/* * usbmidi.c - ALSA USB MIDI driver * * Copyright (c) 2002 Clemens Ladisch * All rights reserved. * * Based on the OSS usb-midi driver by NAGANO Daisuke, * NetBSD's umidi driver by Takuya SHIOZAKI, * the "USB Device Class Definition for MIDI Devices" by Roland * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * Alternatively, this software may be distributed and/or modified under the * terms of the GNU General Public License as published by the Free Software * Foundation; either version 2 of the License, or (at your option) any later * version. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include <sound/driver.h> #include <linux/kernel.h> #include <linux/types.h> #include <linux/interrupt.h> #include <linux/spinlock.h> #include <linux/string.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/usb.h> #include <sound/core.h> #include <sound/minors.h> #include <sound/rawmidi.h> #include "usbaudio.h" struct usb_ms_header_descriptor { __u8 bLength; __u8 bDescriptorType; __u8 bDescriptorSubtype; __u8 bcdMSC[2]; __u16 wTotalLength; } __attribute__ ((packed)); struct usb_ms_endpoint_descriptor { __u8 bLength; __u8 bDescriptorType; __u8 bDescriptorSubtype; __u8 bNumEmbMIDIJack; __u8 baAssocJackID[0]; } __attribute__ ((packed)); typedef struct snd_usb_midi snd_usb_midi_t; typedef struct snd_usb_midi_endpoint snd_usb_midi_endpoint_t; typedef struct snd_usb_midi_out_endpoint snd_usb_midi_out_endpoint_t; typedef struct snd_usb_midi_in_endpoint snd_usb_midi_in_endpoint_t; typedef struct usbmidi_out_port usbmidi_out_port_t; typedef struct usbmidi_in_port usbmidi_in_port_t; struct snd_usb_midi { snd_usb_audio_t *chip; struct usb_interface *iface; const snd_usb_audio_quirk_t *quirk; snd_rawmidi_t* rmidi; struct snd_usb_midi_endpoint { snd_usb_midi_out_endpoint_t *out; snd_usb_midi_in_endpoint_t *in; } endpoints[MIDI_MAX_ENDPOINTS]; }; struct snd_usb_midi_out_endpoint { snd_usb_midi_t* umidi; struct urb* urb; int max_transfer; /* size of urb buffer */ struct tasklet_struct tasklet; spinlock_t buffer_lock; struct usbmidi_out_port { snd_usb_midi_out_endpoint_t* ep; snd_rawmidi_substream_t* substream; int active; uint8_t cable; /* cable number << 4 */ uint8_t state; #define STATE_UNKNOWN 0 #define STATE_1PARAM 1 #define STATE_2PARAM_1 2 #define STATE_2PARAM_2 3 #define STATE_SYSEX_0 4 #define STATE_SYSEX_1 5 #define STATE_SYSEX_2 6 uint8_t data[2]; } ports[0x10]; }; struct snd_usb_midi_in_endpoint { snd_usb_midi_t* umidi; struct urb* urb; struct usbmidi_in_port { snd_rawmidi_substream_t* substream; } ports[0x10]; }; static void snd_usbmidi_do_output(snd_usb_midi_out_endpoint_t* ep); static const uint8_t snd_usbmidi_cin_length[] = { 0, 0, 2, 3, 3, 1, 2, 3, 3, 3, 3, 3, 2, 2, 3, 1 }; /* * Submits the URB, with error handling. */ static int snd_usbmidi_submit_urb(struct urb* urb, int flags) { int err = usb_submit_urb(urb, flags); if (err < 0 && err != -ENODEV) printk(KERN_ERR "snd-usb-midi: usb_submit_urb: %d\n", err); return err; } /* * Error handling for URB completion functions. */ static int snd_usbmidi_urb_error(int status) { if (status == -ENOENT) return status; /* killed */ if (status == -ENODEV || status == -EILSEQ || status == -ETIMEDOUT) return -ENODEV; /* device removed */ printk(KERN_ERR "snd-usb-midi: urb status %d\n", status); return 0; /* continue */ } /* * Receives a USB MIDI packet. */ static void snd_usbmidi_input_packet(snd_usb_midi_in_endpoint_t* ep, uint8_t packet[4]) { int cable = packet[0] >> 4; usbmidi_in_port_t* port = &ep->ports[cable]; if (!port->substream) { snd_printd("unexpected port %d!\n", cable); return; } if (!port->substream->runtime || !port->substream->runtime->trigger) return; snd_rawmidi_receive(port->substream, &packet[1], snd_usbmidi_cin_length[packet[0] & 0x0f]); } /* * Processes the data read from the device. */ static void snd_usbmidi_in_urb_complete(struct urb* urb) { snd_usb_midi_in_endpoint_t* ep = snd_magic_cast(snd_usb_midi_in_endpoint_t, urb->context, return); if (urb->status == 0) { uint8_t* buffer = (uint8_t*)ep->urb->transfer_buffer; int i; for (i = 0; i + 4 <= urb->actual_length; i += 4) if (buffer[i] != 0) snd_usbmidi_input_packet(ep, &buffer[i]); } else { if (snd_usbmidi_urb_error(urb->status) < 0) return; } if (usb_pipe_needs_resubmit(urb->pipe)) { urb->dev = ep->umidi->chip->dev; snd_usbmidi_submit_urb(urb, GFP_ATOMIC); } } /* * Converts the data read from a Midiman device to standard USB MIDI packets. */ static void snd_usbmidi_in_midiman_complete(struct urb* urb) { if (urb->status == 0) { uint8_t* buffer = (uint8_t*)urb->transfer_buffer; int i; for (i = 0; i + 4 <= urb->actual_length; i += 4) { if (buffer[i + 3] != 0) { /* * snd_usbmidi_input_packet() doesn't check the * contents of the message, so we simply use * some random CIN with the desired length. */ static const uint8_t cin[4] = { 0x0, 0xf, 0x2, 0x3 }; uint8_t ctl = buffer[i + 3]; buffer[i + 3] = buffer[i + 2]; buffer[i + 2] = buffer[i + 1]; buffer[i + 1] = buffer[i + 0]; buffer[i + 0] = (ctl & 0xf0) | cin[ctl & 3]; } else { buffer[i + 0] = 0; } } } snd_usbmidi_in_urb_complete(urb); } static void snd_usbmidi_out_urb_complete(struct urb* urb) { snd_usb_midi_out_endpoint_t* ep = snd_magic_cast(snd_usb_midi_out_endpoint_t, urb->context, return); if (urb->status < 0) { if (snd_usbmidi_urb_error(urb->status) < 0) return; } snd_usbmidi_do_output(ep); } /* * Converts standard USB MIDI packets to what Midman devices expect. */ static void snd_usbmidi_convert_to_midiman(struct urb* urb) { uint8_t* buffer = (uint8_t*)urb->transfer_buffer; int i; for (i = 0; i + 4 <= urb->transfer_buffer_length; i += 4) { uint8_t cin = buffer[i]; buffer[i + 0] = buffer[i + 1]; buffer[i + 1] = buffer[i + 2]; buffer[i + 2] = buffer[i + 3]; buffer[i + 3] = (cin & 0xf0) | snd_usbmidi_cin_length[cin & 0x0f]; } } /* * Adds one USB MIDI packet to the output buffer. */ static inline void output_packet(struct urb* urb, uint8_t p0, uint8_t p1, uint8_t p2, uint8_t p3) { uint8_t* buf = (uint8_t*)urb->transfer_buffer + urb->transfer_buffer_length; buf[0] = p0; buf[1] = p1; buf[2] = p2; buf[3] = p3; urb->transfer_buffer_length += 4; } /* * Converts MIDI commands to USB MIDI packets. */ static void snd_usbmidi_transmit_byte(usbmidi_out_port_t* port, uint8_t b, struct urb* urb) { uint8_t p0 = port->cable; if (b >= 0xf8) { output_packet(urb, p0 | 0x0f, b, 0, 0); } else if (b >= 0xf0) { switch (b) { case 0xf0: port->data[0] = b; port->state = STATE_SYSEX_1; break; case 0xf1: case 0xf3: port->data[0] = b; port->state = STATE_1PARAM; break; case 0xf2: port->data[0] = b; port->state = STATE_2PARAM_1; break; case 0xf4: case 0xf5: port->state = STATE_UNKNOWN; break; case 0xf6: output_packet(urb, p0 | 0x05, 0xf6, 0, 0); port->state = STATE_UNKNOWN; break; case 0xf7: switch (port->state) { case STATE_SYSEX_0: output_packet(urb, p0 | 0x05, 0xf7, 0, 0); break; case STATE_SYSEX_1: output_packet(urb, p0 | 0x06, port->data[0], 0xf7, 0); break; case STATE_SYSEX_2: output_packet(urb, p0 | 0x07, port->data[0], port->data[1], 0xf7); break; } port->state = STATE_UNKNOWN; break; } } else if (b >= 0x80) { port->data[0] = b; if (b >= 0xc0 && b <= 0xdf) port->state = STATE_1PARAM; else port->state = STATE_2PARAM_1; } else { /* b < 0x80 */ switch (port->state) { case STATE_1PARAM: if (port->data[0] < 0xf0) { p0 |= port->data[0] >> 4; } else { p0 |= 0x02; port->state = STATE_UNKNOWN; } output_packet(urb, p0, port->data[0], b, 0); break; case STATE_2PARAM_1: port->data[1] = b; port->state = STATE_2PARAM_2; break; case STATE_2PARAM_2: if (port->data[0] < 0xf0) { p0 |= port->data[0] >> 4; port->state = STATE_2PARAM_1; } else { p0 |= 0x03; port->state = STATE_UNKNOWN; } output_packet(urb, p0, port->data[0], port->data[1], b); break; case STATE_SYSEX_0: port->data[0] = b; port->state = STATE_SYSEX_1; break; case STATE_SYSEX_1: port->data[1] = b; port->state = STATE_SYSEX_2; break; case STATE_SYSEX_2: output_packet(urb, p0 | 0x04, port->data[0], port->data[1], b); port->state = STATE_SYSEX_0; break; } } } /* * Moves data from one substream buffer to the URB transfer buffer. */ static void snd_usbmidi_transmit(snd_usb_midi_out_endpoint_t* ep, int port_idx) { struct urb* urb = ep->urb; usbmidi_out_port_t* port = &ep->ports[port_idx]; while (urb->transfer_buffer_length < ep->max_transfer) { uint8_t b; if (snd_rawmidi_transmit_peek(port->substream, &b, 1) != 1) { port->active = 0; break; } snd_usbmidi_transmit_byte(port, b, urb); snd_rawmidi_transmit_ack(port->substream, 1); } } /* * This is called when some data should be transferred to the device * (from one or more substreams). */ static void snd_usbmidi_do_output(snd_usb_midi_out_endpoint_t* ep) { int p; struct urb* urb = ep->urb; unsigned long flags; spin_lock_irqsave(&ep->buffer_lock, flags); if (urb->status == -EINPROGRESS) { spin_unlock_irqrestore(&ep->buffer_lock, flags); return; } urb->transfer_buffer_length = 0; for (p= 0; p < 0x10; ++p) if (ep->ports[p].active) snd_usbmidi_transmit(ep, p); if (urb->transfer_buffer_length > 0) { if (ep->umidi->quirk && ep->umidi->quirk->type == QUIRK_MIDI_MIDIMAN) snd_usbmidi_convert_to_midiman(urb); urb->dev = ep->umidi->chip->dev; snd_usbmidi_submit_urb(urb, GFP_ATOMIC); } spin_unlock_irqrestore(&ep->buffer_lock, flags); } static void snd_usbmidi_out_tasklet(unsigned long data) { snd_usb_midi_out_endpoint_t* ep = snd_magic_cast(snd_usb_midi_out_endpoint_t, (void*)data, return); snd_usbmidi_do_output(ep); } static int snd_usbmidi_output_open(snd_rawmidi_substream_t* substream) { snd_usb_midi_t* umidi = snd_magic_cast(snd_usb_midi_t, substream->rmidi->private_data, return -ENXIO); usbmidi_out_port_t* port = NULL; int i, j; for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) if (umidi->endpoints[i].out) for (j = 0; j < 0x10; ++j) if (umidi->endpoints[i].out->ports[j].substream == substream) { port = &umidi->endpoints[i].out->ports[j]; break; } if (!port) return -ENXIO; substream->runtime->private_data = port; port->state = STATE_UNKNOWN; return 0; } static int snd_usbmidi_output_close(snd_rawmidi_substream_t* substream) { return 0; } static void snd_usbmidi_output_trigger(snd_rawmidi_substream_t* substream, int up) { usbmidi_out_port_t* port = (usbmidi_out_port_t*)substream->runtime->private_data; port->active = up; if (up) tasklet_hi_schedule(&port->ep->tasklet); } static int snd_usbmidi_input_open(snd_rawmidi_substream_t* substream) { return 0; } static int snd_usbmidi_input_close(snd_rawmidi_substream_t* substream) { return 0; } static void snd_usbmidi_input_trigger(snd_rawmidi_substream_t* substream, int up) { } static snd_rawmidi_ops_t snd_usbmidi_output_ops = { .open = snd_usbmidi_output_open, .close = snd_usbmidi_output_close, .trigger = snd_usbmidi_output_trigger, }; static snd_rawmidi_ops_t snd_usbmidi_input_ops = { .open = snd_usbmidi_input_open, .close = snd_usbmidi_input_close, .trigger = snd_usbmidi_input_trigger }; /* * Frees an input endpoint. * May be called when ep hasn't been initialized completely. */ static void snd_usbmidi_in_endpoint_delete(snd_usb_midi_in_endpoint_t* ep) { if (ep->urb) { if (ep->urb->transfer_buffer) { usb_unlink_urb(ep->urb); kfree(ep->urb->transfer_buffer); } usb_free_urb(ep->urb); } snd_magic_kfree(ep); } /* * For Roland devices, use the alternate setting which uses interrupt * transfers for input. */ static struct usb_endpoint_descriptor* snd_usbmidi_get_int_epd(snd_usb_midi_t* umidi) { struct usb_interface* intf; struct usb_host_interface *hostif; struct usb_interface_descriptor* intfd; if (umidi->chip->dev->descriptor.idVendor != 0x0582) return NULL; intf = umidi->iface; if (!intf || intf->num_altsetting != 2) return NULL; hostif = &intf->altsetting[0]; intfd = get_iface_desc(hostif); if (intfd->bNumEndpoints != 2 || (get_endpoint(hostif, 0)->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_BULK || (get_endpoint(hostif, 1)->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_BULK) return NULL; hostif = &intf->altsetting[1]; intfd = get_iface_desc(hostif); if (intfd->bNumEndpoints != 2 || (get_endpoint(hostif, 0)->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_BULK || (get_endpoint(hostif, 1)->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_INT) return NULL; usb_set_interface(umidi->chip->dev, intfd->bInterfaceNumber, intfd->bAlternateSetting); return get_endpoint(hostif, 1); } static struct usb_endpoint_descriptor* snd_usbmidi_get_midiman_int_epd(snd_usb_midi_t* umidi) { struct usb_interface* intf = umidi->iface; struct usb_host_interface *hostif; struct usb_interface_descriptor *intfd; if (!intf) return NULL; hostif = &intf->altsetting[0]; intfd = get_iface_desc(hostif); if (intfd->bNumEndpoints < 1) return NULL; return get_endpoint(hostif, 0); } /* * Creates an input endpoint. */ static int snd_usbmidi_in_endpoint_create(snd_usb_midi_t* umidi, snd_usb_midi_endpoint_info_t* ep_info, snd_usb_midi_endpoint_t* rep) { snd_usb_midi_in_endpoint_t* ep; struct usb_endpoint_descriptor* int_epd; void* buffer; unsigned int pipe; int length; rep->in = NULL; ep = snd_magic_kcalloc(snd_usb_midi_in_endpoint_t, 0, GFP_KERNEL); if (!ep) return -ENOMEM; ep->umidi = umidi; if (umidi->quirk && umidi->quirk->type == QUIRK_MIDI_MIDIMAN) int_epd = snd_usbmidi_get_midiman_int_epd(umidi); else int_epd = snd_usbmidi_get_int_epd(umidi); ep->urb = usb_alloc_urb(0, GFP_KERNEL); if (!ep->urb) { snd_usbmidi_in_endpoint_delete(ep); return -ENOMEM; } if (int_epd) pipe = usb_rcvintpipe(umidi->chip->dev, ep_info->epnum); else pipe = usb_rcvbulkpipe(umidi->chip->dev, ep_info->epnum); length = usb_maxpacket(umidi->chip->dev, pipe, 0); buffer = kmalloc(length, GFP_KERNEL); if (!buffer) { snd_usbmidi_in_endpoint_delete(ep); return -ENOMEM; } if (int_epd) usb_fill_int_urb(ep->urb, umidi->chip->dev, pipe, buffer, length, snd_usbmidi_in_urb_complete, ep, int_epd->bInterval); else usb_fill_bulk_urb(ep->urb, umidi->chip->dev, pipe, buffer, length, snd_usbmidi_in_urb_complete, ep); rep->in = ep; return 0; } static int snd_usbmidi_count_bits(uint16_t x) { int i, bits = 0; for (i = 0; i < 16; ++i) bits += (x & (1 << i)) != 0; return bits; } /* * Frees an output endpoint. * May be called when ep hasn't been initialized completely. */ static void snd_usbmidi_out_endpoint_delete(snd_usb_midi_out_endpoint_t* ep) { if (ep->tasklet.func) tasklet_kill(&ep->tasklet); if (ep->urb) { if (ep->urb->transfer_buffer) { usb_unlink_urb(ep->urb); kfree(ep->urb->transfer_buffer); } usb_free_urb(ep->urb); } snd_magic_kfree(ep); } /* * Creates an output endpoint, and initializes output ports. */ static int snd_usbmidi_out_endpoint_create(snd_usb_midi_t* umidi, snd_usb_midi_endpoint_info_t* ep_info, snd_usb_midi_endpoint_t* rep) { snd_usb_midi_out_endpoint_t* ep; int i; unsigned int pipe; void* buffer; rep->out = NULL; ep = snd_magic_kcalloc(snd_usb_midi_out_endpoint_t, 0, GFP_KERNEL); if (!ep) return -ENOMEM; ep->umidi = umidi; ep->urb = usb_alloc_urb(0, GFP_KERNEL); if (!ep->urb) { snd_usbmidi_out_endpoint_delete(ep); return -ENOMEM; } pipe = usb_sndbulkpipe(umidi->chip->dev, ep_info->epnum); ep->max_transfer = usb_maxpacket(umidi->chip->dev, pipe, 1) & ~3; buffer = kmalloc(ep->max_transfer, GFP_KERNEL); if (!buffer) { snd_usbmidi_out_endpoint_delete(ep); return -ENOMEM; } usb_fill_bulk_urb(ep->urb, umidi->chip->dev, pipe, buffer, ep->max_transfer, snd_usbmidi_out_urb_complete, ep); spin_lock_init(&ep->buffer_lock); tasklet_init(&ep->tasklet, snd_usbmidi_out_tasklet, (unsigned long)ep); for (i = 0; i < 0x10; ++i) if (ep_info->out_cables & (1 << i)) { ep->ports[i].ep = ep; ep->ports[i].cable = i << 4; } rep->out = ep; return 0; } /* * Frees everything. */ static void snd_usbmidi_free(snd_usb_midi_t* umidi) { int i; for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) { snd_usb_midi_endpoint_t* ep = &umidi->endpoints[i]; if (ep->out) snd_usbmidi_out_endpoint_delete(ep->out); if (ep->in) snd_usbmidi_in_endpoint_delete(ep->in); } snd_magic_kfree(umidi); } static void snd_usbmidi_rawmidi_free(snd_rawmidi_t* rmidi) { snd_usb_midi_t* umidi = snd_magic_cast(snd_usb_midi_t, rmidi->private_data, return); snd_usbmidi_free(umidi); } static snd_rawmidi_substream_t* snd_usbmidi_find_substream(snd_usb_midi_t* umidi, int stream, int number) { struct list_head* list; list_for_each(list, &umidi->rmidi->streams[stream].substreams) { snd_rawmidi_substream_t* substream = list_entry(list, snd_rawmidi_substream_t, list); if (substream->number == number) return substream; } return NULL; } static void snd_usbmidi_init_substream(snd_usb_midi_t* umidi, int stream, int number, snd_rawmidi_substream_t** rsubstream) { snd_rawmidi_substream_t* substream = snd_usbmidi_find_substream(umidi, stream, number); if (!substream) { snd_printd(KERN_ERR "substream %d:%d not found\n", stream, number); return; } /* TODO: read port name from jack descriptor */ snprintf(substream->name, sizeof(substream->name), "%s Port %d", umidi->chip->card->shortname, number); *rsubstream = substream; } /* * Creates the endpoints and their ports. */ static int snd_usbmidi_create_endpoints(snd_usb_midi_t* umidi, snd_usb_midi_endpoint_info_t* endpoints) { int i, j, err; int out_ports = 0, in_ports = 0; for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) { if (!endpoints[i].epnum) continue; if (endpoints[i].out_cables) { err = snd_usbmidi_out_endpoint_create(umidi, &endpoints[i], &umidi->endpoints[i]); if (err < 0) return err; } if (endpoints[i].in_cables) { err = snd_usbmidi_in_endpoint_create(umidi, &endpoints[i], &umidi->endpoints[i]); if (err < 0) return err; } for (j = 0; j < 0x10; ++j) { if (endpoints[i].out_cables & (1 << j)) { snd_usbmidi_init_substream(umidi, SNDRV_RAWMIDI_STREAM_OUTPUT, out_ports, &umidi->endpoints[i].out->ports[j].substream); ++out_ports; } if (endpoints[i].in_cables & (1 << j)) { snd_usbmidi_init_substream(umidi, SNDRV_RAWMIDI_STREAM_INPUT, in_ports, &umidi->endpoints[i].in->ports[j].substream); ++in_ports; } } } printk(KERN_INFO "snd-usb-midi: created %d output and %d input ports\n", out_ports, in_ports); return 0; } /* * Returns MIDIStreaming device capabilities. */ static int snd_usbmidi_get_ms_info(snd_usb_midi_t* umidi, snd_usb_midi_endpoint_info_t* endpoints) { struct usb_interface* intf; struct usb_host_interface *hostif; struct usb_interface_descriptor* intfd; struct usb_ms_header_descriptor* ms_header; struct usb_host_endpoint *hostep; struct usb_endpoint_descriptor* ep; struct usb_ms_endpoint_descriptor* ms_ep; int i, epidx; intf = umidi->iface; if (!intf) return -ENXIO; hostif = &intf->altsetting[0]; intfd = get_iface_desc(hostif); ms_header = (struct usb_ms_header_descriptor*)hostif->extra; if (hostif->extralen >= 7 && ms_header->bLength >= 7 && ms_header->bDescriptorType == USB_DT_CS_INTERFACE && ms_header->bDescriptorSubtype == HEADER) printk(KERN_INFO "snd-usb-midi: MIDIStreaming version %02x.%02x\n", ms_header->bcdMSC[1], ms_header->bcdMSC[0]); else printk(KERN_WARNING "snd-usb-midi: MIDIStreaming interface descriptor not found\n"); epidx = 0; for (i = 0; i < intfd->bNumEndpoints; ++i) { hostep = &hostif->endpoint[i]; ep = get_ep_desc(hostep); if ((ep->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_BULK) continue; ms_ep = (struct usb_ms_endpoint_descriptor*)hostep->extra; if (hostep->extralen < 4 || ms_ep->bLength < 4 || ms_ep->bDescriptorType != USB_DT_CS_ENDPOINT || ms_ep->bDescriptorSubtype != MS_GENERAL) continue; if (endpoints[epidx].epnum != 0 && endpoints[epidx].epnum != (ep->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK)) { ++epidx; if (epidx >= MIDI_MAX_ENDPOINTS) { printk(KERN_WARNING "snd-usb-midi: too many endpoints\n"); break; } } endpoints[epidx].epnum = ep->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK; if (ep->bEndpointAddress & USB_DIR_IN) { endpoints[epidx].in_cables = (1 << ms_ep->bNumEmbMIDIJack) - 1; } else { endpoints[epidx].out_cables = (1 << ms_ep->bNumEmbMIDIJack) - 1; } printk(KERN_INFO "snd-usb-midi: detected %d %s jack(s) on endpoint %d\n", ms_ep->bNumEmbMIDIJack, ep->bEndpointAddress & USB_DIR_IN ? "input" : "output", endpoints[epidx].epnum); } return 0; } /* * If the first endpoint isn't specified, use the first endpoint in the * first alternate setting of the interface. */ static int snd_usbmidi_detect_endpoint(snd_usb_midi_t* umidi, snd_usb_midi_endpoint_info_t* endpoint) { struct usb_interface* intf; struct usb_host_interface *hostif; struct usb_interface_descriptor* intfd; struct usb_endpoint_descriptor* epd; if (endpoint->epnum == -1) { intf = umidi->iface; if (!intf || intf->num_altsetting < 1) return -ENOENT; hostif = intf->altsetting; intfd = get_iface_desc(hostif); if (intfd->bNumEndpoints < 1) return -ENOENT; epd = get_endpoint(hostif, 0); endpoint->epnum = epd->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK; } return 0; } /* * Detects the endpoints and ports of Yamaha devices. */ static int snd_usbmidi_detect_yamaha(snd_usb_midi_t* umidi, snd_usb_midi_endpoint_info_t* endpoint) { struct usb_interface* intf; struct usb_host_interface *hostif; struct usb_interface_descriptor* intfd; uint8_t* cs_desc; intf = umidi->iface; if (!intf) return -ENOENT; hostif = intf->altsetting; intfd = get_iface_desc(hostif); if (intfd->bNumEndpoints < 1) return -ENOENT; for (cs_desc = hostif->extra; cs_desc < hostif->extra + hostif->extralen && cs_desc[0] >= 2; cs_desc += cs_desc[0]) { if (cs_desc[1] == CS_AUDIO_INTERFACE) { if (cs_desc[2] == MIDI_IN_JACK) endpoint->in_cables = (endpoint->in_cables << 1) | 1; else if (cs_desc[2] == MIDI_OUT_JACK) endpoint->out_cables = (endpoint->out_cables << 1) | 1; } } if (!endpoint->in_cables && !endpoint->out_cables) return -ENOENT; endpoint->epnum = -1; return snd_usbmidi_detect_endpoint(umidi, endpoint); } /* * Creates the endpoints and their ports for Midiman devices. */ static int snd_usbmidi_create_endpoints_midiman(snd_usb_midi_t* umidi, int ports) { snd_usb_midi_endpoint_info_t ep_info; struct usb_interface* intf; struct usb_host_interface *hostif; struct usb_interface_descriptor* intfd; struct usb_endpoint_descriptor* epd; int cable, err; intf = umidi->iface; if (!intf) return -ENOENT; hostif = intf->altsetting; intfd = get_iface_desc(hostif); if (intfd->bNumEndpoints < (ports > 1 ? 5 : 3)) { snd_printdd(KERN_ERR "not enough endpoints\n"); return -ENOENT; } epd = get_endpoint(hostif, 0); if ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) != USB_DIR_IN || (epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_INT) { snd_printdd(KERN_ERR "endpoint[0] isn't interrupt\n"); return -ENXIO; } epd = get_endpoint(hostif, 2); if ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) != USB_DIR_OUT || (epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_BULK) { snd_printdd(KERN_ERR "endpoint[2] isn't bulk output\n"); return -ENXIO; } if (ports > 1) { epd = get_endpoint(hostif, 4); if ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) != USB_DIR_OUT || (epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_BULK) { snd_printdd(KERN_ERR "endpoint[4] isn't bulk output\n"); return -ENXIO; } } ep_info.epnum = get_endpoint(hostif, 2)->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK; ep_info.out_cables = 0x5555 & ((1 << ports) - 1); err = snd_usbmidi_out_endpoint_create(umidi, &ep_info, &umidi->endpoints[0]); if (err < 0) return err; ep_info.epnum = get_endpoint(hostif, 0)->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK; ep_info.in_cables = (1 << ports) - 1; err = snd_usbmidi_in_endpoint_create(umidi, &ep_info, &umidi->endpoints[0]); if (err < 0) return err; umidi->endpoints[0].in->urb->complete = snd_usbmidi_in_midiman_complete; if (ports > 1) { ep_info.epnum = get_endpoint(hostif, 4)->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK; ep_info.out_cables = 0xaaaa & ((1 << ports) - 1); err = snd_usbmidi_out_endpoint_create(umidi, &ep_info, &umidi->endpoints[1]); if (err < 0) return err; } for (cable = 0; cable < ports; ++cable) { snd_usbmidi_init_substream(umidi, SNDRV_RAWMIDI_STREAM_OUTPUT, cable, &umidi->endpoints[cable & 1].out->ports[cable].substream); snd_usbmidi_init_substream(umidi, SNDRV_RAWMIDI_STREAM_INPUT, cable, &umidi->endpoints[0].in->ports[cable].substream); } return 0; } static int snd_usbmidi_create_rawmidi(snd_usb_midi_t* umidi, int out_ports, int in_ports) { snd_rawmidi_t* rmidi; int err; err = snd_rawmidi_new(umidi->chip->card, "USB MIDI", umidi->chip->next_midi_device++, out_ports, in_ports, &rmidi); if (err < 0) return err; strcpy(rmidi->name, umidi->chip->card->longname); rmidi->info_flags = SNDRV_RAWMIDI_INFO_OUTPUT | SNDRV_RAWMIDI_INFO_INPUT | SNDRV_RAWMIDI_INFO_DUPLEX; rmidi->private_data = umidi; rmidi->private_free = snd_usbmidi_rawmidi_free; snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_OUTPUT, &snd_usbmidi_output_ops); snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_INPUT, &snd_usbmidi_input_ops); umidi->rmidi = rmidi; return 0; } /* * Creates and registers everything needed for a MIDI streaming interface. */ int snd_usb_create_midi_interface(snd_usb_audio_t* chip, struct usb_interface* iface, const snd_usb_audio_quirk_t* quirk) { snd_usb_midi_t* umidi; snd_usb_midi_endpoint_info_t endpoints[MIDI_MAX_ENDPOINTS]; int out_ports, in_ports; int i, err; umidi = snd_magic_kcalloc(snd_usb_midi_t, 0, GFP_KERNEL); if (!umidi) return -ENOMEM; umidi->chip = chip; umidi->iface = iface; umidi->quirk = quirk; /* detect the endpoint(s) to use */ memset(endpoints, 0, sizeof(endpoints)); if (!quirk) { err = snd_usbmidi_get_ms_info(umidi, endpoints); } else { switch (quirk->type) { case QUIRK_MIDI_FIXED_ENDPOINT: memcpy(&endpoints[0], quirk->data, sizeof(snd_usb_midi_endpoint_info_t)); err = snd_usbmidi_detect_endpoint(umidi, &endpoints[0]); break; case QUIRK_MIDI_YAMAHA: err = snd_usbmidi_detect_yamaha(umidi, &endpoints[0]); break; case QUIRK_MIDI_MIDIMAN: err = 0; break; default: snd_printd(KERN_ERR "invalid quirk type %d\n", quirk->type); err = -ENXIO; break; } } if (err < 0) { snd_magic_kfree(umidi); return err; } /* create rawmidi device */ if (quirk && quirk->type == QUIRK_MIDI_MIDIMAN) { in_ports = out_ports = (int)quirk->data; } else { out_ports = 0; in_ports = 0; for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) { out_ports += snd_usbmidi_count_bits(endpoints[i].out_cables); in_ports += snd_usbmidi_count_bits(endpoints[i].in_cables); } } err = snd_usbmidi_create_rawmidi(umidi, out_ports, in_ports); if (err < 0) { snd_magic_kfree(umidi); return err; } /* create endpoint/port structures */ if (quirk && quirk->type == QUIRK_MIDI_MIDIMAN) err = snd_usbmidi_create_endpoints_midiman(umidi, (int)quirk->data); else err = snd_usbmidi_create_endpoints(umidi, endpoints); if (err < 0) { snd_usbmidi_free(umidi); return err; } for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) if (umidi->endpoints[i].in) snd_usbmidi_submit_urb(umidi->endpoints[i].in->urb, GFP_KERNEL); return 0; }