator_ctrl(phy, false);
/*
* Wait for the registers writes to complete in order to
* ensure that the phy is completely disabled
*/
wmb();
return 0;
}
#define dsi_phy_func_init(name) \
do { \
phy->enable = dsi_##name##_phy_enable; \
phy->disable = dsi_##name##_phy_disable; \
} while (0)
struct msm_dsi_phy *msm_dsi_phy_init(struct platform_device *pdev,
enum msm_dsi_phy_type type, int id)
{
struct msm_dsi_phy *phy;
phy = devm_kzalloc(&pdev->dev, sizeof(*phy), GFP_KERNEL);
if (!phy)
return NULL;
phy->base = msm_ioremap(pdev, "dsi_phy", "DSI_PHY");
if (IS_ERR_OR_NULL(phy->base)) {
pr_err("%s: failed to map phy base\n", __func__);
return NULL;
}
phy->reg_base = msm_ioremap(pdev, "dsi_phy_regulator", "DSI_PHY_REG");
if (IS_ERR_OR_NULL(phy->reg_base)) {
pr_err("%s: failed to map phy regulator base\n", __func__);
return NULL;
}
switch (type) {
case MSM_DSI_PHY_28NM:
dsi_phy_func_init(28nm);
break;
default:
pr_err("%s: unsupported type, %d\n", __func__, type);
return NULL;
}
phy->id = id;
return phy;
}
int msm_dsi_phy_enable(struct msm_dsi_phy *phy, bool is_dual_panel,
const unsigned long bit_rate, const unsigned long esc_rate)
{
if (!phy || !phy->enable)
return -EINVAL;
return phy->enable(phy, is_dual_panel, bit_rate, esc_rate);
}
int msm_dsi_phy_disable(struct msm_dsi_phy *phy)
{
if (!phy || !phy->disable)
return -EINVAL;
return phy->disable(phy);
}
void msm_dsi_phy_get_clk_pre_post(struct msm_dsi_phy *phy,
u32 *clk_pre, u32 *clk_post)
{
if (!phy)
return;
if (clk_pre)
*clk_pre = phy->timing.clk_pre;
if (clk_post)
*clk_post = phy->timing.clk_post;
}
...@@ -53,6 +53,23 @@ struct pll_rate { ...@@ -53,6 +53,23 @@ struct pll_rate {
/* NOTE: keep sorted highest freq to lowest: */ /* NOTE: keep sorted highest freq to lowest: */
static const struct pll_rate freqtbl[] = { static const struct pll_rate freqtbl[] = {
{ 154000000, {
{ 0x08, REG_HDMI_8960_PHY_PLL_REFCLK_CFG },
{ 0x20, REG_HDMI_8960_PHY_PLL_LOOP_FLT_CFG0 },
{ 0xf9, REG_HDMI_8960_PHY_PLL_LOOP_FLT_CFG1 },
{ 0x02, REG_HDMI_8960_PHY_PLL_VCOCAL_CFG0 },
{ 0x03, REG_HDMI_8960_PHY_PLL_VCOCAL_CFG1 },
{ 0x3b, REG_HDMI_8960_PHY_PLL_VCOCAL_CFG2 },
{ 0x00, REG_HDMI_8960_PHY_PLL_VCOCAL_CFG3 },
{ 0x86, REG_HDMI_8960_PHY_PLL_VCOCAL_CFG4 },
{ 0x00, REG_HDMI_8960_PHY_PLL_VCOCAL_CFG5 },
{ 0x0d, REG_HDMI_8960_PHY_PLL_SDM_CFG0 },
{ 0x4d, REG_HDMI_8960_PHY_PLL_SDM_CFG1 },
{ 0x5e, REG_HDMI_8960_PHY_PLL_SDM_CFG2 },
{ 0x42, REG_HDMI_8960_PHY_PLL_SDM_CFG3 },
{ 0x00, REG_HDMI_8960_PHY_PLL_SDM_CFG4 },
{ 0, 0 } }
},
/* 1080p60/1080p50 case */ /* 1080p60/1080p50 case */
{ 148500000, { { 148500000, {
{ 0x02, REG_HDMI_8960_PHY_PLL_REFCLK_CFG }, { 0x02, REG_HDMI_8960_PHY_PLL_REFCLK_CFG },
...@@ -112,6 +129,23 @@ static const struct pll_rate freqtbl[] = { ...@@ -112,6 +129,23 @@ static const struct pll_rate freqtbl[] = {
{ 0x3b, REG_HDMI_8960_PHY_PLL_VCOCAL_CFG2 }, { 0x3b, REG_HDMI_8960_PHY_PLL_VCOCAL_CFG2 },
{ 0, 0 } } { 0, 0 } }
}, },
{ 74176000, {
{ 0x18, REG_HDMI_8960_PHY_PLL_REFCLK_CFG },
{ 0x20, REG_HDMI_8960_PHY_PLL_LOOP_FLT_CFG0 },
{ 0xf9, REG_HDMI_8960_PHY_PLL_LOOP_FLT_CFG1 },
{ 0xe5, REG_HDMI_8960_PHY_PLL_VCOCAL_CFG0 },
{ 0x02, REG_HDMI_8960_PHY_PLL_VCOCAL_CFG1 },
{ 0x3b, REG_HDMI_8960_PHY_PLL_VCOCAL_CFG2 },
{ 0x00, REG_HDMI_8960_PHY_PLL_VCOCAL_CFG3 },
{ 0x86, REG_HDMI_8960_PHY_PLL_VCOCAL_CFG4 },
{ 0x00, REG_HDMI_8960_PHY_PLL_VCOCAL_CFG5 },
{ 0x0c, REG_HDMI_8960_PHY_PLL_SDM_CFG0 },
{ 0x4c, REG_HDMI_8960_PHY_PLL_SDM_CFG1 },
{ 0x7d, REG_HDMI_8960_PHY_PLL_SDM_CFG2 },
{ 0xbc, REG_HDMI_8960_PHY_PLL_SDM_CFG3 },
{ 0x00, REG_HDMI_8960_PHY_PLL_SDM_CFG4 },
{ 0, 0 } }
},
{ 65000000, { { 65000000, {
{ 0x18, REG_HDMI_8960_PHY_PLL_REFCLK_CFG }, { 0x18, REG_HDMI_8960_PHY_PLL_REFCLK_CFG },
{ 0x20, REG_HDMI_8960_PHY_PLL_LOOP_FLT_CFG0 }, { 0x20, REG_HDMI_8960_PHY_PLL_LOOP_FLT_CFG0 },
......
...@@ -8,9 +8,9 @@ This file was generated by the rules-ng-ng headergen tool in this git repository ...@@ -8,9 +8,9 @@ This file was generated by the rules-ng-ng headergen tool in this git repository
git clone https://github.com/freedreno/envytools.git git clone https://github.com/freedreno/envytools.git
The rules-ng-ng source files this header was generated from are: The rules-ng-ng source files this header was generated from are:
- /local/mnt2/workspace2/sviau/envytools/rnndb/mdp/mdp5.xml ( 27229 bytes, from 2015-02-10 17:00:41) - /local/mnt2/workspace2/sviau/envytools/rnndb/mdp/mdp5.xml ( 29312 bytes, from 2015-03-23 21:18:48)
- /local/mnt2/workspace2/sviau/envytools/rnndb/freedreno_copyright.xml ( 1453 bytes, from 2014-06-02 18:31:15) - /local/mnt2/workspace2/sviau/envytools/rnndb/freedreno_copyright.xml ( 1453 bytes, from 2014-06-02 18:31:15)
- /local/mnt2/workspace2/sviau/envytools/rnndb/mdp/mdp_common.xml ( 2357 bytes, from 2015-01-23 16:20:19) - /local/mnt2/workspace2/sviau/envytools/rnndb/mdp/mdp_common.xml ( 2357 bytes, from 2015-03-23 20:38:49)
Copyright (C) 2013-2015 by the following authors: Copyright (C) 2013-2015 by the following authors:
- Rob Clark <robdclark@gmail.com> (robclark) - Rob Clark <robdclark@gmail.com> (robclark)
...@@ -37,11 +37,14 @@ WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ...@@ -37,11 +37,14 @@ WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/ */
enum mdp5_intf { enum mdp5_intf_type {
INTF_DISABLED = 0,
INTF_DSI = 1, INTF_DSI = 1,
INTF_HDMI = 3, INTF_HDMI = 3,
INTF_LCDC = 5, INTF_LCDC = 5,
INTF_eDP = 9, INTF_eDP = 9,
INTF_VIRTUAL = 100,
INTF_WB = 101,
}; };
enum mdp5_intfnum { enum mdp5_intfnum {
...@@ -67,11 +70,11 @@ enum mdp5_pipe { ...@@ -67,11 +70,11 @@ enum mdp5_pipe {
enum mdp5_ctl_mode { enum mdp5_ctl_mode {
MODE_NONE = 0, MODE_NONE = 0,
MODE_ROT0 = 1, MODE_WB_0_BLOCK = 1,
MODE_ROT1 = 2, MODE_WB_1_BLOCK = 2,
MODE_WB0 = 3, MODE_WB_0_LINE = 3,
MODE_WB1 = 4, MODE_WB_1_LINE = 4,
MODE_WFD = 5, MODE_WB_2_LINE = 5,
}; };
enum mdp5_pack_3d { enum mdp5_pack_3d {
...@@ -94,33 +97,6 @@ enum mdp5_pipe_bwc { ...@@ -94,33 +97,6 @@ enum mdp5_pipe_bwc {
BWC_Q_MED = 2, BWC_Q_MED = 2,
}; };
enum mdp5_client_id {
CID_UNUSED = 0,
CID_VIG0_Y = 1,
CID_VIG0_CR = 2,
CID_VIG0_CB = 3,
CID_VIG1_Y = 4,
CID_VIG1_CR = 5,
CID_VIG1_CB = 6,
CID_VIG2_Y = 7,
CID_VIG2_CR = 8,
CID_VIG2_CB = 9,
CID_DMA0_Y = 10,
CID_DMA0_CR = 11,
CID_DMA0_CB = 12,
CID_DMA1_Y = 13,
CID_DMA1_CR = 14,
CID_DMA1_CB = 15,
CID_RGB0 = 16,
CID_RGB1 = 17,
CID_RGB2 = 18,
CID_VIG3_Y = 19,
CID_VIG3_CR = 20,
CID_VIG3_CB = 21,
CID_RGB3 = 22,
CID_MAX = 23,
};
enum mdp5_cursor_format { enum mdp5_cursor_format {
CURSOR_FMT_ARGB8888 = 0, CURSOR_FMT_ARGB8888 = 0,
CURSOR_FMT_ARGB1555 = 2, CURSOR_FMT_ARGB1555 = 2,
...@@ -144,30 +120,25 @@ enum mdp5_data_format { ...@@ -144,30 +120,25 @@ enum mdp5_data_format {
DATA_FORMAT_YUV = 1, DATA_FORMAT_YUV = 1,
}; };
#define MDP5_IRQ_INTF0_WB_ROT_COMP 0x00000001 #define MDP5_IRQ_WB_0_DONE 0x00000001
#define MDP5_IRQ_INTF1_WB_ROT_COMP 0x00000002 #define MDP5_IRQ_WB_1_DONE 0x00000002
#define MDP5_IRQ_INTF2_WB_ROT_COMP 0x00000004 #define MDP5_IRQ_WB_2_DONE 0x00000010
#define MDP5_IRQ_INTF3_WB_ROT_COMP 0x00000008 #define MDP5_IRQ_PING_PONG_0_DONE 0x00000100
#define MDP5_IRQ_INTF0_WB_WFD 0x00000010 #define MDP5_IRQ_PING_PONG_1_DONE 0x00000200
#define MDP5_IRQ_INTF1_WB_WFD 0x00000020 #define MDP5_IRQ_PING_PONG_2_DONE 0x00000400
#define MDP5_IRQ_INTF2_WB_WFD 0x00000040 #define MDP5_IRQ_PING_PONG_3_DONE 0x00000800
#define MDP5_IRQ_INTF3_WB_WFD 0x00000080 #define MDP5_IRQ_PING_PONG_0_RD_PTR 0x00001000
#define MDP5_IRQ_INTF0_PING_PONG_COMP 0x00000100 #define MDP5_IRQ_PING_PONG_1_RD_PTR 0x00002000
#define MDP5_IRQ_INTF1_PING_PONG_COMP 0x00000200 #define MDP5_IRQ_PING_PONG_2_RD_PTR 0x00004000
#define MDP5_IRQ_INTF2_PING_PONG_COMP 0x00000400 #define MDP5_IRQ_PING_PONG_3_RD_PTR 0x00008000
#define MDP5_IRQ_INTF3_PING_PONG_COMP 0x00000800 #define MDP5_IRQ_PING_PONG_0_WR_PTR 0x00010000
#define MDP5_IRQ_INTF0_PING_PONG_RD_PTR 0x00001000 #define MDP5_IRQ_PING_PONG_1_WR_PTR 0x00020000
#define MDP5_IRQ_INTF1_PING_PONG_RD_PTR 0x00002000 #define MDP5_IRQ_PING_PONG_2_WR_PTR 0x00040000
#define MDP5_IRQ_INTF2_PING_PONG_RD_PTR 0x00004000 #define MDP5_IRQ_PING_PONG_3_WR_PTR 0x00080000
#define MDP5_IRQ_INTF3_PING_PONG_RD_PTR 0x00008000 #define MDP5_IRQ_PING_PONG_0_AUTO_REF 0x00100000
#define MDP5_IRQ_INTF0_PING_PONG_WR_PTR 0x00010000 #define MDP5_IRQ_PING_PONG_1_AUTO_REF 0x00200000
#define MDP5_IRQ_INTF1_PING_PONG_WR_PTR 0x00020000 #define MDP5_IRQ_PING_PONG_2_AUTO_REF 0x00400000
#define MDP5_IRQ_INTF2_PING_PONG_WR_PTR 0x00040000 #define MDP5_IRQ_PING_PONG_3_AUTO_REF 0x00800000
#define MDP5_IRQ_INTF3_PING_PONG_WR_PTR 0x00080000
#define MDP5_IRQ_INTF0_PING_PONG_AUTO_REF 0x00100000
#define MDP5_IRQ_INTF1_PING_PONG_AUTO_REF 0x00200000
#define MDP5_IRQ_INTF2_PING_PONG_AUTO_REF 0x00400000
#define MDP5_IRQ_INTF3_PING_PONG_AUTO_REF 0x00800000
#define MDP5_IRQ_INTF0_UNDER_RUN 0x01000000 #define MDP5_IRQ_INTF0_UNDER_RUN 0x01000000
#define MDP5_IRQ_INTF0_VSYNC 0x02000000 #define MDP5_IRQ_INTF0_VSYNC 0x02000000
#define MDP5_IRQ_INTF1_UNDER_RUN 0x04000000 #define MDP5_IRQ_INTF1_UNDER_RUN 0x04000000
...@@ -176,136 +147,186 @@ enum mdp5_data_format { ...@@ -176,136 +147,186 @@ enum mdp5_data_format {
#define MDP5_IRQ_INTF2_VSYNC 0x20000000 #define MDP5_IRQ_INTF2_VSYNC 0x20000000
#define MDP5_IRQ_INTF3_UNDER_RUN 0x40000000 #define MDP5_IRQ_INTF3_UNDER_RUN 0x40000000
#define MDP5_IRQ_INTF3_VSYNC 0x80000000 #define MDP5_IRQ_INTF3_VSYNC 0x80000000
#define REG_MDP5_HW_VERSION 0x00000000 #define REG_MDSS_HW_VERSION 0x00000000
#define MDSS_HW_VERSION_STEP__MASK 0x0000ffff
#define MDSS_HW_VERSION_STEP__SHIFT 0
static inline uint32_t MDSS_HW_VERSION_STEP(uint32_t val)
{
return ((val) << MDSS_HW_VERSION_STEP__SHIFT) & MDSS_HW_VERSION_STEP__MASK;
}
#define MDSS_HW_VERSION_MINOR__MASK 0x0fff0000
#define MDSS_HW_VERSION_MINOR__SHIFT 16
static inline uint32_t MDSS_HW_VERSION_MINOR(uint32_t val)
{
return ((val) << MDSS_HW_VERSION_MINOR__SHIFT) & MDSS_HW_VERSION_MINOR__MASK;
}
#define MDSS_HW_VERSION_MAJOR__MASK 0xf0000000
#define MDSS_HW_VERSION_MAJOR__SHIFT 28
static inline uint32_t MDSS_HW_VERSION_MAJOR(uint32_t val)
{
return ((val) << MDSS_HW_VERSION_MAJOR__SHIFT) & MDSS_HW_VERSION_MAJOR__MASK;
}
#define REG_MDSS_HW_INTR_STATUS 0x00000010
#define MDSS_HW_INTR_STATUS_INTR_MDP 0x00000001
#define MDSS_HW_INTR_STATUS_INTR_DSI0 0x00000010
#define MDSS_HW_INTR_STATUS_INTR_DSI1 0x00000020
#define MDSS_HW_INTR_STATUS_INTR_HDMI 0x00000100
#define MDSS_HW_INTR_STATUS_INTR_EDP 0x00001000
#define REG_MDP5_HW_INTR_STATUS 0x00000010 static inline uint32_t __offset_MDP(uint32_t idx)
#define MDP5_HW_INTR_STATUS_INTR_MDP 0x00000001 {
#define MDP5_HW_INTR_STATUS_INTR_DSI0 0x00000010 switch (idx) {
#define MDP5_HW_INTR_STATUS_INTR_DSI1 0x00000020 case 0: return (mdp5_cfg->mdp.base[0]);
#define MDP5_HW_INTR_STATUS_INTR_HDMI 0x00000100 default: return INVALID_IDX(idx);
#define MDP5_HW_INTR_STATUS_INTR_EDP 0x00001000 }
}
static inline uint32_t REG_MDP5_MDP(uint32_t i0) { return 0x00000000 + __offset_MDP(i0); }
#define REG_MDP5_MDP_VERSION 0x00000100 static inline uint32_t REG_MDP5_MDP_HW_VERSION(uint32_t i0) { return 0x00000000 + __offset_MDP(i0); }
#define MDP5_MDP_VERSION_MINOR__MASK 0x00ff0000 #define MDP5_MDP_HW_VERSION_STEP__MASK 0x0000ffff
#define MDP5_MDP_VERSION_MINOR__SHIFT 16 #define MDP5_MDP_HW_VERSION_STEP__SHIFT 0
static inline uint32_t MDP5_MDP_VERSION_MINOR(uint32_t val) static inline uint32_t MDP5_MDP_HW_VERSION_STEP(uint32_t val)
{ {
return ((val) << MDP5_MDP_VERSION_MINOR__SHIFT) & MDP5_MDP_VERSION_MINOR__MASK; return ((val) << MDP5_MDP_HW_VERSION_STEP__SHIFT) & MDP5_MDP_HW_VERSION_STEP__MASK;
} }
#define MDP5_MDP_VERSION_MAJOR__MASK 0xf0000000 #define MDP5_MDP_HW_VERSION_MINOR__MASK 0x0fff0000
#define MDP5_MDP_VERSION_MAJOR__SHIFT 28 #define MDP5_MDP_HW_VERSION_MINOR__SHIFT 16
static inline uint32_t MDP5_MDP_VERSION_MAJOR(uint32_t val) static inline uint32_t MDP5_MDP_HW_VERSION_MINOR(uint32_t val)
{ {
return ((val) << MDP5_MDP_VERSION_MAJOR__SHIFT) & MDP5_MDP_VERSION_MAJOR__MASK; return ((val) << MDP5_MDP_HW_VERSION_MINOR__SHIFT) & MDP5_MDP_HW_VERSION_MINOR__MASK;
}
#define MDP5_MDP_HW_VERSION_MAJOR__MASK 0xf0000000
#define MDP5_MDP_HW_VERSION_MAJOR__SHIFT 28
static inline uint32_t MDP5_MDP_HW_VERSION_MAJOR(uint32_t val)
{
return ((val) << MDP5_MDP_HW_VERSION_MAJOR__SHIFT) & MDP5_MDP_HW_VERSION_MAJOR__MASK;
} }
#define REG_MDP5_DISP_INTF_SEL 0x00000104 static inline uint32_t REG_MDP5_MDP_DISP_INTF_SEL(uint32_t i0) { return 0x00000004 + __offset_MDP(i0); }
#define MDP5_DISP_INTF_SEL_INTF0__MASK 0x000000ff #define MDP5_MDP_DISP_INTF_SEL_INTF0__MASK 0x000000ff
#define MDP5_DISP_INTF_SEL_INTF0__SHIFT 0 #define MDP5_MDP_DISP_INTF_SEL_INTF0__SHIFT 0
static inline uint32_t MDP5_DISP_INTF_SEL_INTF0(enum mdp5_intf val) static inline uint32_t MDP5_MDP_DISP_INTF_SEL_INTF0(enum mdp5_intf_type val)
{ {
return ((val) << MDP5_DISP_INTF_SEL_INTF0__SHIFT) & MDP5_DISP_INTF_SEL_INTF0__MASK; return ((val) << MDP5_MDP_DISP_INTF_SEL_INTF0__SHIFT) & MDP5_MDP_DISP_INTF_SEL_INTF0__MASK;
} }
#define MDP5_DISP_INTF_SEL_INTF1__MASK 0x0000ff00 #define MDP5_MDP_DISP_INTF_SEL_INTF1__MASK 0x0000ff00
#define MDP5_DISP_INTF_SEL_INTF1__SHIFT 8 #define MDP5_MDP_DISP_INTF_SEL_INTF1__SHIFT 8
static inline uint32_t MDP5_DISP_INTF_SEL_INTF1(enum mdp5_intf val) static inline uint32_t MDP5_MDP_DISP_INTF_SEL_INTF1(enum mdp5_intf_type val)
{ {
return ((val) << MDP5_DISP_INTF_SEL_INTF1__SHIFT) & MDP5_DISP_INTF_SEL_INTF1__MASK; return ((val) << MDP5_MDP_DISP_INTF_SEL_INTF1__SHIFT) & MDP5_MDP_DISP_INTF_SEL_INTF1__MASK;
} }
#define MDP5_DISP_INTF_SEL_INTF2__MASK 0x00ff0000 #define MDP5_MDP_DISP_INTF_SEL_INTF2__MASK 0x00ff0000
#define MDP5_DISP_INTF_SEL_INTF2__SHIFT 16 #define MDP5_MDP_DISP_INTF_SEL_INTF2__SHIFT 16
static inline uint32_t MDP5_DISP_INTF_SEL_INTF2(enum mdp5_intf val) static inline uint32_t MDP5_MDP_DISP_INTF_SEL_INTF2(enum mdp5_intf_type val)
{ {
return ((val) << MDP5_DISP_INTF_SEL_INTF2__SHIFT) & MDP5_DISP_INTF_SEL_INTF2__MASK; return ((val) << MDP5_MDP_DISP_INTF_SEL_INTF2__SHIFT) & MDP5_MDP_DISP_INTF_SEL_INTF2__MASK;
} }
#define MDP5_DISP_INTF_SEL_INTF3__MASK 0xff000000 #define MDP5_MDP_DISP_INTF_SEL_INTF3__MASK 0xff000000
#define MDP5_DISP_INTF_SEL_INTF3__SHIFT 24 #define MDP5_MDP_DISP_INTF_SEL_INTF3__SHIFT 24
static inline uint32_t MDP5_DISP_INTF_SEL_INTF3(enum mdp5_intf val) static inline uint32_t MDP5_MDP_DISP_INTF_SEL_INTF3(enum mdp5_intf_type val)
{ {
return ((val) << MDP5_DISP_INTF_SEL_INTF3__SHIFT) & MDP5_DISP_INTF_SEL_INTF3__MASK; return ((val) << MDP5_MDP_DISP_INTF_SEL_INTF3__SHIFT) & MDP5_MDP_DISP_INTF_SEL_INTF3__MASK;
} }
#define REG_MDP5_INTR_EN 0x00000110 static inline uint32_t REG_MDP5_MDP_INTR_EN(uint32_t i0) { return 0x00000010 + __offset_MDP(i0); }
#define REG_MDP5_INTR_STATUS 0x00000114 static inline uint32_t REG_MDP5_MDP_INTR_STATUS(uint32_t i0) { return 0x00000014 + __offset_MDP(i0); }
#define REG_MDP5_INTR_CLEAR 0x00000118 static inline uint32_t REG_MDP5_MDP_INTR_CLEAR(uint32_t i0) { return 0x00000018 + __offset_MDP(i0); }
#define REG_MDP5_HIST_INTR_EN 0x0000011c static inline uint32_t REG_MDP5_MDP_HIST_INTR_EN(uint32_t i0) { return 0x0000001c + __offset_MDP(i0); }
#define REG_MDP5_HIST_INTR_STATUS 0x00000120 static inline uint32_t REG_MDP5_MDP_HIST_INTR_STATUS(uint32_t i0) { return 0x00000020 + __offset_MDP(i0); }
#define REG_MDP5_HIST_INTR_CLEAR 0x00000124 static inline uint32_t REG_MDP5_MDP_HIST_INTR_CLEAR(uint32_t i0) { return 0x00000024 + __offset_MDP(i0); }
static inline uint32_t REG_MDP5_SMP_ALLOC_W(uint32_t i0) { return 0x00000180 + 0x4*i0; } static inline uint32_t REG_MDP5_MDP_SPARE_0(uint32_t i0) { return 0x00000028 + __offset_MDP(i0); }
#define MDP5_MDP_SPARE_0_SPLIT_DPL_SINGLE_FLUSH_EN 0x00000001
static inline uint32_t REG_MDP5_SMP_ALLOC_W_REG(uint32_t i0) { return 0x00000180 + 0x4*i0; } static inline uint32_t REG_MDP5_MDP_SMP_ALLOC_W(uint32_t i0, uint32_t i1) { return 0x00000080 + __offset_MDP(i0) + 0x4*i1; }
#define MDP5_SMP_ALLOC_W_REG_CLIENT0__MASK 0x000000ff
#define MDP5_SMP_ALLOC_W_REG_CLIENT0__SHIFT 0 static inline uint32_t REG_MDP5_MDP_SMP_ALLOC_W_REG(uint32_t i0, uint32_t i1) { return 0x00000080 + __offset_MDP(i0) + 0x4*i1; }
static inline uint32_t MDP5_SMP_ALLOC_W_REG_CLIENT0(enum mdp5_client_id val) #define MDP5_MDP_SMP_ALLOC_W_REG_CLIENT0__MASK 0x000000ff
#define MDP5_MDP_SMP_ALLOC_W_REG_CLIENT0__SHIFT 0
static inline uint32_t MDP5_MDP_SMP_ALLOC_W_REG_CLIENT0(uint32_t val)
{ {
return ((val) << MDP5_SMP_ALLOC_W_REG_CLIENT0__SHIFT) & MDP5_SMP_ALLOC_W_REG_CLIENT0__MASK; return ((val) << MDP5_MDP_SMP_ALLOC_W_REG_CLIENT0__SHIFT) & MDP5_MDP_SMP_ALLOC_W_REG_CLIENT0__MASK;
} }
#define MDP5_SMP_ALLOC_W_REG_CLIENT1__MASK 0x0000ff00 #define MDP5_MDP_SMP_ALLOC_W_REG_CLIENT1__MASK 0x0000ff00
#define MDP5_SMP_ALLOC_W_REG_CLIENT1__SHIFT 8 #define MDP5_MDP_SMP_ALLOC_W_REG_CLIENT1__SHIFT 8
static inline uint32_t MDP5_SMP_ALLOC_W_REG_CLIENT1(enum mdp5_client_id val) static inline uint32_t MDP5_MDP_SMP_ALLOC_W_REG_CLIENT1(uint32_t val)
{ {
return ((val) << MDP5_SMP_ALLOC_W_REG_CLIENT1__SHIFT) & MDP5_SMP_ALLOC_W_REG_CLIENT1__MASK; return ((val) << MDP5_MDP_SMP_ALLOC_W_REG_CLIENT1__SHIFT) & MDP5_MDP_SMP_ALLOC_W_REG_CLIENT1__MASK;
} }
#define MDP5_SMP_ALLOC_W_REG_CLIENT2__MASK 0x00ff0000 #define MDP5_MDP_SMP_ALLOC_W_REG_CLIENT2__MASK 0x00ff0000
#define MDP5_SMP_ALLOC_W_REG_CLIENT2__SHIFT 16 #define MDP5_MDP_SMP_ALLOC_W_REG_CLIENT2__SHIFT 16
static inline uint32_t MDP5_SMP_ALLOC_W_REG_CLIENT2(enum mdp5_client_id val) static inline uint32_t MDP5_MDP_SMP_ALLOC_W_REG_CLIENT2(uint32_t val)
{ {
return ((val) << MDP5_SMP_ALLOC_W_REG_CLIENT2__SHIFT) & MDP5_SMP_ALLOC_W_REG_CLIENT2__MASK; return ((val) << MDP5_MDP_SMP_ALLOC_W_REG_CLIENT2__SHIFT) & MDP5_MDP_SMP_ALLOC_W_REG_CLIENT2__MASK;
} }
static inline uint32_t REG_MDP5_SMP_ALLOC_R(uint32_t i0) { return 0x00000230 + 0x4*i0; } static inline uint32_t REG_MDP5_MDP_SMP_ALLOC_R(uint32_t i0, uint32_t i1) { return 0x00000130 + __offset_MDP(i0) + 0x4*i1; }
static inline uint32_t REG_MDP5_SMP_ALLOC_R_REG(uint32_t i0) { return 0x00000230 + 0x4*i0; } static inline uint32_t REG_MDP5_MDP_SMP_ALLOC_R_REG(uint32_t i0, uint32_t i1) { return 0x00000130 + __offset_MDP(i0) + 0x4*i1; }
#define MDP5_SMP_ALLOC_R_REG_CLIENT0__MASK 0x000000ff #define MDP5_MDP_SMP_ALLOC_R_REG_CLIENT0__MASK 0x000000ff
#define MDP5_SMP_ALLOC_R_REG_CLIENT0__SHIFT 0 #define MDP5_MDP_SMP_ALLOC_R_REG_CLIENT0__SHIFT 0
static inline uint32_t MDP5_SMP_ALLOC_R_REG_CLIENT0(enum mdp5_client_id val) static inline uint32_t MDP5_MDP_SMP_ALLOC_R_REG_CLIENT0(uint32_t val)
{ {
return ((val) << MDP5_SMP_ALLOC_R_REG_CLIENT0__SHIFT) & MDP5_SMP_ALLOC_R_REG_CLIENT0__MASK; return ((val) << MDP5_MDP_SMP_ALLOC_R_REG_CLIENT0__SHIFT) & MDP5_MDP_SMP_ALLOC_R_REG_CLIENT0__MASK;
} }
#define MDP5_SMP_ALLOC_R_REG_CLIENT1__MASK 0x0000ff00 #define MDP5_MDP_SMP_ALLOC_R_REG_CLIENT1__MASK 0x0000ff00
#define MDP5_SMP_ALLOC_R_REG_CLIENT1__SHIFT 8 #define MDP5_MDP_SMP_ALLOC_R_REG_CLIENT1__SHIFT 8
static inline uint32_t MDP5_SMP_ALLOC_R_REG_CLIENT1(enum mdp5_client_id val) static inline uint32_t MDP5_MDP_SMP_ALLOC_R_REG_CLIENT1(uint32_t val)
{ {
return ((val) << MDP5_SMP_ALLOC_R_REG_CLIENT1__SHIFT) & MDP5_SMP_ALLOC_R_REG_CLIENT1__MASK; return ((val) << MDP5_MDP_SMP_ALLOC_R_REG_CLIENT1__SHIFT) & MDP5_MDP_SMP_ALLOC_R_REG_CLIENT1__MASK;
} }
#define MDP5_SMP_ALLOC_R_REG_CLIENT2__MASK 0x00ff0000 #define MDP5_MDP_SMP_ALLOC_R_REG_CLIENT2__MASK 0x00ff0000
#define MDP5_SMP_ALLOC_R_REG_CLIENT2__SHIFT 16 #define MDP5_MDP_SMP_ALLOC_R_REG_CLIENT2__SHIFT 16
static inline uint32_t MDP5_SMP_ALLOC_R_REG_CLIENT2(enum mdp5_client_id val) static inline uint32_t MDP5_MDP_SMP_ALLOC_R_REG_CLIENT2(uint32_t val)
{ {
return ((val) << MDP5_SMP_ALLOC_R_REG_CLIENT2__SHIFT) & MDP5_SMP_ALLOC_R_REG_CLIENT2__MASK; return ((val) << MDP5_MDP_SMP_ALLOC_R_REG_CLIENT2__SHIFT) & MDP5_MDP_SMP_ALLOC_R_REG_CLIENT2__MASK;
} }
static inline uint32_t __offset_IGC(enum mdp5_igc_type idx) static inline uint32_t __offset_IGC(enum mdp5_igc_type idx)
{ {
switch (idx) { switch (idx) {
case IGC_VIG: return 0x00000300; case IGC_VIG: return 0x00000200;
case IGC_RGB: return 0x00000310; case IGC_RGB: return 0x00000210;
case IGC_DMA: return 0x00000320; case IGC_DMA: return 0x00000220;
case IGC_DSPP: return 0x00000400; case IGC_DSPP: return 0x00000300;
default: return INVALID_IDX(idx); default: return INVALID_IDX(idx);
} }
} }
static inline uint32_t REG_MDP5_IGC(enum mdp5_igc_type i0) { return 0x00000000 + __offset_IGC(i0); } static inline uint32_t REG_MDP5_MDP_IGC(uint32_t i0, enum mdp5_igc_type i1) { return 0x00000000 + __offset_MDP(i0) + __offset_IGC(i1); }
static inline uint32_t REG_MDP5_IGC_LUT(enum mdp5_igc_type i0, uint32_t i1) { return 0x00000000 + __offset_IGC(i0) + 0x4*i1; } static inline uint32_t REG_MDP5_MDP_IGC_LUT(uint32_t i0, enum mdp5_igc_type i1, uint32_t i2) { return 0x00000000 + __offset_MDP(i0) + __offset_IGC(i1) + 0x4*i2; }
static inline uint32_t REG_MDP5_IGC_LUT_REG(enum mdp5_igc_type i0, uint32_t i1) { return 0x00000000 + __offset_IGC(i0) + 0x4*i1; } static inline uint32_t REG_MDP5_MDP_IGC_LUT_REG(uint32_t i0, enum mdp5_igc_type i1, uint32_t i2) { return 0x00000000 + __offset_MDP(i0) + __offset_IGC(i1) + 0x4*i2; }
#define MDP5_IGC_LUT_REG_VAL__MASK 0x00000fff #define MDP5_MDP_IGC_LUT_REG_VAL__MASK 0x00000fff
#define MDP5_IGC_LUT_REG_VAL__SHIFT 0 #define MDP5_MDP_IGC_LUT_REG_VAL__SHIFT 0
static inline uint32_t MDP5_IGC_LUT_REG_VAL(uint32_t val) static inline uint32_t MDP5_MDP_IGC_LUT_REG_VAL(uint32_t val)
{ {
return ((val) << MDP5_IGC_LUT_REG_VAL__SHIFT) & MDP5_IGC_LUT_REG_VAL__MASK; return ((val) << MDP5_MDP_IGC_LUT_REG_VAL__SHIFT) & MDP5_MDP_IGC_LUT_REG_VAL__MASK;
} }
#define MDP5_IGC_LUT_REG_INDEX_UPDATE 0x02000000 #define MDP5_MDP_IGC_LUT_REG_INDEX_UPDATE 0x02000000
#define MDP5_IGC_LUT_REG_DISABLE_PIPE_0 0x10000000 #define MDP5_MDP_IGC_LUT_REG_DISABLE_PIPE_0 0x10000000
#define MDP5_IGC_LUT_REG_DISABLE_PIPE_1 0x20000000 #define MDP5_MDP_IGC_LUT_REG_DISABLE_PIPE_1 0x20000000
#define MDP5_IGC_LUT_REG_DISABLE_PIPE_2 0x40000000 #define MDP5_MDP_IGC_LUT_REG_DISABLE_PIPE_2 0x40000000
#define REG_MDP5_SPLIT_DPL_EN 0x000003f4
#define REG_MDP5_SPLIT_DPL_UPPER 0x000003f8
#define MDP5_SPLIT_DPL_UPPER_SMART_PANEL 0x00000002
#define MDP5_SPLIT_DPL_UPPER_SMART_PANEL_FREE_RUN 0x00000004
#define MDP5_SPLIT_DPL_UPPER_INTF1_SW_TRG_MUX 0x00000010
#define MDP5_SPLIT_DPL_UPPER_INTF2_SW_TRG_MUX 0x00000100
#define REG_MDP5_SPLIT_DPL_LOWER 0x000004f0
#define MDP5_SPLIT_DPL_LOWER_SMART_PANEL 0x00000002
#define MDP5_SPLIT_DPL_LOWER_SMART_PANEL_FREE_RUN 0x00000004
#define MDP5_SPLIT_DPL_LOWER_INTF1_TG_SYNC 0x00000010
#define MDP5_SPLIT_DPL_LOWER_INTF2_TG_SYNC 0x00000100
static inline uint32_t __offset_CTL(uint32_t idx) static inline uint32_t __offset_CTL(uint32_t idx)
{ {
...@@ -437,11 +458,19 @@ static inline uint32_t REG_MDP5_CTL_FLUSH(uint32_t i0) { return 0x00000018 + __o ...@@ -437,11 +458,19 @@ static inline uint32_t REG_MDP5_CTL_FLUSH(uint32_t i0) { return 0x00000018 + __o
#define MDP5_CTL_FLUSH_DSPP0 0x00002000 #define MDP5_CTL_FLUSH_DSPP0 0x00002000
#define MDP5_CTL_FLUSH_DSPP1 0x00004000 #define MDP5_CTL_FLUSH_DSPP1 0x00004000
#define MDP5_CTL_FLUSH_DSPP2 0x00008000 #define MDP5_CTL_FLUSH_DSPP2 0x00008000
#define MDP5_CTL_FLUSH_WB 0x00010000
#define MDP5_CTL_FLUSH_CTL 0x00020000 #define MDP5_CTL_FLUSH_CTL 0x00020000
#define MDP5_CTL_FLUSH_VIG3 0x00040000 #define MDP5_CTL_FLUSH_VIG3 0x00040000
#define MDP5_CTL_FLUSH_RGB3 0x00080000 #define MDP5_CTL_FLUSH_RGB3 0x00080000
#define MDP5_CTL_FLUSH_LM5 0x00100000 #define MDP5_CTL_FLUSH_LM5 0x00100000
#define MDP5_CTL_FLUSH_DSPP3 0x00200000 #define MDP5_CTL_FLUSH_DSPP3 0x00200000
#define MDP5_CTL_FLUSH_CURSOR_0 0x00400000
#define MDP5_CTL_FLUSH_CURSOR_1 0x00800000
#define MDP5_CTL_FLUSH_CHROMADOWN_0 0x04000000
#define MDP5_CTL_FLUSH_TIMING_3 0x10000000
#define MDP5_CTL_FLUSH_TIMING_2 0x20000000
#define MDP5_CTL_FLUSH_TIMING_1 0x40000000
#define MDP5_CTL_FLUSH_TIMING_0 0x80000000
static inline uint32_t REG_MDP5_CTL_START(uint32_t i0) { return 0x0000001c + __offset_CTL(i0); } static inline uint32_t REG_MDP5_CTL_START(uint32_t i0) { return 0x0000001c + __offset_CTL(i0); }
...@@ -1117,6 +1146,94 @@ static inline uint32_t REG_MDP5_DSPP_GAMUT_BASE(uint32_t i0) { return 0x000002dc ...@@ -1117,6 +1146,94 @@ static inline uint32_t REG_MDP5_DSPP_GAMUT_BASE(uint32_t i0) { return 0x000002dc
static inline uint32_t REG_MDP5_DSPP_GC_BASE(uint32_t i0) { return 0x000002b0 + __offset_DSPP(i0); } static inline uint32_t REG_MDP5_DSPP_GC_BASE(uint32_t i0) { return 0x000002b0 + __offset_DSPP(i0); }
static inline uint32_t __offset_PP(uint32_t idx)
{
switch (idx) {
case 0: return (mdp5_cfg->pp.base[0]);
case 1: return (mdp5_cfg->pp.base[1]);
case 2: return (mdp5_cfg->pp.base[2]);
case 3: return (mdp5_cfg->pp.base[3]);
default: return INVALID_IDX(idx);
}
}
static inline uint32_t REG_MDP5_PP(uint32_t i0) { return 0x00000000 + __offset_PP(i0); }
static inline uint32_t REG_MDP5_PP_TEAR_CHECK_EN(uint32_t i0) { return 0x00000000 + __offset_PP(i0); }
static inline uint32_t REG_MDP5_PP_SYNC_CONFIG_VSYNC(uint32_t i0) { return 0x00000004 + __offset_PP(i0); }
#define MDP5_PP_SYNC_CONFIG_VSYNC_COUNT__MASK 0x0007ffff
#define MDP5_PP_SYNC_CONFIG_VSYNC_COUNT__SHIFT 0
static inline uint32_t MDP5_PP_SYNC_CONFIG_VSYNC_COUNT(uint32_t val)
{
return ((val) << MDP5_PP_SYNC_CONFIG_VSYNC_COUNT__SHIFT) & MDP5_PP_SYNC_CONFIG_VSYNC_COUNT__MASK;
}
#define MDP5_PP_SYNC_CONFIG_VSYNC_COUNTER_EN 0x00080000
#define MDP5_PP_SYNC_CONFIG_VSYNC_IN_EN 0x00100000
static inline uint32_t REG_MDP5_PP_SYNC_CONFIG_HEIGHT(uint32_t i0) { return 0x00000008 + __offset_PP(i0); }
static inline uint32_t REG_MDP5_PP_SYNC_WRCOUNT(uint32_t i0) { return 0x0000000c + __offset_PP(i0); }
#define MDP5_PP_SYNC_WRCOUNT_LINE_COUNT__MASK 0x0000ffff
#define MDP5_PP_SYNC_WRCOUNT_LINE_COUNT__SHIFT 0
static inline uint32_t MDP5_PP_SYNC_WRCOUNT_LINE_COUNT(uint32_t val)
{
return ((val) << MDP5_PP_SYNC_WRCOUNT_LINE_COUNT__SHIFT) & MDP5_PP_SYNC_WRCOUNT_LINE_COUNT__MASK;
}
#define MDP5_PP_SYNC_WRCOUNT_FRAME_COUNT__MASK 0xffff0000
#define MDP5_PP_SYNC_WRCOUNT_FRAME_COUNT__SHIFT 16
static inline uint32_t MDP5_PP_SYNC_WRCOUNT_FRAME_COUNT(uint32_t val)
{
return ((val) << MDP5_PP_SYNC_WRCOUNT_FRAME_COUNT__SHIFT) & MDP5_PP_SYNC_WRCOUNT_FRAME_COUNT__MASK;
}
static inline uint32_t REG_MDP5_PP_VSYNC_INIT_VAL(uint32_t i0) { return 0x00000010 + __offset_PP(i0); }
static inline uint32_t REG_MDP5_PP_INT_COUNT_VAL(uint32_t i0) { return 0x00000014 + __offset_PP(i0); }
#define MDP5_PP_INT_COUNT_VAL_LINE_COUNT__MASK 0x0000ffff
#define MDP5_PP_INT_COUNT_VAL_LINE_COUNT__SHIFT 0
static inline uint32_t MDP5_PP_INT_COUNT_VAL_LINE_COUNT(uint32_t val)
{
return ((val) << MDP5_PP_INT_COUNT_VAL_LINE_COUNT__SHIFT) & MDP5_PP_INT_COUNT_VAL_LINE_COUNT__MASK;
}
#define MDP5_PP_INT_COUNT_VAL_FRAME_COUNT__MASK 0xffff0000
#define MDP5_PP_INT_COUNT_VAL_FRAME_COUNT__SHIFT 16
static inline uint32_t MDP5_PP_INT_COUNT_VAL_FRAME_COUNT(uint32_t val)
{
return ((val) << MDP5_PP_INT_COUNT_VAL_FRAME_COUNT__SHIFT) & MDP5_PP_INT_COUNT_VAL_FRAME_COUNT__MASK;
}
static inline uint32_t REG_MDP5_PP_SYNC_THRESH(uint32_t i0) { return 0x00000018 + __offset_PP(i0); }
#define MDP5_PP_SYNC_THRESH_START__MASK 0x0000ffff
#define MDP5_PP_SYNC_THRESH_START__SHIFT 0
static inline uint32_t MDP5_PP_SYNC_THRESH_START(uint32_t val)
{
return ((val) << MDP5_PP_SYNC_THRESH_START__SHIFT) & MDP5_PP_SYNC_THRESH_START__MASK;
}
#define MDP5_PP_SYNC_THRESH_CONTINUE__MASK 0xffff0000
#define MDP5_PP_SYNC_THRESH_CONTINUE__SHIFT 16
static inline uint32_t MDP5_PP_SYNC_THRESH_CONTINUE(uint32_t val)
{
return ((val) << MDP5_PP_SYNC_THRESH_CONTINUE__SHIFT) & MDP5_PP_SYNC_THRESH_CONTINUE__MASK;
}
static inline uint32_t REG_MDP5_PP_START_POS(uint32_t i0) { return 0x0000001c + __offset_PP(i0); }
static inline uint32_t REG_MDP5_PP_RD_PTR_IRQ(uint32_t i0) { return 0x00000020 + __offset_PP(i0); }
static inline uint32_t REG_MDP5_PP_WR_PTR_IRQ(uint32_t i0) { return 0x00000024 + __offset_PP(i0); }
static inline uint32_t REG_MDP5_PP_OUT_LINE_COUNT(uint32_t i0) { return 0x00000028 + __offset_PP(i0); }
static inline uint32_t REG_MDP5_PP_PP_LINE_COUNT(uint32_t i0) { return 0x0000002c + __offset_PP(i0); }
static inline uint32_t REG_MDP5_PP_AUTOREFRESH_CONFIG(uint32_t i0) { return 0x00000030 + __offset_PP(i0); }
static inline uint32_t REG_MDP5_PP_FBC_MODE(uint32_t i0) { return 0x00000034 + __offset_PP(i0); }
static inline uint32_t REG_MDP5_PP_FBC_BUDGET_CTL(uint32_t i0) { return 0x00000038 + __offset_PP(i0); }
static inline uint32_t REG_MDP5_PP_FBC_LOSSY_MODE(uint32_t i0) { return 0x0000003c + __offset_PP(i0); }
static inline uint32_t __offset_INTF(uint32_t idx) static inline uint32_t __offset_INTF(uint32_t idx)
{ {
switch (idx) { switch (idx) {
......
/* /*
* Copyright (c) 2014 The Linux Foundation. All rights reserved. * Copyright (c) 2014-2015 The Linux Foundation. All rights reserved.
* *
* This program is free software; you can redistribute it and/or modify * This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and * it under the terms of the GNU General Public License version 2 and
...@@ -24,13 +24,23 @@ const struct mdp5_cfg_hw *mdp5_cfg = NULL; ...@@ -24,13 +24,23 @@ const struct mdp5_cfg_hw *mdp5_cfg = NULL;
const struct mdp5_cfg_hw msm8x74_config = { const struct mdp5_cfg_hw msm8x74_config = {
.name = "msm8x74", .name = "msm8x74",
.mdp = {
.count = 1,
.base = { 0x00100 },
},
.smp = { .smp = {
.mmb_count = 22, .mmb_count = 22,
.mmb_size = 4096, .mmb_size = 4096,
.clients = {
[SSPP_VIG0] = 1, [SSPP_VIG1] = 4, [SSPP_VIG2] = 7,
[SSPP_DMA0] = 10, [SSPP_DMA1] = 13,
[SSPP_RGB0] = 16, [SSPP_RGB1] = 17, [SSPP_RGB2] = 18,
},
}, },
.ctl = { .ctl = {
.count = 5, .count = 5,
.base = { 0x00600, 0x00700, 0x00800, 0x00900, 0x00a00 }, .base = { 0x00600, 0x00700, 0x00800, 0x00900, 0x00a00 },
.flush_hw_mask = 0x0003ffff,
}, },
.pipe_vig = { .pipe_vig = {
.count = 3, .count = 3,
...@@ -57,27 +67,49 @@ const struct mdp5_cfg_hw msm8x74_config = { ...@@ -57,27 +67,49 @@ const struct mdp5_cfg_hw msm8x74_config = {
.count = 2, .count = 2,
.base = { 0x13100, 0x13300 }, /* NOTE: no ad in v1.0 */ .base = { 0x13100, 0x13300 }, /* NOTE: no ad in v1.0 */
}, },
.pp = {
.count = 3,
.base = { 0x12d00, 0x12e00, 0x12f00 },
},
.intf = { .intf = {
.count = 4, .count = 4,
.base = { 0x12500, 0x12700, 0x12900, 0x12b00 }, .base = { 0x12500, 0x12700, 0x12900, 0x12b00 },
}, },
.intfs = {
[0] = INTF_eDP,
[1] = INTF_DSI,
[2] = INTF_DSI,
[3] = INTF_HDMI,
},
.max_clk = 200000000, .max_clk = 200000000,
}; };
const struct mdp5_cfg_hw apq8084_config = { const struct mdp5_cfg_hw apq8084_config = {
.name = "apq8084", .name = "apq8084",
.mdp = {
.count = 1,
.base = { 0x00100 },
},
.smp = { .smp = {
.mmb_count = 44, .mmb_count = 44,
.mmb_size = 8192, .mmb_size = 8192,
.clients = {
[SSPP_VIG0] = 1, [SSPP_VIG1] = 4,
[SSPP_VIG2] = 7, [SSPP_VIG3] = 19,
[SSPP_DMA0] = 10, [SSPP_DMA1] = 13,
[SSPP_RGB0] = 16, [SSPP_RGB1] = 17,
[SSPP_RGB2] = 18, [SSPP_RGB3] = 22,
},
.reserved_state[0] = GENMASK(7, 0), /* first 8 MMBs */ .reserved_state[0] = GENMASK(7, 0), /* first 8 MMBs */
.reserved[CID_RGB0] = 2, .reserved = {
.reserved[CID_RGB1] = 2, /* Two SMP blocks are statically tied to RGB pipes: */
.reserved[CID_RGB2] = 2, [16] = 2, [17] = 2, [18] = 2, [22] = 2,
.reserved[CID_RGB3] = 2, },
}, },
.ctl = { .ctl = {
.count = 5, .count = 5,
.base = { 0x00600, 0x00700, 0x00800, 0x00900, 0x00a00 }, .base = { 0x00600, 0x00700, 0x00800, 0x00900, 0x00a00 },
.flush_hw_mask = 0x003fffff,
}, },
.pipe_vig = { .pipe_vig = {
.count = 4, .count = 4,
...@@ -105,10 +137,69 @@ const struct mdp5_cfg_hw apq8084_config = { ...@@ -105,10 +137,69 @@ const struct mdp5_cfg_hw apq8084_config = {
.count = 3, .count = 3,
.base = { 0x13500, 0x13700, 0x13900 }, .base = { 0x13500, 0x13700, 0x13900 },
}, },
.pp = {
.count = 4,
.base = { 0x12f00, 0x13000, 0x13100, 0x13200 },
},
.intf = { .intf = {
.count = 5, .count = 5,
.base = { 0x12500, 0x12700, 0x12900, 0x12b00, 0x12d00 }, .base = { 0x12500, 0x12700, 0x12900, 0x12b00, 0x12d00 },
}, },
.intfs = {
[0] = INTF_eDP,
[1] = INTF_DSI,
[2] = INTF_DSI,
[3] = INTF_HDMI,
},
.max_clk = 320000000,
};
const struct mdp5_cfg_hw msm8x16_config = {
.name = "msm8x16",
.mdp = {
.count = 1,
.base = { 0x01000 },
},
.smp = {
.mmb_count = 8,
.mmb_size = 8192,
.clients = {
[SSPP_VIG0] = 1, [SSPP_DMA0] = 4,
[SSPP_RGB0] = 7, [SSPP_RGB1] = 8,
},
},
.ctl = {
.count = 5,
.base = { 0x02000, 0x02200, 0x02400, 0x02600, 0x02800 },
.flush_hw_mask = 0x4003ffff,
},
.pipe_vig = {
.count = 1,
.base = { 0x05000 },
},
.pipe_rgb = {
.count = 2,
.base = { 0x15000, 0x17000 },
},
.pipe_dma = {
.count = 1,
.base = { 0x25000 },
},
.lm = {
.count = 2, /* LM0 and LM3 */
.base = { 0x45000, 0x48000 },
.nb_stages = 5,
},
.dspp = {
.count = 1,
.base = { 0x55000 },
},
.intf = {
.count = 1, /* INTF_1 */
.base = { 0x6B800 },
},
/* TODO enable .intfs[] with [1] = INTF_DSI, once DSI is implemented */
.max_clk = 320000000, .max_clk = 320000000,
}; };
...@@ -116,6 +207,7 @@ static const struct mdp5_cfg_handler cfg_handlers[] = { ...@@ -116,6 +207,7 @@ static const struct mdp5_cfg_handler cfg_handlers[] = {
{ .revision = 0, .config = { .hw = &msm8x74_config } }, { .revision = 0, .config = { .hw = &msm8x74_config } },
{ .revision = 2, .config = { .hw = &msm8x74_config } }, { .revision = 2, .config = { .hw = &msm8x74_config } },
{ .revision = 3, .config = { .hw = &apq8084_config } }, { .revision = 3, .config = { .hw = &apq8084_config } },
{ .revision = 6, .config = { .hw = &msm8x16_config } },
}; };
......
...@@ -44,26 +44,38 @@ struct mdp5_lm_block { ...@@ -44,26 +44,38 @@ struct mdp5_lm_block {
uint32_t nb_stages; /* number of stages per blender */ uint32_t nb_stages; /* number of stages per blender */
}; };
struct mdp5_ctl_block {
MDP5_SUB_BLOCK_DEFINITION;
uint32_t flush_hw_mask; /* FLUSH register's hardware mask */
};
struct mdp5_smp_block { struct mdp5_smp_block {
int mmb_count; /* number of SMP MMBs */ int mmb_count; /* number of SMP MMBs */
int mmb_size; /* MMB: size in bytes */ int mmb_size; /* MMB: size in bytes */
uint32_t clients[MAX_CLIENTS]; /* SMP port allocation /pipe */
mdp5_smp_state_t reserved_state;/* SMP MMBs statically allocated */ mdp5_smp_state_t reserved_state;/* SMP MMBs statically allocated */
int reserved[MAX_CLIENTS]; /* # of MMBs allocated per client */ int reserved[MAX_CLIENTS]; /* # of MMBs allocated per client */
}; };
#define MDP5_INTF_NUM_MAX 5
struct mdp5_cfg_hw { struct mdp5_cfg_hw {
char *name; char *name;
struct mdp5_sub_block mdp;
struct mdp5_smp_block smp; struct mdp5_smp_block smp;
struct mdp5_sub_block ctl; struct mdp5_ctl_block ctl;
struct mdp5_sub_block pipe_vig; struct mdp5_sub_block pipe_vig;
struct mdp5_sub_block pipe_rgb; struct mdp5_sub_block pipe_rgb;
struct mdp5_sub_block pipe_dma; struct mdp5_sub_block pipe_dma;
struct mdp5_lm_block lm; struct mdp5_lm_block lm;
struct mdp5_sub_block dspp; struct mdp5_sub_block dspp;
struct mdp5_sub_block ad; struct mdp5_sub_block ad;
struct mdp5_sub_block pp;
struct mdp5_sub_block intf; struct mdp5_sub_block intf;
u32 intfs[MDP5_INTF_NUM_MAX]; /* array of enum mdp5_intf_type */
uint32_t max_clk; uint32_t max_clk;
}; };
...@@ -84,6 +96,10 @@ const struct mdp5_cfg_hw *mdp5_cfg_get_hw_config(struct mdp5_cfg_handler *cfg_hn ...@@ -84,6 +96,10 @@ const struct mdp5_cfg_hw *mdp5_cfg_get_hw_config(struct mdp5_cfg_handler *cfg_hn
struct mdp5_cfg *mdp5_cfg_get_config(struct mdp5_cfg_handler *cfg_hnd); struct mdp5_cfg *mdp5_cfg_get_config(struct mdp5_cfg_handler *cfg_hnd);
int mdp5_cfg_get_hw_rev(struct mdp5_cfg_handler *cfg_hnd); int mdp5_cfg_get_hw_rev(struct mdp5_cfg_handler *cfg_hnd);
#define mdp5_cfg_intf_is_virtual(intf_type) ({ \
typeof(intf_type) __val = (intf_type); \
(__val) >= INTF_VIRTUAL ? true : false; })
struct mdp5_cfg_handler *mdp5_cfg_init(struct mdp5_kms *mdp5_kms, struct mdp5_cfg_handler *mdp5_cfg_init(struct mdp5_kms *mdp5_kms,
uint32_t major, uint32_t minor); uint32_t major, uint32_t minor);
void mdp5_cfg_destroy(struct mdp5_cfg_handler *cfg_hnd); void mdp5_cfg_destroy(struct mdp5_cfg_handler *cfg_hnd);
......
/*
* Copyright (c) 2015, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include "mdp5_kms.h"
#include "drm_crtc.h"
#include "drm_crtc_helper.h"
struct mdp5_cmd_encoder {
struct drm_encoder base;
struct mdp5_interface intf;
bool enabled;
uint32_t bsc;
};
#define to_mdp5_cmd_encoder(x) container_of(x, struct mdp5_cmd_encoder, base)
static struct mdp5_kms *get_kms(struct drm_encoder *encoder)
{
struct msm_drm_private *priv = encoder->dev->dev_private;
return to_mdp5_kms(to_mdp_kms(priv->kms));
}
#ifdef CONFIG_MSM_BUS_SCALING
#include <mach/board.h>
#include <linux/msm-bus.h>
#include <linux/msm-bus-board.h>
#define MDP_BUS_VECTOR_ENTRY(ab_val, ib_val) \
{ \
.src = MSM_BUS_MASTER_MDP_PORT0, \
.dst = MSM_BUS_SLAVE_EBI_CH0, \
.ab = (ab_val), \
.ib = (ib_val), \
}
static struct msm_bus_vectors mdp_bus_vectors[] = {
MDP_BUS_VECTOR_ENTRY(0, 0),
MDP_BUS_VECTOR_ENTRY(2000000000, 2000000000),
};
static struct msm_bus_paths mdp_bus_usecases[] = { {
.num_paths = 1,
.vectors = &mdp_bus_vectors[0],
}, {
.num_paths = 1,
.vectors = &mdp_bus_vectors[1],
} };
static struct msm_bus_scale_pdata mdp_bus_scale_table = {
.usecase = mdp_bus_usecases,
.num_usecases = ARRAY_SIZE(mdp_bus_usecases),
.name = "mdss_mdp",
};
static void bs_init(struct mdp5_cmd_encoder *mdp5_cmd_enc)
{
mdp5_cmd_enc->bsc = msm_bus_scale_register_client(
&mdp_bus_scale_table);
DBG("bus scale client: %08x", mdp5_cmd_enc->bsc);
}
static void bs_fini(struct mdp5_cmd_encoder *mdp5_cmd_enc)
{
if (mdp5_cmd_enc->bsc) {
msm_bus_scale_unregister_client(mdp5_cmd_enc->bsc);
mdp5_cmd_enc->bsc = 0;
}
}
static void bs_set(struct mdp5_cmd_encoder *mdp5_cmd_enc, int idx)
{
if (mdp5_cmd_enc->bsc) {
DBG("set bus scaling: %d", idx);
/* HACK: scaling down, and then immediately back up
* seems to leave things broken (underflow).. so
* never disable:
*/
idx = 1;
msm_bus_scale_client_update_request(mdp5_cmd_enc->bsc, idx);
}
}
#else
static void bs_init(struct mdp5_cmd_encoder *mdp5_cmd_enc) {}
static void bs_fini(struct mdp5_cmd_encoder *mdp5_cmd_enc) {}
static void bs_set(struct mdp5_cmd_encoder *mdp5_cmd_enc, int idx) {}
#endif
#define VSYNC_CLK_RATE 19200000
static int pingpong_tearcheck_setup(struct drm_encoder *encoder,
struct drm_display_mode *mode)
{
struct mdp5_kms *mdp5_kms = get_kms(encoder);
struct device *dev = encoder->dev->dev;
u32 total_lines_x100, vclks_line, cfg;
long vsync_clk_speed;
int pp_id = GET_PING_PONG_ID(mdp5_crtc_get_lm(encoder->crtc));
if (IS_ERR_OR_NULL(mdp5_kms->vsync_clk)) {
dev_err(dev, "vsync_clk is not initialized\n");
return -EINVAL;
}
total_lines_x100 = mode->vtotal * mode->vrefresh;
if (!total_lines_x100) {
dev_err(dev, "%s: vtotal(%d) or vrefresh(%d) is 0\n",
__func__, mode->vtotal, mode->vrefresh);
return -EINVAL;
}
vsync_clk_speed = clk_round_rate(mdp5_kms->vsync_clk, VSYNC_CLK_RATE);
if (vsync_clk_speed <= 0) {
dev_err(dev, "vsync_clk round rate failed %ld\n",
vsync_clk_speed);
return -EINVAL;
}
vclks_line = vsync_clk_speed * 100 / total_lines_x100;
cfg = MDP5_PP_SYNC_CONFIG_VSYNC_COUNTER_EN
| MDP5_PP_SYNC_CONFIG_VSYNC_IN_EN;
cfg |= MDP5_PP_SYNC_CONFIG_VSYNC_COUNT(vclks_line);
mdp5_write(mdp5_kms, REG_MDP5_PP_SYNC_CONFIG_VSYNC(pp_id), cfg);
mdp5_write(mdp5_kms,
REG_MDP5_PP_SYNC_CONFIG_HEIGHT(pp_id), 0xfff0);
mdp5_write(mdp5_kms,
REG_MDP5_PP_VSYNC_INIT_VAL(pp_id), mode->vdisplay);
mdp5_write(mdp5_kms, REG_MDP5_PP_RD_PTR_IRQ(pp_id), mode->vdisplay + 1);
mdp5_write(mdp5_kms, REG_MDP5_PP_START_POS(pp_id), mode->vdisplay);
mdp5_write(mdp5_kms, REG_MDP5_PP_SYNC_THRESH(pp_id),
MDP5_PP_SYNC_THRESH_START(4) |
MDP5_PP_SYNC_THRESH_CONTINUE(4));
return 0;
}
static int pingpong_tearcheck_enable(struct drm_encoder *encoder)
{
struct mdp5_kms *mdp5_kms = get_kms(encoder);
int pp_id = GET_PING_PONG_ID(mdp5_crtc_get_lm(encoder->crtc));
int ret;
ret = clk_set_rate(mdp5_kms->vsync_clk,
clk_round_rate(mdp5_kms->vsync_clk, VSYNC_CLK_RATE));
if (ret) {
dev_err(encoder->dev->dev,
"vsync_clk clk_set_rate failed, %d\n", ret);
return ret;
}
ret = clk_prepare_enable(mdp5_kms->vsync_clk);
if (ret) {
dev_err(encoder->dev->dev,
"vsync_clk clk_prepare_enable failed, %d\n", ret);
return ret;
}
mdp5_write(mdp5_kms, REG_MDP5_PP_TEAR_CHECK_EN(pp_id), 1);
return 0;
}
static void pingpong_tearcheck_disable(struct drm_encoder *encoder)
{
struct mdp5_kms *mdp5_kms = get_kms(encoder);
int pp_id = GET_PING_PONG_ID(mdp5_crtc_get_lm(encoder->crtc));
mdp5_write(mdp5_kms, REG_MDP5_PP_TEAR_CHECK_EN(pp_id), 0);
clk_disable_unprepare(mdp5_kms->vsync_clk);
}
static void mdp5_cmd_encoder_destroy(struct drm_encoder *encoder)
{
struct mdp5_cmd_encoder *mdp5_cmd_enc = to_mdp5_cmd_encoder(encoder);
bs_fini(mdp5_cmd_enc);
drm_encoder_cleanup(encoder);
kfree(mdp5_cmd_enc);
}
static const struct drm_encoder_funcs mdp5_cmd_encoder_funcs = {
.destroy = mdp5_cmd_encoder_destroy,
};
static bool mdp5_cmd_encoder_mode_fixup(struct drm_encoder *encoder,
const struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
return true;
}
static void mdp5_cmd_encoder_mode_set(struct drm_encoder *encoder,
struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
struct mdp5_cmd_encoder *mdp5_cmd_enc = to_mdp5_cmd_encoder(encoder);
mode = adjusted_mode;
DBG("set mode: %d:\"%s\" %d %d %d %d %d %d %d %d %d %d 0x%x 0x%x",
mode->base.id, mode->name,
mode->vrefresh, mode->clock,
mode->hdisplay, mode->hsync_start,
mode->hsync_end, mode->htotal,
mode->vdisplay, mode->vsync_start,
mode->vsync_end, mode->vtotal,
mode->type, mode->flags);
pingpong_tearcheck_setup(encoder, mode);
mdp5_crtc_set_intf(encoder->crtc, &mdp5_cmd_enc->intf);
}
static void mdp5_cmd_encoder_disable(struct drm_encoder *encoder)
{
struct mdp5_cmd_encoder *mdp5_cmd_enc = to_mdp5_cmd_encoder(encoder);
struct mdp5_kms *mdp5_kms = get_kms(encoder);
struct mdp5_ctl *ctl = mdp5_crtc_get_ctl(encoder->crtc);
struct mdp5_interface *intf = &mdp5_cmd_enc->intf;
int lm = mdp5_crtc_get_lm(encoder->crtc);
if (WARN_ON(!mdp5_cmd_enc->enabled))
return;
/* Wait for the last frame done */
mdp_irq_wait(&mdp5_kms->base, lm2ppdone(lm));
pingpong_tearcheck_disable(encoder);
mdp5_ctl_set_encoder_state(ctl, false);
mdp5_ctl_commit(ctl, mdp_ctl_flush_mask_encoder(intf));
bs_set(mdp5_cmd_enc, 0);
mdp5_cmd_enc->enabled = false;
}
static void mdp5_cmd_encoder_enable(struct drm_encoder *encoder)
{
struct mdp5_cmd_encoder *mdp5_cmd_enc = to_mdp5_cmd_encoder(encoder);
struct mdp5_ctl *ctl = mdp5_crtc_get_ctl(encoder->crtc);
struct mdp5_interface *intf = &mdp5_cmd_enc->intf;
if (WARN_ON(mdp5_cmd_enc->enabled))
return;
bs_set(mdp5_cmd_enc, 1);
if (pingpong_tearcheck_enable(encoder))
return;
mdp5_ctl_commit(ctl, mdp_ctl_flush_mask_encoder(intf));
mdp5_ctl_set_encoder_state(ctl, true);
mdp5_cmd_enc->enabled = true;
}
static const struct drm_encoder_helper_funcs mdp5_cmd_encoder_helper_funcs = {
.mode_fixup = mdp5_cmd_encoder_mode_fixup,
.mode_set = mdp5_cmd_encoder_mode_set,
.disable = mdp5_cmd_encoder_disable,
.enable = mdp5_cmd_encoder_enable,
};
int mdp5_cmd_encoder_set_split_display(struct drm_encoder *encoder,
struct drm_encoder *slave_encoder)
{
struct mdp5_cmd_encoder *mdp5_cmd_enc = to_mdp5_cmd_encoder(encoder);
struct mdp5_kms *mdp5_kms;
int intf_num;
u32 data = 0;
if (!encoder || !slave_encoder)
return -EINVAL;
mdp5_kms = get_kms(encoder);
intf_num = mdp5_cmd_enc->intf.num;
/* Switch slave encoder's trigger MUX, to use the master's
* start signal for the slave encoder
*/
if (intf_num == 1)
data |= MDP5_SPLIT_DPL_UPPER_INTF2_SW_TRG_MUX;
else if (intf_num == 2)
data |= MDP5_SPLIT_DPL_UPPER_INTF1_SW_TRG_MUX;
else
return -EINVAL;
/* Smart Panel, Sync mode */
data |= MDP5_SPLIT_DPL_UPPER_SMART_PANEL;
/* Make sure clocks are on when connectors calling this function. */
mdp5_enable(mdp5_kms);
mdp5_write(mdp5_kms, REG_MDP5_SPLIT_DPL_UPPER, data);
mdp5_write(mdp5_kms, REG_MDP5_SPLIT_DPL_LOWER,
MDP5_SPLIT_DPL_LOWER_SMART_PANEL);
mdp5_write(mdp5_kms, REG_MDP5_SPLIT_DPL_EN, 1);
mdp5_disable(mdp5_kms);
return 0;
}
/* initialize command mode encoder */
struct drm_encoder *mdp5_cmd_encoder_init(struct drm_device *dev,
struct mdp5_interface *intf)
{
struct drm_encoder *encoder = NULL;
struct mdp5_cmd_encoder *mdp5_cmd_enc;
int ret;
if (WARN_ON((intf->type != INTF_DSI) &&
(intf->mode != MDP5_INTF_DSI_MODE_COMMAND))) {
ret = -EINVAL;
goto fail;
}
mdp5_cmd_enc = kzalloc(sizeof(*mdp5_cmd_enc), GFP_KERNEL);
if (!mdp5_cmd_enc) {
ret = -ENOMEM;
goto fail;
}
memcpy(&mdp5_cmd_enc->intf, intf, sizeof(mdp5_cmd_enc->intf));
encoder = &mdp5_cmd_enc->base;
drm_encoder_init(dev, encoder, &mdp5_cmd_encoder_funcs,
DRM_MODE_ENCODER_DSI);
drm_encoder_helper_add(encoder, &mdp5_cmd_encoder_helper_funcs);
bs_init(mdp5_cmd_enc);
return encoder;
fail:
if (encoder)
mdp5_cmd_encoder_destroy(encoder);
return ERR_PTR(ret);
}
...@@ -82,8 +82,6 @@ static void request_pending(struct drm_crtc *crtc, uint32_t pending) ...@@ -82,8 +82,6 @@ static void request_pending(struct drm_crtc *crtc, uint32_t pending)
mdp_irq_register(&get_kms(crtc)->base, &mdp5_crtc->vblank); mdp_irq_register(&get_kms(crtc)->base, &mdp5_crtc->vblank);
} }
#define mdp5_lm_get_flush(lm) mdp_ctl_flush_mask_lm(lm)
static void crtc_flush(struct drm_crtc *crtc, u32 flush_mask) static void crtc_flush(struct drm_crtc *crtc, u32 flush_mask)
{ {
struct mdp5_crtc *mdp5_crtc = to_mdp5_crtc(crtc); struct mdp5_crtc *mdp5_crtc = to_mdp5_crtc(crtc);
...@@ -110,8 +108,8 @@ static void crtc_flush_all(struct drm_crtc *crtc) ...@@ -110,8 +108,8 @@ static void crtc_flush_all(struct drm_crtc *crtc)
drm_atomic_crtc_for_each_plane(plane, crtc) { drm_atomic_crtc_for_each_plane(plane, crtc) {
flush_mask |= mdp5_plane_get_flush(plane); flush_mask |= mdp5_plane_get_flush(plane);
} }
flush_mask |= mdp5_ctl_get_flush(mdp5_crtc->ctl);
flush_mask |= mdp5_lm_get_flush(mdp5_crtc->lm); flush_mask |= mdp_ctl_flush_mask_lm(mdp5_crtc->lm);
crtc_flush(crtc, flush_mask); crtc_flush(crtc, flush_mask);
} }
...@@ -298,8 +296,6 @@ static void mdp5_crtc_enable(struct drm_crtc *crtc) ...@@ -298,8 +296,6 @@ static void mdp5_crtc_enable(struct drm_crtc *crtc)
mdp5_enable(mdp5_kms); mdp5_enable(mdp5_kms);
mdp_irq_register(&mdp5_kms->base, &mdp5_crtc->err); mdp_irq_register(&mdp5_kms->base, &mdp5_crtc->err);
crtc_flush_all(crtc);
mdp5_crtc->enabled = true; mdp5_crtc->enabled = true;
} }
...@@ -444,13 +440,14 @@ static int mdp5_crtc_cursor_set(struct drm_crtc *crtc, ...@@ -444,13 +440,14 @@ static int mdp5_crtc_cursor_set(struct drm_crtc *crtc,
struct mdp5_crtc *mdp5_crtc = to_mdp5_crtc(crtc); struct mdp5_crtc *mdp5_crtc = to_mdp5_crtc(crtc);
struct drm_device *dev = crtc->dev; struct drm_device *dev = crtc->dev;
struct mdp5_kms *mdp5_kms = get_kms(crtc); struct mdp5_kms *mdp5_kms = get_kms(crtc);
struct drm_gem_object *cursor_bo, *old_bo; struct drm_gem_object *cursor_bo, *old_bo = NULL;
uint32_t blendcfg, cursor_addr, stride; uint32_t blendcfg, cursor_addr, stride;
int ret, bpp, lm; int ret, bpp, lm;
unsigned int depth; unsigned int depth;
enum mdp5_cursor_alpha cur_alpha = CURSOR_ALPHA_PER_PIXEL; enum mdp5_cursor_alpha cur_alpha = CURSOR_ALPHA_PER_PIXEL;
uint32_t flush_mask = mdp_ctl_flush_mask_cursor(0); uint32_t flush_mask = mdp_ctl_flush_mask_cursor(0);
uint32_t roi_w, roi_h; uint32_t roi_w, roi_h;
bool cursor_enable = true;
unsigned long flags; unsigned long flags;
if ((width > CURSOR_WIDTH) || (height > CURSOR_HEIGHT)) { if ((width > CURSOR_WIDTH) || (height > CURSOR_HEIGHT)) {
...@@ -463,7 +460,8 @@ static int mdp5_crtc_cursor_set(struct drm_crtc *crtc, ...@@ -463,7 +460,8 @@ static int mdp5_crtc_cursor_set(struct drm_crtc *crtc,
if (!handle) { if (!handle) {
DBG("Cursor off"); DBG("Cursor off");
return mdp5_ctl_set_cursor(mdp5_crtc->ctl, false); cursor_enable = false;
goto set_cursor;
} }
cursor_bo = drm_gem_object_lookup(dev, file, handle); cursor_bo = drm_gem_object_lookup(dev, file, handle);
...@@ -504,11 +502,14 @@ static int mdp5_crtc_cursor_set(struct drm_crtc *crtc, ...@@ -504,11 +502,14 @@ static int mdp5_crtc_cursor_set(struct drm_crtc *crtc,
spin_unlock_irqrestore(&mdp5_crtc->cursor.lock, flags); spin_unlock_irqrestore(&mdp5_crtc->cursor.lock, flags);
ret = mdp5_ctl_set_cursor(mdp5_crtc->ctl, true); set_cursor:
if (ret) ret = mdp5_ctl_set_cursor(mdp5_crtc->ctl, 0, cursor_enable);
if (ret) {
dev_err(dev->dev, "failed to %sable cursor: %d\n",
cursor_enable ? "en" : "dis", ret);
goto end; goto end;
}
flush_mask |= mdp5_ctl_get_flush(mdp5_crtc->ctl);
crtc_flush(crtc, flush_mask); crtc_flush(crtc, flush_mask);
end: end:
...@@ -613,64 +614,39 @@ void mdp5_crtc_cancel_pending_flip(struct drm_crtc *crtc, struct drm_file *file) ...@@ -613,64 +614,39 @@ void mdp5_crtc_cancel_pending_flip(struct drm_crtc *crtc, struct drm_file *file)
} }
/* set interface for routing crtc->encoder: */ /* set interface for routing crtc->encoder: */
void mdp5_crtc_set_intf(struct drm_crtc *crtc, int intf, void mdp5_crtc_set_intf(struct drm_crtc *crtc, struct mdp5_interface *intf)
enum mdp5_intf intf_id)
{ {
struct mdp5_crtc *mdp5_crtc = to_mdp5_crtc(crtc); struct mdp5_crtc *mdp5_crtc = to_mdp5_crtc(crtc);
struct mdp5_kms *mdp5_kms = get_kms(crtc); struct mdp5_kms *mdp5_kms = get_kms(crtc);
uint32_t flush_mask = 0; int lm = mdp5_crtc_get_lm(crtc);
uint32_t intf_sel;
unsigned long flags;
/* now that we know what irq's we want: */ /* now that we know what irq's we want: */
mdp5_crtc->err.irqmask = intf2err(intf); mdp5_crtc->err.irqmask = intf2err(intf->num);
mdp5_crtc->vblank.irqmask = intf2vblank(intf);
mdp_irq_update(&mdp5_kms->base);
spin_lock_irqsave(&mdp5_kms->resource_lock, flags);
intf_sel = mdp5_read(mdp5_kms, REG_MDP5_DISP_INTF_SEL);
switch (intf) {
case 0:
intf_sel &= ~MDP5_DISP_INTF_SEL_INTF0__MASK;
intf_sel |= MDP5_DISP_INTF_SEL_INTF0(intf_id);
break;
case 1:
intf_sel &= ~MDP5_DISP_INTF_SEL_INTF1__MASK;
intf_sel |= MDP5_DISP_INTF_SEL_INTF1(intf_id);
break;
case 2:
intf_sel &= ~MDP5_DISP_INTF_SEL_INTF2__MASK;
intf_sel |= MDP5_DISP_INTF_SEL_INTF2(intf_id);
break;
case 3:
intf_sel &= ~MDP5_DISP_INTF_SEL_INTF3__MASK;
intf_sel |= MDP5_DISP_INTF_SEL_INTF3(intf_id);
break;
default:
BUG();
break;
}
mdp5_write(mdp5_kms, REG_MDP5_DISP_INTF_SEL, intf_sel); /* Register command mode Pingpong done as vblank for now,
spin_unlock_irqrestore(&mdp5_kms->resource_lock, flags); * so that atomic commit should wait for it to finish.
* Ideally, in the future, we should take rd_ptr done as vblank,
* and let atomic commit wait for pingpong done for commond mode.
*/
if (intf->mode == MDP5_INTF_DSI_MODE_COMMAND)
mdp5_crtc->vblank.irqmask = lm2ppdone(lm);
else
mdp5_crtc->vblank.irqmask = intf2vblank(lm, intf);
mdp_irq_update(&mdp5_kms->base);
DBG("%s: intf_sel=%08x", mdp5_crtc->name, intf_sel);
mdp5_ctl_set_intf(mdp5_crtc->ctl, intf); mdp5_ctl_set_intf(mdp5_crtc->ctl, intf);
flush_mask |= mdp5_ctl_get_flush(mdp5_crtc->ctl);
flush_mask |= mdp5_lm_get_flush(mdp5_crtc->lm);
crtc_flush(crtc, flush_mask);
} }
int mdp5_crtc_get_lm(struct drm_crtc *crtc) int mdp5_crtc_get_lm(struct drm_crtc *crtc)
{ {
struct mdp5_crtc *mdp5_crtc = to_mdp5_crtc(crtc); struct mdp5_crtc *mdp5_crtc = to_mdp5_crtc(crtc);
return WARN_ON(!crtc) ? -EINVAL : mdp5_crtc->lm;
}
if (WARN_ON(!crtc)) struct mdp5_ctl *mdp5_crtc_get_ctl(struct drm_crtc *crtc)
return -EINVAL; {
struct mdp5_crtc *mdp5_crtc = to_mdp5_crtc(crtc);
return mdp5_crtc->lm; return WARN_ON(!crtc) ? NULL : mdp5_crtc->ctl;
} }
/* initialize crtc */ /* initialize crtc */
......
/* /*
* Copyright (c) 2014 The Linux Foundation. All rights reserved. * Copyright (c) 2014-2015 The Linux Foundation. All rights reserved.
* *
* This program is free software; you can redistribute it and/or modify * This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and * it under the terms of the GNU General Public License version 2 and
...@@ -33,23 +33,31 @@ ...@@ -33,23 +33,31 @@
* requested by the client (in mdp5_crtc_mode_set()). * requested by the client (in mdp5_crtc_mode_set()).
*/ */
struct op_mode {
struct mdp5_interface intf;
bool encoder_enabled;
uint32_t start_mask;
};
struct mdp5_ctl { struct mdp5_ctl {
struct mdp5_ctl_manager *ctlm; struct mdp5_ctl_manager *ctlm;
u32 id; u32 id;
int lm;
/* whether this CTL has been allocated or not: */ /* whether this CTL has been allocated or not: */
bool busy; bool busy;
/* memory output connection (@see mdp5_ctl_mode): */ /* Operation Mode Configuration for the Pipeline */
u32 mode; struct op_mode pipeline;
/* REG_MDP5_CTL_*(<id>) registers access info + lock: */ /* REG_MDP5_CTL_*(<id>) registers access info + lock: */
spinlock_t hw_lock; spinlock_t hw_lock;
u32 reg_offset; u32 reg_offset;
/* flush mask used to commit CTL registers */ /* when do CTL registers need to be flushed? (mask of trigger bits) */
u32 flush_mask; u32 pending_ctl_trigger;
bool cursor_on; bool cursor_on;
...@@ -63,6 +71,9 @@ struct mdp5_ctl_manager { ...@@ -63,6 +71,9 @@ struct mdp5_ctl_manager {
u32 nlm; u32 nlm;
u32 nctl; u32 nctl;
/* to filter out non-present bits in the current hardware config */
u32 flush_hw_mask;
/* pool of CTLs + lock to protect resource allocation (ctls[i].busy) */ /* pool of CTLs + lock to protect resource allocation (ctls[i].busy) */
spinlock_t pool_lock; spinlock_t pool_lock;
struct mdp5_ctl ctls[MAX_CTL]; struct mdp5_ctl ctls[MAX_CTL];
...@@ -94,31 +105,172 @@ u32 ctl_read(struct mdp5_ctl *ctl, u32 reg) ...@@ -94,31 +105,172 @@ u32 ctl_read(struct mdp5_ctl *ctl, u32 reg)
return mdp5_read(mdp5_kms, reg); return mdp5_read(mdp5_kms, reg);
} }
static void set_display_intf(struct mdp5_kms *mdp5_kms,
struct mdp5_interface *intf)
{
unsigned long flags;
u32 intf_sel;
spin_lock_irqsave(&mdp5_kms->resource_lock, flags);
intf_sel = mdp5_read(mdp5_kms, REG_MDP5_MDP_DISP_INTF_SEL(0));
switch (intf->num) {
case 0:
intf_sel &= ~MDP5_MDP_DISP_INTF_SEL_INTF0__MASK;
intf_sel |= MDP5_MDP_DISP_INTF_SEL_INTF0(intf->type);
break;
case 1:
intf_sel &= ~MDP5_MDP_DISP_INTF_SEL_INTF1__MASK;
intf_sel |= MDP5_MDP_DISP_INTF_SEL_INTF1(intf->type);
break;
case 2:
intf_sel &= ~MDP5_MDP_DISP_INTF_SEL_INTF2__MASK;
intf_sel |= MDP5_MDP_DISP_INTF_SEL_INTF2(intf->type);
break;
case 3:
intf_sel &= ~MDP5_MDP_DISP_INTF_SEL_INTF3__MASK;
intf_sel |= MDP5_MDP_DISP_INTF_SEL_INTF3(intf->type);
break;
default:
BUG();
break;
}
mdp5_write(mdp5_kms, REG_MDP5_MDP_DISP_INTF_SEL(0), intf_sel);
spin_unlock_irqrestore(&mdp5_kms->resource_lock, flags);
}
int mdp5_ctl_set_intf(struct mdp5_ctl *ctl, int intf) static void set_ctl_op(struct mdp5_ctl *ctl, struct mdp5_interface *intf)
{ {
unsigned long flags; unsigned long flags;
static const enum mdp5_intfnum intfnum[] = { u32 ctl_op = 0;
INTF0, INTF1, INTF2, INTF3,
}; if (!mdp5_cfg_intf_is_virtual(intf->type))
ctl_op |= MDP5_CTL_OP_INTF_NUM(INTF0 + intf->num);
switch (intf->type) {
case INTF_DSI:
if (intf->mode == MDP5_INTF_DSI_MODE_COMMAND)
ctl_op |= MDP5_CTL_OP_CMD_MODE;
break;
case INTF_WB:
if (intf->mode == MDP5_INTF_WB_MODE_LINE)
ctl_op |= MDP5_CTL_OP_MODE(MODE_WB_2_LINE);
break;
default:
break;
}
spin_lock_irqsave(&ctl->hw_lock, flags); spin_lock_irqsave(&ctl->hw_lock, flags);
ctl_write(ctl, REG_MDP5_CTL_OP(ctl->id), ctl_write(ctl, REG_MDP5_CTL_OP(ctl->id), ctl_op);
MDP5_CTL_OP_MODE(ctl->mode) |
MDP5_CTL_OP_INTF_NUM(intfnum[intf]));
spin_unlock_irqrestore(&ctl->hw_lock, flags); spin_unlock_irqrestore(&ctl->hw_lock, flags);
}
int mdp5_ctl_set_intf(struct mdp5_ctl *ctl, struct mdp5_interface *intf)
{
struct mdp5_ctl_manager *ctl_mgr = ctl->ctlm;
struct mdp5_kms *mdp5_kms = get_kms(ctl_mgr);
memcpy(&ctl->pipeline.intf, intf, sizeof(*intf));
ctl->pipeline.start_mask = mdp_ctl_flush_mask_lm(ctl->lm) |
mdp_ctl_flush_mask_encoder(intf);
/* Virtual interfaces need not set a display intf (e.g.: Writeback) */
if (!mdp5_cfg_intf_is_virtual(intf->type))
set_display_intf(mdp5_kms, intf);
set_ctl_op(ctl, intf);
return 0; return 0;
} }
int mdp5_ctl_set_cursor(struct mdp5_ctl *ctl, bool enable) static bool start_signal_needed(struct mdp5_ctl *ctl)
{
struct op_mode *pipeline = &ctl->pipeline;
if (!pipeline->encoder_enabled || pipeline->start_mask != 0)
return false;
switch (pipeline->intf.type) {
case INTF_WB:
return true;
case INTF_DSI:
return pipeline->intf.mode == MDP5_INTF_DSI_MODE_COMMAND;
default:
return false;
}
}
/*
* send_start_signal() - Overlay Processor Start Signal
*
* For a given control operation (display pipeline), a START signal needs to be
* executed in order to kick off operation and activate all layers.
* e.g.: DSI command mode, Writeback
*/
static void send_start_signal(struct mdp5_ctl *ctl)
{
unsigned long flags;
spin_lock_irqsave(&ctl->hw_lock, flags);
ctl_write(ctl, REG_MDP5_CTL_START(ctl->id), 1);
spin_unlock_irqrestore(&ctl->hw_lock, flags);
}
static void refill_start_mask(struct mdp5_ctl *ctl)
{
struct op_mode *pipeline = &ctl->pipeline;
struct mdp5_interface *intf = &ctl->pipeline.intf;
pipeline->start_mask = mdp_ctl_flush_mask_lm(ctl->lm);
/*
* Writeback encoder needs to program & flush
* address registers for each page flip..
*/
if (intf->type == INTF_WB)
pipeline->start_mask |= mdp_ctl_flush_mask_encoder(intf);
}
/**
* mdp5_ctl_set_encoder_state() - set the encoder state
*
* @enable: true, when encoder is ready for data streaming; false, otherwise.
*
* Note:
* This encoder state is needed to trigger START signal (data path kickoff).
*/
int mdp5_ctl_set_encoder_state(struct mdp5_ctl *ctl, bool enabled)
{
if (WARN_ON(!ctl))
return -EINVAL;
ctl->pipeline.encoder_enabled = enabled;
DBG("intf_%d: %s", ctl->pipeline.intf.num, enabled ? "on" : "off");
if (start_signal_needed(ctl)) {
send_start_signal(ctl);
refill_start_mask(ctl);
}
return 0;
}
/*
* Note:
* CTL registers need to be flushed after calling this function
* (call mdp5_ctl_commit() with mdp_ctl_flush_mask_ctl() mask)
*/
int mdp5_ctl_set_cursor(struct mdp5_ctl *ctl, int cursor_id, bool enable)
{ {
struct mdp5_ctl_manager *ctl_mgr = ctl->ctlm; struct mdp5_ctl_manager *ctl_mgr = ctl->ctlm;
unsigned long flags; unsigned long flags;
u32 blend_cfg; u32 blend_cfg;
int lm; int lm = ctl->lm;
lm = mdp5_crtc_get_lm(ctl->crtc);
if (unlikely(WARN_ON(lm < 0))) { if (unlikely(WARN_ON(lm < 0))) {
dev_err(ctl_mgr->dev->dev, "CTL %d cannot find LM: %d", dev_err(ctl_mgr->dev->dev, "CTL %d cannot find LM: %d",
ctl->id, lm); ctl->id, lm);
...@@ -138,12 +290,12 @@ int mdp5_ctl_set_cursor(struct mdp5_ctl *ctl, bool enable) ...@@ -138,12 +290,12 @@ int mdp5_ctl_set_cursor(struct mdp5_ctl *ctl, bool enable)
spin_unlock_irqrestore(&ctl->hw_lock, flags); spin_unlock_irqrestore(&ctl->hw_lock, flags);
ctl->pending_ctl_trigger = mdp_ctl_flush_mask_cursor(cursor_id);
ctl->cursor_on = enable; ctl->cursor_on = enable;
return 0; return 0;
} }
int mdp5_ctl_blend(struct mdp5_ctl *ctl, u32 lm, u32 blend_cfg) int mdp5_ctl_blend(struct mdp5_ctl *ctl, u32 lm, u32 blend_cfg)
{ {
unsigned long flags; unsigned long flags;
...@@ -157,37 +309,122 @@ int mdp5_ctl_blend(struct mdp5_ctl *ctl, u32 lm, u32 blend_cfg) ...@@ -157,37 +309,122 @@ int mdp5_ctl_blend(struct mdp5_ctl *ctl, u32 lm, u32 blend_cfg)
ctl_write(ctl, REG_MDP5_CTL_LAYER_REG(ctl->id, lm), blend_cfg); ctl_write(ctl, REG_MDP5_CTL_LAYER_REG(ctl->id, lm), blend_cfg);
spin_unlock_irqrestore(&ctl->hw_lock, flags); spin_unlock_irqrestore(&ctl->hw_lock, flags);
ctl->pending_ctl_trigger = mdp_ctl_flush_mask_lm(lm);
return 0; return 0;
} }
u32 mdp_ctl_flush_mask_encoder(struct mdp5_interface *intf)
{
if (intf->type == INTF_WB)
return MDP5_CTL_FLUSH_WB;
switch (intf->num) {
case 0: return MDP5_CTL_FLUSH_TIMING_0;
case 1: return MDP5_CTL_FLUSH_TIMING_1;
case 2: return MDP5_CTL_FLUSH_TIMING_2;
case 3: return MDP5_CTL_FLUSH_TIMING_3;
default: return 0;
}
}
u32 mdp_ctl_flush_mask_cursor(int cursor_id)
{
switch (cursor_id) {
case 0: return MDP5_CTL_FLUSH_CURSOR_0;
case 1: return MDP5_CTL_FLUSH_CURSOR_1;
default: return 0;
}
}
u32 mdp_ctl_flush_mask_pipe(enum mdp5_pipe pipe)
{
switch (pipe) {
case SSPP_VIG0: return MDP5_CTL_FLUSH_VIG0;
case SSPP_VIG1: return MDP5_CTL_FLUSH_VIG1;
case SSPP_VIG2: return MDP5_CTL_FLUSH_VIG2;
case SSPP_RGB0: return MDP5_CTL_FLUSH_RGB0;
case SSPP_RGB1: return MDP5_CTL_FLUSH_RGB1;
case SSPP_RGB2: return MDP5_CTL_FLUSH_RGB2;
case SSPP_DMA0: return MDP5_CTL_FLUSH_DMA0;
case SSPP_DMA1: return MDP5_CTL_FLUSH_DMA1;
case SSPP_VIG3: return MDP5_CTL_FLUSH_VIG3;
case SSPP_RGB3: return MDP5_CTL_FLUSH_RGB3;
default: return 0;
}
}
u32 mdp_ctl_flush_mask_lm(int lm)
{
switch (lm) {
case 0: return MDP5_CTL_FLUSH_LM0;
case 1: return MDP5_CTL_FLUSH_LM1;
case 2: return MDP5_CTL_FLUSH_LM2;
case 5: return MDP5_CTL_FLUSH_LM5;
default: return 0;
}
}
static u32 fix_sw_flush(struct mdp5_ctl *ctl, u32 flush_mask)
{
struct mdp5_ctl_manager *ctl_mgr = ctl->ctlm;
u32 sw_mask = 0;
#define BIT_NEEDS_SW_FIX(bit) \
(!(ctl_mgr->flush_hw_mask & bit) && (flush_mask & bit))
/* for some targets, cursor bit is the same as LM bit */
if (BIT_NEEDS_SW_FIX(MDP5_CTL_FLUSH_CURSOR_0))
sw_mask |= mdp_ctl_flush_mask_lm(ctl->lm);
return sw_mask;
}
/**
* mdp5_ctl_commit() - Register Flush
*
* The flush register is used to indicate several registers are all
* programmed, and are safe to update to the back copy of the double
* buffered registers.
*
* Some registers FLUSH bits are shared when the hardware does not have
* dedicated bits for them; handling these is the job of fix_sw_flush().
*
* CTL registers need to be flushed in some circumstances; if that is the
* case, some trigger bits will be present in both flush mask and
* ctl->pending_ctl_trigger.
*/
int mdp5_ctl_commit(struct mdp5_ctl *ctl, u32 flush_mask) int mdp5_ctl_commit(struct mdp5_ctl *ctl, u32 flush_mask)
{ {
struct mdp5_ctl_manager *ctl_mgr = ctl->ctlm; struct mdp5_ctl_manager *ctl_mgr = ctl->ctlm;
struct op_mode *pipeline = &ctl->pipeline;
unsigned long flags; unsigned long flags;
if (flush_mask & MDP5_CTL_FLUSH_CURSOR_DUMMY) { pipeline->start_mask &= ~flush_mask;
int lm = mdp5_crtc_get_lm(ctl->crtc);
if (unlikely(WARN_ON(lm < 0))) { VERB("flush_mask=%x, start_mask=%x, trigger=%x", flush_mask,
dev_err(ctl_mgr->dev->dev, "CTL %d cannot find LM: %d", pipeline->start_mask, ctl->pending_ctl_trigger);
ctl->id, lm);
return -EINVAL;
}
/* for current targets, cursor bit is the same as LM bit */ if (ctl->pending_ctl_trigger & flush_mask) {
flush_mask |= mdp_ctl_flush_mask_lm(lm); flush_mask |= MDP5_CTL_FLUSH_CTL;
ctl->pending_ctl_trigger = 0;
} }
spin_lock_irqsave(&ctl->hw_lock, flags); flush_mask |= fix_sw_flush(ctl, flush_mask);
ctl_write(ctl, REG_MDP5_CTL_FLUSH(ctl->id), flush_mask);
spin_unlock_irqrestore(&ctl->hw_lock, flags);
return 0; flush_mask &= ctl_mgr->flush_hw_mask;
}
u32 mdp5_ctl_get_flush(struct mdp5_ctl *ctl) if (flush_mask) {
{ spin_lock_irqsave(&ctl->hw_lock, flags);
return ctl->flush_mask; ctl_write(ctl, REG_MDP5_CTL_FLUSH(ctl->id), flush_mask);
spin_unlock_irqrestore(&ctl->hw_lock, flags);
}
if (start_signal_needed(ctl)) {
send_start_signal(ctl);
refill_start_mask(ctl);
}
return 0;
} }
void mdp5_ctl_release(struct mdp5_ctl *ctl) void mdp5_ctl_release(struct mdp5_ctl *ctl)
...@@ -208,6 +445,11 @@ void mdp5_ctl_release(struct mdp5_ctl *ctl) ...@@ -208,6 +445,11 @@ void mdp5_ctl_release(struct mdp5_ctl *ctl)
DBG("CTL %d released", ctl->id); DBG("CTL %d released", ctl->id);
} }
int mdp5_ctl_get_ctl_id(struct mdp5_ctl *ctl)
{
return WARN_ON(!ctl) ? -EINVAL : ctl->id;
}
/* /*
* mdp5_ctl_request() - CTL dynamic allocation * mdp5_ctl_request() - CTL dynamic allocation
* *
...@@ -235,8 +477,10 @@ struct mdp5_ctl *mdp5_ctlm_request(struct mdp5_ctl_manager *ctl_mgr, ...@@ -235,8 +477,10 @@ struct mdp5_ctl *mdp5_ctlm_request(struct mdp5_ctl_manager *ctl_mgr,
ctl = &ctl_mgr->ctls[c]; ctl = &ctl_mgr->ctls[c];
ctl->lm = mdp5_crtc_get_lm(crtc);
ctl->crtc = crtc; ctl->crtc = crtc;
ctl->busy = true; ctl->busy = true;
ctl->pending_ctl_trigger = 0;
DBG("CTL %d allocated", ctl->id); DBG("CTL %d allocated", ctl->id);
unlock: unlock:
...@@ -267,7 +511,7 @@ struct mdp5_ctl_manager *mdp5_ctlm_init(struct drm_device *dev, ...@@ -267,7 +511,7 @@ struct mdp5_ctl_manager *mdp5_ctlm_init(struct drm_device *dev,
void __iomem *mmio_base, const struct mdp5_cfg_hw *hw_cfg) void __iomem *mmio_base, const struct mdp5_cfg_hw *hw_cfg)
{ {
struct mdp5_ctl_manager *ctl_mgr; struct mdp5_ctl_manager *ctl_mgr;
const struct mdp5_sub_block *ctl_cfg = &hw_cfg->ctl; const struct mdp5_ctl_block *ctl_cfg = &hw_cfg->ctl;
unsigned long flags; unsigned long flags;
int c, ret; int c, ret;
...@@ -289,6 +533,7 @@ struct mdp5_ctl_manager *mdp5_ctlm_init(struct drm_device *dev, ...@@ -289,6 +533,7 @@ struct mdp5_ctl_manager *mdp5_ctlm_init(struct drm_device *dev,
ctl_mgr->dev = dev; ctl_mgr->dev = dev;
ctl_mgr->nlm = hw_cfg->lm.count; ctl_mgr->nlm = hw_cfg->lm.count;
ctl_mgr->nctl = ctl_cfg->count; ctl_mgr->nctl = ctl_cfg->count;
ctl_mgr->flush_hw_mask = ctl_cfg->flush_hw_mask;
spin_lock_init(&ctl_mgr->pool_lock); spin_lock_init(&ctl_mgr->pool_lock);
/* initialize each CTL of the pool: */ /* initialize each CTL of the pool: */
...@@ -303,9 +548,7 @@ struct mdp5_ctl_manager *mdp5_ctlm_init(struct drm_device *dev, ...@@ -303,9 +548,7 @@ struct mdp5_ctl_manager *mdp5_ctlm_init(struct drm_device *dev,
} }
ctl->ctlm = ctl_mgr; ctl->ctlm = ctl_mgr;
ctl->id = c; ctl->id = c;
ctl->mode = MODE_NONE;
ctl->reg_offset = ctl_cfg->base[c]; ctl->reg_offset = ctl_cfg->base[c];
ctl->flush_mask = MDP5_CTL_FLUSH_CTL;
ctl->busy = false; ctl->busy = false;
spin_lock_init(&ctl->hw_lock); spin_lock_init(&ctl->hw_lock);
} }
......
...@@ -33,19 +33,13 @@ void mdp5_ctlm_destroy(struct mdp5_ctl_manager *ctlm); ...@@ -33,19 +33,13 @@ void mdp5_ctlm_destroy(struct mdp5_ctl_manager *ctlm);
* which is then used to call the other mdp5_ctl_*(ctl, ...) functions. * which is then used to call the other mdp5_ctl_*(ctl, ...) functions.
*/ */
struct mdp5_ctl *mdp5_ctlm_request(struct mdp5_ctl_manager *ctlm, struct drm_crtc *crtc); struct mdp5_ctl *mdp5_ctlm_request(struct mdp5_ctl_manager *ctlm, struct drm_crtc *crtc);
int mdp5_ctl_get_ctl_id(struct mdp5_ctl *ctl);
int mdp5_ctl_set_intf(struct mdp5_ctl *ctl, int intf); struct mdp5_interface;
int mdp5_ctl_set_intf(struct mdp5_ctl *ctl, struct mdp5_interface *intf);
int mdp5_ctl_set_encoder_state(struct mdp5_ctl *ctl, bool enabled);
int mdp5_ctl_set_cursor(struct mdp5_ctl *ctl, bool enable); int mdp5_ctl_set_cursor(struct mdp5_ctl *ctl, int cursor_id, bool enable);
/* @blend_cfg: see LM blender config definition below */
int mdp5_ctl_blend(struct mdp5_ctl *ctl, u32 lm, u32 blend_cfg);
/* @flush_mask: see CTL flush masks definitions below */
int mdp5_ctl_commit(struct mdp5_ctl *ctl, u32 flush_mask);
u32 mdp5_ctl_get_flush(struct mdp5_ctl *ctl);
void mdp5_ctl_release(struct mdp5_ctl *ctl);
/* /*
* blend_cfg (LM blender config): * blend_cfg (LM blender config):
...@@ -72,51 +66,32 @@ static inline u32 mdp_ctl_blend_mask(enum mdp5_pipe pipe, ...@@ -72,51 +66,32 @@ static inline u32 mdp_ctl_blend_mask(enum mdp5_pipe pipe,
} }
/* /*
* flush_mask (CTL flush masks): * mdp5_ctl_blend() - Blend multiple layers on a Layer Mixer (LM)
*
* @blend_cfg: see LM blender config definition below
* *
* The following functions allow each DRM entity to get and store * Note:
* their own flush mask. * CTL registers need to be flushed after calling this function
* Once stored, these masks will then be accessed through each DRM's * (call mdp5_ctl_commit() with mdp_ctl_flush_mask_ctl() mask)
* interface and used by the caller of mdp5_ctl_commit() to specify
* which block(s) need to be flushed through @flush_mask parameter.
*/ */
int mdp5_ctl_blend(struct mdp5_ctl *ctl, u32 lm, u32 blend_cfg);
#define MDP5_CTL_FLUSH_CURSOR_DUMMY 0x80000000 /**
* mdp_ctl_flush_mask...() - Register FLUSH masks
*
* These masks are used to specify which block(s) need to be flushed
* through @flush_mask parameter in mdp5_ctl_commit(.., flush_mask).
*/
u32 mdp_ctl_flush_mask_lm(int lm);
u32 mdp_ctl_flush_mask_pipe(enum mdp5_pipe pipe);
u32 mdp_ctl_flush_mask_cursor(int cursor_id);
u32 mdp_ctl_flush_mask_encoder(struct mdp5_interface *intf);
static inline u32 mdp_ctl_flush_mask_cursor(int cursor_id) /* @flush_mask: see CTL flush masks definitions below */
{ int mdp5_ctl_commit(struct mdp5_ctl *ctl, u32 flush_mask);
/* TODO: use id once multiple cursor support is present */
(void)cursor_id;
return MDP5_CTL_FLUSH_CURSOR_DUMMY; void mdp5_ctl_release(struct mdp5_ctl *ctl);
}
static inline u32 mdp_ctl_flush_mask_lm(int lm)
{
switch (lm) {
case 0: return MDP5_CTL_FLUSH_LM0;
case 1: return MDP5_CTL_FLUSH_LM1;
case 2: return MDP5_CTL_FLUSH_LM2;
case 5: return MDP5_CTL_FLUSH_LM5;
default: return 0;
}
}
static inline u32 mdp_ctl_flush_mask_pipe(enum mdp5_pipe pipe)
{
switch (pipe) {
case SSPP_VIG0: return MDP5_CTL_FLUSH_VIG0;
case SSPP_VIG1: return MDP5_CTL_FLUSH_VIG1;
case SSPP_VIG2: return MDP5_CTL_FLUSH_VIG2;
case SSPP_RGB0: return MDP5_CTL_FLUSH_RGB0;
case SSPP_RGB1: return MDP5_CTL_FLUSH_RGB1;
case SSPP_RGB2: return MDP5_CTL_FLUSH_RGB2;
case SSPP_DMA0: return MDP5_CTL_FLUSH_DMA0;
case SSPP_DMA1: return MDP5_CTL_FLUSH_DMA1;
case SSPP_VIG3: return MDP5_CTL_FLUSH_VIG3;
case SSPP_RGB3: return MDP5_CTL_FLUSH_RGB3;
default: return 0;
}
}
#endif /* __MDP5_CTL_H__ */ #endif /* __MDP5_CTL_H__ */
...@@ -23,8 +23,7 @@ ...@@ -23,8 +23,7 @@
struct mdp5_encoder { struct mdp5_encoder {
struct drm_encoder base; struct drm_encoder base;
int intf; struct mdp5_interface intf;
enum mdp5_intf intf_id;
spinlock_t intf_lock; /* protect REG_MDP5_INTF_* registers */ spinlock_t intf_lock; /* protect REG_MDP5_INTF_* registers */
bool enabled; bool enabled;
uint32_t bsc; uint32_t bsc;
...@@ -126,7 +125,7 @@ static void mdp5_encoder_mode_set(struct drm_encoder *encoder, ...@@ -126,7 +125,7 @@ static void mdp5_encoder_mode_set(struct drm_encoder *encoder,
struct mdp5_kms *mdp5_kms = get_kms(encoder); struct mdp5_kms *mdp5_kms = get_kms(encoder);
struct drm_device *dev = encoder->dev; struct drm_device *dev = encoder->dev;
struct drm_connector *connector; struct drm_connector *connector;
int intf = mdp5_encoder->intf; int intf = mdp5_encoder->intf.num;
uint32_t dtv_hsync_skew, vsync_period, vsync_len, ctrl_pol; uint32_t dtv_hsync_skew, vsync_period, vsync_len, ctrl_pol;
uint32_t display_v_start, display_v_end; uint32_t display_v_start, display_v_end;
uint32_t hsync_start_x, hsync_end_x; uint32_t hsync_start_x, hsync_end_x;
...@@ -188,7 +187,7 @@ static void mdp5_encoder_mode_set(struct drm_encoder *encoder, ...@@ -188,7 +187,7 @@ static void mdp5_encoder_mode_set(struct drm_encoder *encoder,
* DISPLAY_V_START = (VBP * HCYCLE) + HBP * DISPLAY_V_START = (VBP * HCYCLE) + HBP
* DISPLAY_V_END = (VBP + VACTIVE) * HCYCLE - 1 - HFP * DISPLAY_V_END = (VBP + VACTIVE) * HCYCLE - 1 - HFP
*/ */
if (mdp5_encoder->intf_id == INTF_eDP) { if (mdp5_encoder->intf.type == INTF_eDP) {
display_v_start += mode->htotal - mode->hsync_start; display_v_start += mode->htotal - mode->hsync_start;
display_v_end -= mode->hsync_start - mode->hdisplay; display_v_end -= mode->hsync_start - mode->hdisplay;
} }
...@@ -218,21 +217,29 @@ static void mdp5_encoder_mode_set(struct drm_encoder *encoder, ...@@ -218,21 +217,29 @@ static void mdp5_encoder_mode_set(struct drm_encoder *encoder,
mdp5_write(mdp5_kms, REG_MDP5_INTF_FRAME_LINE_COUNT_EN(intf), 0x3); /* frame+line? */ mdp5_write(mdp5_kms, REG_MDP5_INTF_FRAME_LINE_COUNT_EN(intf), 0x3); /* frame+line? */
spin_unlock_irqrestore(&mdp5_encoder->intf_lock, flags); spin_unlock_irqrestore(&mdp5_encoder->intf_lock, flags);
mdp5_crtc_set_intf(encoder->crtc, &mdp5_encoder->intf);
} }
static void mdp5_encoder_disable(struct drm_encoder *encoder) static void mdp5_encoder_disable(struct drm_encoder *encoder)
{ {
struct mdp5_encoder *mdp5_encoder = to_mdp5_encoder(encoder); struct mdp5_encoder *mdp5_encoder = to_mdp5_encoder(encoder);
struct mdp5_kms *mdp5_kms = get_kms(encoder); struct mdp5_kms *mdp5_kms = get_kms(encoder);
int intf = mdp5_encoder->intf; struct mdp5_ctl *ctl = mdp5_crtc_get_ctl(encoder->crtc);
int lm = mdp5_crtc_get_lm(encoder->crtc);
struct mdp5_interface *intf = &mdp5_encoder->intf;
int intfn = mdp5_encoder->intf.num;
unsigned long flags; unsigned long flags;
if (WARN_ON(!mdp5_encoder->enabled)) if (WARN_ON(!mdp5_encoder->enabled))
return; return;
mdp5_ctl_set_encoder_state(ctl, false);
spin_lock_irqsave(&mdp5_encoder->intf_lock, flags); spin_lock_irqsave(&mdp5_encoder->intf_lock, flags);
mdp5_write(mdp5_kms, REG_MDP5_INTF_TIMING_ENGINE_EN(intf), 0); mdp5_write(mdp5_kms, REG_MDP5_INTF_TIMING_ENGINE_EN(intfn), 0);
spin_unlock_irqrestore(&mdp5_encoder->intf_lock, flags); spin_unlock_irqrestore(&mdp5_encoder->intf_lock, flags);
mdp5_ctl_commit(ctl, mdp_ctl_flush_mask_encoder(intf));
/* /*
* Wait for a vsync so we know the ENABLE=0 latched before * Wait for a vsync so we know the ENABLE=0 latched before
...@@ -242,7 +249,7 @@ static void mdp5_encoder_disable(struct drm_encoder *encoder) ...@@ -242,7 +249,7 @@ static void mdp5_encoder_disable(struct drm_encoder *encoder)
* the settings changes for the new modeset (like new * the settings changes for the new modeset (like new
* scanout buffer) don't latch properly.. * scanout buffer) don't latch properly..
*/ */
mdp_irq_wait(&mdp5_kms->base, intf2vblank(intf)); mdp_irq_wait(&mdp5_kms->base, intf2vblank(lm, intf));
bs_set(mdp5_encoder, 0); bs_set(mdp5_encoder, 0);
...@@ -253,19 +260,21 @@ static void mdp5_encoder_enable(struct drm_encoder *encoder) ...@@ -253,19 +260,21 @@ static void mdp5_encoder_enable(struct drm_encoder *encoder)
{ {
struct mdp5_encoder *mdp5_encoder = to_mdp5_encoder(encoder); struct mdp5_encoder *mdp5_encoder = to_mdp5_encoder(encoder);
struct mdp5_kms *mdp5_kms = get_kms(encoder); struct mdp5_kms *mdp5_kms = get_kms(encoder);
int intf = mdp5_encoder->intf; struct mdp5_ctl *ctl = mdp5_crtc_get_ctl(encoder->crtc);
struct mdp5_interface *intf = &mdp5_encoder->intf;
int intfn = mdp5_encoder->intf.num;
unsigned long flags; unsigned long flags;
if (WARN_ON(mdp5_encoder->enabled)) if (WARN_ON(mdp5_encoder->enabled))
return; return;
mdp5_crtc_set_intf(encoder->crtc, mdp5_encoder->intf,
mdp5_encoder->intf_id);
bs_set(mdp5_encoder, 1); bs_set(mdp5_encoder, 1);
spin_lock_irqsave(&mdp5_encoder->intf_lock, flags); spin_lock_irqsave(&mdp5_encoder->intf_lock, flags);
mdp5_write(mdp5_kms, REG_MDP5_INTF_TIMING_ENGINE_EN(intf), 1); mdp5_write(mdp5_kms, REG_MDP5_INTF_TIMING_ENGINE_EN(intfn), 1);
spin_unlock_irqrestore(&mdp5_encoder->intf_lock, flags); spin_unlock_irqrestore(&mdp5_encoder->intf_lock, flags);
mdp5_ctl_commit(ctl, mdp_ctl_flush_mask_encoder(intf));
mdp5_ctl_set_encoder_state(ctl, true);
mdp5_encoder->enabled = true; mdp5_encoder->enabled = true;
} }
...@@ -277,12 +286,51 @@ static const struct drm_encoder_helper_funcs mdp5_encoder_helper_funcs = { ...@@ -277,12 +286,51 @@ static const struct drm_encoder_helper_funcs mdp5_encoder_helper_funcs = {
.enable = mdp5_encoder_enable, .enable = mdp5_encoder_enable,
}; };
int mdp5_encoder_set_split_display(struct drm_encoder *encoder,
struct drm_encoder *slave_encoder)
{
struct mdp5_encoder *mdp5_encoder = to_mdp5_encoder(encoder);
struct mdp5_kms *mdp5_kms;
int intf_num;
u32 data = 0;
if (!encoder || !slave_encoder)
return -EINVAL;
mdp5_kms = get_kms(encoder);
intf_num = mdp5_encoder->intf.num;
/* Switch slave encoder's TimingGen Sync mode,
* to use the master's enable signal for the slave encoder.
*/
if (intf_num == 1)
data |= MDP5_SPLIT_DPL_LOWER_INTF2_TG_SYNC;
else if (intf_num == 2)
data |= MDP5_SPLIT_DPL_LOWER_INTF1_TG_SYNC;
else
return -EINVAL;
/* Make sure clocks are on when connectors calling this function. */
mdp5_enable(mdp5_kms);
mdp5_write(mdp5_kms, REG_MDP5_MDP_SPARE_0(0),
MDP5_MDP_SPARE_0_SPLIT_DPL_SINGLE_FLUSH_EN);
/* Dumb Panel, Sync mode */
mdp5_write(mdp5_kms, REG_MDP5_SPLIT_DPL_UPPER, 0);
mdp5_write(mdp5_kms, REG_MDP5_SPLIT_DPL_LOWER, data);
mdp5_write(mdp5_kms, REG_MDP5_SPLIT_DPL_EN, 1);
mdp5_disable(mdp5_kms);
return 0;
}
/* initialize encoder */ /* initialize encoder */
struct drm_encoder *mdp5_encoder_init(struct drm_device *dev, int intf, struct drm_encoder *mdp5_encoder_init(struct drm_device *dev,
enum mdp5_intf intf_id) struct mdp5_interface *intf)
{ {
struct drm_encoder *encoder = NULL; struct drm_encoder *encoder = NULL;
struct mdp5_encoder *mdp5_encoder; struct mdp5_encoder *mdp5_encoder;
int enc_type = (intf->type == INTF_DSI) ?
DRM_MODE_ENCODER_DSI : DRM_MODE_ENCODER_TMDS;
int ret; int ret;
mdp5_encoder = kzalloc(sizeof(*mdp5_encoder), GFP_KERNEL); mdp5_encoder = kzalloc(sizeof(*mdp5_encoder), GFP_KERNEL);
...@@ -291,14 +339,13 @@ struct drm_encoder *mdp5_encoder_init(struct drm_device *dev, int intf, ...@@ -291,14 +339,13 @@ struct drm_encoder *mdp5_encoder_init(struct drm_device *dev, int intf,
goto fail; goto fail;
} }
mdp5_encoder->intf = intf; memcpy(&mdp5_encoder->intf, intf, sizeof(mdp5_encoder->intf));
mdp5_encoder->intf_id = intf_id;
encoder = &mdp5_encoder->base; encoder = &mdp5_encoder->base;
spin_lock_init(&mdp5_encoder->intf_lock); spin_lock_init(&mdp5_encoder->intf_lock);
drm_encoder_init(dev, encoder, &mdp5_encoder_funcs, drm_encoder_init(dev, encoder, &mdp5_encoder_funcs, enc_type);
DRM_MODE_ENCODER_TMDS);
drm_encoder_helper_add(encoder, &mdp5_encoder_helper_funcs); drm_encoder_helper_add(encoder, &mdp5_encoder_helper_funcs);
bs_init(mdp5_encoder); bs_init(mdp5_encoder);
......
...@@ -23,7 +23,7 @@ ...@@ -23,7 +23,7 @@
void mdp5_set_irqmask(struct mdp_kms *mdp_kms, uint32_t irqmask) void mdp5_set_irqmask(struct mdp_kms *mdp_kms, uint32_t irqmask)
{ {
mdp5_write(to_mdp5_kms(mdp_kms), REG_MDP5_INTR_EN, irqmask); mdp5_write(to_mdp5_kms(mdp_kms), REG_MDP5_MDP_INTR_EN(0), irqmask);
} }
static void mdp5_irq_error_handler(struct mdp_irq *irq, uint32_t irqstatus) static void mdp5_irq_error_handler(struct mdp_irq *irq, uint32_t irqstatus)
...@@ -35,8 +35,8 @@ void mdp5_irq_preinstall(struct msm_kms *kms) ...@@ -35,8 +35,8 @@ void mdp5_irq_preinstall(struct msm_kms *kms)
{ {
struct mdp5_kms *mdp5_kms = to_mdp5_kms(to_mdp_kms(kms)); struct mdp5_kms *mdp5_kms = to_mdp5_kms(to_mdp_kms(kms));
mdp5_enable(mdp5_kms); mdp5_enable(mdp5_kms);
mdp5_write(mdp5_kms, REG_MDP5_INTR_CLEAR, 0xffffffff); mdp5_write(mdp5_kms, REG_MDP5_MDP_INTR_CLEAR(0), 0xffffffff);
mdp5_write(mdp5_kms, REG_MDP5_INTR_EN, 0x00000000); mdp5_write(mdp5_kms, REG_MDP5_MDP_INTR_EN(0), 0x00000000);
mdp5_disable(mdp5_kms); mdp5_disable(mdp5_kms);
} }
...@@ -61,7 +61,7 @@ void mdp5_irq_uninstall(struct msm_kms *kms) ...@@ -61,7 +61,7 @@ void mdp5_irq_uninstall(struct msm_kms *kms)
{ {
struct mdp5_kms *mdp5_kms = to_mdp5_kms(to_mdp_kms(kms)); struct mdp5_kms *mdp5_kms = to_mdp5_kms(to_mdp_kms(kms));
mdp5_enable(mdp5_kms); mdp5_enable(mdp5_kms);
mdp5_write(mdp5_kms, REG_MDP5_INTR_EN, 0x00000000); mdp5_write(mdp5_kms, REG_MDP5_MDP_INTR_EN(0), 0x00000000);
mdp5_disable(mdp5_kms); mdp5_disable(mdp5_kms);
} }
...@@ -73,8 +73,8 @@ static void mdp5_irq_mdp(struct mdp_kms *mdp_kms) ...@@ -73,8 +73,8 @@ static void mdp5_irq_mdp(struct mdp_kms *mdp_kms)
unsigned int id; unsigned int id;
uint32_t status; uint32_t status;
status = mdp5_read(mdp5_kms, REG_MDP5_INTR_STATUS); status = mdp5_read(mdp5_kms, REG_MDP5_MDP_INTR_STATUS(0));
mdp5_write(mdp5_kms, REG_MDP5_INTR_CLEAR, status); mdp5_write(mdp5_kms, REG_MDP5_MDP_INTR_CLEAR(0), status);
VERB("status=%08x", status); VERB("status=%08x", status);
...@@ -91,13 +91,13 @@ irqreturn_t mdp5_irq(struct msm_kms *kms) ...@@ -91,13 +91,13 @@ irqreturn_t mdp5_irq(struct msm_kms *kms)
struct mdp5_kms *mdp5_kms = to_mdp5_kms(mdp_kms); struct mdp5_kms *mdp5_kms = to_mdp5_kms(mdp_kms);
uint32_t intr; uint32_t intr;
intr = mdp5_read(mdp5_kms, REG_MDP5_HW_INTR_STATUS); intr = mdp5_read(mdp5_kms, REG_MDSS_HW_INTR_STATUS);
VERB("intr=%08x", intr); VERB("intr=%08x", intr);
if (intr & MDP5_HW_INTR_STATUS_INTR_MDP) { if (intr & MDSS_HW_INTR_STATUS_INTR_MDP) {
mdp5_irq_mdp(mdp_kms); mdp5_irq_mdp(mdp_kms);
intr &= ~MDP5_HW_INTR_STATUS_INTR_MDP; intr &= ~MDSS_HW_INTR_STATUS_INTR_MDP;
} }
while (intr) { while (intr) {
...@@ -128,10 +128,10 @@ void mdp5_disable_vblank(struct msm_kms *kms, struct drm_crtc *crtc) ...@@ -128,10 +128,10 @@ void mdp5_disable_vblank(struct msm_kms *kms, struct drm_crtc *crtc)
* can register to get their irq's delivered * can register to get their irq's delivered
*/ */
#define VALID_IRQS (MDP5_HW_INTR_STATUS_INTR_DSI0 | \ #define VALID_IRQS (MDSS_HW_INTR_STATUS_INTR_DSI0 | \
MDP5_HW_INTR_STATUS_INTR_DSI1 | \ MDSS_HW_INTR_STATUS_INTR_DSI1 | \
MDP5_HW_INTR_STATUS_INTR_HDMI | \ MDSS_HW_INTR_STATUS_INTR_HDMI | \
MDP5_HW_INTR_STATUS_INTR_EDP) MDSS_HW_INTR_STATUS_INTR_EDP)
static void mdp5_hw_mask_irq(struct irq_data *irqd) static void mdp5_hw_mask_irq(struct irq_data *irqd)
{ {
......
...@@ -58,7 +58,7 @@ static int mdp5_hw_init(struct msm_kms *kms) ...@@ -58,7 +58,7 @@ static int mdp5_hw_init(struct msm_kms *kms)
*/ */
spin_lock_irqsave(&mdp5_kms->resource_lock, flags); spin_lock_irqsave(&mdp5_kms->resource_lock, flags);
mdp5_write(mdp5_kms, REG_MDP5_DISP_INTF_SEL, 0); mdp5_write(mdp5_kms, REG_MDP5_MDP_DISP_INTF_SEL(0), 0);
spin_unlock_irqrestore(&mdp5_kms->resource_lock, flags); spin_unlock_irqrestore(&mdp5_kms->resource_lock, flags);
mdp5_ctlm_hw_reset(mdp5_kms->ctlm); mdp5_ctlm_hw_reset(mdp5_kms->ctlm);
...@@ -86,6 +86,18 @@ static long mdp5_round_pixclk(struct msm_kms *kms, unsigned long rate, ...@@ -86,6 +86,18 @@ static long mdp5_round_pixclk(struct msm_kms *kms, unsigned long rate,
return rate; return rate;
} }
static int mdp5_set_split_display(struct msm_kms *kms,
struct drm_encoder *encoder,
struct drm_encoder *slave_encoder,
bool is_cmd_mode)
{
if (is_cmd_mode)
return mdp5_cmd_encoder_set_split_display(encoder,
slave_encoder);
else
return mdp5_encoder_set_split_display(encoder, slave_encoder);
}
static void mdp5_preclose(struct msm_kms *kms, struct drm_file *file) static void mdp5_preclose(struct msm_kms *kms, struct drm_file *file)
{ {
struct mdp5_kms *mdp5_kms = to_mdp5_kms(to_mdp_kms(kms)); struct mdp5_kms *mdp5_kms = to_mdp5_kms(to_mdp_kms(kms));
...@@ -131,6 +143,7 @@ static const struct mdp_kms_funcs kms_funcs = { ...@@ -131,6 +143,7 @@ static const struct mdp_kms_funcs kms_funcs = {
.complete_commit = mdp5_complete_commit, .complete_commit = mdp5_complete_commit,
.get_format = mdp_get_format, .get_format = mdp_get_format,
.round_pixclk = mdp5_round_pixclk, .round_pixclk = mdp5_round_pixclk,
.set_split_display = mdp5_set_split_display,
.preclose = mdp5_preclose, .preclose = mdp5_preclose,
.destroy = mdp5_destroy, .destroy = mdp5_destroy,
}, },
...@@ -161,6 +174,134 @@ int mdp5_enable(struct mdp5_kms *mdp5_kms) ...@@ -161,6 +174,134 @@ int mdp5_enable(struct mdp5_kms *mdp5_kms)
return 0; return 0;
} }
static struct drm_encoder *construct_encoder(struct mdp5_kms *mdp5_kms,
enum mdp5_intf_type intf_type, int intf_num,
enum mdp5_intf_mode intf_mode)
{
struct drm_device *dev = mdp5_kms->dev;
struct msm_drm_private *priv = dev->dev_private;
struct drm_encoder *encoder;
struct mdp5_interface intf = {
.num = intf_num,
.type = intf_type,
.mode = intf_mode,
};
if ((intf_type == INTF_DSI) &&
(intf_mode == MDP5_INTF_DSI_MODE_COMMAND))
encoder = mdp5_cmd_encoder_init(dev, &intf);
else
encoder = mdp5_encoder_init(dev, &intf);
if (IS_ERR(encoder)) {
dev_err(dev->dev, "failed to construct encoder\n");
return encoder;
}
encoder->possible_crtcs = (1 << priv->num_crtcs) - 1;
priv->encoders[priv->num_encoders++] = encoder;
return encoder;
}
static int get_dsi_id_from_intf(const struct mdp5_cfg_hw *hw_cfg, int intf_num)
{
const int intf_cnt = hw_cfg->intf.count;
const u32 *intfs = hw_cfg->intfs;
int id = 0, i;
for (i = 0; i < intf_cnt; i++) {
if (intfs[i] == INTF_DSI) {
if (intf_num == i)
return id;
id++;
}
}
return -EINVAL;
}
static int modeset_init_intf(struct mdp5_kms *mdp5_kms, int intf_num)
{
struct drm_device *dev = mdp5_kms->dev;
struct msm_drm_private *priv = dev->dev_private;
const struct mdp5_cfg_hw *hw_cfg =
mdp5_cfg_get_hw_config(mdp5_kms->cfg);
enum mdp5_intf_type intf_type = hw_cfg->intfs[intf_num];
struct drm_encoder *encoder;
int ret = 0;
switch (intf_type) {
case INTF_DISABLED:
break;
case INTF_eDP:
if (!priv->edp)
break;
encoder = construct_encoder(mdp5_kms, INTF_eDP, intf_num,
MDP5_INTF_MODE_NONE);
if (IS_ERR(encoder)) {
ret = PTR_ERR(encoder);
break;
}
ret = msm_edp_modeset_init(priv->edp, dev, encoder);
break;
case INTF_HDMI:
if (!priv->hdmi)
break;
encoder = construct_encoder(mdp5_kms, INTF_HDMI, intf_num,
MDP5_INTF_MODE_NONE);
if (IS_ERR(encoder)) {
ret = PTR_ERR(encoder);
break;
}
ret = hdmi_modeset_init(priv->hdmi, dev, encoder);
break;
case INTF_DSI:
{
int dsi_id = get_dsi_id_from_intf(hw_cfg, intf_num);
struct drm_encoder *dsi_encs[MSM_DSI_ENCODER_NUM];
enum mdp5_intf_mode mode;
int i;
if ((dsi_id >= ARRAY_SIZE(priv->dsi)) || (dsi_id < 0)) {
dev_err(dev->dev, "failed to find dsi from intf %d\n",
intf_num);
ret = -EINVAL;
break;
}
if (!priv->dsi[dsi_id])
break;
for (i = 0; i < MSM_DSI_ENCODER_NUM; i++) {
mode = (i == MSM_DSI_CMD_ENCODER_ID) ?
MDP5_INTF_DSI_MODE_COMMAND :
MDP5_INTF_DSI_MODE_VIDEO;
dsi_encs[i] = construct_encoder(mdp5_kms, INTF_DSI,
intf_num, mode);
if (IS_ERR(dsi_encs)) {
ret = PTR_ERR(dsi_encs);
break;
}
}
ret = msm_dsi_modeset_init(priv->dsi[dsi_id], dev, dsi_encs);
break;
}
default:
dev_err(dev->dev, "unknown intf: %d\n", intf_type);
ret = -EINVAL;
break;
}
return ret;
}
static int modeset_init(struct mdp5_kms *mdp5_kms) static int modeset_init(struct mdp5_kms *mdp5_kms)
{ {
static const enum mdp5_pipe crtcs[] = { static const enum mdp5_pipe crtcs[] = {
...@@ -171,7 +312,6 @@ static int modeset_init(struct mdp5_kms *mdp5_kms) ...@@ -171,7 +312,6 @@ static int modeset_init(struct mdp5_kms *mdp5_kms)
}; };
struct drm_device *dev = mdp5_kms->dev; struct drm_device *dev = mdp5_kms->dev;
struct msm_drm_private *priv = dev->dev_private; struct msm_drm_private *priv = dev->dev_private;
struct drm_encoder *encoder;
const struct mdp5_cfg_hw *hw_cfg; const struct mdp5_cfg_hw *hw_cfg;
int i, ret; int i, ret;
...@@ -222,44 +362,13 @@ static int modeset_init(struct mdp5_kms *mdp5_kms) ...@@ -222,44 +362,13 @@ static int modeset_init(struct mdp5_kms *mdp5_kms)
} }
} }
if (priv->hdmi) { /* Construct encoders and modeset initialize connector devices
/* Construct encoder for HDMI: */ * for each external display interface.
encoder = mdp5_encoder_init(dev, 3, INTF_HDMI); */
if (IS_ERR(encoder)) { for (i = 0; i < ARRAY_SIZE(hw_cfg->intfs); i++) {
dev_err(dev->dev, "failed to construct encoder\n"); ret = modeset_init_intf(mdp5_kms, i);
ret = PTR_ERR(encoder); if (ret)
goto fail;
}
encoder->possible_crtcs = (1 << priv->num_crtcs) - 1;;
priv->encoders[priv->num_encoders++] = encoder;
ret = hdmi_modeset_init(priv->hdmi, dev, encoder);
if (ret) {
dev_err(dev->dev, "failed to initialize HDMI: %d\n", ret);
goto fail;
}
}
if (priv->edp) {
/* Construct encoder for eDP: */
encoder = mdp5_encoder_init(dev, 0, INTF_eDP);
if (IS_ERR(encoder)) {
dev_err(dev->dev, "failed to construct eDP encoder\n");
ret = PTR_ERR(encoder);
goto fail;
}
encoder->possible_crtcs = (1 << priv->num_crtcs) - 1;
priv->encoders[priv->num_encoders++] = encoder;
/* Construct bridge/connector for eDP: */
ret = msm_edp_modeset_init(priv->edp, dev, encoder);
if (ret) {
dev_err(dev->dev, "failed to initialize eDP: %d\n",
ret);
goto fail; goto fail;
}
} }
return 0; return 0;
...@@ -274,11 +383,11 @@ static void read_hw_revision(struct mdp5_kms *mdp5_kms, ...@@ -274,11 +383,11 @@ static void read_hw_revision(struct mdp5_kms *mdp5_kms,
uint32_t version; uint32_t version;
mdp5_enable(mdp5_kms); mdp5_enable(mdp5_kms);
version = mdp5_read(mdp5_kms, REG_MDP5_MDP_VERSION); version = mdp5_read(mdp5_kms, REG_MDSS_HW_VERSION);
mdp5_disable(mdp5_kms); mdp5_disable(mdp5_kms);
*major = FIELD(version, MDP5_MDP_VERSION_MAJOR); *major = FIELD(version, MDSS_HW_VERSION_MAJOR);
*minor = FIELD(version, MDP5_MDP_VERSION_MINOR); *minor = FIELD(version, MDSS_HW_VERSION_MINOR);
DBG("MDP5 version v%d.%d", *major, *minor); DBG("MDP5 version v%d.%d", *major, *minor);
} }
...@@ -321,6 +430,7 @@ struct msm_kms *mdp5_kms_init(struct drm_device *dev) ...@@ -321,6 +430,7 @@ struct msm_kms *mdp5_kms_init(struct drm_device *dev)
mdp5_kms->dev = dev; mdp5_kms->dev = dev;
/* mdp5_kms->mmio actually represents the MDSS base address */
mdp5_kms->mmio = msm_ioremap(pdev, "mdp_phys", "MDP5"); mdp5_kms->mmio = msm_ioremap(pdev, "mdp_phys", "MDP5");
if (IS_ERR(mdp5_kms->mmio)) { if (IS_ERR(mdp5_kms->mmio)) {
ret = PTR_ERR(mdp5_kms->mmio); ret = PTR_ERR(mdp5_kms->mmio);
...@@ -403,8 +513,12 @@ struct msm_kms *mdp5_kms_init(struct drm_device *dev) ...@@ -403,8 +513,12 @@ struct msm_kms *mdp5_kms_init(struct drm_device *dev)
* we don't disable): * we don't disable):
*/ */
mdp5_enable(mdp5_kms); mdp5_enable(mdp5_kms);
for (i = 0; i < config->hw->intf.count; i++) for (i = 0; i < MDP5_INTF_NUM_MAX; i++) {
if (!config->hw->intf.base[i] ||
mdp5_cfg_intf_is_virtual(config->hw->intfs[i]))
continue;
mdp5_write(mdp5_kms, REG_MDP5_INTF_TIMING_ENGINE_EN(i), 0); mdp5_write(mdp5_kms, REG_MDP5_INTF_TIMING_ENGINE_EN(i), 0);
}
mdp5_disable(mdp5_kms); mdp5_disable(mdp5_kms);
mdelay(16); mdelay(16);
......
...@@ -54,7 +54,7 @@ struct mdp5_kms { ...@@ -54,7 +54,7 @@ struct mdp5_kms {
/* /*
* lock to protect access to global resources: ie., following register: * lock to protect access to global resources: ie., following register:
* - REG_MDP5_DISP_INTF_SEL * - REG_MDP5_MDP_DISP_INTF_SEL
*/ */
spinlock_t resource_lock; spinlock_t resource_lock;
...@@ -94,6 +94,24 @@ struct mdp5_plane_state { ...@@ -94,6 +94,24 @@ struct mdp5_plane_state {
#define to_mdp5_plane_state(x) \ #define to_mdp5_plane_state(x) \
container_of(x, struct mdp5_plane_state, base) container_of(x, struct mdp5_plane_state, base)
enum mdp5_intf_mode {
MDP5_INTF_MODE_NONE = 0,
/* Modes used for DSI interface (INTF_DSI type): */
MDP5_INTF_DSI_MODE_VIDEO,
MDP5_INTF_DSI_MODE_COMMAND,
/* Modes used for WB interface (INTF_WB type): */
MDP5_INTF_WB_MODE_BLOCK,
MDP5_INTF_WB_MODE_LINE,
};
struct mdp5_interface {
int num; /* display interface number */
enum mdp5_intf_type type;
enum mdp5_intf_mode mode;
};
static inline void mdp5_write(struct mdp5_kms *mdp5_kms, u32 reg, u32 data) static inline void mdp5_write(struct mdp5_kms *mdp5_kms, u32 reg, u32 data)
{ {
msm_writel(data, mdp5_kms->mmio + reg); msm_writel(data, mdp5_kms->mmio + reg);
...@@ -130,9 +148,9 @@ static inline int pipe2nclients(enum mdp5_pipe pipe) ...@@ -130,9 +148,9 @@ static inline int pipe2nclients(enum mdp5_pipe pipe)
} }
} }
static inline uint32_t intf2err(int intf) static inline uint32_t intf2err(int intf_num)
{ {
switch (intf) { switch (intf_num) {
case 0: return MDP5_IRQ_INTF0_UNDER_RUN; case 0: return MDP5_IRQ_INTF0_UNDER_RUN;
case 1: return MDP5_IRQ_INTF1_UNDER_RUN; case 1: return MDP5_IRQ_INTF1_UNDER_RUN;
case 2: return MDP5_IRQ_INTF2_UNDER_RUN; case 2: return MDP5_IRQ_INTF2_UNDER_RUN;
...@@ -141,9 +159,23 @@ static inline uint32_t intf2err(int intf) ...@@ -141,9 +159,23 @@ static inline uint32_t intf2err(int intf)
} }
} }
static inline uint32_t intf2vblank(int intf) #define GET_PING_PONG_ID(layer_mixer) ((layer_mixer == 5) ? 3 : layer_mixer)
static inline uint32_t intf2vblank(int lm, struct mdp5_interface *intf)
{ {
switch (intf) { /*
* In case of DSI Command Mode, the Ping Pong's read pointer IRQ
* acts as a Vblank signal. The Ping Pong buffer used is bound to
* layer mixer.
*/
if ((intf->type == INTF_DSI) &&
(intf->mode == MDP5_INTF_DSI_MODE_COMMAND))
return MDP5_IRQ_PING_PONG_0_RD_PTR << GET_PING_PONG_ID(lm);
if (intf->type == INTF_WB)
return MDP5_IRQ_WB_2_DONE;
switch (intf->num) {
case 0: return MDP5_IRQ_INTF0_VSYNC; case 0: return MDP5_IRQ_INTF0_VSYNC;
case 1: return MDP5_IRQ_INTF1_VSYNC; case 1: return MDP5_IRQ_INTF1_VSYNC;
case 2: return MDP5_IRQ_INTF2_VSYNC; case 2: return MDP5_IRQ_INTF2_VSYNC;
...@@ -152,6 +184,11 @@ static inline uint32_t intf2vblank(int intf) ...@@ -152,6 +184,11 @@ static inline uint32_t intf2vblank(int intf)
} }
} }
static inline uint32_t lm2ppdone(int lm)
{
return MDP5_IRQ_PING_PONG_0_DONE << GET_PING_PONG_ID(lm);
}
int mdp5_disable(struct mdp5_kms *mdp5_kms); int mdp5_disable(struct mdp5_kms *mdp5_kms);
int mdp5_enable(struct mdp5_kms *mdp5_kms); int mdp5_enable(struct mdp5_kms *mdp5_kms);
...@@ -197,13 +234,33 @@ struct drm_plane *mdp5_plane_init(struct drm_device *dev, ...@@ -197,13 +234,33 @@ struct drm_plane *mdp5_plane_init(struct drm_device *dev,
uint32_t mdp5_crtc_vblank(struct drm_crtc *crtc); uint32_t mdp5_crtc_vblank(struct drm_crtc *crtc);
int mdp5_crtc_get_lm(struct drm_crtc *crtc); int mdp5_crtc_get_lm(struct drm_crtc *crtc);
struct mdp5_ctl *mdp5_crtc_get_ctl(struct drm_crtc *crtc);
void mdp5_crtc_cancel_pending_flip(struct drm_crtc *crtc, struct drm_file *file); void mdp5_crtc_cancel_pending_flip(struct drm_crtc *crtc, struct drm_file *file);
void mdp5_crtc_set_intf(struct drm_crtc *crtc, int intf, void mdp5_crtc_set_intf(struct drm_crtc *crtc, struct mdp5_interface *intf);
enum mdp5_intf intf_id);
struct drm_crtc *mdp5_crtc_init(struct drm_device *dev, struct drm_crtc *mdp5_crtc_init(struct drm_device *dev,
struct drm_plane *plane, int id); struct drm_plane *plane, int id);
struct drm_encoder *mdp5_encoder_init(struct drm_device *dev, int intf, struct drm_encoder *mdp5_encoder_init(struct drm_device *dev,
enum mdp5_intf intf_id); struct mdp5_interface *intf);
int mdp5_encoder_set_split_display(struct drm_encoder *encoder,
struct drm_encoder *slave_encoder);
#ifdef CONFIG_DRM_MSM_DSI
struct drm_encoder *mdp5_cmd_encoder_init(struct drm_device *dev,
struct mdp5_interface *intf);
int mdp5_cmd_encoder_set_split_display(struct drm_encoder *encoder,
struct drm_encoder *slave_encoder);
#else
static inline struct drm_encoder *mdp5_cmd_encoder_init(
struct drm_device *dev, struct mdp5_interface *intf)
{
return ERR_PTR(-EINVAL);
}
static inline int mdp5_cmd_encoder_set_split_display(
struct drm_encoder *encoder, struct drm_encoder *slave_encoder)
{
return -EINVAL;
}
#endif
#endif /* __MDP5_KMS_H__ */ #endif /* __MDP5_KMS_H__ */
...@@ -507,8 +507,8 @@ static int mdp5_plane_mode_set(struct drm_plane *plane, ...@@ -507,8 +507,8 @@ static int mdp5_plane_mode_set(struct drm_plane *plane,
spin_lock_irqsave(&mdp5_plane->pipe_lock, flags); spin_lock_irqsave(&mdp5_plane->pipe_lock, flags);
mdp5_write(mdp5_kms, REG_MDP5_PIPE_SRC_IMG_SIZE(pipe), mdp5_write(mdp5_kms, REG_MDP5_PIPE_SRC_IMG_SIZE(pipe),
MDP5_PIPE_SRC_IMG_SIZE_WIDTH(src_w) | MDP5_PIPE_SRC_IMG_SIZE_WIDTH(fb->width) |
MDP5_PIPE_SRC_IMG_SIZE_HEIGHT(src_h)); MDP5_PIPE_SRC_IMG_SIZE_HEIGHT(fb->height));
mdp5_write(mdp5_kms, REG_MDP5_PIPE_SRC_SIZE(pipe), mdp5_write(mdp5_kms, REG_MDP5_PIPE_SRC_SIZE(pipe),
MDP5_PIPE_SRC_SIZE_WIDTH(src_w) | MDP5_PIPE_SRC_SIZE_WIDTH(src_w) |
......
...@@ -43,7 +43,7 @@ ...@@ -43,7 +43,7 @@
* set. * set.
* *
* 2) mdp5_smp_configure(): * 2) mdp5_smp_configure():
* As hw is programmed, before FLUSH, MDP5_SMP_ALLOC registers * As hw is programmed, before FLUSH, MDP5_MDP_SMP_ALLOC registers
* are configured for the union(pending, inuse) * are configured for the union(pending, inuse)
* *
* 3) mdp5_smp_commit(): * 3) mdp5_smp_commit():
...@@ -74,7 +74,7 @@ struct mdp5_smp { ...@@ -74,7 +74,7 @@ struct mdp5_smp {
spinlock_t state_lock; spinlock_t state_lock;
mdp5_smp_state_t state; /* to track smp allocation amongst pipes: */ mdp5_smp_state_t state; /* to track smp allocation amongst pipes: */
struct mdp5_client_smp_state client_state[CID_MAX]; struct mdp5_client_smp_state client_state[MAX_CLIENTS];
}; };
static inline static inline
...@@ -85,27 +85,31 @@ struct mdp5_kms *get_kms(struct mdp5_smp *smp) ...@@ -85,27 +85,31 @@ struct mdp5_kms *get_kms(struct mdp5_smp *smp)
return to_mdp5_kms(to_mdp_kms(priv->kms)); return to_mdp5_kms(to_mdp_kms(priv->kms));
} }
static inline enum mdp5_client_id pipe2client(enum mdp5_pipe pipe, int plane) static inline u32 pipe2client(enum mdp5_pipe pipe, int plane)
{ {
WARN_ON(plane >= pipe2nclients(pipe)); #define CID_UNUSED 0
switch (pipe) {
case SSPP_VIG0: return CID_VIG0_Y + plane; if (WARN_ON(plane >= pipe2nclients(pipe)))
case SSPP_VIG1: return CID_VIG1_Y + plane; return CID_UNUSED;
case SSPP_VIG2: return CID_VIG2_Y + plane;
case SSPP_RGB0: return CID_RGB0; /*
case SSPP_RGB1: return CID_RGB1; * Note on SMP clients:
case SSPP_RGB2: return CID_RGB2; * For ViG pipes, fetch Y/Cr/Cb-components clients are always
case SSPP_DMA0: return CID_DMA0_Y + plane; * consecutive, and in that order.
case SSPP_DMA1: return CID_DMA1_Y + plane; *
case SSPP_VIG3: return CID_VIG3_Y + plane; * e.g.:
case SSPP_RGB3: return CID_RGB3; * if mdp5_cfg->smp.clients[SSPP_VIG0] = N,
default: return CID_UNUSED; * Y plane's client ID is N
} * Cr plane's client ID is N + 1
* Cb plane's client ID is N + 2
*/
return mdp5_cfg->smp.clients[pipe] + plane;
} }
/* step #1: update # of blocks pending for the client: */ /* step #1: update # of blocks pending for the client: */
static int smp_request_block(struct mdp5_smp *smp, static int smp_request_block(struct mdp5_smp *smp,
enum mdp5_client_id cid, int nblks) u32 cid, int nblks)
{ {
struct mdp5_kms *mdp5_kms = get_kms(smp); struct mdp5_kms *mdp5_kms = get_kms(smp);
const struct mdp5_cfg_hw *hw_cfg; const struct mdp5_cfg_hw *hw_cfg;
...@@ -227,7 +231,7 @@ void mdp5_smp_release(struct mdp5_smp *smp, enum mdp5_pipe pipe) ...@@ -227,7 +231,7 @@ void mdp5_smp_release(struct mdp5_smp *smp, enum mdp5_pipe pipe)
} }
static void update_smp_state(struct mdp5_smp *smp, static void update_smp_state(struct mdp5_smp *smp,
enum mdp5_client_id cid, mdp5_smp_state_t *assigned) u32 cid, mdp5_smp_state_t *assigned)
{ {
struct mdp5_kms *mdp5_kms = get_kms(smp); struct mdp5_kms *mdp5_kms = get_kms(smp);
int cnt = smp->blk_cnt; int cnt = smp->blk_cnt;
...@@ -237,25 +241,25 @@ static void update_smp_state(struct mdp5_smp *smp, ...@@ -237,25 +241,25 @@ static void update_smp_state(struct mdp5_smp *smp,
int idx = blk / 3; int idx = blk / 3;
int fld = blk % 3; int fld = blk % 3;
val = mdp5_read(mdp5_kms, REG_MDP5_SMP_ALLOC_W_REG(idx)); val = mdp5_read(mdp5_kms, REG_MDP5_MDP_SMP_ALLOC_W_REG(0, idx));
switch (fld) { switch (fld) {
case 0: case 0:
val &= ~MDP5_SMP_ALLOC_W_REG_CLIENT0__MASK; val &= ~MDP5_MDP_SMP_ALLOC_W_REG_CLIENT0__MASK;
val |= MDP5_SMP_ALLOC_W_REG_CLIENT0(cid); val |= MDP5_MDP_SMP_ALLOC_W_REG_CLIENT0(cid);
break; break;
case 1: case 1:
val &= ~MDP5_SMP_ALLOC_W_REG_CLIENT1__MASK; val &= ~MDP5_MDP_SMP_ALLOC_W_REG_CLIENT1__MASK;
val |= MDP5_SMP_ALLOC_W_REG_CLIENT1(cid); val |= MDP5_MDP_SMP_ALLOC_W_REG_CLIENT1(cid);
break; break;
case 2: case 2:
val &= ~MDP5_SMP_ALLOC_W_REG_CLIENT2__MASK; val &= ~MDP5_MDP_SMP_ALLOC_W_REG_CLIENT2__MASK;
val |= MDP5_SMP_ALLOC_W_REG_CLIENT2(cid); val |= MDP5_MDP_SMP_ALLOC_W_REG_CLIENT2(cid);
break; break;
} }
mdp5_write(mdp5_kms, REG_MDP5_SMP_ALLOC_W_REG(idx), val); mdp5_write(mdp5_kms, REG_MDP5_MDP_SMP_ALLOC_W_REG(0, idx), val);
mdp5_write(mdp5_kms, REG_MDP5_SMP_ALLOC_R_REG(idx), val); mdp5_write(mdp5_kms, REG_MDP5_MDP_SMP_ALLOC_R_REG(0, idx), val);
} }
} }
...@@ -267,7 +271,7 @@ void mdp5_smp_configure(struct mdp5_smp *smp, enum mdp5_pipe pipe) ...@@ -267,7 +271,7 @@ void mdp5_smp_configure(struct mdp5_smp *smp, enum mdp5_pipe pipe)
int i; int i;
for (i = 0; i < pipe2nclients(pipe); i++) { for (i = 0; i < pipe2nclients(pipe); i++) {
enum mdp5_client_id cid = pipe2client(pipe, i); u32 cid = pipe2client(pipe, i);
struct mdp5_client_smp_state *ps = &smp->client_state[cid]; struct mdp5_client_smp_state *ps = &smp->client_state[cid];
bitmap_or(assigned, ps->inuse, ps->pending, cnt); bitmap_or(assigned, ps->inuse, ps->pending, cnt);
...@@ -283,7 +287,7 @@ void mdp5_smp_commit(struct mdp5_smp *smp, enum mdp5_pipe pipe) ...@@ -283,7 +287,7 @@ void mdp5_smp_commit(struct mdp5_smp *smp, enum mdp5_pipe pipe)
int i; int i;
for (i = 0; i < pipe2nclients(pipe); i++) { for (i = 0; i < pipe2nclients(pipe); i++) {
enum mdp5_client_id cid = pipe2client(pipe, i); u32 cid = pipe2client(pipe, i);
struct mdp5_client_smp_state *ps = &smp->client_state[cid]; struct mdp5_client_smp_state *ps = &smp->client_state[cid];
/* /*
......
...@@ -182,41 +182,57 @@ static int get_mdp_ver(struct platform_device *pdev) ...@@ -182,41 +182,57 @@ static int get_mdp_ver(struct platform_device *pdev)
return 4; return 4;
} }
static int msm_load(struct drm_device *dev, unsigned long flags) #include <linux/of_address.h>
{
struct platform_device *pdev = dev->platformdev;
struct msm_drm_private *priv;
struct msm_kms *kms;
int ret;
priv = kzalloc(sizeof(*priv), GFP_KERNEL);
if (!priv) {
dev_err(dev->dev, "failed to allocate private data\n");
return -ENOMEM;
}
dev->dev_private = priv; static int msm_init_vram(struct drm_device *dev)
{
priv->wq = alloc_ordered_workqueue("msm", 0); struct msm_drm_private *priv = dev->dev_private;
init_waitqueue_head(&priv->fence_event); unsigned long size = 0;
init_waitqueue_head(&priv->pending_crtcs_event); int ret = 0;
INIT_LIST_HEAD(&priv->inactive_list);
INIT_LIST_HEAD(&priv->fence_cbs);
drm_mode_config_init(dev); #ifdef CONFIG_OF
/* In the device-tree world, we could have a 'memory-region'
* phandle, which gives us a link to our "vram". Allocating
* is all nicely abstracted behind the dma api, but we need
* to know the entire size to allocate it all in one go. There
* are two cases:
* 1) device with no IOMMU, in which case we need exclusive
* access to a VRAM carveout big enough for all gpu
* buffers
* 2) device with IOMMU, but where the bootloader puts up
* a splash screen. In this case, the VRAM carveout
* need only be large enough for fbdev fb. But we need
* exclusive access to the buffer to avoid the kernel
* using those pages for other purposes (which appears
* as corruption on screen before we have a chance to
* load and do initial modeset)
*/
struct device_node *node;
node = of_parse_phandle(dev->dev->of_node, "memory-region", 0);
if (node) {
struct resource r;
ret = of_address_to_resource(node, 0, &r);
if (ret)
return ret;
size = r.end - r.start;
DRM_INFO("using VRAM carveout: %lx@%08x\n", size, r.start);
} else
#endif
/* if we have no IOMMU, then we need to use carveout allocator. /* if we have no IOMMU, then we need to use carveout allocator.
* Grab the entire CMA chunk carved out in early startup in * Grab the entire CMA chunk carved out in early startup in
* mach-msm: * mach-msm:
*/ */
if (!iommu_present(&platform_bus_type)) { if (!iommu_present(&platform_bus_type)) {
DRM_INFO("using %s VRAM carveout\n", vram);
size = memparse(vram, NULL);
}
if (size) {
DEFINE_DMA_ATTRS(attrs); DEFINE_DMA_ATTRS(attrs);
unsigned long size;
void *p; void *p;
DBG("using %s VRAM carveout", vram);
size = memparse(vram, NULL);
priv->vram.size = size; priv->vram.size = size;
drm_mm_init(&priv->vram.mm, 0, (size >> PAGE_SHIFT) - 1); drm_mm_init(&priv->vram.mm, 0, (size >> PAGE_SHIFT) - 1);
...@@ -232,8 +248,7 @@ static int msm_load(struct drm_device *dev, unsigned long flags) ...@@ -232,8 +248,7 @@ static int msm_load(struct drm_device *dev, unsigned long flags)
if (!p) { if (!p) {
dev_err(dev->dev, "failed to allocate VRAM\n"); dev_err(dev->dev, "failed to allocate VRAM\n");
priv->vram.paddr = 0; priv->vram.paddr = 0;
ret = -ENOMEM; return -ENOMEM;
goto fail;
} }
dev_info(dev->dev, "VRAM: %08x->%08x\n", dev_info(dev->dev, "VRAM: %08x->%08x\n",
...@@ -241,6 +256,37 @@ static int msm_load(struct drm_device *dev, unsigned long flags) ...@@ -241,6 +256,37 @@ static int msm_load(struct drm_device *dev, unsigned long flags)
(uint32_t)(priv->vram.paddr + size)); (uint32_t)(priv->vram.paddr + size));
} }
return ret;
}
static int msm_load(struct drm_device *dev, unsigned long flags)
{
struct platform_device *pdev = dev->platformdev;
struct msm_drm_private *priv;
struct msm_kms *kms;
int ret;
priv = kzalloc(sizeof(*priv), GFP_KERNEL);
if (!priv) {
dev_err(dev->dev, "failed to allocate private data\n");
return -ENOMEM;
}
dev->dev_private = priv;
priv->wq = alloc_ordered_workqueue("msm", 0);
init_waitqueue_head(&priv->fence_event);
init_waitqueue_head(&priv->pending_crtcs_event);
INIT_LIST_HEAD(&priv->inactive_list);
INIT_LIST_HEAD(&priv->fence_cbs);
drm_mode_config_init(dev);
ret = msm_init_vram(dev);
if (ret)
goto fail;
platform_set_drvdata(pdev, dev); platform_set_drvdata(pdev, dev);
/* Bind all our sub-components: */ /* Bind all our sub-components: */
...@@ -1030,6 +1076,7 @@ static struct platform_driver msm_platform_driver = { ...@@ -1030,6 +1076,7 @@ static struct platform_driver msm_platform_driver = {
static int __init msm_drm_register(void) static int __init msm_drm_register(void)
{ {
DBG("init"); DBG("init");
msm_dsi_register();
msm_edp_register(); msm_edp_register();
hdmi_register(); hdmi_register();
adreno_register(); adreno_register();
...@@ -1043,6 +1090,7 @@ static void __exit msm_drm_unregister(void) ...@@ -1043,6 +1090,7 @@ static void __exit msm_drm_unregister(void)
hdmi_unregister(); hdmi_unregister();
adreno_unregister(); adreno_unregister();
msm_edp_unregister(); msm_edp_unregister();
msm_dsi_unregister();
} }
module_init(msm_drm_register); module_init(msm_drm_register);
......
...@@ -82,6 +82,9 @@ struct msm_drm_private { ...@@ -82,6 +82,9 @@ struct msm_drm_private {
*/ */
struct msm_edp *edp; struct msm_edp *edp;
/* DSI is shared by mdp4 and mdp5 */
struct msm_dsi *dsi[2];
/* when we have more than one 'msm_gpu' these need to be an array: */ /* when we have more than one 'msm_gpu' these need to be an array: */
struct msm_gpu *gpu; struct msm_gpu *gpu;
struct msm_file_private *lastctx; struct msm_file_private *lastctx;
...@@ -236,6 +239,32 @@ void __exit msm_edp_unregister(void); ...@@ -236,6 +239,32 @@ void __exit msm_edp_unregister(void);
int msm_edp_modeset_init(struct msm_edp *edp, struct drm_device *dev, int msm_edp_modeset_init(struct msm_edp *edp, struct drm_device *dev,
struct drm_encoder *encoder); struct drm_encoder *encoder);
struct msm_dsi;
enum msm_dsi_encoder_id {
MSM_DSI_VIDEO_ENCODER_ID = 0,
MSM_DSI_CMD_ENCODER_ID = 1,
MSM_DSI_ENCODER_NUM = 2
};
#ifdef CONFIG_DRM_MSM_DSI
void __init msm_dsi_register(void);
void __exit msm_dsi_unregister(void);
int msm_dsi_modeset_init(struct msm_dsi *msm_dsi, struct drm_device *dev,
struct drm_encoder *encoders[MSM_DSI_ENCODER_NUM]);
#else
static inline void __init msm_dsi_register(void)
{
}
static inline void __exit msm_dsi_unregister(void)
{
}
static inline int msm_dsi_modeset_init(struct msm_dsi *msm_dsi,
struct drm_device *dev,
struct drm_encoder *encoders[MSM_DSI_ENCODER_NUM])
{
return -EINVAL;
}
#endif
#ifdef CONFIG_DEBUG_FS #ifdef CONFIG_DEBUG_FS
void msm_gem_describe(struct drm_gem_object *obj, struct seq_file *m); void msm_gem_describe(struct drm_gem_object *obj, struct seq_file *m);
void msm_gem_describe_objects(struct list_head *list, struct seq_file *m); void msm_gem_describe_objects(struct list_head *list, struct seq_file *m);
......
...@@ -110,7 +110,8 @@ static int msm_fbdev_create(struct drm_fb_helper *helper, ...@@ -110,7 +110,8 @@ static int msm_fbdev_create(struct drm_fb_helper *helper,
size = mode_cmd.pitches[0] * mode_cmd.height; size = mode_cmd.pitches[0] * mode_cmd.height;
DBG("allocating %d bytes for fb %d", size, dev->primary->index); DBG("allocating %d bytes for fb %d", size, dev->primary->index);
mutex_lock(&dev->struct_mutex); mutex_lock(&dev->struct_mutex);
fbdev->bo = msm_gem_new(dev, size, MSM_BO_SCANOUT | MSM_BO_WC); fbdev->bo = msm_gem_new(dev, size, MSM_BO_SCANOUT |
MSM_BO_WC | MSM_BO_STOLEN);
mutex_unlock(&dev->struct_mutex); mutex_unlock(&dev->struct_mutex);
if (IS_ERR(fbdev->bo)) { if (IS_ERR(fbdev->bo)) {
ret = PTR_ERR(fbdev->bo); ret = PTR_ERR(fbdev->bo);
......
...@@ -32,6 +32,12 @@ static dma_addr_t physaddr(struct drm_gem_object *obj) ...@@ -32,6 +32,12 @@ static dma_addr_t physaddr(struct drm_gem_object *obj)
priv->vram.paddr; priv->vram.paddr;
} }
static bool use_pages(struct drm_gem_object *obj)
{
struct msm_gem_object *msm_obj = to_msm_bo(obj);
return !msm_obj->vram_node;
}
/* allocate pages from VRAM carveout, used when no IOMMU: */ /* allocate pages from VRAM carveout, used when no IOMMU: */
static struct page **get_pages_vram(struct drm_gem_object *obj, static struct page **get_pages_vram(struct drm_gem_object *obj,
int npages) int npages)
...@@ -72,7 +78,7 @@ static struct page **get_pages(struct drm_gem_object *obj) ...@@ -72,7 +78,7 @@ static struct page **get_pages(struct drm_gem_object *obj)
struct page **p; struct page **p;
int npages = obj->size >> PAGE_SHIFT; int npages = obj->size >> PAGE_SHIFT;
if (iommu_present(&platform_bus_type)) if (use_pages(obj))
p = drm_gem_get_pages(obj); p = drm_gem_get_pages(obj);
else else
p = get_pages_vram(obj, npages); p = get_pages_vram(obj, npages);
...@@ -116,7 +122,7 @@ static void put_pages(struct drm_gem_object *obj) ...@@ -116,7 +122,7 @@ static void put_pages(struct drm_gem_object *obj)
sg_free_table(msm_obj->sgt); sg_free_table(msm_obj->sgt);
kfree(msm_obj->sgt); kfree(msm_obj->sgt);
if (iommu_present(&platform_bus_type)) if (use_pages(obj))
drm_gem_put_pages(obj, msm_obj->pages, true, false); drm_gem_put_pages(obj, msm_obj->pages, true, false);
else { else {
drm_mm_remove_node(msm_obj->vram_node); drm_mm_remove_node(msm_obj->vram_node);
...@@ -580,6 +586,7 @@ static int msm_gem_new_impl(struct drm_device *dev, ...@@ -580,6 +586,7 @@ static int msm_gem_new_impl(struct drm_device *dev,
struct msm_drm_private *priv = dev->dev_private; struct msm_drm_private *priv = dev->dev_private;
struct msm_gem_object *msm_obj; struct msm_gem_object *msm_obj;
unsigned sz; unsigned sz;
bool use_vram = false;
switch (flags & MSM_BO_CACHE_MASK) { switch (flags & MSM_BO_CACHE_MASK) {
case MSM_BO_UNCACHED: case MSM_BO_UNCACHED:
...@@ -592,15 +599,23 @@ static int msm_gem_new_impl(struct drm_device *dev, ...@@ -592,15 +599,23 @@ static int msm_gem_new_impl(struct drm_device *dev,
return -EINVAL; return -EINVAL;
} }
sz = sizeof(*msm_obj);
if (!iommu_present(&platform_bus_type)) if (!iommu_present(&platform_bus_type))
use_vram = true;
else if ((flags & MSM_BO_STOLEN) && priv->vram.size)
use_vram = true;
if (WARN_ON(use_vram && !priv->vram.size))
return -EINVAL;
sz = sizeof(*msm_obj);
if (use_vram)
sz += sizeof(struct drm_mm_node); sz += sizeof(struct drm_mm_node);
msm_obj = kzalloc(sz, GFP_KERNEL); msm_obj = kzalloc(sz, GFP_KERNEL);
if (!msm_obj) if (!msm_obj)
return -ENOMEM; return -ENOMEM;
if (!iommu_present(&platform_bus_type)) if (use_vram)
msm_obj->vram_node = (void *)&msm_obj[1]; msm_obj->vram_node = (void *)&msm_obj[1];
msm_obj->flags = flags; msm_obj->flags = flags;
...@@ -630,7 +645,7 @@ struct drm_gem_object *msm_gem_new(struct drm_device *dev, ...@@ -630,7 +645,7 @@ struct drm_gem_object *msm_gem_new(struct drm_device *dev,
if (ret) if (ret)
goto fail; goto fail;
if (iommu_present(&platform_bus_type)) { if (use_pages(obj)) {
ret = drm_gem_object_init(dev, obj, size); ret = drm_gem_object_init(dev, obj, size);
if (ret) if (ret)
goto fail; goto fail;
......
...@@ -21,6 +21,9 @@ ...@@ -21,6 +21,9 @@
#include <linux/reservation.h> #include <linux/reservation.h>
#include "msm_drv.h" #include "msm_drv.h"
/* Additional internal-use only BO flags: */
#define MSM_BO_STOLEN 0x10000000 /* try to use stolen/splash memory */
struct msm_gem_object { struct msm_gem_object {
struct drm_gem_object base; struct drm_gem_object base;
...@@ -59,7 +62,7 @@ struct msm_gem_object { ...@@ -59,7 +62,7 @@ struct msm_gem_object {
struct reservation_object _resv; struct reservation_object _resv;
/* For physically contiguous buffers. Used when we don't have /* For physically contiguous buffers. Used when we don't have
* an IOMMU. * an IOMMU. Also used for stolen/splashscreen buffer.
*/ */
struct drm_mm_node *vram_node; struct drm_mm_node *vram_node;
}; };
......
...@@ -47,6 +47,10 @@ struct msm_kms_funcs { ...@@ -47,6 +47,10 @@ struct msm_kms_funcs {
const struct msm_format *(*get_format)(struct msm_kms *kms, uint32_t format); const struct msm_format *(*get_format)(struct msm_kms *kms, uint32_t format);
long (*round_pixclk)(struct msm_kms *kms, unsigned long rate, long (*round_pixclk)(struct msm_kms *kms, unsigned long rate,
struct drm_encoder *encoder); struct drm_encoder *encoder);
int (*set_split_display)(struct msm_kms *kms,
struct drm_encoder *encoder,
struct drm_encoder *slave_encoder,
bool is_cmd_mode);
/* cleanup: */ /* cleanup: */
void (*preclose)(struct msm_kms *kms, struct drm_file *file); void (*preclose)(struct msm_kms *kms, struct drm_file *file);
void (*destroy)(struct msm_kms *kms); void (*destroy)(struct msm_kms *kms);
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment