/* * linux/mm/filemap.c * * Copyright (C) 1994-1999 Linus Torvalds */ /* * This file handles the generic file mmap semantics used by * most "normal" filesystems (but you don't /have/ to use this: * the NFS filesystem used to do this differently, for example) */ #include <linux/config.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/compiler.h> #include <linux/fs.h> #include <linux/aio.h> #include <linux/kernel_stat.h> #include <linux/mm.h> #include <linux/mman.h> #include <linux/pagemap.h> #include <linux/file.h> #include <linux/uio.h> #include <linux/hash.h> #include <linux/writeback.h> #include <linux/pagevec.h> #include <linux/blkdev.h> #include <linux/security.h> /* * This is needed for the following functions: * - try_to_release_page * - block_invalidatepage * - page_has_buffers * - generic_osync_inode * * FIXME: remove all knowledge of the buffer layer from this file */ #include <linux/buffer_head.h> #include <asm/uaccess.h> #include <asm/mman.h> /* * Shared mappings implemented 30.11.1994. It's not fully working yet, * though. * * Shared mappings now work. 15.8.1995 Bruno. * * finished 'unifying' the page and buffer cache and SMP-threaded the * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> * * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> */ /* * Lock ordering: * * ->i_shared_lock (vmtruncate) * ->private_lock (__free_pte->__set_page_dirty_buffers) * ->swap_list_lock * ->swap_device_lock (exclusive_swap_page, others) * ->mapping->page_lock * ->inode_lock * ->sb_lock (fs/fs-writeback.c) * ->mapping->page_lock (__sync_single_inode) * ->page_table_lock * ->swap_device_lock (try_to_unmap_one) * ->private_lock (try_to_unmap_one) * ->page_lock (try_to_unmap_one) */ /* * Remove a page from the page cache and free it. Caller has to make * sure the page is locked and that nobody else uses it - or that usage * is safe. The caller must hold a write_lock on the mapping's page_lock. */ void __remove_from_page_cache(struct page *page) { struct address_space *mapping = page->mapping; BUG_ON(PageDirty(page) && !PageSwapCache(page)); radix_tree_delete(&mapping->page_tree, page->index); list_del(&page->list); page->mapping = NULL; mapping->nrpages--; dec_page_state(nr_pagecache); } void remove_from_page_cache(struct page *page) { struct address_space *mapping = page->mapping; if (unlikely(!PageLocked(page))) PAGE_BUG(page); write_lock(&mapping->page_lock); __remove_from_page_cache(page); write_unlock(&mapping->page_lock); } static inline int sync_page(struct page *page) { struct address_space *mapping = page->mapping; if (mapping && mapping->a_ops && mapping->a_ops->sync_page) return mapping->a_ops->sync_page(page); return 0; } /** * filemap_fdatawrite - start writeback against all of a mapping's dirty pages * @mapping: address space structure to write * * This is a "data integrity" operation, as opposed to a regular memory * cleansing writeback. The difference between these two operations is that * if a dirty page/buffer is encountered, it must be waited upon, and not just * skipped over. */ int filemap_fdatawrite(struct address_space *mapping) { int ret; struct writeback_control wbc = { .sync_mode = WB_SYNC_ALL, .nr_to_write = mapping->nrpages * 2, }; if (mapping->backing_dev_info->memory_backed) return 0; write_lock(&mapping->page_lock); list_splice_init(&mapping->dirty_pages, &mapping->io_pages); write_unlock(&mapping->page_lock); ret = do_writepages(mapping, &wbc); return ret; } /** * filemap_fdatawait - walk the list of locked pages of the given address * space and wait for all of them. * @mapping: address space structure to wait for */ int filemap_fdatawait(struct address_space * mapping) { int ret = 0; int progress; restart: progress = 0; write_lock(&mapping->page_lock); while (!list_empty(&mapping->locked_pages)) { struct page *page; page = list_entry(mapping->locked_pages.next,struct page,list); list_del(&page->list); if (PageDirty(page)) list_add(&page->list, &mapping->dirty_pages); else list_add(&page->list, &mapping->clean_pages); if (!PageWriteback(page)) { if (++progress > 32) { if (need_resched()) { write_unlock(&mapping->page_lock); __cond_resched(); goto restart; } } continue; } progress = 0; page_cache_get(page); write_unlock(&mapping->page_lock); wait_on_page_writeback(page); if (PageError(page)) ret = -EIO; page_cache_release(page); write_lock(&mapping->page_lock); } write_unlock(&mapping->page_lock); return ret; } /* * This adds a page to the page cache, starting out as locked, unreferenced, * not uptodate and with no errors. * * This function is used for two things: adding newly allocated pagecache * pages and for moving existing anon pages into swapcache. * * In the case of pagecache pages, the page is new, so we can just run * SetPageLocked() against it. The other page state flags were set by * rmqueue() * * In the case of swapcache, try_to_swap_out() has already locked the page, so * SetPageLocked() is ugly-but-OK there too. The required page state has been * set up by swap_out_add_to_swap_cache(). * * This function does not add the page to the LRU. The caller must do that. */ int add_to_page_cache(struct page *page, struct address_space *mapping, pgoff_t offset) { int error; page_cache_get(page); write_lock(&mapping->page_lock); error = radix_tree_insert(&mapping->page_tree, offset, page); if (!error) { SetPageLocked(page); ___add_to_page_cache(page, mapping, offset); } else { page_cache_release(page); } write_unlock(&mapping->page_lock); return error; } int add_to_page_cache_lru(struct page *page, struct address_space *mapping, pgoff_t offset) { int ret = add_to_page_cache(page, mapping, offset); if (ret == 0) lru_cache_add(page); return ret; } /* * In order to wait for pages to become available there must be * waitqueues associated with pages. By using a hash table of * waitqueues where the bucket discipline is to maintain all * waiters on the same queue and wake all when any of the pages * become available, and for the woken contexts to check to be * sure the appropriate page became available, this saves space * at a cost of "thundering herd" phenomena during rare hash * collisions. */ static wait_queue_head_t *page_waitqueue(struct page *page) { const struct zone *zone = page_zone(page); return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)]; } void wait_on_page_bit(struct page *page, int bit_nr) { wait_queue_head_t *waitqueue = page_waitqueue(page); DEFINE_WAIT(wait); do { prepare_to_wait(waitqueue, &wait, TASK_UNINTERRUPTIBLE); sync_page(page); if (test_bit(bit_nr, &page->flags)) io_schedule(); } while (test_bit(bit_nr, &page->flags)); finish_wait(waitqueue, &wait); } EXPORT_SYMBOL(wait_on_page_bit); /** * unlock_page() - unlock a locked page * * @page: the page * * Unlocks the page and wakes up sleepers in ___wait_on_page_locked(). * Also wakes sleepers in wait_on_page_writeback() because the wakeup * mechananism between PageLocked pages and PageWriteback pages is shared. * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep. * * The first mb is necessary to safely close the critical section opened by the * TestSetPageLocked(), the second mb is necessary to enforce ordering between * the clear_bit and the read of the waitqueue (to avoid SMP races with a * parallel wait_on_page_locked()). */ void unlock_page(struct page *page) { wait_queue_head_t *waitqueue = page_waitqueue(page); smp_mb__before_clear_bit(); if (!TestClearPageLocked(page)) BUG(); smp_mb__after_clear_bit(); if (waitqueue_active(waitqueue)) wake_up_all(waitqueue); } /* * End writeback against a page. */ void end_page_writeback(struct page *page) { wait_queue_head_t *waitqueue = page_waitqueue(page); if (!TestClearPageReclaim(page) || rotate_reclaimable_page(page)) { smp_mb__before_clear_bit(); if (!TestClearPageWriteback(page)) BUG(); smp_mb__after_clear_bit(); } if (waitqueue_active(waitqueue)) wake_up_all(waitqueue); } EXPORT_SYMBOL(end_page_writeback); /* * Get a lock on the page, assuming we need to sleep to get it. * * Ugly: running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some * random driver's requestfn sets TASK_RUNNING, we could busywait. However * chances are that on the second loop, the block layer's plug list is empty, * so sync_page() will then return in state TASK_UNINTERRUPTIBLE. */ void __lock_page(struct page *page) { wait_queue_head_t *wqh = page_waitqueue(page); DEFINE_WAIT(wait); while (TestSetPageLocked(page)) { prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE); sync_page(page); if (PageLocked(page)) io_schedule(); } finish_wait(wqh, &wait); } EXPORT_SYMBOL(__lock_page); /* * a rather lightweight function, finding and getting a reference to a * hashed page atomically. */ struct page * find_get_page(struct address_space *mapping, unsigned long offset) { struct page *page; /* * We scan the hash list read-only. Addition to and removal from * the hash-list needs a held write-lock. */ read_lock(&mapping->page_lock); page = radix_tree_lookup(&mapping->page_tree, offset); if (page) page_cache_get(page); read_unlock(&mapping->page_lock); return page; } /* * Same as above, but trylock it instead of incrementing the count. */ struct page *find_trylock_page(struct address_space *mapping, unsigned long offset) { struct page *page; read_lock(&mapping->page_lock); page = radix_tree_lookup(&mapping->page_tree, offset); if (page && TestSetPageLocked(page)) page = NULL; read_unlock(&mapping->page_lock); return page; } /** * find_lock_page - locate, pin and lock a pagecache page * * @mapping - the address_space to search * @offset - the page index * * Locates the desired pagecache page, locks it, increments its reference * count and returns its address. * * Returns zero if the page was not present. find_lock_page() may sleep. */ struct page *find_lock_page(struct address_space *mapping, unsigned long offset) { struct page *page; read_lock(&mapping->page_lock); repeat: page = radix_tree_lookup(&mapping->page_tree, offset); if (page) { page_cache_get(page); if (TestSetPageLocked(page)) { read_unlock(&mapping->page_lock); lock_page(page); read_lock(&mapping->page_lock); /* Has the page been truncated while we slept? */ if (page->mapping != mapping || page->index != offset) { unlock_page(page); page_cache_release(page); goto repeat; } } } read_unlock(&mapping->page_lock); return page; } /** * find_or_create_page - locate or add a pagecache page * * @mapping - the page's address_space * @index - the page's index into the mapping * @gfp_mask - page allocation mode * * Locates a page in the pagecache. If the page is not present, a new page * is allocated using @gfp_mask and is added to the pagecache and to the VM's * LRU list. The returned page is locked and has its reference count * incremented. * * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic * allocation! * * find_or_create_page() returns the desired page's address, or zero on * memory exhaustion. */ struct page *find_or_create_page(struct address_space *mapping, unsigned long index, unsigned int gfp_mask) { struct page *page, *cached_page = NULL; int err; repeat: page = find_lock_page(mapping, index); if (!page) { if (!cached_page) { cached_page = alloc_page(gfp_mask); if (!cached_page) return NULL; } err = add_to_page_cache_lru(cached_page, mapping, index); if (!err) { page = cached_page; cached_page = NULL; } else if (err == -EEXIST) goto repeat; } if (cached_page) page_cache_release(cached_page); return page; } /** * find_get_pages - gang pagecache lookup * @mapping: The address_space to search * @start: The starting page index * @nr_pages: The maximum number of pages * @pages: Where the resulting pages are placed * * find_get_pages() will search for and return a group of up to * @nr_pages pages in the mapping. The pages are placed at @pages. * find_get_pages() takes a reference against the returned pages. * * The search returns a group of mapping-contiguous pages with ascending * indexes. There may be holes in the indices due to not-present pages. * * find_get_pages() returns the number of pages which were found. */ unsigned int find_get_pages(struct address_space *mapping, pgoff_t start, unsigned int nr_pages, struct page **pages) { unsigned int i; unsigned int ret; read_lock(&mapping->page_lock); ret = radix_tree_gang_lookup(&mapping->page_tree, (void **)pages, start, nr_pages); for (i = 0; i < ret; i++) page_cache_get(pages[i]); read_unlock(&mapping->page_lock); return ret; } /* * Same as grab_cache_page, but do not wait if the page is unavailable. * This is intended for speculative data generators, where the data can * be regenerated if the page couldn't be grabbed. This routine should * be safe to call while holding the lock for another page. * * Clear __GFP_FS when allocating the page to avoid recursion into the fs * and deadlock against the caller's locked page. */ struct page * grab_cache_page_nowait(struct address_space *mapping, unsigned long index) { struct page *page = find_get_page(mapping, index); if (page) { if (!TestSetPageLocked(page)) return page; page_cache_release(page); return NULL; } page = alloc_pages(mapping->gfp_mask & ~__GFP_FS, 0); if (page && add_to_page_cache_lru(page, mapping, index)) { page_cache_release(page); page = NULL; } return page; } /* * This is a generic file read routine, and uses the * inode->i_op->readpage() function for the actual low-level * stuff. * * This is really ugly. But the goto's actually try to clarify some * of the logic when it comes to error handling etc. * - note the struct file * is only passed for the use of readpage */ void do_generic_mapping_read(struct address_space *mapping, struct file_ra_state *ra, struct file * filp, loff_t *ppos, read_descriptor_t * desc, read_actor_t actor) { struct inode *inode = mapping->host; unsigned long index, offset; struct page *cached_page; int error; cached_page = NULL; index = *ppos >> PAGE_CACHE_SHIFT; offset = *ppos & ~PAGE_CACHE_MASK; for (;;) { struct page *page; unsigned long end_index, nr, ret; end_index = inode->i_size >> PAGE_CACHE_SHIFT; if (index > end_index) break; nr = PAGE_CACHE_SIZE; if (index == end_index) { nr = inode->i_size & ~PAGE_CACHE_MASK; if (nr <= offset) break; } cond_resched(); page_cache_readahead(mapping, ra, filp, index); nr = nr - offset; /* * Try to find the data in the page cache.. */ find_page: read_lock(&mapping->page_lock); page = radix_tree_lookup(&mapping->page_tree, index); if (!page) { read_unlock(&mapping->page_lock); handle_ra_miss(mapping,ra); goto no_cached_page; } page_cache_get(page); read_unlock(&mapping->page_lock); if (!PageUptodate(page)) goto page_not_up_to_date; page_ok: /* If users can be writing to this page using arbitrary * virtual addresses, take care about potential aliasing * before reading the page on the kernel side. */ if (!list_empty(&mapping->i_mmap_shared)) flush_dcache_page(page); /* * Mark the page accessed if we read the beginning. */ if (!offset) mark_page_accessed(page); /* * Ok, we have the page, and it's up-to-date, so * now we can copy it to user space... * * The actor routine returns how many bytes were actually used.. * NOTE! This may not be the same as how much of a user buffer * we filled up (we may be padding etc), so we can only update * "pos" here (the actor routine has to update the user buffer * pointers and the remaining count). */ ret = actor(desc, page, offset, nr); offset += ret; index += offset >> PAGE_CACHE_SHIFT; offset &= ~PAGE_CACHE_MASK; page_cache_release(page); if (ret == nr && desc->count) continue; break; page_not_up_to_date: if (PageUptodate(page)) goto page_ok; /* Get exclusive access to the page ... */ lock_page(page); /* Did it get unhashed before we got the lock? */ if (!page->mapping) { unlock_page(page); page_cache_release(page); continue; } /* Did somebody else fill it already? */ if (PageUptodate(page)) { unlock_page(page); goto page_ok; } readpage: /* ... and start the actual read. The read will unlock the page. */ error = mapping->a_ops->readpage(filp, page); if (!error) { if (PageUptodate(page)) goto page_ok; wait_on_page_locked(page); if (PageUptodate(page)) goto page_ok; error = -EIO; } /* UHHUH! A synchronous read error occurred. Report it */ desc->error = error; page_cache_release(page); break; no_cached_page: /* * Ok, it wasn't cached, so we need to create a new * page.. */ if (!cached_page) { cached_page = page_cache_alloc_cold(mapping); if (!cached_page) { desc->error = -ENOMEM; break; } } error = add_to_page_cache_lru(cached_page, mapping, index); if (error) { if (error == -EEXIST) goto find_page; desc->error = error; break; } page = cached_page; cached_page = NULL; goto readpage; } *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset; if (cached_page) page_cache_release(cached_page); UPDATE_ATIME(inode); } /* * Fault a userspace page into pagetables. Return non-zero on a fault. * * FIXME: this assumes that two userspace pages are always sufficient. That's * not true if PAGE_CACHE_SIZE > PAGE_SIZE. */ static inline int fault_in_pages_writeable(char *uaddr, int size) { int ret; /* * Writing zeroes into userspace here is OK, because we know that if * the zero gets there, we'll be overwriting it. */ ret = __put_user(0, uaddr); if (ret == 0) { char *end = uaddr + size - 1; /* * If the page was already mapped, this will get a cache miss * for sure, so try to avoid doing it. */ if (((unsigned long)uaddr & PAGE_MASK) != ((unsigned long)end & PAGE_MASK)) ret = __put_user(0, end); } return ret; } static void fault_in_pages_readable(const char *uaddr, int size) { volatile char c; int ret; ret = __get_user(c, (char *)uaddr); if (ret == 0) { const char *end = uaddr + size - 1; if (((unsigned long)uaddr & PAGE_MASK) != ((unsigned long)end & PAGE_MASK)) __get_user(c, (char *)end); } } int file_read_actor(read_descriptor_t *desc, struct page *page, unsigned long offset, unsigned long size) { char *kaddr; unsigned long left, count = desc->count; if (size > count) size = count; /* * Faults on the destination of a read are common, so do it before * taking the kmap. */ if (!fault_in_pages_writeable(desc->buf, size)) { kaddr = kmap_atomic(page, KM_USER0); left = __copy_to_user(desc->buf, kaddr + offset, size); kunmap_atomic(kaddr, KM_USER0); if (left == 0) goto success; } /* Do it the slow way */ kaddr = kmap(page); left = __copy_to_user(desc->buf, kaddr + offset, size); kunmap(page); if (left) { size -= left; desc->error = -EFAULT; } success: desc->count = count - size; desc->written += size; desc->buf += size; return size; } /* * This is the "read()" routine for all filesystems * that can use the page cache directly. */ static ssize_t __generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov, unsigned long nr_segs, loff_t *ppos) { struct file *filp = iocb->ki_filp; ssize_t retval; unsigned long seg; size_t count; count = 0; for (seg = 0; seg < nr_segs; seg++) { const struct iovec *iv = &iov[seg]; /* * If any segment has a negative length, or the cumulative * length ever wraps negative then return -EINVAL. */ count += iv->iov_len; if (unlikely((ssize_t)(count|iv->iov_len) < 0)) return -EINVAL; if (access_ok(VERIFY_WRITE, iv->iov_base, iv->iov_len)) continue; if (seg == 0) return -EFAULT; nr_segs = seg; count -= iv->iov_len; /* This segment is no good */ break; } /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */ if (filp->f_flags & O_DIRECT) { loff_t pos = *ppos, size; struct address_space *mapping; struct inode *inode; mapping = filp->f_dentry->d_inode->i_mapping; inode = mapping->host; retval = 0; if (!count) goto out; /* skip atime */ size = inode->i_size; if (pos < size) { if (pos + count > size) { count = size - pos; nr_segs = iov_shorten((struct iovec *)iov, nr_segs, count); } retval = generic_file_direct_IO(READ, filp, iov, pos, nr_segs); if (retval > 0) *ppos = pos + retval; } UPDATE_ATIME(filp->f_dentry->d_inode); goto out; } retval = 0; if (count) { for (seg = 0; seg < nr_segs; seg++) { read_descriptor_t desc; desc.written = 0; desc.buf = iov[seg].iov_base; desc.count = iov[seg].iov_len; if (desc.count == 0) continue; desc.error = 0; do_generic_file_read(filp,ppos,&desc,file_read_actor); retval += desc.written; if (!retval) { retval = desc.error; break; } } } out: return retval; } ssize_t generic_file_aio_read(struct kiocb *iocb, char *buf, size_t count, loff_t pos) { struct iovec local_iov = { .iov_base = buf, .iov_len = count }; BUG_ON(iocb->ki_pos != pos); return __generic_file_aio_read(iocb, &local_iov, 1, &iocb->ki_pos); } EXPORT_SYMBOL(generic_file_aio_read); ssize_t generic_file_read(struct file *filp, char *buf, size_t count, loff_t *ppos) { struct iovec local_iov = { .iov_base = buf, .iov_len = count }; struct kiocb kiocb; ssize_t ret; init_sync_kiocb(&kiocb, filp); ret = __generic_file_aio_read(&kiocb, &local_iov, 1, ppos); if (-EIOCBQUEUED == ret) ret = wait_on_sync_kiocb(&kiocb); return ret; } int file_send_actor(read_descriptor_t * desc, struct page *page, unsigned long offset, unsigned long size) { ssize_t written; unsigned long count = desc->count; struct file *file = (struct file *) desc->buf; if (size > count) size = count; written = file->f_op->sendpage(file, page, offset, size, &file->f_pos, size<count); if (written < 0) { desc->error = written; written = 0; } desc->count = count - written; desc->written += written; return written; } ssize_t generic_file_sendfile(struct file *in_file, loff_t *ppos, size_t count, read_actor_t actor, void *target) { read_descriptor_t desc; if (!count) return 0; desc.written = 0; desc.count = count; desc.buf = target; desc.error = 0; do_generic_file_read(in_file, ppos, &desc, actor); if (desc.written) return desc.written; return desc.error; } static ssize_t do_readahead(struct address_space *mapping, struct file *filp, unsigned long index, unsigned long nr) { if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage) return -EINVAL; do_page_cache_readahead(mapping, filp, index, max_sane_readahead(nr)); return 0; } asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count) { ssize_t ret; struct file *file; ret = -EBADF; file = fget(fd); if (file) { if (file->f_mode & FMODE_READ) { struct address_space *mapping = file->f_dentry->d_inode->i_mapping; unsigned long start = offset >> PAGE_CACHE_SHIFT; unsigned long end = (offset + count - 1) >> PAGE_CACHE_SHIFT; unsigned long len = end - start + 1; ret = do_readahead(mapping, file, start, len); } fput(file); } return ret; } #ifdef CONFIG_MMU /* * This adds the requested page to the page cache if it isn't already there, * and schedules an I/O to read in its contents from disk. */ static int FASTCALL(page_cache_read(struct file * file, unsigned long offset)); static int page_cache_read(struct file * file, unsigned long offset) { struct address_space *mapping = file->f_dentry->d_inode->i_mapping; struct page *page; int error; page = page_cache_alloc_cold(mapping); if (!page) return -ENOMEM; error = add_to_page_cache_lru(page, mapping, offset); if (!error) { error = mapping->a_ops->readpage(file, page); page_cache_release(page); return error; } /* * We arrive here in the unlikely event that someone * raced with us and added our page to the cache first * or we are out of memory for radix-tree nodes. */ page_cache_release(page); return error == -EEXIST ? 0 : error; } /* * filemap_nopage() is invoked via the vma operations vector for a * mapped memory region to read in file data during a page fault. * * The goto's are kind of ugly, but this streamlines the normal case of having * it in the page cache, and handles the special cases reasonably without * having a lot of duplicated code. */ struct page * filemap_nopage(struct vm_area_struct * area, unsigned long address, int unused) { int error; struct file *file = area->vm_file; struct address_space *mapping = file->f_dentry->d_inode->i_mapping; struct file_ra_state *ra = &file->f_ra; struct inode *inode = mapping->host; struct page *page; unsigned long size, pgoff, endoff; int did_readahead; pgoff = ((address - area->vm_start) >> PAGE_CACHE_SHIFT) + area->vm_pgoff; endoff = ((area->vm_end - area->vm_start) >> PAGE_CACHE_SHIFT) + area->vm_pgoff; retry_all: /* * An external ptracer can access pages that normally aren't * accessible.. */ size = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; if ((pgoff >= size) && (area->vm_mm == current->mm)) return NULL; /* * The "size" of the file, as far as mmap is concerned, isn't bigger * than the mapping */ if (size > endoff) size = endoff; did_readahead = 0; /* * The readahead code wants to be told about each and every page * so it can build and shrink its windows appropriately */ if (VM_SequentialReadHint(area)) { did_readahead = 1; page_cache_readahead(mapping, ra, file, pgoff); } /* * If the offset is outside the mapping size we're off the end * of a privately mapped file, so we need to map a zero page. */ if ((pgoff < size) && !VM_RandomReadHint(area)) { did_readahead = 1; page_cache_readaround(mapping, ra, file, pgoff); } /* * Do we have something in the page cache already? */ retry_find: page = find_get_page(mapping, pgoff); if (!page) { if (did_readahead) { handle_ra_miss(mapping,ra); did_readahead = 0; } goto no_cached_page; } /* * Ok, found a page in the page cache, now we need to check * that it's up-to-date. */ if (!PageUptodate(page)) goto page_not_uptodate; success: /* * Found the page and have a reference on it, need to check sharing * and possibly copy it over to another page.. */ mark_page_accessed(page); flush_page_to_ram(page); return page; no_cached_page: /* * We're only likely to ever get here if MADV_RANDOM is in * effect. */ error = page_cache_read(file, pgoff); /* * The page we want has now been added to the page cache. * In the unlikely event that someone removed it in the * meantime, we'll just come back here and read it again. */ if (error >= 0) goto retry_find; /* * An error return from page_cache_read can result if the * system is low on memory, or a problem occurs while trying * to schedule I/O. */ if (error == -ENOMEM) return NOPAGE_OOM; return NULL; page_not_uptodate: inc_page_state(pgmajfault); lock_page(page); /* Did it get unhashed while we waited for it? */ if (!page->mapping) { unlock_page(page); page_cache_release(page); goto retry_all; } /* Did somebody else get it up-to-date? */ if (PageUptodate(page)) { unlock_page(page); goto success; } if (!mapping->a_ops->readpage(file, page)) { wait_on_page_locked(page); if (PageUptodate(page)) goto success; } /* * Umm, take care of errors if the page isn't up-to-date. * Try to re-read it _once_. We do this synchronously, * because there really aren't any performance issues here * and we need to check for errors. */ lock_page(page); /* Somebody truncated the page on us? */ if (!page->mapping) { unlock_page(page); page_cache_release(page); goto retry_all; } /* Somebody else successfully read it in? */ if (PageUptodate(page)) { unlock_page(page); goto success; } ClearPageError(page); if (!mapping->a_ops->readpage(file, page)) { wait_on_page_locked(page); if (PageUptodate(page)) goto success; } /* * Things didn't work out. Return zero to tell the * mm layer so, possibly freeing the page cache page first. */ page_cache_release(page); return NULL; } static struct page * filemap_getpage(struct file *file, unsigned long pgoff, int nonblock) { struct address_space *mapping = file->f_dentry->d_inode->i_mapping; struct page *page; int error; /* * Do we have something in the page cache already? */ retry_find: page = find_get_page(mapping, pgoff); if (!page) { if (nonblock) return NULL; goto no_cached_page; } /* * Ok, found a page in the page cache, now we need to check * that it's up-to-date. */ if (!PageUptodate(page)) goto page_not_uptodate; success: /* * Found the page and have a reference on it, need to check sharing * and possibly copy it over to another page.. */ mark_page_accessed(page); flush_page_to_ram(page); return page; no_cached_page: error = page_cache_read(file, pgoff); /* * The page we want has now been added to the page cache. * In the unlikely event that someone removed it in the * meantime, we'll just come back here and read it again. */ if (error >= 0) goto retry_find; /* * An error return from page_cache_read can result if the * system is low on memory, or a problem occurs while trying * to schedule I/O. */ return NULL; page_not_uptodate: lock_page(page); /* Did it get unhashed while we waited for it? */ if (!page->mapping) { unlock_page(page); goto err; } /* Did somebody else get it up-to-date? */ if (PageUptodate(page)) { unlock_page(page); goto success; } if (!mapping->a_ops->readpage(file, page)) { wait_on_page_locked(page); if (PageUptodate(page)) goto success; } /* * Umm, take care of errors if the page isn't up-to-date. * Try to re-read it _once_. We do this synchronously, * because there really aren't any performance issues here * and we need to check for errors. */ lock_page(page); /* Somebody truncated the page on us? */ if (!page->mapping) { unlock_page(page); goto err; } /* Somebody else successfully read it in? */ if (PageUptodate(page)) { unlock_page(page); goto success; } ClearPageError(page); if (!mapping->a_ops->readpage(file, page)) { wait_on_page_locked(page); if (PageUptodate(page)) goto success; } /* * Things didn't work out. Return zero to tell the * mm layer so, possibly freeing the page cache page first. */ err: page_cache_release(page); return NULL; } static int filemap_populate(struct vm_area_struct *vma, unsigned long addr, unsigned long len, unsigned long prot, unsigned long pgoff, int nonblock) { struct file *file = vma->vm_file; struct address_space *mapping = file->f_dentry->d_inode->i_mapping; struct inode *inode = mapping->host; unsigned long size; struct mm_struct *mm = vma->vm_mm; struct page *page; int err; repeat: size = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; if (pgoff + (len >> PAGE_CACHE_SHIFT) > size) return -EINVAL; page = filemap_getpage(file, pgoff, nonblock); if (!page && !nonblock) return -ENOMEM; if (page) { err = install_page(mm, vma, addr, page, prot); if (err) { page_cache_release(page); return err; } } len -= PAGE_SIZE; addr += PAGE_SIZE; pgoff++; if (len) goto repeat; return 0; } static struct vm_operations_struct generic_file_vm_ops = { .nopage = filemap_nopage, .populate = filemap_populate, }; /* This is used for a general mmap of a disk file */ int generic_file_mmap(struct file * file, struct vm_area_struct * vma) { struct address_space *mapping = file->f_dentry->d_inode->i_mapping; struct inode *inode = mapping->host; if (!mapping->a_ops->readpage) return -ENOEXEC; UPDATE_ATIME(inode); vma->vm_ops = &generic_file_vm_ops; return 0; } int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) { if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE)) return -EINVAL; vma->vm_flags &= ~VM_MAYWRITE; return generic_file_mmap(file, vma); } #else int generic_file_mmap(struct file * file, struct vm_area_struct * vma) { return -ENOSYS; } #endif /* CONFIG_MMU */ static inline struct page *__read_cache_page(struct address_space *mapping, unsigned long index, int (*filler)(void *,struct page*), void *data) { struct page *page, *cached_page = NULL; int err; repeat: page = find_get_page(mapping, index); if (!page) { if (!cached_page) { cached_page = page_cache_alloc_cold(mapping); if (!cached_page) return ERR_PTR(-ENOMEM); } err = add_to_page_cache_lru(cached_page, mapping, index); if (err == -EEXIST) goto repeat; if (err < 0) { /* Presumably ENOMEM for radix tree node */ page_cache_release(cached_page); return ERR_PTR(err); } page = cached_page; cached_page = NULL; err = filler(data, page); if (err < 0) { page_cache_release(page); page = ERR_PTR(err); } } if (cached_page) page_cache_release(cached_page); return page; } /* * Read into the page cache. If a page already exists, * and PageUptodate() is not set, try to fill the page. */ struct page *read_cache_page(struct address_space *mapping, unsigned long index, int (*filler)(void *,struct page*), void *data) { struct page *page; int err; retry: page = __read_cache_page(mapping, index, filler, data); if (IS_ERR(page)) goto out; mark_page_accessed(page); if (PageUptodate(page)) goto out; lock_page(page); if (!page->mapping) { unlock_page(page); page_cache_release(page); goto retry; } if (PageUptodate(page)) { unlock_page(page); goto out; } err = filler(data, page); if (err < 0) { page_cache_release(page); page = ERR_PTR(err); } out: return page; } /* * If the page was newly created, increment its refcount and add it to the * caller's lru-buffering pagevec. This function is specifically for * generic_file_write(). */ static inline struct page * __grab_cache_page(struct address_space *mapping, unsigned long index, struct page **cached_page, struct pagevec *lru_pvec) { int err; struct page *page; repeat: page = find_lock_page(mapping, index); if (!page) { if (!*cached_page) { *cached_page = page_cache_alloc(mapping); if (!*cached_page) return NULL; } err = add_to_page_cache(*cached_page, mapping, index); if (err == -EEXIST) goto repeat; if (err == 0) { page = *cached_page; page_cache_get(page); if (!pagevec_add(lru_pvec, page)) __pagevec_lru_add(lru_pvec); *cached_page = NULL; } } return page; } void remove_suid(struct dentry *dentry) { struct iattr newattrs; struct inode *inode = dentry->d_inode; unsigned int mode = inode->i_mode & (S_ISUID|S_ISGID|S_IXGRP); if (!(mode & S_IXGRP)) mode &= S_ISUID; /* was any of the uid bits set? */ if (mode && !capable(CAP_FSETID)) { newattrs.ia_valid = ATTR_KILL_SUID | ATTR_KILL_SGID; notify_change(dentry, &newattrs); } } static inline int filemap_copy_from_user(struct page *page, unsigned long offset, const char *buf, unsigned bytes) { char *kaddr; int left; kaddr = kmap_atomic(page, KM_USER0); left = __copy_from_user(kaddr + offset, buf, bytes); kunmap_atomic(kaddr, KM_USER0); if (left != 0) { /* Do it the slow way */ kaddr = kmap(page); left = __copy_from_user(kaddr + offset, buf, bytes); kunmap(page); } return left; } static int __filemap_copy_from_user_iovec(char *vaddr, const struct iovec *iov, size_t base, size_t bytes) { int left = 0; while (bytes) { char *buf = iov->iov_base + base; int copy = min(bytes, iov->iov_len - base); base = 0; if ((left = __copy_from_user(vaddr, buf, copy))) break; bytes -= copy; vaddr += copy; iov++; } return left; } static inline int filemap_copy_from_user_iovec(struct page *page, unsigned long offset, const struct iovec *iov, size_t base, size_t bytes) { char *kaddr; int left; kaddr = kmap_atomic(page, KM_USER0); left = __filemap_copy_from_user_iovec(kaddr + offset, iov, base, bytes); kunmap_atomic(kaddr, KM_USER0); if (left != 0) { kaddr = kmap(page); left = __filemap_copy_from_user_iovec(kaddr + offset, iov, base, bytes); kunmap(page); } return left; } static inline void filemap_set_next_iovec(const struct iovec **iovp, size_t *basep, size_t bytes) { const struct iovec *iov = *iovp; size_t base = *basep; while (bytes) { int copy = min(bytes, iov->iov_len - base); bytes -= copy; base += copy; if (iov->iov_len == base) { iov++; base = 0; } } *iovp = iov; *basep = base; } /* * Write to a file through the page cache. * * We put everything into the page cache prior to writing it. This is not a * problem when writing full pages. With partial pages, however, we first have * to read the data into the cache, then dirty the page, and finally schedule * it for writing by marking it dirty. * okir@monad.swb.de */ ssize_t generic_file_write_nolock(struct file *file, const struct iovec *iov, unsigned long nr_segs, loff_t *ppos) { struct address_space * mapping = file->f_dentry->d_inode->i_mapping; struct address_space_operations *a_ops = mapping->a_ops; size_t ocount; /* original count */ size_t count; /* after file limit checks */ struct inode *inode = mapping->host; unsigned long limit = current->rlim[RLIMIT_FSIZE].rlim_cur; const int isblk = S_ISBLK(inode->i_mode); long status = 0; loff_t pos; struct page *page; struct page *cached_page = NULL; ssize_t written; int err; size_t bytes; struct pagevec lru_pvec; const struct iovec *cur_iov = iov; /* current iovec */ size_t iov_base = 0; /* offset in the current iovec */ unsigned long seg; char *buf; ocount = 0; for (seg = 0; seg < nr_segs; seg++) { const struct iovec *iv = &iov[seg]; /* * If any segment has a negative length, or the cumulative * length ever wraps negative then return -EINVAL. */ ocount += iv->iov_len; if (unlikely((ssize_t)(ocount|iv->iov_len) < 0)) return -EINVAL; if (access_ok(VERIFY_READ, iv->iov_base, iv->iov_len)) continue; if (seg == 0) return -EFAULT; nr_segs = seg; ocount -= iv->iov_len; /* This segment is no good */ break; } count = ocount; pos = *ppos; if (unlikely(pos < 0)) return -EINVAL; /* We can write back this queue in page reclaim */ current->backing_dev_info = mapping->backing_dev_info; pagevec_init(&lru_pvec, 0); if (unlikely(file->f_error)) { err = file->f_error; file->f_error = 0; goto out; } written = 0; if (!isblk) { /* FIXME: this is for backwards compatibility with 2.4 */ if (file->f_flags & O_APPEND) pos = inode->i_size; if (limit != RLIM_INFINITY) { if (pos >= limit) { send_sig(SIGXFSZ, current, 0); err = -EFBIG; goto out; } if (pos > 0xFFFFFFFFULL || count > limit - (u32)pos) { /* send_sig(SIGXFSZ, current, 0); */ count = limit - (u32)pos; } } } /* * LFS rule */ if (unlikely(pos + count > MAX_NON_LFS && !(file->f_flags & O_LARGEFILE))) { if (pos >= MAX_NON_LFS) { send_sig(SIGXFSZ, current, 0); err = -EFBIG; goto out; } if (count > MAX_NON_LFS - (u32)pos) { /* send_sig(SIGXFSZ, current, 0); */ count = MAX_NON_LFS - (u32)pos; } } /* * Are we about to exceed the fs block limit ? * * If we have written data it becomes a short write. If we have * exceeded without writing data we send a signal and return EFBIG. * Linus frestrict idea will clean these up nicely.. */ if (likely(!isblk)) { if (unlikely(pos >= inode->i_sb->s_maxbytes)) { if (count || pos > inode->i_sb->s_maxbytes) { send_sig(SIGXFSZ, current, 0); err = -EFBIG; goto out; } /* zero-length writes at ->s_maxbytes are OK */ } if (unlikely(pos + count > inode->i_sb->s_maxbytes)) count = inode->i_sb->s_maxbytes - pos; } else { if (bdev_read_only(inode->i_bdev)) { err = -EPERM; goto out; } if (pos >= inode->i_size) { if (count || pos > inode->i_size) { err = -ENOSPC; goto out; } } if (pos + count > inode->i_size) count = inode->i_size - pos; } err = 0; if (count == 0) goto out; remove_suid(file->f_dentry); inode_update_time(inode, 1); /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */ if (unlikely(file->f_flags & O_DIRECT)) { if (count != ocount) nr_segs = iov_shorten((struct iovec *)iov, nr_segs, count); written = generic_file_direct_IO(WRITE, file, iov, pos, nr_segs); if (written > 0) { loff_t end = pos + written; if (end > inode->i_size && !isblk) { inode->i_size = end; mark_inode_dirty(inode); } *ppos = end; } /* * Sync the fs metadata but not the minor inode changes and * of course not the data as we did direct DMA for the IO. */ if (written >= 0 && file->f_flags & O_SYNC) status = generic_osync_inode(inode, OSYNC_METADATA); goto out_status; } buf = iov->iov_base; do { unsigned long index; unsigned long offset; long page_fault; offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */ index = pos >> PAGE_CACHE_SHIFT; bytes = PAGE_CACHE_SIZE - offset; if (bytes > count) bytes = count; /* * Bring in the user page that we will copy from _first_. * Otherwise there's a nasty deadlock on copying from the * same page as we're writing to, without it being marked * up-to-date. */ fault_in_pages_readable(buf, bytes); page = __grab_cache_page(mapping,index,&cached_page,&lru_pvec); if (!page) { status = -ENOMEM; break; } status = a_ops->prepare_write(file, page, offset, offset+bytes); if (unlikely(status)) { /* * prepare_write() may have instantiated a few blocks * outside i_size. Trim these off again. */ unlock_page(page); page_cache_release(page); if (pos + bytes > inode->i_size) vmtruncate(inode, inode->i_size); break; } if (likely(nr_segs == 1)) page_fault = filemap_copy_from_user(page, offset, buf, bytes); else page_fault = filemap_copy_from_user_iovec(page, offset, cur_iov, iov_base, bytes); flush_dcache_page(page); status = a_ops->commit_write(file, page, offset, offset+bytes); if (unlikely(page_fault)) { status = -EFAULT; } else { if (!status) status = bytes; if (status >= 0) { written += status; count -= status; pos += status; buf += status; if (unlikely(nr_segs > 1)) filemap_set_next_iovec(&cur_iov, &iov_base, status); } } if (!PageReferenced(page)) SetPageReferenced(page); unlock_page(page); page_cache_release(page); if (status < 0) break; balance_dirty_pages_ratelimited(mapping); cond_resched(); } while (count); *ppos = pos; if (cached_page) page_cache_release(cached_page); /* * For now, when the user asks for O_SYNC, we'll actually give O_DSYNC */ if (status >= 0) { if ((file->f_flags & O_SYNC) || IS_SYNC(inode)) status = generic_osync_inode(inode, OSYNC_METADATA|OSYNC_DATA); } out_status: err = written ? written : status; out: pagevec_lru_add(&lru_pvec); current->backing_dev_info = 0; return err; } ssize_t generic_file_aio_write(struct kiocb *iocb, const char *buf, size_t count, loff_t pos) { return generic_file_write(iocb->ki_filp, buf, count, &iocb->ki_pos); } EXPORT_SYMBOL(generic_file_aio_write); ssize_t generic_file_write(struct file *file, const char *buf, size_t count, loff_t *ppos) { struct inode *inode = file->f_dentry->d_inode->i_mapping->host; int err; struct iovec local_iov = { .iov_base = (void *)buf, .iov_len = count }; down(&inode->i_sem); err = generic_file_write_nolock(file, &local_iov, 1, ppos); up(&inode->i_sem); return err; } ssize_t generic_file_readv(struct file *filp, const struct iovec *iov, unsigned long nr_segs, loff_t *ppos) { struct kiocb kiocb; ssize_t ret; init_sync_kiocb(&kiocb, filp); ret = __generic_file_aio_read(&kiocb, iov, nr_segs, ppos); if (-EIOCBQUEUED == ret) ret = wait_on_sync_kiocb(&kiocb); return ret; } ssize_t generic_file_writev(struct file *file, const struct iovec *iov, unsigned long nr_segs, loff_t * ppos) { struct inode *inode = file->f_dentry->d_inode; ssize_t ret; down(&inode->i_sem); ret = generic_file_write_nolock(file, iov, nr_segs, ppos); up(&inode->i_sem); return ret; }