/* * Copyright (C) 1994-1998 Linus Torvalds & authors (see below) * * Mostly written by Mark Lord <mlord@pobox.com> * and Gadi Oxman <gadio@netvision.net.il> * and Andre Hedrick <andre@linux-ide.org> * * See linux/MAINTAINERS for address of current maintainer. * * This is the multiple IDE interface driver, as evolved from hd.c. * It supports up to MAX_HWIFS IDE interfaces, on one or more IRQs (usually 14 & 15). * There can be up to two drives per interface, as per the ATA-2 spec. * * Primary: ide0, port 0x1f0; major=3; hda is minor=0; hdb is minor=64 * Secondary: ide1, port 0x170; major=22; hdc is minor=0; hdd is minor=64 * Tertiary: ide2, port 0x???; major=33; hde is minor=0; hdf is minor=64 * Quaternary: ide3, port 0x???; major=34; hdg is minor=0; hdh is minor=64 * ... * * From hd.c: * | * | It traverses the request-list, using interrupts to jump between functions. * | As nearly all functions can be called within interrupts, we may not sleep. * | Special care is recommended. Have Fun! * | * | modified by Drew Eckhardt to check nr of hd's from the CMOS. * | * | Thanks to Branko Lankester, lankeste@fwi.uva.nl, who found a bug * | in the early extended-partition checks and added DM partitions. * | * | Early work on error handling by Mika Liljeberg (liljeber@cs.Helsinki.FI). * | * | IRQ-unmask, drive-id, multiple-mode, support for ">16 heads", * | and general streamlining by Mark Lord (mlord@pobox.com). * * October, 1994 -- Complete line-by-line overhaul for linux 1.1.x, by: * * Mark Lord (mlord@pobox.com) (IDE Perf.Pkg) * Delman Lee (delman@ieee.org) ("Mr. atdisk2") * Scott Snyder (snyder@fnald0.fnal.gov) (ATAPI IDE cd-rom) * * This was a rewrite of just about everything from hd.c, though some original * code is still sprinkled about. Think of it as a major evolution, with * inspiration from lots of linux users, esp. hamish@zot.apana.org.au * * Version 1.0 ALPHA initial code, primary i/f working okay * Version 1.3 BETA dual i/f on shared irq tested & working! * Version 1.4 BETA added auto probing for irq(s) * Version 1.5 BETA added ALPHA (untested) support for IDE cd-roms, * ... * Version 5.50 allow values as small as 20 for idebus= * Version 5.51 force non io_32bit in drive_cmd_intr() * change delay_10ms() to delay_50ms() to fix problems * Version 5.52 fix incorrect invalidation of removable devices * add "hdx=slow" command line option * Version 5.60 start to modularize the driver; the disk and ATAPI * drivers can be compiled as loadable modules. * move IDE probe code to ide-probe.c * move IDE disk code to ide-disk.c * add support for generic IDE device subdrivers * add m68k code from Geert Uytterhoeven * probe all interfaces by default * add ioctl to (re)probe an interface * Version 6.00 use per device request queues * attempt to optimize shared hwgroup performance * add ioctl to manually adjust bandwidth algorithms * add kerneld support for the probe module * fix bug in ide_error() * fix bug in the first ide_get_lock() call for Atari * don't flush leftover data for ATAPI devices * Version 6.01 clear hwgroup->active while the hwgroup sleeps * support HDIO_GETGEO for floppies * Version 6.02 fix ide_ack_intr() call * check partition table on floppies * Version 6.03 handle bad status bit sequencing in ide_wait_stat() * Version 6.10 deleted old entries from this list of updates * replaced triton.c with ide-dma.c generic PCI DMA * added support for BIOS-enabled UltraDMA * rename all "promise" things to "pdc4030" * fix EZ-DRIVE handling on small disks * Version 6.11 fix probe error in ide_scan_devices() * fix ancient "jiffies" polling bugs * mask all hwgroup interrupts on each irq entry * Version 6.12 integrate ioctl and proc interfaces * fix parsing of "idex=" command line parameter * Version 6.13 add support for ide4/ide5 courtesy rjones@orchestream.com * Version 6.14 fixed IRQ sharing among PCI devices * Version 6.15 added SMP awareness to IDE drivers * Version 6.16 fixed various bugs; even more SMP friendly * Version 6.17 fix for newest EZ-Drive problem * Version 6.18 default unpartitioned-disk translation now "BIOS LBA" * Version 6.19 Re-design for a UNIFORM driver for all platforms, * model based on suggestions from Russell King and * Geert Uytterhoeven * Promise DC4030VL now supported. * add support for ide6/ide7 * delay_50ms() changed to ide_delay_50ms() and exported. * Version 6.20 Added/Fixed Generic ATA-66 support and hwif detection. * Added hdx=flash to allow for second flash disk * detection w/o the hang loop. * Added support for ide8/ide9 * Added idex=ata66 for the quirky chipsets that are * ATA-66 compliant, but have yet to determine a method * of verification of the 80c cable presence. * Specifically Promise's PDC20262 chipset. * Version 6.21 Fixing/Fixed SMP spinlock issue with insight from an old * hat that clarified original low level driver design. * Version 6.30 Added SMP support; fixed multmode issues. -ml * Version 6.31 Debug Share INTR's and request queue streaming * Native ATA-100 support * Prep for Cascades Project * Version 6.32 4GB highmem support for DMA, and mapping of those for * PIO transfer (Jens Axboe) * * Some additional driver compile-time options are in ./include/linux/ide.h */ #define VERSION "7.0.0" #include <linux/config.h> #include <linux/module.h> #include <linux/types.h> #include <linux/string.h> #include <linux/kernel.h> #include <linux/timer.h> #include <linux/mm.h> #include <linux/interrupt.h> #include <linux/major.h> #include <linux/errno.h> #include <linux/genhd.h> #include <linux/blkpg.h> #include <linux/slab.h> #ifndef MODULE # include <linux/init.h> #endif #include <linux/pci.h> #include <linux/delay.h> #include <linux/ide.h> #include <linux/devfs_fs_kernel.h> #include <linux/completion.h> #include <linux/reboot.h> #include <linux/cdrom.h> #include <linux/device.h> #include <linux/kmod.h> #include <asm/byteorder.h> #include <asm/irq.h> #include <asm/uaccess.h> #include <asm/io.h> #include <asm/bitops.h> #include "ata-timing.h" /* * Those will be moved into separate header files eventually. */ #ifdef CONFIG_BLK_DEV_RZ1000 extern void ide_probe_for_rz100x(void); #endif #ifdef CONFIG_ETRAX_IDE extern void init_e100_ide(void); #endif #ifdef CONFIG_BLK_DEV_CMD640 extern void ide_probe_for_cmd640x(void); #endif #ifdef CONFIG_BLK_DEV_PDC4030 extern int ide_probe_for_pdc4030(void); #endif #ifdef CONFIG_BLK_DEV_IDE_PMAC extern void pmac_ide_probe(void); #endif #ifdef CONFIG_BLK_DEV_IDE_ICSIDE extern void icside_init(void); #endif #ifdef CONFIG_BLK_DEV_IDE_RAPIDE extern void rapide_init(void); #endif #ifdef CONFIG_BLK_DEV_GAYLE extern void gayle_init(void); #endif #ifdef CONFIG_BLK_DEV_FALCON_IDE extern void falconide_init(void); #endif #ifdef CONFIG_BLK_DEV_MAC_IDE extern void macide_init(void); #endif #ifdef CONFIG_BLK_DEV_Q40IDE extern void q40ide_init(void); #endif #ifdef CONFIG_BLK_DEV_BUDDHA extern void buddha_init(void); #endif #if defined(CONFIG_BLK_DEV_ISAPNP) && defined(CONFIG_ISAPNP) extern void pnpide_init(int); #endif /* default maximum number of failures */ #define IDE_DEFAULT_MAX_FAILURES 1 static int idebus_parameter; /* holds the "idebus=" parameter */ int system_bus_speed; /* holds what we think is VESA/PCI bus speed */ static int initializing; /* set while initializing built-in drivers */ /* * Protects access to global structures etc. */ spinlock_t ide_lock __cacheline_aligned = SPIN_LOCK_UNLOCKED; #ifdef CONFIG_BLK_DEV_IDEPCI static int ide_scan_direction; /* THIS was formerly 2.2.x pci=reverse */ #endif #if defined(__mc68000__) || defined(CONFIG_APUS) /* * This is used by the Atari code to obtain access to the IDE interrupt, * which is shared between several drivers. */ static int ide_intr_lock; #endif int noautodma = 0; /* * This is declared extern in ide.h, for access by other IDE modules: */ struct ata_channel ide_hwifs[MAX_HWIFS]; /* master data repository */ #if (DISK_RECOVERY_TIME > 0) /* * For really screwed hardware (hey, at least it *can* be used with Linux) * we can enforce a minimum delay time between successive operations. */ static unsigned long read_timer (void) { unsigned long t, flags; int i; __save_flags(flags); /* local CPU only */ __cli(); /* local CPU only */ t = jiffies * 11932; outb_p(0, 0x43); i = inb_p(0x40); i |= inb(0x40) << 8; __restore_flags(flags); /* local CPU only */ return (t - i); } #endif static inline void set_recovery_timer(struct ata_channel *channel) { #if (DISK_RECOVERY_TIME > 0) channel->last_time = read_timer(); #endif } /* * Do not even *think* about calling this! */ static void init_hwif_data(struct ata_channel *hwif, unsigned int index) { static const byte ide_major[] = { IDE0_MAJOR, IDE1_MAJOR, IDE2_MAJOR, IDE3_MAJOR, IDE4_MAJOR, IDE5_MAJOR, IDE6_MAJOR, IDE7_MAJOR, IDE8_MAJOR, IDE9_MAJOR }; unsigned int unit; hw_regs_t hw; /* bulk initialize hwif & drive info with zeros */ memset(hwif, 0, sizeof(struct ata_channel)); memset(&hw, 0, sizeof(hw_regs_t)); /* fill in any non-zero initial values */ hwif->index = index; ide_init_hwif_ports(&hw, ide_default_io_base(index), 0, &hwif->irq); memcpy(&hwif->hw, &hw, sizeof(hw)); memcpy(hwif->io_ports, hw.io_ports, sizeof(hw.io_ports)); hwif->noprobe = !hwif->io_ports[IDE_DATA_OFFSET]; #ifdef CONFIG_BLK_DEV_HD if (hwif->io_ports[IDE_DATA_OFFSET] == HD_DATA) hwif->noprobe = 1; /* may be overridden by ide_setup() */ #endif /* CONFIG_BLK_DEV_HD */ hwif->major = ide_major[index]; sprintf(hwif->name, "ide%d", index); hwif->bus_state = BUSSTATE_ON; for (unit = 0; unit < MAX_DRIVES; ++unit) { ide_drive_t *drive = &hwif->drives[unit]; drive->type = ATA_DISK; drive->select.all = (unit<<4)|0xa0; drive->channel = hwif; drive->ctl = 0x08; drive->ready_stat = READY_STAT; drive->bad_wstat = BAD_W_STAT; drive->special.b.recalibrate = 1; drive->special.b.set_geometry = 1; sprintf(drive->name, "hd%c", 'a' + (index * MAX_DRIVES) + unit); drive->max_failures = IDE_DEFAULT_MAX_FAILURES; init_waitqueue_head(&drive->wqueue); } } /* * init_ide_data() sets reasonable default values into all fields * of all instances of the hwifs and drives, but only on the first call. * Subsequent calls have no effect (they don't wipe out anything). * * This routine is normally called at driver initialization time, * but may also be called MUCH earlier during kernel "command-line" * parameter processing. As such, we cannot depend on any other parts * of the kernel (such as memory allocation) to be functioning yet. * * This is too bad, as otherwise we could dynamically allocate the * ide_drive_t structs as needed, rather than always consuming memory * for the max possible number (MAX_HWIFS * MAX_DRIVES) of them. */ #define MAGIC_COOKIE 0x12345678 static void __init init_ide_data (void) { unsigned int h; static unsigned long magic_cookie = MAGIC_COOKIE; if (magic_cookie != MAGIC_COOKIE) return; /* already initialized */ magic_cookie = 0; /* Initialize all interface structures */ for (h = 0; h < MAX_HWIFS; ++h) init_hwif_data(&ide_hwifs[h], h); /* Add default hw interfaces */ ide_init_default_hwifs(); idebus_parameter = 0; } /* * CompactFlash cards and their relatives pretend to be removable hard disks, except: * (1) they never have a slave unit, and * (2) they don't have a door lock mechanisms. * This test catches them, and is invoked elsewhere when setting appropriate config bits. * * FIXME FIXME: Yes this is for certain applicable for all of them as time has shown. * * FIXME: This treatment is probably applicable for *all* PCMCIA (PC CARD) devices, * so in linux 2.3.x we should change this to just treat all PCMCIA drives this way, * and get rid of the model-name tests below (too big of an interface change for 2.2.x). * At that time, we might also consider parameterizing the timeouts and retries, * since these are MUCH faster than mechanical drives. -M.Lord */ int drive_is_flashcard (ide_drive_t *drive) { struct hd_driveid *id = drive->id; if (drive->removable && id != NULL) { if (id->config == 0x848a) return 1; /* CompactFlash */ if (!strncmp(id->model, "KODAK ATA_FLASH", 15) /* Kodak */ || !strncmp(id->model, "Hitachi CV", 10) /* Hitachi */ || !strncmp(id->model, "SunDisk SDCFB", 13) /* SunDisk */ || !strncmp(id->model, "HAGIWARA HPC", 12) /* Hagiwara */ || !strncmp(id->model, "LEXAR ATA_FLASH", 15) /* Lexar */ || !strncmp(id->model, "ATA_FLASH", 9)) /* Simple Tech */ { return 1; /* yes, it is a flash memory card */ } } return 0; /* no, it is not a flash memory card */ } int __ide_end_request(ide_drive_t *drive, int uptodate, int nr_secs) { struct request *rq; unsigned long flags; int ret = 1; spin_lock_irqsave(&ide_lock, flags); rq = HWGROUP(drive)->rq; BUG_ON(!(rq->flags & REQ_STARTED)); /* * small hack to eliminate locking from ide_end_request to grab * the first segment number of sectors */ if (!nr_secs) nr_secs = rq->hard_cur_sectors; /* * decide whether to reenable DMA -- 3 is a random magic for now, * if we DMA timeout more than 3 times, just stay in PIO */ if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) { drive->state = 0; HWGROUP(drive)->hwif->dmaproc(ide_dma_on, drive); } if (!end_that_request_first(rq, uptodate, nr_secs)) { add_blkdev_randomness(major(rq->rq_dev)); blkdev_dequeue_request(rq); HWGROUP(drive)->rq = NULL; end_that_request_last(rq); ret = 0; } spin_unlock_irqrestore(&ide_lock, flags); return ret; } /* * This should get invoked any time we exit the driver to * wait for an interrupt response from a drive. handler() points * at the appropriate code to handle the next interrupt, and a * timer is started to prevent us from waiting forever in case * something goes wrong (see the ide_timer_expiry() handler later on). */ void ide_set_handler (ide_drive_t *drive, ide_handler_t *handler, unsigned int timeout, ide_expiry_t *expiry) { unsigned long flags; ide_hwgroup_t *hwgroup = HWGROUP(drive); spin_lock_irqsave(&ide_lock, flags); if (hwgroup->handler != NULL) { printk("%s: ide_set_handler: handler not null; old=%p, new=%p\n", drive->name, hwgroup->handler, handler); } hwgroup->handler = handler; hwgroup->expiry = expiry; hwgroup->timer.expires = jiffies + timeout; add_timer(&hwgroup->timer); spin_unlock_irqrestore(&ide_lock, flags); } static void ata_pre_reset (ide_drive_t *drive) { if (ata_ops(drive) && ata_ops(drive)->pre_reset) ata_ops(drive)->pre_reset(drive); if (!drive->keep_settings && !drive->using_dma) { drive->unmask = 0; drive->io_32bit = 0; } if (drive->using_dma) { /* check the DMA crc count */ if (drive->crc_count) { drive->channel->dmaproc(ide_dma_off_quietly, drive); if ((drive->channel->speedproc) != NULL) drive->channel->speedproc(drive, ide_auto_reduce_xfer(drive)); if (drive->current_speed >= XFER_SW_DMA_0) drive->channel->dmaproc(ide_dma_on, drive); } else drive->channel->dmaproc(ide_dma_off, drive); } } /* * The capacity of a drive according to its current geometry/LBA settings in * sectors. */ unsigned long ata_capacity(ide_drive_t *drive) { if (!drive->present || !drive->driver) return 0; if (ata_ops(drive) && ata_ops(drive)->capacity) return ata_ops(drive)->capacity(drive); /* FIXME: This magic number seems to be bogous. */ return 0x7fffffff; } /* * This is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT commands to * a drive. It used to do much more, but has been scaled back. */ static ide_startstop_t ata_special (ide_drive_t *drive) { special_t *s = &drive->special; #ifdef DEBUG printk("%s: ata_special: 0x%02x\n", drive->name, s->all); #endif if (s->b.set_tune) { ide_tuneproc_t *tuneproc = drive->channel->tuneproc; s->b.set_tune = 0; if (tuneproc != NULL) tuneproc(drive, drive->tune_req); } else if (drive->driver != NULL) { if (ata_ops(drive)->special) return ata_ops(drive)->special(drive); else { drive->special.all = 0; drive->mult_req = 0; return ide_stopped; } } else if (s->all) { printk("%s: bad special flag: 0x%02x\n", drive->name, s->all); s->all = 0; } return ide_stopped; } extern struct block_device_operations ide_fops[]; /* * This is called exactly *once* for each channel. */ void ide_geninit(struct ata_channel *hwif) { unsigned int unit; struct gendisk *gd = hwif->gd; for (unit = 0; unit < MAX_DRIVES; ++unit) { ide_drive_t *drive = &hwif->drives[unit]; if (!drive->present) continue; if (drive->type != ATA_DISK && drive->type != ATA_FLOPPY) continue; register_disk(gd,mk_kdev(hwif->major,unit<<PARTN_BITS), #ifdef CONFIG_BLK_DEV_ISAPNP (drive->forced_geom && drive->noprobe) ? 1 : #endif 1 << PARTN_BITS, ide_fops, ata_capacity(drive)); } } static ide_startstop_t do_reset1 (ide_drive_t *, int); /* needed below */ /* * ATAPI_reset_pollfunc() gets invoked to poll the interface for completion every 50ms * during an ATAPI drive reset operation. If the drive has not yet responded, * and we have not yet hit our maximum waiting time, then the timer is restarted * for another 50ms. */ static ide_startstop_t atapi_reset_pollfunc (ide_drive_t *drive) { ide_hwgroup_t *hwgroup = HWGROUP(drive); byte stat; SELECT_DRIVE(drive->channel,drive); udelay (10); if (OK_STAT(stat=GET_STAT(), 0, BUSY_STAT)) { printk("%s: ATAPI reset complete\n", drive->name); } else { if (time_before(jiffies, hwgroup->poll_timeout)) { BUG_ON(HWGROUP(drive)->handler); ide_set_handler (drive, &atapi_reset_pollfunc, HZ/20, NULL); return ide_started; /* continue polling */ } hwgroup->poll_timeout = 0; /* end of polling */ printk("%s: ATAPI reset timed-out, status=0x%02x\n", drive->name, stat); return do_reset1 (drive, 1); /* do it the old fashioned way */ } hwgroup->poll_timeout = 0; /* done polling */ return ide_stopped; } /* * reset_pollfunc() gets invoked to poll the interface for completion every 50ms * during an ide reset operation. If the drives have not yet responded, * and we have not yet hit our maximum waiting time, then the timer is restarted * for another 50ms. */ static ide_startstop_t reset_pollfunc (ide_drive_t *drive) { ide_hwgroup_t *hwgroup = HWGROUP(drive); struct ata_channel *hwif = drive->channel; byte tmp; if (!OK_STAT(tmp=GET_STAT(), 0, BUSY_STAT)) { if (time_before(jiffies, hwgroup->poll_timeout)) { BUG_ON(HWGROUP(drive)->handler); ide_set_handler (drive, &reset_pollfunc, HZ/20, NULL); return ide_started; /* continue polling */ } printk("%s: reset timed-out, status=0x%02x\n", hwif->name, tmp); drive->failures++; } else { printk("%s: reset: ", hwif->name); if ((tmp = GET_ERR()) == 1) { printk("success\n"); drive->failures = 0; } else { drive->failures++; #if FANCY_STATUS_DUMPS printk("master: "); switch (tmp & 0x7f) { case 1: printk("passed"); break; case 2: printk("formatter device error"); break; case 3: printk("sector buffer error"); break; case 4: printk("ECC circuitry error"); break; case 5: printk("controlling MPU error"); break; default:printk("error (0x%02x?)", tmp); } if (tmp & 0x80) printk("; slave: failed"); printk("\n"); #else printk("failed\n"); #endif } } hwgroup->poll_timeout = 0; /* done polling */ return ide_stopped; } /* * do_reset1() attempts to recover a confused drive by resetting it. * Unfortunately, resetting a disk drive actually resets all devices on * the same interface, so it can really be thought of as resetting the * interface rather than resetting the drive. * * ATAPI devices have their own reset mechanism which allows them to be * individually reset without clobbering other devices on the same interface. * * Unfortunately, the IDE interface does not generate an interrupt to let * us know when the reset operation has finished, so we must poll for this. * Equally poor, though, is the fact that this may a very long time to complete, * (up to 30 seconds worst case). So, instead of busy-waiting here for it, * we set a timer to poll at 50ms intervals. */ static ide_startstop_t do_reset1 (ide_drive_t *drive, int do_not_try_atapi) { unsigned int unit; unsigned long flags; struct ata_channel *hwif = drive->channel; ide_hwgroup_t *hwgroup = HWGROUP(drive); __save_flags(flags); /* local CPU only */ __cli(); /* local CPU only */ /* For an ATAPI device, first try an ATAPI SRST. */ if (drive->type != ATA_DISK && !do_not_try_atapi) { ata_pre_reset(drive); SELECT_DRIVE(hwif,drive); udelay (20); OUT_BYTE (WIN_SRST, IDE_COMMAND_REG); hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE; BUG_ON(HWGROUP(drive)->handler); ide_set_handler (drive, &atapi_reset_pollfunc, HZ/20, NULL); __restore_flags (flags); /* local CPU only */ return ide_started; } /* * First, reset any device state data we were maintaining * for any of the drives on this interface. */ for (unit = 0; unit < MAX_DRIVES; ++unit) ata_pre_reset(&hwif->drives[unit]); #if OK_TO_RESET_CONTROLLER if (!IDE_CONTROL_REG) { __restore_flags(flags); return ide_stopped; } /* * Note that we also set nIEN while resetting the device, * to mask unwanted interrupts from the interface during the reset. * However, due to the design of PC hardware, this will cause an * immediate interrupt due to the edge transition it produces. * This single interrupt gives us a "fast poll" for drives that * recover from reset very quickly, saving us the first 50ms wait time. */ OUT_BYTE(drive->ctl|6,IDE_CONTROL_REG); /* set SRST and nIEN */ udelay(10); /* more than enough time */ if (drive->quirk_list == 2) { OUT_BYTE(drive->ctl,IDE_CONTROL_REG); /* clear SRST and nIEN */ } else { OUT_BYTE(drive->ctl|2,IDE_CONTROL_REG); /* clear SRST, leave nIEN */ } udelay(10); /* more than enough time */ hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE; BUG_ON(HWGROUP(drive)->handler); ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL); /* * Some weird controller like resetting themselves to a strange * state when the disks are reset this way. At least, the Winbond * 553 documentation says that */ if (hwif->resetproc != NULL) hwif->resetproc(drive); #endif __restore_flags (flags); /* local CPU only */ return ide_started; } static inline u32 read_24 (ide_drive_t *drive) { return (IN_BYTE(IDE_HCYL_REG)<<16) | (IN_BYTE(IDE_LCYL_REG)<<8) | IN_BYTE(IDE_SECTOR_REG); } /* * Clean up after success/failure of an explicit drive cmd */ void ide_end_drive_cmd (ide_drive_t *drive, byte stat, byte err) { unsigned long flags; struct request *rq; spin_lock_irqsave(&ide_lock, flags); rq = HWGROUP(drive)->rq; if (rq->flags & REQ_DRIVE_CMD) { byte *args = (byte *) rq->buffer; rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT); if (args) { args[0] = stat; args[1] = err; args[2] = IN_BYTE(IDE_NSECTOR_REG); } } else if (rq->flags & REQ_DRIVE_TASK) { byte *args = (byte *) rq->buffer; rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT); if (args) { args[0] = stat; args[1] = err; args[2] = IN_BYTE(IDE_NSECTOR_REG); args[3] = IN_BYTE(IDE_SECTOR_REG); args[4] = IN_BYTE(IDE_LCYL_REG); args[5] = IN_BYTE(IDE_HCYL_REG); args[6] = IN_BYTE(IDE_SELECT_REG); } } else if (rq->flags & REQ_DRIVE_TASKFILE) { ide_task_t *args = (ide_task_t *) rq->special; rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT); if (args) { args->taskfile.feature = err; args->taskfile.sector_count = IN_BYTE(IDE_NSECTOR_REG); args->taskfile.sector_number = IN_BYTE(IDE_SECTOR_REG); args->taskfile.low_cylinder = IN_BYTE(IDE_LCYL_REG); args->taskfile.high_cylinder = IN_BYTE(IDE_HCYL_REG); args->taskfile.device_head = IN_BYTE(IDE_SELECT_REG); args->taskfile.command = stat; if ((drive->id->command_set_2 & 0x0400) && (drive->id->cfs_enable_2 & 0x0400) && (drive->addressing == 1)) { /* The following command goes to the hob file! */ OUT_BYTE(drive->ctl|0x80, IDE_CONTROL_REG); args->hobfile.feature = IN_BYTE(IDE_FEATURE_REG); args->hobfile.sector_count = IN_BYTE(IDE_NSECTOR_REG); args->hobfile.sector_number = IN_BYTE(IDE_SECTOR_REG); args->hobfile.low_cylinder = IN_BYTE(IDE_LCYL_REG); args->hobfile.high_cylinder = IN_BYTE(IDE_HCYL_REG); } } } blkdev_dequeue_request(rq); HWGROUP(drive)->rq = NULL; end_that_request_last(rq); spin_unlock_irqrestore(&ide_lock, flags); } /* * Error reporting, in human readable form (luxurious, but a memory hog). */ byte ide_dump_status (ide_drive_t *drive, const char *msg, byte stat) { unsigned long flags; byte err = 0; __save_flags (flags); /* local CPU only */ ide__sti(); /* local CPU only */ printk("%s: %s: status=0x%02x", drive->name, msg, stat); #if FANCY_STATUS_DUMPS printk(" { "); if (stat & BUSY_STAT) printk("Busy "); else { if (stat & READY_STAT) printk("DriveReady "); if (stat & WRERR_STAT) printk("DeviceFault "); if (stat & SEEK_STAT) printk("SeekComplete "); if (stat & DRQ_STAT) printk("DataRequest "); if (stat & ECC_STAT) printk("CorrectedError "); if (stat & INDEX_STAT) printk("Index "); if (stat & ERR_STAT) printk("Error "); } printk("}"); #endif /* FANCY_STATUS_DUMPS */ printk("\n"); if ((stat & (BUSY_STAT|ERR_STAT)) == ERR_STAT) { err = GET_ERR(); printk("%s: %s: error=0x%02x", drive->name, msg, err); #if FANCY_STATUS_DUMPS if (drive->type == ATA_DISK) { printk(" { "); if (err & ABRT_ERR) printk("DriveStatusError "); if (err & ICRC_ERR) printk("%s", (err & ABRT_ERR) ? "BadCRC " : "BadSector "); if (err & ECC_ERR) printk("UncorrectableError "); if (err & ID_ERR) printk("SectorIdNotFound "); if (err & TRK0_ERR) printk("TrackZeroNotFound "); if (err & MARK_ERR) printk("AddrMarkNotFound "); printk("}"); if ((err & (BBD_ERR | ABRT_ERR)) == BBD_ERR || (err & (ECC_ERR|ID_ERR|MARK_ERR))) { if ((drive->id->command_set_2 & 0x0400) && (drive->id->cfs_enable_2 & 0x0400) && (drive->addressing == 1)) { __u64 sectors = 0; u32 low = 0, high = 0; low = read_24(drive); OUT_BYTE(drive->ctl|0x80, IDE_CONTROL_REG); high = read_24(drive); sectors = ((__u64)high << 24) | low; printk(", LBAsect=%lld, high=%d, low=%d", (long long) sectors, high, low); } else { byte cur = IN_BYTE(IDE_SELECT_REG); if (cur & 0x40) { /* using LBA? */ printk(", LBAsect=%ld", (unsigned long) ((cur&0xf)<<24) |(IN_BYTE(IDE_HCYL_REG)<<16) |(IN_BYTE(IDE_LCYL_REG)<<8) | IN_BYTE(IDE_SECTOR_REG)); } else { printk(", CHS=%d/%d/%d", (IN_BYTE(IDE_HCYL_REG)<<8) + IN_BYTE(IDE_LCYL_REG), cur & 0xf, IN_BYTE(IDE_SECTOR_REG)); } } if (HWGROUP(drive) && HWGROUP(drive)->rq) printk(", sector=%ld", HWGROUP(drive)->rq->sector); } } #endif /* FANCY_STATUS_DUMPS */ printk("\n"); } __restore_flags (flags); /* local CPU only */ return err; } /* * try_to_flush_leftover_data() is invoked in response to a drive * unexpectedly having its DRQ_STAT bit set. As an alternative to * resetting the drive, this routine tries to clear the condition * by read a sector's worth of data from the drive. Of course, * this may not help if the drive is *waiting* for data from *us*. */ static void try_to_flush_leftover_data (ide_drive_t *drive) { int i = (drive->mult_count ? drive->mult_count : 1) * SECTOR_WORDS; if (drive->type != ATA_DISK) return; while (i > 0) { u32 buffer[16]; unsigned int wcount = (i > 16) ? 16 : i; i -= wcount; ata_input_data (drive, buffer, wcount); } } /* * ide_error() takes action based on the error returned by the drive. */ ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, byte stat) { struct request *rq; byte err; err = ide_dump_status(drive, msg, stat); if (drive == NULL || (rq = HWGROUP(drive)->rq) == NULL) return ide_stopped; /* retry only "normal" I/O: */ if (!(rq->flags & REQ_CMD)) { rq->errors = 1; ide_end_drive_cmd(drive, stat, err); return ide_stopped; } if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) { /* other bits are useless when BUSY */ rq->errors |= ERROR_RESET; } else { if (drive->type == ATA_DISK && (stat & ERR_STAT)) { /* err has different meaning on cdrom and tape */ if (err == ABRT_ERR) { if (drive->select.b.lba && IN_BYTE(IDE_COMMAND_REG) == WIN_SPECIFY) return ide_stopped; /* some newer drives don't support WIN_SPECIFY */ } else if ((err & (ABRT_ERR | ICRC_ERR)) == (ABRT_ERR | ICRC_ERR)) { drive->crc_count++; /* UDMA crc error -- just retry the operation */ } else if (err & (BBD_ERR | ECC_ERR)) /* retries won't help these */ rq->errors = ERROR_MAX; else if (err & TRK0_ERR) /* help it find track zero */ rq->errors |= ERROR_RECAL; } /* pre bio (rq->cmd != WRITE) */ if ((stat & DRQ_STAT) && rq_data_dir(rq) == READ) try_to_flush_leftover_data(drive); } if (GET_STAT() & (BUSY_STAT|DRQ_STAT)) OUT_BYTE(WIN_IDLEIMMEDIATE,IDE_COMMAND_REG); /* force an abort */ if (rq->errors >= ERROR_MAX) { /* ATA-PATTERN */ if (ata_ops(drive) && ata_ops(drive)->end_request) ata_ops(drive)->end_request(drive, 0); else ide_end_request(drive, 0); } else { if ((rq->errors & ERROR_RESET) == ERROR_RESET) { ++rq->errors; return do_reset1(drive, 0); } if ((rq->errors & ERROR_RECAL) == ERROR_RECAL) drive->special.b.recalibrate = 1; ++rq->errors; } return ide_stopped; } /* * Issue a simple drive command * The drive must be selected beforehand. */ void ide_cmd (ide_drive_t *drive, byte cmd, byte nsect, ide_handler_t *handler) { BUG_ON(HWGROUP(drive)->handler); ide_set_handler (drive, handler, WAIT_CMD, NULL); if (IDE_CONTROL_REG) OUT_BYTE(drive->ctl,IDE_CONTROL_REG); /* clear nIEN */ SELECT_MASK(drive->channel, drive, 0); OUT_BYTE(nsect,IDE_NSECTOR_REG); OUT_BYTE(cmd,IDE_COMMAND_REG); } /* * drive_cmd_intr() is invoked on completion of a special DRIVE_CMD. */ static ide_startstop_t drive_cmd_intr (ide_drive_t *drive) { struct request *rq = HWGROUP(drive)->rq; byte *args = (byte *) rq->buffer; byte stat = GET_STAT(); int retries = 10; ide__sti(); /* local CPU only */ if ((stat & DRQ_STAT) && args && args[3]) { byte io_32bit = drive->io_32bit; drive->io_32bit = 0; ata_input_data(drive, &args[4], args[3] * SECTOR_WORDS); drive->io_32bit = io_32bit; while (((stat = GET_STAT()) & BUSY_STAT) && retries--) udelay(100); } if (!OK_STAT(stat, READY_STAT, BAD_STAT)) return ide_error(drive, "drive_cmd", stat); /* calls ide_end_drive_cmd */ ide_end_drive_cmd (drive, stat, GET_ERR()); return ide_stopped; } /* * This routine busy-waits for the drive status to be not "busy". * It then checks the status for all of the "good" bits and none * of the "bad" bits, and if all is okay it returns 0. All other * cases return 1 after invoking ide_error() -- caller should just return. * * This routine should get fixed to not hog the cpu during extra long waits.. * That could be done by busy-waiting for the first jiffy or two, and then * setting a timer to wake up at half second intervals thereafter, * until timeout is achieved, before timing out. */ int ide_wait_stat(ide_startstop_t *startstop, ide_drive_t *drive, byte good, byte bad, unsigned long timeout) { byte stat; int i; unsigned long flags; /* bail early if we've exceeded max_failures */ if (drive->max_failures && (drive->failures > drive->max_failures)) { *startstop = ide_stopped; return 1; } udelay(1); /* spec allows drive 400ns to assert "BUSY" */ if ((stat = GET_STAT()) & BUSY_STAT) { __save_flags(flags); /* local CPU only */ ide__sti(); /* local CPU only */ timeout += jiffies; while ((stat = GET_STAT()) & BUSY_STAT) { if (0 < (signed long)(jiffies - timeout)) { __restore_flags(flags); /* local CPU only */ *startstop = ide_error(drive, "status timeout", stat); return 1; } } __restore_flags(flags); /* local CPU only */ } /* * Allow status to settle, then read it again. * A few rare drives vastly violate the 400ns spec here, * so we'll wait up to 10usec for a "good" status * rather than expensively fail things immediately. * This fix courtesy of Matthew Faupel & Niccolo Rigacci. */ for (i = 0; i < 10; i++) { udelay(1); if (OK_STAT((stat = GET_STAT()), good, bad)) return 0; } *startstop = ide_error(drive, "status error", stat); return 1; } /* * start_request() initiates handling of a new I/O request */ static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq) { ide_startstop_t startstop; unsigned long block; unsigned int minor = minor(rq->rq_dev), unit = minor >> PARTN_BITS; struct ata_channel *hwif = drive->channel; BUG_ON(!(rq->flags & REQ_STARTED)); #ifdef DEBUG printk("%s: start_request: current=0x%08lx\n", hwif->name, (unsigned long) rq); #endif /* bail early if we've exceeded max_failures */ if (drive->max_failures && (drive->failures > drive->max_failures)) { goto kill_rq; } if (unit >= MAX_DRIVES) { printk("%s: bad device number: %s\n", hwif->name, kdevname(rq->rq_dev)); goto kill_rq; } block = rq->sector; /* Strange disk manager remap */ if ((rq->flags & REQ_CMD) && (drive->type == ATA_DISK || drive->type == ATA_FLOPPY)) { block += drive->sect0; } /* Yecch - this will shift the entire interval, possibly killing some innocent following sector */ if (block == 0 && drive->remap_0_to_1 == 1) block = 1; /* redirect MBR access to EZ-Drive partn table */ #if (DISK_RECOVERY_TIME > 0) while ((read_timer() - hwif->last_time) < DISK_RECOVERY_TIME); #endif SELECT_DRIVE(hwif, drive); if (ide_wait_stat(&startstop, drive, drive->ready_stat, BUSY_STAT|DRQ_STAT, WAIT_READY)) { printk(KERN_WARNING "%s: drive not ready for command\n", drive->name); return startstop; } /* FIXME: We can see nicely here that all commands should be submitted * through the request queue and that the special field in drive should * go as soon as possible! */ if (!drive->special.all) { if (rq->flags & (REQ_DRIVE_CMD | REQ_DRIVE_TASK | REQ_DRIVE_TASKFILE)) { /* This issues a special drive command, usually * initiated by ioctl() from the external hdparm * program. */ if (rq->flags & REQ_DRIVE_TASKFILE) { ide_task_t *args = rq->special; if (!(args)) goto args_error; ata_taskfile(drive, &args->taskfile, &args->hobfile, args->handler, NULL, NULL); if (((args->command_type == IDE_DRIVE_TASK_RAW_WRITE) || (args->command_type == IDE_DRIVE_TASK_OUT)) && args->prehandler && args->handler) return args->prehandler(drive, rq); return ide_started; } else if (rq->flags & REQ_DRIVE_TASK) { byte *args = rq->buffer; byte sel; if (!(args)) goto args_error; #ifdef DEBUG printk("%s: DRIVE_TASK_CMD ", drive->name); printk("cmd=0x%02x ", args[0]); printk("fr=0x%02x ", args[1]); printk("ns=0x%02x ", args[2]); printk("sc=0x%02x ", args[3]); printk("lcyl=0x%02x ", args[4]); printk("hcyl=0x%02x ", args[5]); printk("sel=0x%02x\n", args[6]); #endif OUT_BYTE(args[1], IDE_FEATURE_REG); OUT_BYTE(args[3], IDE_SECTOR_REG); OUT_BYTE(args[4], IDE_LCYL_REG); OUT_BYTE(args[5], IDE_HCYL_REG); sel = (args[6] & ~0x10); if (drive->select.b.unit) sel |= 0x10; OUT_BYTE(sel, IDE_SELECT_REG); ide_cmd(drive, args[0], args[2], &drive_cmd_intr); return ide_started; } else if (rq->flags & REQ_DRIVE_CMD) { byte *args = rq->buffer; if (!(args)) goto args_error; #ifdef DEBUG printk("%s: DRIVE_CMD ", drive->name); printk("cmd=0x%02x ", args[0]); printk("sc=0x%02x ", args[1]); printk("fr=0x%02x ", args[2]); printk("xx=0x%02x\n", args[3]); #endif if (args[0] == WIN_SMART) { OUT_BYTE(0x4f, IDE_LCYL_REG); OUT_BYTE(0xc2, IDE_HCYL_REG); OUT_BYTE(args[2],IDE_FEATURE_REG); OUT_BYTE(args[1],IDE_SECTOR_REG); ide_cmd(drive, args[0], args[3], &drive_cmd_intr); return ide_started; } OUT_BYTE(args[2],IDE_FEATURE_REG); ide_cmd(drive, args[0], args[1], &drive_cmd_intr); return ide_started; } args_error: /* * NULL is actually a valid way of waiting for all * current requests to be flushed from the queue. */ #ifdef DEBUG printk("%s: DRIVE_CMD (null)\n", drive->name); #endif ide_end_drive_cmd(drive, GET_STAT(), GET_ERR()); return ide_stopped; } /* The normal way of execution is to pass execute the request * handler. */ if (ata_ops(drive)) { if (ata_ops(drive)->do_request) return ata_ops(drive)->do_request(drive, rq, block); else { ide_end_request(drive, 0); return ide_stopped; } } printk(KERN_WARNING "%s: device type %d not supported\n", drive->name, drive->type); goto kill_rq; } return ata_special(drive); kill_rq: if (ata_ops(drive) && ata_ops(drive)->end_request) ata_ops(drive)->end_request(drive, 0); else ide_end_request(drive, 0); return ide_stopped; } ide_startstop_t restart_request (ide_drive_t *drive) { ide_hwgroup_t *hwgroup = HWGROUP(drive); unsigned long flags; struct request *rq; spin_lock_irqsave(&ide_lock, flags); hwgroup->handler = NULL; del_timer(&hwgroup->timer); rq = hwgroup->rq; spin_unlock_irqrestore(&ide_lock, flags); return start_request(drive, rq); } /* * ide_stall_queue() can be used by a drive to give excess bandwidth back * to the hwgroup by sleeping for timeout jiffies. */ void ide_stall_queue(ide_drive_t *drive, unsigned long timeout) { if (timeout > WAIT_WORSTCASE) timeout = WAIT_WORSTCASE; drive->PADAM_sleep = timeout + jiffies; } /* * choose_drive() selects the next drive which will be serviced. */ static inline ide_drive_t *choose_drive(ide_hwgroup_t *hwgroup) { ide_drive_t *drive, *best; best = NULL; drive = hwgroup->drive; do { if (!list_empty(&drive->queue.queue_head) && (!drive->PADAM_sleep || time_after_eq(drive->PADAM_sleep, jiffies))) { if (!best || (drive->PADAM_sleep && (!best->PADAM_sleep || time_after(best->PADAM_sleep, drive->PADAM_sleep))) || (!best->PADAM_sleep && time_after(best->PADAM_service_start + 2 * best->PADAM_service_time, drive->PADAM_service_start + 2 * drive->PADAM_service_time))) { if (!blk_queue_plugged(&drive->queue)) best = drive; } } } while ((drive = drive->next) != hwgroup->drive); return best; } /* * Issue a new request to a drive from hwgroup * Caller must have already done spin_lock_irqsave(&ide_lock, ...) * * A hwgroup is a serialized group of IDE interfaces. Usually there is * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640) * may have both interfaces in a single hwgroup to "serialize" access. * Or possibly multiple ISA interfaces can share a common IRQ by being grouped * together into one hwgroup for serialized access. * * Note also that several hwgroups can end up sharing a single IRQ, * possibly along with many other devices. This is especially common in * PCI-based systems with off-board IDE controller cards. * * The IDE driver uses the queue spinlock to protect access to the request * queues. * * The first thread into the driver for a particular hwgroup sets the * hwgroup->flags IDE_BUSY flag to indicate that this hwgroup is now active, * and then initiates processing of the top request from the request queue. * * Other threads attempting entry notice the busy setting, and will simply * queue their new requests and exit immediately. Note that hwgroup->flags * remains busy even when the driver is merely awaiting the next interrupt. * Thus, the meaning is "this hwgroup is busy processing a request". * * When processing of a request completes, the completing thread or IRQ-handler * will start the next request from the queue. If no more work remains, * the driver will clear the hwgroup->flags IDE_BUSY flag and exit. */ static void ide_do_request(ide_hwgroup_t *hwgroup, int masked_irq) { ide_drive_t *drive; struct ata_channel *hwif; ide_startstop_t startstop; struct request *rq; ide_get_lock(&ide_intr_lock, ide_intr, hwgroup);/* for atari only: POSSIBLY BROKEN HERE(?) */ __cli(); /* necessary paranoia: ensure IRQs are masked on local CPU */ while (!test_and_set_bit(IDE_BUSY, &hwgroup->flags)) { drive = choose_drive(hwgroup); if (drive == NULL) { unsigned long sleep = 0; hwgroup->rq = NULL; drive = hwgroup->drive; do { if (drive->PADAM_sleep && (!sleep || time_after(sleep, drive->PADAM_sleep))) sleep = drive->PADAM_sleep; } while ((drive = drive->next) != hwgroup->drive); if (sleep) { /* * Take a short snooze, and then wake up this hwgroup again. * This gives other hwgroups on the same a chance to * play fairly with us, just in case there are big differences * in relative throughputs.. don't want to hog the cpu too much. */ if (0 < (signed long)(jiffies + WAIT_MIN_SLEEP - sleep)) sleep = jiffies + WAIT_MIN_SLEEP; #if 1 if (timer_pending(&hwgroup->timer)) printk("ide_set_handler: timer already active\n"); #endif set_bit(IDE_SLEEP, &hwgroup->flags); mod_timer(&hwgroup->timer, sleep); /* we purposely leave hwgroup busy while sleeping */ } else { /* Ugly, but how can we sleep for the lock otherwise? perhaps from tq_disk? */ ide_release_lock(&ide_intr_lock);/* for atari only */ clear_bit(IDE_BUSY, &hwgroup->flags); } return; /* no more work for this hwgroup (for now) */ } hwif = drive->channel; if (hwgroup->hwif->sharing_irq && hwif != hwgroup->hwif && hwif->io_ports[IDE_CONTROL_OFFSET]) { /* set nIEN for previous hwif */ if (hwif->intrproc) hwif->intrproc(drive); else OUT_BYTE((drive)->ctl|2, hwif->io_ports[IDE_CONTROL_OFFSET]); } hwgroup->hwif = hwif; hwgroup->drive = drive; drive->PADAM_sleep = 0; drive->PADAM_service_start = jiffies; if (blk_queue_plugged(&drive->queue)) BUG(); /* * just continuing an interrupted request maybe */ rq = hwgroup->rq = elv_next_request(&drive->queue); /* * Some systems have trouble with IDE IRQs arriving while * the driver is still setting things up. So, here we disable * the IRQ used by this interface while the request is being started. * This may look bad at first, but pretty much the same thing * happens anyway when any interrupt comes in, IDE or otherwise * -- the kernel masks the IRQ while it is being handled. */ if (masked_irq && hwif->irq != masked_irq) disable_irq_nosync(hwif->irq); spin_unlock(&ide_lock); ide__sti(); /* allow other IRQs while we start this request */ startstop = start_request(drive, rq); spin_lock_irq(&ide_lock); if (masked_irq && hwif->irq != masked_irq) enable_irq(hwif->irq); if (startstop == ide_stopped) clear_bit(IDE_BUSY, &hwgroup->flags); } } /* * Returns the queue which corresponds to a given device. */ request_queue_t *ide_get_queue(kdev_t dev) { struct ata_channel *channel = (struct ata_channel *)blk_dev[major(dev)].data; /* FIXME: ALLERT: This discriminates between master and slave! */ return &channel->drives[DEVICE_NR(dev) & 1].queue; } /* * Passes the stuff to ide_do_request */ void do_ide_request(request_queue_t *q) { ide_do_request(q->queuedata, 0); } /* * un-busy the hwgroup etc, and clear any pending DMA status. we want to * retry the current request in PIO mode instead of risking tossing it * all away */ void ide_dma_timeout_retry(ide_drive_t *drive) { struct ata_channel *hwif = drive->channel; struct request *rq; /* * end current dma transaction */ hwif->dmaproc(ide_dma_end, drive); /* * complain a little, later we might remove some of this verbosity */ printk("%s: timeout waiting for DMA\n", drive->name); hwif->dmaproc(ide_dma_timeout, drive); /* * disable dma for now, but remember that we did so because of * a timeout -- we'll reenable after we finish this next request * (or rather the first chunk of it) in pio. */ drive->retry_pio++; drive->state = DMA_PIO_RETRY; hwif->dmaproc(ide_dma_off_quietly, drive); /* * un-busy drive etc (hwgroup->busy is cleared on return) and * make sure request is sane */ rq = HWGROUP(drive)->rq; HWGROUP(drive)->rq = NULL; rq->errors = 0; if (rq->bio) { rq->sector = rq->bio->bi_sector; rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9; rq->buffer = NULL; } } /* * ide_timer_expiry() is our timeout function for all drive operations. * But note that it can also be invoked as a result of a "sleep" operation * triggered by the mod_timer() call in ide_do_request. */ void ide_timer_expiry(unsigned long data) { ide_hwgroup_t *hwgroup = (ide_hwgroup_t *) data; ide_handler_t *handler; ide_expiry_t *expiry; unsigned long flags; unsigned long wait; /* * a global lock protects timers etc -- shouldn't get contention * worth mentioning */ spin_lock_irqsave(&ide_lock, flags); del_timer(&hwgroup->timer); if ((handler = hwgroup->handler) == NULL) { /* * Either a marginal timeout occurred * (got the interrupt just as timer expired), * or we were "sleeping" to give other devices a chance. * Either way, we don't really want to complain about anything. */ if (test_and_clear_bit(IDE_SLEEP, &hwgroup->flags)) clear_bit(IDE_BUSY, &hwgroup->flags); } else { ide_drive_t *drive = hwgroup->drive; if (!drive) { printk("ide_timer_expiry: hwgroup->drive was NULL\n"); hwgroup->handler = NULL; } else { struct ata_channel *hwif; ide_startstop_t startstop; /* paranoia */ if (!test_and_set_bit(IDE_BUSY, &hwgroup->flags)) printk("%s: ide_timer_expiry: hwgroup was not busy??\n", drive->name); if ((expiry = hwgroup->expiry) != NULL) { /* continue */ if ((wait = expiry(drive)) != 0) { /* reengage timer */ hwgroup->timer.expires = jiffies + wait; add_timer(&hwgroup->timer); spin_unlock_irqrestore(&ide_lock, flags); return; } } hwgroup->handler = NULL; /* * We need to simulate a real interrupt when invoking * the handler() function, which means we need to globally * mask the specific IRQ: */ spin_unlock(&ide_lock); hwif = drive->channel; #if DISABLE_IRQ_NOSYNC disable_irq_nosync(hwif->irq); #else disable_irq(hwif->irq); /* disable_irq_nosync ?? */ #endif /* DISABLE_IRQ_NOSYNC */ __cli(); /* local CPU only, as if we were handling an interrupt */ if (hwgroup->poll_timeout != 0) { startstop = handler(drive); } else if (drive_is_ready(drive)) { if (drive->waiting_for_dma) (void) hwgroup->hwif->dmaproc(ide_dma_lostirq, drive); (void)ide_ack_intr(hwif); printk("%s: lost interrupt\n", drive->name); startstop = handler(drive); } else { if (drive->waiting_for_dma) { startstop = ide_stopped; ide_dma_timeout_retry(drive); } else startstop = ide_error(drive, "irq timeout", GET_STAT()); } set_recovery_timer(hwif); drive->PADAM_service_time = jiffies - drive->PADAM_service_start; enable_irq(hwif->irq); spin_lock_irq(&ide_lock); if (startstop == ide_stopped) clear_bit(IDE_BUSY, &hwgroup->flags); } } ide_do_request(hwgroup, 0); spin_unlock_irqrestore(&ide_lock, flags); } /* * There's nothing really useful we can do with an unexpected interrupt, * other than reading the status register (to clear it), and logging it. * There should be no way that an irq can happen before we're ready for it, * so we needn't worry much about losing an "important" interrupt here. * * On laptops (and "green" PCs), an unexpected interrupt occurs whenever the * drive enters "idle", "standby", or "sleep" mode, so if the status looks * "good", we just ignore the interrupt completely. * * This routine assumes __cli() is in effect when called. * * If an unexpected interrupt happens on irq15 while we are handling irq14 * and if the two interfaces are "serialized" (CMD640), then it looks like * we could screw up by interfering with a new request being set up for irq15. * * In reality, this is a non-issue. The new command is not sent unless the * drive is ready to accept one, in which case we know the drive is not * trying to interrupt us. And ide_set_handler() is always invoked before * completing the issuance of any new drive command, so we will not be * accidentally invoked as a result of any valid command completion interrupt. * */ static void unexpected_intr(int irq, ide_hwgroup_t *hwgroup) { byte stat; struct ata_channel *hwif = hwgroup->hwif; /* * handle the unexpected interrupt */ do { if (hwif->irq == irq) { stat = IN_BYTE(hwif->io_ports[IDE_STATUS_OFFSET]); if (!OK_STAT(stat, READY_STAT, BAD_STAT)) { /* Try to not flood the console with msgs */ static unsigned long last_msgtime, count; ++count; if (0 < (signed long)(jiffies - (last_msgtime + HZ))) { last_msgtime = jiffies; printk("%s%s: unexpected interrupt, status=0x%02x, count=%ld\n", hwif->name, (hwif->next == hwgroup->hwif) ? "" : "(?)", stat, count); } } } } while ((hwif = hwif->next) != hwgroup->hwif); } /* * entry point for all interrupts, caller does __cli() for us */ void ide_intr(int irq, void *dev_id, struct pt_regs *regs) { unsigned long flags; ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id; struct ata_channel *hwif; ide_drive_t *drive; ide_handler_t *handler; ide_startstop_t startstop; spin_lock_irqsave(&ide_lock, flags); hwif = hwgroup->hwif; if (!ide_ack_intr(hwif)) goto out_lock; if ((handler = hwgroup->handler) == NULL || hwgroup->poll_timeout != 0) { /* * Not expecting an interrupt from this drive. * That means this could be: * (1) an interrupt from another PCI device * sharing the same PCI INT# as us. * or (2) a drive just entered sleep or standby mode, * and is interrupting to let us know. * or (3) a spurious interrupt of unknown origin. * * For PCI, we cannot tell the difference, * so in that case we just ignore it and hope it goes away. */ #ifdef CONFIG_BLK_DEV_IDEPCI if (hwif->pci_dev && !hwif->pci_dev->vendor) #endif { /* * Probably not a shared PCI interrupt, * so we can safely try to do something about it: */ unexpected_intr(irq, hwgroup); #ifdef CONFIG_BLK_DEV_IDEPCI } else { /* * Whack the status register, just in case we have a leftover pending IRQ. */ IN_BYTE(hwif->io_ports[IDE_STATUS_OFFSET]); #endif } goto out_lock; } drive = hwgroup->drive; if (!drive) { /* * This should NEVER happen, and there isn't much we could do about it here. */ goto out_lock; } if (!drive_is_ready(drive)) { /* * This happens regularly when we share a PCI IRQ with another device. * Unfortunately, it can also happen with some buggy drives that trigger * the IRQ before their status register is up to date. Hopefully we have * enough advance overhead that the latter isn't a problem. */ goto out_lock; } /* paranoia */ if (!test_and_set_bit(IDE_BUSY, &hwgroup->flags)) printk("%s: ide_intr: hwgroup was not busy??\n", drive->name); hwgroup->handler = NULL; del_timer(&hwgroup->timer); spin_unlock(&ide_lock); if (drive->unmask) ide__sti(); /* local CPU only */ startstop = handler(drive); /* service this interrupt, may set handler for next interrupt */ spin_lock_irq(&ide_lock); /* * Note that handler() may have set things up for another * interrupt to occur soon, but it cannot happen until * we exit from this routine, because it will be the * same irq as is currently being serviced here, and Linux * won't allow another of the same (on any CPU) until we return. */ set_recovery_timer(drive->channel); drive->PADAM_service_time = jiffies - drive->PADAM_service_start; if (startstop == ide_stopped) { if (hwgroup->handler == NULL) { /* paranoia */ clear_bit(IDE_BUSY, &hwgroup->flags); ide_do_request(hwgroup, hwif->irq); } else { printk("%s: ide_intr: huh? expected NULL handler on exit\n", drive->name); } } out_lock: spin_unlock_irqrestore(&ide_lock, flags); } /* * get_info_ptr() returns the (ide_drive_t *) for a given device number. * It returns NULL if the given device number does not match any present drives. */ ide_drive_t *get_info_ptr(kdev_t i_rdev) { unsigned int major = major(i_rdev); int h; for (h = 0; h < MAX_HWIFS; ++h) { struct ata_channel *hwif = &ide_hwifs[h]; if (hwif->present && major == hwif->major) { int unit = DEVICE_NR(i_rdev); if (unit < MAX_DRIVES) { ide_drive_t *drive = &hwif->drives[unit]; if (drive->present) return drive; } break; } } return NULL; } /* * This function is intended to be used prior to invoking ide_do_drive_cmd(). */ void ide_init_drive_cmd (struct request *rq) { memset(rq, 0, sizeof(*rq)); rq->flags = REQ_DRIVE_CMD; } /* * This function issues a special IDE device request onto the request queue. * * If action is ide_wait, then the rq is queued at the end of the request * queue, and the function sleeps until it has been processed. This is for use * when invoked from an ioctl handler. * * If action is ide_preempt, then the rq is queued at the head of the request * queue, displacing the currently-being-processed request and this function * returns immediately without waiting for the new rq to be completed. This is * VERY DANGEROUS, and is intended for careful use by the ATAPI tape/cdrom * driver code. * * If action is ide_next, then the rq is queued immediately after the * currently-being-processed-request (if any), and the function returns without * waiting for the new rq to be completed. As above, This is VERY DANGEROUS, * and is intended for careful use by the ATAPI tape/cdrom driver code. * * If action is ide_end, then the rq is queued at the end of the request queue, * and the function returns immediately without waiting for the new rq to be * completed. This is again intended for careful use by the ATAPI tape/cdrom * driver code. */ int ide_do_drive_cmd(ide_drive_t *drive, struct request *rq, ide_action_t action) { unsigned long flags; ide_hwgroup_t *hwgroup = HWGROUP(drive); unsigned int major = drive->channel->major; request_queue_t *q = &drive->queue; struct list_head *queue_head = &q->queue_head; DECLARE_COMPLETION(wait); #ifdef CONFIG_BLK_DEV_PDC4030 if (drive->channel->chipset == ide_pdc4030 && rq->buffer != NULL) return -ENOSYS; /* special drive cmds not supported */ #endif rq->errors = 0; rq->rq_status = RQ_ACTIVE; rq->rq_dev = mk_kdev(major,(drive->select.b.unit)<<PARTN_BITS); if (action == ide_wait) rq->waiting = &wait; spin_lock_irqsave(&ide_lock, flags); if (blk_queue_empty(&drive->queue) || action == ide_preempt) { if (action == ide_preempt) hwgroup->rq = NULL; } else { if (action == ide_wait || action == ide_end) { queue_head = queue_head->prev; } else queue_head = queue_head->next; } q->elevator.elevator_add_req_fn(q, rq, queue_head); ide_do_request(hwgroup, 0); spin_unlock_irqrestore(&ide_lock, flags); if (action == ide_wait) { wait_for_completion(&wait); /* wait for it to be serviced */ return rq->errors ? -EIO : 0; /* return -EIO if errors */ } return 0; } /* * This routine is called to flush all partitions and partition tables * for a changed disk, and then re-read the new partition table. * If we are revalidating a disk because of a media change, then we * enter with usage == 0. If we are using an ioctl, we automatically have * usage == 1 (we need an open channel to use an ioctl :-), so this * is our limit. */ int ide_revalidate_disk (kdev_t i_rdev) { ide_drive_t *drive; ide_hwgroup_t *hwgroup; unsigned long flags; int res; if ((drive = get_info_ptr(i_rdev)) == NULL) return -ENODEV; hwgroup = HWGROUP(drive); spin_lock_irqsave(&ide_lock, flags); if (drive->busy || (drive->usage > 1)) { spin_unlock_irqrestore(&ide_lock, flags); return -EBUSY; } drive->busy = 1; MOD_INC_USE_COUNT; spin_unlock_irqrestore(&ide_lock, flags); res = wipe_partitions(i_rdev); if (!res) { if (ata_ops(drive) && ata_ops(drive)->revalidate) { ata_get(ata_ops(drive)); /* this is a no-op for tapes and SCSI based access */ ata_ops(drive)->revalidate(drive); ata_put(ata_ops(drive)); } else grok_partitions(i_rdev, ata_capacity(drive)); } drive->busy = 0; wake_up(&drive->wqueue); MOD_DEC_USE_COUNT; return res; } /* * Look again for all drives in the system on all interfaces. This is used * after a new driver category has been loaded as module. */ void revalidate_drives(void) { struct ata_channel *hwif; ide_drive_t *drive; int h; for (h = 0; h < MAX_HWIFS; ++h) { int unit; hwif = &ide_hwifs[h]; for (unit = 0; unit < MAX_DRIVES; ++unit) { drive = &ide_hwifs[h].drives[unit]; if (drive->revalidate) { drive->revalidate = 0; if (!initializing) ide_revalidate_disk(mk_kdev(hwif->major, unit<<PARTN_BITS)); } } } } static void ide_probe_module(void) { ideprobe_init(); revalidate_drives(); } static void ide_driver_module (void) { int index; for (index = 0; index < MAX_HWIFS; ++index) if (ide_hwifs[index].present) goto search; ide_probe_module(); search: revalidate_drives(); } static int ide_open(struct inode * inode, struct file * filp) { ide_drive_t *drive; if ((drive = get_info_ptr(inode->i_rdev)) == NULL) return -ENXIO; if (drive->driver == NULL) ide_driver_module(); /* Request a particular device type module. * * FIXME: The function which should rather requests the drivers is * ide_driver_module(), since it seems illogical and even a bit * dangerous to delay this until open time! */ #ifdef CONFIG_KMOD if (drive->driver == NULL) { char *module = NULL; switch (drive->type) { case ATA_DISK: module = "ide-disk"; break; case ATA_ROM: module = "ide-cd"; break; case ATA_TAPE: module = "ide-tape"; break; case ATA_FLOPPY: module = "ide-floppy"; break; case ATA_SCSI: module = "ide-scsi"; break; default: /* nothing we can do about it */ ; } if (module) request_module(module); } #endif while (drive->busy) sleep_on(&drive->wqueue); ++drive->usage; if (ata_ops(drive) && ata_ops(drive)->open) return ata_ops(drive)->open(inode, filp, drive); else { --drive->usage; return -ENODEV; } printk(KERN_INFO "%s: driver not present\n", drive->name); drive->usage--; return -ENXIO; } /* * Releasing a block device means we sync() it, so that it can safely * be forgotten about... */ static int ide_release(struct inode * inode, struct file * file) { ide_drive_t *drive; if (!(drive = get_info_ptr(inode->i_rdev))) return 0; drive->usage--; if (ata_ops(drive) && ata_ops(drive)->release) ata_ops(drive)->release(inode, file, drive); return 0; } #ifdef CONFIG_PROC_FS ide_proc_entry_t generic_subdriver_entries[] = { { "capacity", S_IFREG|S_IRUGO, proc_ide_read_capacity, NULL }, { NULL, 0, NULL, NULL } }; #endif /* * Note that we only release the standard ports, and do not even try to handle * any extra ports allocated for weird IDE interface chipsets. */ static void hwif_unregister(struct ata_channel *hwif) { if (hwif->straight8) { ide_release_region(hwif->io_ports[IDE_DATA_OFFSET], 8); } else { if (hwif->io_ports[IDE_DATA_OFFSET]) ide_release_region(hwif->io_ports[IDE_DATA_OFFSET], 1); if (hwif->io_ports[IDE_ERROR_OFFSET]) ide_release_region(hwif->io_ports[IDE_ERROR_OFFSET], 1); if (hwif->io_ports[IDE_NSECTOR_OFFSET]) ide_release_region(hwif->io_ports[IDE_NSECTOR_OFFSET], 1); if (hwif->io_ports[IDE_SECTOR_OFFSET]) ide_release_region(hwif->io_ports[IDE_SECTOR_OFFSET], 1); if (hwif->io_ports[IDE_LCYL_OFFSET]) ide_release_region(hwif->io_ports[IDE_LCYL_OFFSET], 1); if (hwif->io_ports[IDE_HCYL_OFFSET]) ide_release_region(hwif->io_ports[IDE_HCYL_OFFSET], 1); if (hwif->io_ports[IDE_SELECT_OFFSET]) ide_release_region(hwif->io_ports[IDE_SELECT_OFFSET], 1); if (hwif->io_ports[IDE_STATUS_OFFSET]) ide_release_region(hwif->io_ports[IDE_STATUS_OFFSET], 1); } if (hwif->io_ports[IDE_CONTROL_OFFSET]) ide_release_region(hwif->io_ports[IDE_CONTROL_OFFSET], 1); #if defined(CONFIG_AMIGA) || defined(CONFIG_MAC) if (hwif->io_ports[IDE_IRQ_OFFSET]) ide_release_region(hwif->io_ports[IDE_IRQ_OFFSET], 1); #endif } void ide_unregister(struct ata_channel *channel) { struct gendisk *gd; ide_drive_t *drive, *d; ide_hwgroup_t *hwgroup; int unit, i; unsigned long flags; unsigned int p, minor; struct ata_channel old_hwif; spin_lock_irqsave(&ide_lock, flags); if (!channel->present) goto abort; put_device(&channel->dev); for (unit = 0; unit < MAX_DRIVES; ++unit) { drive = &channel->drives[unit]; if (!drive->present) continue; if (drive->busy || drive->usage) goto abort; if (ata_ops(drive)) { if (ata_ops(drive)->cleanup) { if (ata_ops(drive)->cleanup(drive)) goto abort; } else ide_unregister_subdriver(drive); } } channel->present = 0; /* * All clear? Then blow away the buffer cache */ spin_unlock_irqrestore(&ide_lock, flags); for (unit = 0; unit < MAX_DRIVES; ++unit) { drive = &channel->drives[unit]; if (!drive->present) continue; minor = drive->select.b.unit << PARTN_BITS; for (p = 0; p < (1<<PARTN_BITS); ++p) { if (drive->part[p].nr_sects > 0) { kdev_t devp = mk_kdev(channel->major, minor+p); invalidate_device(devp, 0); } } } #ifdef CONFIG_PROC_FS destroy_proc_ide_drives(channel); #endif spin_lock_irqsave(&ide_lock, flags); hwgroup = channel->hwgroup; /* * free the irq if we were the only hwif using it */ { struct ata_channel *g; int irq_count = 0; g = hwgroup->hwif; do { if (g->irq == channel->irq) ++irq_count; g = g->next; } while (g != hwgroup->hwif); if (irq_count == 1) free_irq(channel->irq, hwgroup); } hwif_unregister(channel); /* * Remove us from the hwgroup, and free * the hwgroup if we were the only member */ d = hwgroup->drive; for (i = 0; i < MAX_DRIVES; ++i) { drive = &channel->drives[i]; if (drive->de) { devfs_unregister (drive->de); drive->de = NULL; } if (!drive->present) continue; while (hwgroup->drive->next != drive) hwgroup->drive = hwgroup->drive->next; hwgroup->drive->next = drive->next; if (hwgroup->drive == drive) hwgroup->drive = NULL; if (drive->id != NULL) { kfree(drive->id); drive->id = NULL; } drive->present = 0; blk_cleanup_queue(&drive->queue); } if (d->present) hwgroup->drive = d; while (hwgroup->hwif->next != channel) hwgroup->hwif = hwgroup->hwif->next; hwgroup->hwif->next = channel->next; if (hwgroup->hwif == channel) kfree(hwgroup); else hwgroup->hwif = hwgroup->drive->channel; #if defined(CONFIG_BLK_DEV_IDEDMA) && !defined(CONFIG_DMA_NONPCI) ide_release_dma(channel); #endif /* * Remove us from the kernel's knowledge */ unregister_blkdev(channel->major, channel->name); kfree(blksize_size[channel->major]); blk_dev[channel->major].data = NULL; blk_dev[channel->major].queue = NULL; blk_clear(channel->major); gd = channel->gd; if (gd) { del_gendisk(gd); kfree(gd->sizes); kfree(gd->part); if (gd->de_arr) kfree (gd->de_arr); if (gd->flags) kfree (gd->flags); kfree(gd); channel->gd = NULL; } /* * Reinitialize the channel handler, but preserve any special methods for * it. */ old_hwif = *channel; init_hwif_data(channel, channel->index); channel->hwgroup = old_hwif.hwgroup; channel->tuneproc = old_hwif.tuneproc; channel->speedproc = old_hwif.speedproc; channel->selectproc = old_hwif.selectproc; channel->resetproc = old_hwif.resetproc; channel->intrproc = old_hwif.intrproc; channel->maskproc = old_hwif.maskproc; channel->quirkproc = old_hwif.quirkproc; channel->rwproc = old_hwif.rwproc; channel->ideproc = old_hwif.ideproc; channel->dmaproc = old_hwif.dmaproc; channel->busproc = old_hwif.busproc; channel->bus_state = old_hwif.bus_state; channel->dma_base = old_hwif.dma_base; channel->dma_extra = old_hwif.dma_extra; channel->config_data = old_hwif.config_data; channel->select_data = old_hwif.select_data; channel->proc = old_hwif.proc; #ifndef CONFIG_BLK_DEV_IDECS channel->irq = old_hwif.irq; #endif channel->major = old_hwif.major; channel->chipset = old_hwif.chipset; channel->autodma = old_hwif.autodma; channel->udma_four = old_hwif.udma_four; #ifdef CONFIG_BLK_DEV_IDEPCI channel->pci_dev = old_hwif.pci_dev; #endif channel->straight8 = old_hwif.straight8; abort: spin_unlock_irqrestore(&ide_lock, flags); } /* * Setup hw_regs_t structure described by parameters. You * may set up the hw structure yourself OR use this routine to * do it for you. */ void ide_setup_ports ( hw_regs_t *hw, ide_ioreg_t base, int *offsets, ide_ioreg_t ctrl, ide_ioreg_t intr, ide_ack_intr_t *ack_intr, int irq) { int i; for (i = 0; i < IDE_NR_PORTS; i++) { if (offsets[i] == -1) { switch(i) { case IDE_CONTROL_OFFSET: hw->io_ports[i] = ctrl; break; #if defined(CONFIG_AMIGA) || defined(CONFIG_MAC) case IDE_IRQ_OFFSET: hw->io_ports[i] = intr; break; #endif /* (CONFIG_AMIGA) || (CONFIG_MAC) */ default: hw->io_ports[i] = 0; break; } } else { hw->io_ports[i] = base + offsets[i]; } } hw->irq = irq; hw->dma = NO_DMA; hw->ack_intr = ack_intr; } /* * Register an IDE interface, specifing exactly the registers etc * Set init=1 iff calling before probes have taken place. */ int ide_register_hw(hw_regs_t *hw, struct ata_channel **hwifp) { int h; int retry = 1; struct ata_channel *hwif; do { for (h = 0; h < MAX_HWIFS; ++h) { hwif = &ide_hwifs[h]; if (hwif->hw.io_ports[IDE_DATA_OFFSET] == hw->io_ports[IDE_DATA_OFFSET]) goto found; } for (h = 0; h < MAX_HWIFS; ++h) { hwif = &ide_hwifs[h]; if ((!hwif->present && (hwif->unit == ATA_PRIMARY) && !initializing) || (!hwif->hw.io_ports[IDE_DATA_OFFSET] && initializing)) goto found; } for (h = 0; h < MAX_HWIFS; ++h) ide_unregister(&ide_hwifs[h]); } while (retry--); return -1; found: ide_unregister(hwif); if (hwif->present) return -1; memcpy(&hwif->hw, hw, sizeof(*hw)); memcpy(hwif->io_ports, hwif->hw.io_ports, sizeof(hwif->hw.io_ports)); hwif->irq = hw->irq; hwif->noprobe = 0; hwif->chipset = hw->chipset; if (!initializing) { ide_probe_module(); #ifdef CONFIG_PROC_FS create_proc_ide_interfaces(); #endif ide_driver_module(); } if (hwifp) *hwifp = hwif; return (initializing || hwif->present) ? h : -1; } /* * Compatability function with existing drivers. If you want * something different, use the function above. */ int ide_register(int arg1, int arg2, int irq) { hw_regs_t hw; ide_init_hwif_ports(&hw, (ide_ioreg_t) arg1, (ide_ioreg_t) arg2, NULL); hw.irq = irq; return ide_register_hw(&hw, NULL); } void ide_add_setting (ide_drive_t *drive, const char *name, int rw, int read_ioctl, int write_ioctl, int data_type, int min, int max, int mul_factor, int div_factor, void *data, ide_procset_t *set) { ide_settings_t **p = &drive->settings; ide_settings_t *setting = NULL; while ((*p) && strcmp((*p)->name, name) < 0) p = &((*p)->next); if ((setting = kmalloc(sizeof(*setting), GFP_KERNEL)) == NULL) goto abort; memset(setting, 0, sizeof(*setting)); if ((setting->name = kmalloc(strlen(name) + 1, GFP_KERNEL)) == NULL) goto abort; strcpy(setting->name, name); setting->rw = rw; setting->read_ioctl = read_ioctl; setting->write_ioctl = write_ioctl; setting->data_type = data_type; setting->min = min; setting->max = max; setting->mul_factor = mul_factor; setting->div_factor = div_factor; setting->data = data; setting->set = set; setting->next = *p; if (drive->driver) setting->auto_remove = 1; *p = setting; return; abort: if (setting) kfree(setting); } void ide_remove_setting (ide_drive_t *drive, char *name) { ide_settings_t **p = &drive->settings, *setting; while ((*p) && strcmp((*p)->name, name)) p = &((*p)->next); if ((setting = (*p)) == NULL) return; (*p) = setting->next; kfree(setting->name); kfree(setting); } static void auto_remove_settings (ide_drive_t *drive) { ide_settings_t *setting; repeat: setting = drive->settings; while (setting) { if (setting->auto_remove) { ide_remove_setting(drive, setting->name); goto repeat; } setting = setting->next; } } int ide_read_setting (ide_drive_t *drive, ide_settings_t *setting) { int val = -EINVAL; unsigned long flags; if ((setting->rw & SETTING_READ)) { spin_lock_irqsave(&ide_lock, flags); switch(setting->data_type) { case TYPE_BYTE: val = *((u8 *) setting->data); break; case TYPE_SHORT: val = *((u16 *) setting->data); break; case TYPE_INT: case TYPE_INTA: val = *((u32 *) setting->data); break; } spin_unlock_irqrestore(&ide_lock, flags); } return val; } int ide_spin_wait_hwgroup (ide_drive_t *drive) { ide_hwgroup_t *hwgroup = HWGROUP(drive); unsigned long timeout = jiffies + (3 * HZ); spin_lock_irq(&ide_lock); while (test_bit(IDE_BUSY, &hwgroup->flags)) { unsigned long lflags; spin_unlock_irq(&ide_lock); __save_flags(lflags); /* local CPU only */ __sti(); /* local CPU only; needed for jiffies */ if (0 < (signed long)(jiffies - timeout)) { __restore_flags(lflags); /* local CPU only */ printk("%s: channel busy\n", drive->name); return -EBUSY; } __restore_flags(lflags); /* local CPU only */ spin_lock_irq(&ide_lock); } return 0; } /* * FIXME: This should be changed to enqueue a special request * to the driver to change settings, and then wait on a semaphore for completion. * The current scheme of polling is kludgey, though safe enough. */ int ide_write_setting (ide_drive_t *drive, ide_settings_t *setting, int val) { int i; u32 *p; if (!capable(CAP_SYS_ADMIN)) return -EACCES; if (!(setting->rw & SETTING_WRITE)) return -EPERM; if (val < setting->min || val > setting->max) return -EINVAL; if (setting->set) return setting->set(drive, val); if (ide_spin_wait_hwgroup(drive)) return -EBUSY; switch (setting->data_type) { case TYPE_BYTE: *((u8 *) setting->data) = val; break; case TYPE_SHORT: *((u16 *) setting->data) = val; break; case TYPE_INT: *((u32 *) setting->data) = val; break; case TYPE_INTA: p = (u32 *) setting->data; for (i = 0; i < 1 << PARTN_BITS; i++, p++) *p = val; break; } spin_unlock_irq(&ide_lock); return 0; } static int set_io_32bit(ide_drive_t *drive, int arg) { drive->io_32bit = arg; #ifdef CONFIG_BLK_DEV_DTC2278 if (drive->channel->chipset == ide_dtc2278) drive->channel->drives[!drive->select.b.unit].io_32bit = arg; #endif /* CONFIG_BLK_DEV_DTC2278 */ return 0; } static int set_using_dma (ide_drive_t *drive, int arg) { if (!drive->driver) return -EPERM; if (!drive->id || !(drive->id->capability & 1) || !drive->channel->dmaproc) return -EPERM; if (drive->channel->dmaproc(arg ? ide_dma_on : ide_dma_off, drive)) return -EIO; return 0; } static int set_pio_mode (ide_drive_t *drive, int arg) { struct request rq; if (!drive->channel->tuneproc) return -ENOSYS; if (drive->special.b.set_tune) return -EBUSY; ide_init_drive_cmd(&rq); drive->tune_req = (byte) arg; drive->special.b.set_tune = 1; ide_do_drive_cmd(drive, &rq, ide_wait); return 0; } void ide_add_generic_settings (ide_drive_t *drive) { /* * drive setting name read/write access read ioctl write ioctl data type min max mul_factor div_factor data pointer set function */ ide_add_setting(drive, "io_32bit", drive->no_io_32bit ? SETTING_READ : SETTING_RW, HDIO_GET_32BIT, HDIO_SET_32BIT, TYPE_BYTE, 0, 1 + (SUPPORT_VLB_SYNC << 1), 1, 1, &drive->io_32bit, set_io_32bit); ide_add_setting(drive, "keepsettings", SETTING_RW, HDIO_GET_KEEPSETTINGS, HDIO_SET_KEEPSETTINGS, TYPE_BYTE, 0, 1, 1, 1, &drive->keep_settings, NULL); ide_add_setting(drive, "pio_mode", SETTING_WRITE, -1, HDIO_SET_PIO_MODE, TYPE_BYTE, 0, 255, 1, 1, NULL, set_pio_mode); ide_add_setting(drive, "slow", SETTING_RW, -1, -1, TYPE_BYTE, 0, 1, 1, 1, &drive->slow, NULL); ide_add_setting(drive, "unmaskirq", drive->no_unmask ? SETTING_READ : SETTING_RW, HDIO_GET_UNMASKINTR, HDIO_SET_UNMASKINTR, TYPE_BYTE, 0, 1, 1, 1, &drive->unmask, NULL); ide_add_setting(drive, "using_dma", SETTING_RW, HDIO_GET_DMA, HDIO_SET_DMA, TYPE_BYTE, 0, 1, 1, 1, &drive->using_dma, set_using_dma); ide_add_setting(drive, "ide_scsi", SETTING_RW, -1, -1, TYPE_BYTE, 0, 1, 1, 1, &drive->scsi, NULL); ide_add_setting(drive, "init_speed", SETTING_RW, -1, -1, TYPE_BYTE, 0, 69, 1, 1, &drive->init_speed, NULL); ide_add_setting(drive, "current_speed", SETTING_RW, -1, -1, TYPE_BYTE, 0, 69, 1, 1, &drive->current_speed, NULL); ide_add_setting(drive, "number", SETTING_RW, -1, -1, TYPE_BYTE, 0, 3, 1, 1, &drive->dn, NULL); } /* * Delay for *at least* 50ms. As we don't know how much time is left * until the next tick occurs, we wait an extra tick to be safe. * This is used only during the probing/polling for drives at boot time. * * However, its usefullness may be needed in other places, thus we export it now. * The future may change this to a millisecond setable delay. */ void ide_delay_50ms (void) { #ifndef CONFIG_BLK_DEV_IDECS mdelay(50); #else __set_current_state(TASK_UNINTERRUPTIBLE); schedule_timeout(HZ/20); #endif /* CONFIG_BLK_DEV_IDECS */ } static int ide_ioctl (struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg) { int err = 0, major, minor; ide_drive_t *drive; struct request rq; kdev_t dev; ide_settings_t *setting; dev = inode->i_rdev; major = major(dev); minor = minor(dev); if ((drive = get_info_ptr(inode->i_rdev)) == NULL) return -ENODEV; /* Find setting by ioctl */ setting = drive->settings; while (setting) { if (setting->read_ioctl == cmd || setting->write_ioctl == cmd) break; setting = setting->next; } if (setting != NULL) { if (cmd == setting->read_ioctl) { err = ide_read_setting(drive, setting); return err >= 0 ? put_user(err, (long *) arg) : err; } else { if ((minor(inode->i_rdev) & PARTN_MASK)) return -EINVAL; return ide_write_setting(drive, setting, arg); } } ide_init_drive_cmd (&rq); switch (cmd) { case HDIO_GETGEO: { struct hd_geometry *loc = (struct hd_geometry *) arg; unsigned short bios_cyl = drive->bios_cyl; /* truncate */ if (!loc || (drive->type != ATA_DISK && drive->type != ATA_FLOPPY)) return -EINVAL; if (put_user(drive->bios_head, (byte *) &loc->heads)) return -EFAULT; if (put_user(drive->bios_sect, (byte *) &loc->sectors)) return -EFAULT; if (put_user(bios_cyl, (unsigned short *) &loc->cylinders)) return -EFAULT; if (put_user((unsigned)drive->part[minor(inode->i_rdev)&PARTN_MASK].start_sect, (unsigned long *) &loc->start)) return -EFAULT; return 0; } case HDIO_GETGEO_BIG: { struct hd_big_geometry *loc = (struct hd_big_geometry *) arg; if (!loc || (drive->type != ATA_DISK && drive->type != ATA_FLOPPY)) return -EINVAL; if (put_user(drive->bios_head, (byte *) &loc->heads)) return -EFAULT; if (put_user(drive->bios_sect, (byte *) &loc->sectors)) return -EFAULT; if (put_user(drive->bios_cyl, (unsigned int *) &loc->cylinders)) return -EFAULT; if (put_user((unsigned)drive->part[minor(inode->i_rdev)&PARTN_MASK].start_sect, (unsigned long *) &loc->start)) return -EFAULT; return 0; } case HDIO_GETGEO_BIG_RAW: { struct hd_big_geometry *loc = (struct hd_big_geometry *) arg; if (!loc || (drive->type != ATA_DISK && drive->type != ATA_FLOPPY)) return -EINVAL; if (put_user(drive->head, (byte *) &loc->heads)) return -EFAULT; if (put_user(drive->sect, (byte *) &loc->sectors)) return -EFAULT; if (put_user(drive->cyl, (unsigned int *) &loc->cylinders)) return -EFAULT; if (put_user((unsigned)drive->part[minor(inode->i_rdev)&PARTN_MASK].start_sect, (unsigned long *) &loc->start)) return -EFAULT; return 0; } case BLKRRPART: /* Re-read partition tables */ if (!capable(CAP_SYS_ADMIN)) return -EACCES; return ide_revalidate_disk(inode->i_rdev); case HDIO_OBSOLETE_IDENTITY: case HDIO_GET_IDENTITY: if (minor(inode->i_rdev) & PARTN_MASK) return -EINVAL; if (drive->id == NULL) return -ENOMSG; if (copy_to_user((char *)arg, (char *)drive->id, (cmd == HDIO_GET_IDENTITY) ? sizeof(*drive->id) : 142)) return -EFAULT; return 0; case HDIO_GET_NICE: return put_user(drive->dsc_overlap << IDE_NICE_DSC_OVERLAP | drive->atapi_overlap << IDE_NICE_ATAPI_OVERLAP, (long *) arg); case HDIO_DRIVE_CMD: if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO)) return -EACCES; return ide_cmd_ioctl(drive, inode, file, cmd, arg); case HDIO_DRIVE_TASK: if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO)) return -EACCES; return ide_task_ioctl(drive, inode, file, cmd, arg); case HDIO_SET_NICE: if (!capable(CAP_SYS_ADMIN)) return -EACCES; if (arg != (arg & ((1 << IDE_NICE_DSC_OVERLAP)))) return -EPERM; drive->dsc_overlap = (arg >> IDE_NICE_DSC_OVERLAP) & 1; /* Only CD-ROM's and tapes support DSC overlap. */ if (drive->dsc_overlap && !(drive->type == ATA_ROM || drive->type == ATA_TAPE)) { drive->dsc_overlap = 0; return -EPERM; } return 0; case BLKGETSIZE: case BLKGETSIZE64: case BLKROSET: case BLKROGET: case BLKFLSBUF: case BLKSSZGET: case BLKPG: case BLKELVGET: case BLKELVSET: case BLKBSZGET: case BLKBSZSET: return blk_ioctl(inode->i_bdev, cmd, arg); /* * uniform packet command handling */ case CDROMEJECT: case CDROMCLOSETRAY: return block_ioctl(inode->i_rdev, cmd, arg); case HDIO_GET_BUSSTATE: if (!capable(CAP_SYS_ADMIN)) return -EACCES; if (put_user(drive->channel->bus_state, (long *)arg)) return -EFAULT; return 0; case HDIO_SET_BUSSTATE: if (!capable(CAP_SYS_ADMIN)) return -EACCES; if (drive->channel->busproc) drive->channel->busproc(drive, (int)arg); return 0; default: if (ata_ops(drive) && ata_ops(drive)->ioctl) return ata_ops(drive)->ioctl(drive, inode, file, cmd, arg); return -EINVAL; } } static int ide_check_media_change (kdev_t i_rdev) { ide_drive_t *drive; if ((drive = get_info_ptr(i_rdev)) == NULL) return -ENODEV; if (ata_ops(drive)) { ata_get(ata_ops(drive)); if (ata_ops(drive)->check_media_change) return ata_ops(drive)->check_media_change(drive); else return 1; /* assume it was changed */ ata_put(ata_ops(drive)); } return 0; } void ide_fixstring (byte *s, const int bytecount, const int byteswap) { byte *p = s, *end = &s[bytecount & ~1]; /* bytecount must be even */ if (byteswap) { /* convert from big-endian to host byte order */ for (p = end ; p != s;) { unsigned short *pp = (unsigned short *) (p -= 2); *pp = ntohs(*pp); } } /* strip leading blanks */ while (s != end && *s == ' ') ++s; /* compress internal blanks and strip trailing blanks */ while (s != end && *s) { if (*s++ != ' ' || (s != end && *s && *s != ' ')) *p++ = *(s-1); } /* wipe out trailing garbage */ while (p != end) *p++ = '\0'; } /* * stridx() returns the offset of c within s, * or -1 if c is '\0' or not found within s. */ static int __init stridx (const char *s, char c) { char *i = strchr(s, c); return (i && c) ? i - s : -1; } /* * match_parm() does parsing for ide_setup(): * * 1. the first char of s must be '='. * 2. if the remainder matches one of the supplied keywords, * the index (1 based) of the keyword is negated and returned. * 3. if the remainder is a series of no more than max_vals numbers * separated by commas, the numbers are saved in vals[] and a * count of how many were saved is returned. Base10 is assumed, * and base16 is allowed when prefixed with "0x". * 4. otherwise, zero is returned. */ static int __init match_parm (char *s, const char *keywords[], int vals[], int max_vals) { static const char *decimal = "0123456789"; static const char *hex = "0123456789abcdef"; int i, n; if (*s++ == '=') { /* * Try matching against the supplied keywords, * and return -(index+1) if we match one */ if (keywords != NULL) { for (i = 0; *keywords != NULL; ++i) { if (!strcmp(s, *keywords++)) return -(i+1); } } /* * Look for a series of no more than "max_vals" * numeric values separated by commas, in base10, * or base16 when prefixed with "0x". * Return a count of how many were found. */ for (n = 0; (i = stridx(decimal, *s)) >= 0;) { vals[n] = i; while ((i = stridx(decimal, *++s)) >= 0) vals[n] = (vals[n] * 10) + i; if (*s == 'x' && !vals[n]) { while ((i = stridx(hex, *++s)) >= 0) vals[n] = (vals[n] * 0x10) + i; } if (++n == max_vals) break; if (*s == ',' || *s == ';') ++s; } if (!*s) return n; } return 0; /* zero = nothing matched */ } /* * This gets called VERY EARLY during initialization, to handle kernel "command * line" strings beginning with "hdx=" or "ide".It gets called even before the * actual module gets initialized. * * Here is the complete set currently supported comand line options: * * "hdx=" is recognized for all "x" from "a" to "h", such as "hdc". * "idex=" is recognized for all "x" from "0" to "3", such as "ide1". * * "hdx=noprobe" : drive may be present, but do not probe for it * "hdx=none" : drive is NOT present, ignore cmos and do not probe * "hdx=nowerr" : ignore the WRERR_STAT bit on this drive * "hdx=cdrom" : drive is present, and is a cdrom drive * "hdx=cyl,head,sect" : disk drive is present, with specified geometry * "hdx=noremap" : do not remap 0->1 even though EZD was detected * "hdx=autotune" : driver will attempt to tune interface speed * to the fastest PIO mode supported, * if possible for this drive only. * Not fully supported by all chipset types, * and quite likely to cause trouble with * older/odd IDE drives. * * "hdx=slow" : insert a huge pause after each access to the data * port. Should be used only as a last resort. * * "hdx=swapdata" : when the drive is a disk, byte swap all data * "hdx=bswap" : same as above.......... * "hdxlun=xx" : set the drive last logical unit. * "hdx=flash" : allows for more than one ata_flash disk to be * registered. In most cases, only one device * will be present. * "hdx=scsi" : the return of the ide-scsi flag, this is useful for * allowwing ide-floppy, ide-tape, and ide-cdrom|writers * to use ide-scsi emulation on a device specific option. * "idebus=xx" : inform IDE driver of VESA/PCI bus speed in MHz, * where "xx" is between 20 and 66 inclusive, * used when tuning chipset PIO modes. * For PCI bus, 25 is correct for a P75 system, * 30 is correct for P90,P120,P180 systems, * and 33 is used for P100,P133,P166 systems. * If in doubt, use idebus=33 for PCI. * As for VLB, it is safest to not specify it. * * "idex=noprobe" : do not attempt to access/use this interface * "idex=base" : probe for an interface at the address specified, * where "base" is usually 0x1f0 or 0x170 * and "ctl" is assumed to be "base"+0x206 * "idex=base,ctl" : specify both base and ctl * "idex=base,ctl,irq" : specify base, ctl, and irq number * "idex=autotune" : driver will attempt to tune interface speed * to the fastest PIO mode supported, * for all drives on this interface. * Not fully supported by all chipset types, * and quite likely to cause trouble with * older/odd IDE drives. * "idex=noautotune" : driver will NOT attempt to tune interface speed * This is the default for most chipsets, * except the cmd640. * "idex=serialize" : do not overlap operations on idex and ide(x^1) * "idex=four" : four drives on idex and ide(x^1) share same ports * "idex=reset" : reset interface before first use * "idex=dma" : enable DMA by default on both drives if possible * "idex=ata66" : informs the interface that it has an 80c cable * for chipsets that are ATA-66 capable, but * the ablity to bit test for detection is * currently unknown. * "ide=reverse" : Formerly called to pci sub-system, but now local. * * The following are valid ONLY on ide0, (except dc4030) * and the defaults for the base,ctl ports must not be altered. * * "ide0=dtc2278" : probe/support DTC2278 interface * "ide0=ht6560b" : probe/support HT6560B interface * "ide0=cmd640_vlb" : *REQUIRED* for VLB cards with the CMD640 chip * (not for PCI -- automatically detected) * "ide0=qd65xx" : probe/support qd65xx interface * "ide0=ali14xx" : probe/support ali14xx chipsets (ALI M1439, M1443, M1445) * "ide0=umc8672" : probe/support umc8672 chipsets * "idex=dc4030" : probe/support Promise DC4030VL interface * "ide=doubler" : probe/support IDE doublers on Amiga */ int __init ide_setup (char *s) { int i, vals[3]; struct ata_channel *hwif; ide_drive_t *drive; unsigned int hw, unit; const char max_drive = 'a' + ((MAX_HWIFS * MAX_DRIVES) - 1); const char max_hwif = '0' + (MAX_HWIFS - 1); if (!strncmp(s, "hd=", 3)) /* hd= is for hd.c driver and not us */ return 0; if (strncmp(s,"ide",3) && strncmp(s,"idebus",6) && strncmp(s,"hd",2)) /* hdx= & hdxlun= */ return 0; printk("ide_setup: %s", s); init_ide_data (); #ifdef CONFIG_BLK_DEV_IDEDOUBLER if (!strcmp(s, "ide=doubler")) { extern int ide_doubler; printk(" : Enabled support for IDE doublers\n"); ide_doubler = 1; return 1; } #endif if (!strcmp(s, "ide=nodma")) { printk("IDE: Prevented DMA\n"); noautodma = 1; return 1; } #ifdef CONFIG_BLK_DEV_IDEPCI if (!strcmp(s, "ide=reverse")) { ide_scan_direction = 1; printk(" : Enabled support for IDE inverse scan order.\n"); return 1; } #endif /* CONFIG_BLK_DEV_IDEPCI */ /* * Look for drive options: "hdx=" */ if (s[0] == 'h' && s[1] == 'd' && s[2] >= 'a' && s[2] <= max_drive) { const char *hd_words[] = {"none", "noprobe", "nowerr", "cdrom", "serialize", "autotune", "noautotune", "slow", "swapdata", "bswap", "flash", "remap", "noremap", "scsi", NULL}; unit = s[2] - 'a'; hw = unit / MAX_DRIVES; unit = unit % MAX_DRIVES; hwif = &ide_hwifs[hw]; drive = &hwif->drives[unit]; if (strncmp(s + 4, "ide-", 4) == 0) { strncpy(drive->driver_req, s + 4, 9); goto done; } /* * Look for last lun option: "hdxlun=" */ if (s[3] == 'l' && s[4] == 'u' && s[5] == 'n') { if (match_parm(&s[6], NULL, vals, 1) != 1) goto bad_option; if (vals[0] >= 0 && vals[0] <= 7) { drive->last_lun = vals[0]; drive->forced_lun = 1; } else printk(" -- BAD LAST LUN! Expected value from 0 to 7"); goto done; } switch (match_parm(&s[3], hd_words, vals, 3)) { case -1: /* "none" */ drive->nobios = 1; /* drop into "noprobe" */ case -2: /* "noprobe" */ drive->noprobe = 1; goto done; case -3: /* "nowerr" */ drive->bad_wstat = BAD_R_STAT; hwif->noprobe = 0; goto done; case -4: /* "cdrom" */ drive->present = 1; drive->type = ATA_ROM; hwif->noprobe = 0; goto done; case -5: /* "serialize" */ printk(" -- USE \"ide%d=serialize\" INSTEAD", hw); goto do_serialize; case -6: /* "autotune" */ drive->autotune = 1; goto done; case -7: /* "noautotune" */ drive->autotune = 2; goto done; case -8: /* "slow" */ drive->slow = 1; goto done; case -9: /* "swapdata" or "bswap" */ case -10: drive->bswap = 1; goto done; case -11: /* "flash" */ drive->ata_flash = 1; goto done; case -12: /* "remap" */ drive->remap_0_to_1 = 1; goto done; case -13: /* "noremap" */ drive->remap_0_to_1 = 2; goto done; case -14: /* "scsi" */ #if defined(CONFIG_BLK_DEV_IDESCSI) && defined(CONFIG_SCSI) drive->scsi = 1; goto done; #else drive->scsi = 0; goto bad_option; #endif /* defined(CONFIG_BLK_DEV_IDESCSI) && defined(CONFIG_SCSI) */ case 3: /* cyl,head,sect */ drive->type = ATA_DISK; drive->cyl = drive->bios_cyl = vals[0]; drive->head = drive->bios_head = vals[1]; drive->sect = drive->bios_sect = vals[2]; drive->present = 1; drive->forced_geom = 1; hwif->noprobe = 0; goto done; default: goto bad_option; } } if (s[0] != 'i' || s[1] != 'd' || s[2] != 'e') goto bad_option; /* * Look for bus speed option: "idebus=" */ if (s[3] == 'b' && s[4] == 'u' && s[5] == 's') { if (match_parm(&s[6], NULL, vals, 1) != 1) goto bad_option; if (vals[0] >= 20 && vals[0] <= 66) { idebus_parameter = vals[0]; } else printk(" -- BAD BUS SPEED! Expected value from 20 to 66"); goto done; } /* * Look for interface options: "idex=" */ if (s[3] >= '0' && s[3] <= max_hwif) { /* * Be VERY CAREFUL changing this: note hardcoded indexes below * -8,-9,-10 : are reserved for future idex calls to ease the hardcoding. */ const char *ide_words[] = { "noprobe", "serialize", "autotune", "noautotune", "reset", "dma", "ata66", "minus8", "minus9", "minus10", "minus11", "qd65xx", "ht6560b", "cmd640_vlb", "dtc2278", "umc8672", "ali14xx", "dc4030", NULL }; hw = s[3] - '0'; hwif = &ide_hwifs[hw]; i = match_parm(&s[4], ide_words, vals, 3); /* * Cryptic check to ensure chipset not already set for hwif: */ if (i > 0 || i <= -11) { /* is parameter a chipset name? */ if (hwif->chipset != ide_unknown) goto bad_option; /* chipset already specified */ if (i <= -11 && i != -18 && hw != 0) goto bad_hwif; /* chipset drivers are for "ide0=" only */ if (i <= -11 && i != -18 && ide_hwifs[hw+1].chipset != ide_unknown) goto bad_option; /* chipset for 2nd port already specified */ printk("\n"); } switch (i) { #ifdef CONFIG_BLK_DEV_PDC4030 case -18: /* "dc4030" */ { extern void init_pdc4030(void); init_pdc4030(); goto done; } #endif /* CONFIG_BLK_DEV_PDC4030 */ #ifdef CONFIG_BLK_DEV_ALI14XX case -17: /* "ali14xx" */ { extern void init_ali14xx (void); init_ali14xx(); goto done; } #endif /* CONFIG_BLK_DEV_ALI14XX */ #ifdef CONFIG_BLK_DEV_UMC8672 case -16: /* "umc8672" */ { extern void init_umc8672 (void); init_umc8672(); goto done; } #endif /* CONFIG_BLK_DEV_UMC8672 */ #ifdef CONFIG_BLK_DEV_DTC2278 case -15: /* "dtc2278" */ { extern void init_dtc2278 (void); init_dtc2278(); goto done; } #endif /* CONFIG_BLK_DEV_DTC2278 */ #ifdef CONFIG_BLK_DEV_CMD640 case -14: /* "cmd640_vlb" */ { extern int cmd640_vlb; /* flag for cmd640.c */ cmd640_vlb = 1; goto done; } #endif /* CONFIG_BLK_DEV_CMD640 */ #ifdef CONFIG_BLK_DEV_HT6560B case -13: /* "ht6560b" */ { extern void init_ht6560b (void); init_ht6560b(); goto done; } #endif /* CONFIG_BLK_DEV_HT6560B */ #if CONFIG_BLK_DEV_QD65XX case -12: /* "qd65xx" */ { extern void init_qd65xx (void); init_qd65xx(); goto done; } #endif /* CONFIG_BLK_DEV_QD65XX */ case -11: /* minus11 */ case -10: /* minus10 */ case -9: /* minus9 */ case -8: /* minus8 */ goto bad_option; case -7: /* ata66 */ #ifdef CONFIG_BLK_DEV_IDEPCI hwif->udma_four = 1; goto done; #else /* !CONFIG_BLK_DEV_IDEPCI */ hwif->udma_four = 0; goto bad_hwif; #endif /* CONFIG_BLK_DEV_IDEPCI */ case -6: /* dma */ hwif->autodma = 1; goto done; case -5: /* "reset" */ hwif->reset = 1; goto done; case -4: /* "noautotune" */ hwif->drives[0].autotune = 2; hwif->drives[1].autotune = 2; goto done; case -3: /* "autotune" */ hwif->drives[0].autotune = 1; hwif->drives[1].autotune = 1; goto done; case -2: /* "serialize" */ do_serialize: { struct ata_channel *mate; mate = &ide_hwifs[hw ^ 1]; hwif->serialized = 1; mate->serialized = 1; } goto done; case -1: /* "noprobe" */ hwif->noprobe = 1; goto done; case 1: /* base */ vals[1] = vals[0] + 0x206; /* default ctl */ case 2: /* base,ctl */ vals[2] = 0; /* default irq = probe for it */ case 3: /* base,ctl,irq */ hwif->hw.irq = vals[2]; ide_init_hwif_ports(&hwif->hw, (ide_ioreg_t) vals[0], (ide_ioreg_t) vals[1], &hwif->irq); memcpy(hwif->io_ports, hwif->hw.io_ports, sizeof(hwif->io_ports)); hwif->irq = vals[2]; hwif->noprobe = 0; hwif->chipset = ide_generic; goto done; case 0: goto bad_option; default: printk(" -- SUPPORT NOT CONFIGURED IN THIS KERNEL\n"); return 1; } } bad_option: printk(" -- BAD OPTION\n"); return 1; bad_hwif: printk("-- NOT SUPPORTED ON ide%d", hw); done: printk("\n"); return 1; } /* This is the default end request function as well */ int ide_end_request(ide_drive_t *drive, int uptodate) { return __ide_end_request(drive, uptodate, 0); } /* * Lookup IDE devices, which requested a particular driver */ ide_drive_t *ide_scan_devices(byte type, const char *name, struct ata_operations *driver, int n) { unsigned int unit, index, i; for (index = 0, i = 0; index < MAX_HWIFS; ++index) { struct ata_channel *hwif = &ide_hwifs[index]; if (!hwif->present) continue; for (unit = 0; unit < MAX_DRIVES; ++unit) { ide_drive_t *drive = &hwif->drives[unit]; char *req = drive->driver_req; if (*req && !strstr(name, req)) continue; if (drive->present && drive->type == type && drive->driver == driver && ++i > n) return drive; } } return NULL; } /* * This is in fact registering a drive not a driver. */ int ide_register_subdriver(ide_drive_t *drive, struct ata_operations *driver) { unsigned long flags; save_flags(flags); /* all CPUs */ cli(); /* all CPUs */ if (!drive->present || drive->driver != NULL || drive->busy || drive->usage) { restore_flags(flags); /* all CPUs */ return 1; } /* FIXME: This will be pushed to the drivers! Thus allowing us to * save one parameter here separate this out. */ drive->driver = driver; restore_flags(flags); /* all CPUs */ /* FIXME: Check what this magic number is supposed to be about? */ if (drive->autotune != 2) { if (drive->channel->dmaproc != NULL) { /* * Force DMAing for the beginning of the check. Some * chipsets appear to do interesting things, if not * checked and cleared. * * PARANOIA!!! */ drive->channel->dmaproc(ide_dma_off_quietly, drive); drive->channel->dmaproc(ide_dma_check, drive); } /* Only CD-ROMs and tape drives support DSC overlap. */ drive->dsc_overlap = (drive->next != drive && (drive->type == ATA_ROM || drive->type == ATA_TAPE)); } drive->revalidate = 1; drive->suspend_reset = 0; #ifdef CONFIG_PROC_FS ide_add_proc_entries(drive->proc, generic_subdriver_entries, drive); if (ata_ops(drive)) ide_add_proc_entries(drive->proc, ata_ops(drive)->proc, drive); #endif return 0; } /* * This is in fact the default cleanup routine. * * FIXME: Check whatever we maybe don't call it twice!. */ int ide_unregister_subdriver(ide_drive_t *drive) { unsigned long flags; save_flags(flags); /* all CPUs */ cli(); /* all CPUs */ #if 0 if (__MOD_IN_USE(ata_ops(drive)->owner)) { restore_flags(flags); return 1; } #endif if (drive->usage || drive->busy || !ata_ops(drive)) { restore_flags(flags); /* all CPUs */ return 1; } #if defined(CONFIG_BLK_DEV_ISAPNP) && defined(CONFIG_ISAPNP) && defined(MODULE) pnpide_init(0); #endif #ifdef CONFIG_PROC_FS if (ata_ops(drive)) ide_remove_proc_entries(drive->proc, ata_ops(drive)->proc); ide_remove_proc_entries(drive->proc, generic_subdriver_entries); #endif auto_remove_settings(drive); drive->driver = NULL; drive->present = 0; restore_flags(flags); /* all CPUs */ return 0; } /* * Register an ATA driver for a particular device type. */ int register_ata_driver(unsigned int type, struct ata_operations *driver) { return 0; } EXPORT_SYMBOL(register_ata_driver); /* * Unregister an ATA driver for a particular device type. */ int unregister_ata_driver(unsigned int type, struct ata_operations *driver) { return 0; } EXPORT_SYMBOL(unregister_ata_driver); struct block_device_operations ide_fops[] = {{ owner: THIS_MODULE, open: ide_open, release: ide_release, ioctl: ide_ioctl, check_media_change: ide_check_media_change, revalidate: ide_revalidate_disk }}; EXPORT_SYMBOL(ide_fops); EXPORT_SYMBOL(ide_hwifs); EXPORT_SYMBOL(ide_spin_wait_hwgroup); EXPORT_SYMBOL(revalidate_drives); /* * Probe module */ devfs_handle_t ide_devfs_handle; EXPORT_SYMBOL(ide_lock); EXPORT_SYMBOL(drive_is_flashcard); EXPORT_SYMBOL(ide_timer_expiry); EXPORT_SYMBOL(ide_intr); EXPORT_SYMBOL(ide_get_queue); EXPORT_SYMBOL(ide_add_generic_settings); EXPORT_SYMBOL(do_ide_request); /* * Driver module */ EXPORT_SYMBOL(ide_scan_devices); EXPORT_SYMBOL(ide_register_subdriver); EXPORT_SYMBOL(ide_unregister_subdriver); EXPORT_SYMBOL(ide_set_handler); EXPORT_SYMBOL(ide_dump_status); EXPORT_SYMBOL(ide_error); EXPORT_SYMBOL(ide_fixstring); EXPORT_SYMBOL(ide_wait_stat); EXPORT_SYMBOL(restart_request); EXPORT_SYMBOL(ide_init_drive_cmd); EXPORT_SYMBOL(ide_do_drive_cmd); EXPORT_SYMBOL(ide_end_drive_cmd); EXPORT_SYMBOL(__ide_end_request); EXPORT_SYMBOL(ide_end_request); EXPORT_SYMBOL(ide_revalidate_disk); EXPORT_SYMBOL(ide_cmd); EXPORT_SYMBOL(ide_delay_50ms); EXPORT_SYMBOL(ide_stall_queue); #ifdef CONFIG_PROC_FS EXPORT_SYMBOL(ide_add_proc_entries); EXPORT_SYMBOL(ide_remove_proc_entries); EXPORT_SYMBOL(proc_ide_read_geometry); #endif EXPORT_SYMBOL(ide_add_setting); EXPORT_SYMBOL(ide_remove_setting); EXPORT_SYMBOL(ide_register_hw); EXPORT_SYMBOL(ide_register); EXPORT_SYMBOL(ide_unregister); EXPORT_SYMBOL(ide_setup_ports); EXPORT_SYMBOL(get_info_ptr); static int ide_notify_reboot (struct notifier_block *this, unsigned long event, void *x) { struct ata_channel *hwif; ide_drive_t *drive; int i, unit; switch (event) { case SYS_HALT: case SYS_POWER_OFF: case SYS_RESTART: break; default: return NOTIFY_DONE; } printk("flushing ide devices: "); for (i = 0; i < MAX_HWIFS; i++) { hwif = &ide_hwifs[i]; if (!hwif->present) continue; for (unit = 0; unit < MAX_DRIVES; ++unit) { drive = &hwif->drives[unit]; if (!drive->present) continue; /* set the drive to standby */ printk("%s ", drive->name); if (ata_ops(drive)) { if (event != SYS_RESTART) if (ata_ops(drive)->standby && ata_ops(drive)->standby(drive)) continue; if (ata_ops(drive)->cleanup) ata_ops(drive)->cleanup(drive); } } } printk("\n"); return NOTIFY_DONE; } static struct notifier_block ide_notifier = { ide_notify_reboot, NULL, 5 }; /* * This is the global initialization entry point. */ static int __init ata_module_init(void) { int h; printk(KERN_INFO "Uniform Multi-Platform E-IDE driver ver.:" VERSION "\n"); ide_devfs_handle = devfs_mk_dir (NULL, "ide", NULL); /* Initialize system bus speed. * * This can be changed by a particular chipse initialization module. * Otherwise we assume 33MHz as a safe value for PCI bus based systems. * 50MHz will be assumed for abolitions like VESA, since higher values * result in more conservative timing setups. * * The kernel parameter idebus=XX overrides the default settings. */ system_bus_speed = 50; if (idebus_parameter) system_bus_speed = idebus_parameter; #ifdef CONFIG_PCI else if (pci_present()) system_bus_speed = 33; #endif printk("ide: system bus speed %dMHz\n", system_bus_speed); init_ide_data (); initializing = 1; /* * Detect and initialize "known" IDE host chip types. */ #ifdef CONFIG_PCI if (pci_present()) { # ifdef CONFIG_BLK_DEV_IDEPCI ide_scan_pcibus(ide_scan_direction); # else # ifdef CONFIG_BLK_DEV_RZ1000 ide_probe_for_rz100x(); # endif # endif } #endif #ifdef CONFIG_ETRAX_IDE init_e100_ide(); #endif #ifdef CONFIG_BLK_DEV_CMD640 ide_probe_for_cmd640x(); #endif #ifdef CONFIG_BLK_DEV_PDC4030 ide_probe_for_pdc4030(); #endif #ifdef CONFIG_BLK_DEV_IDE_PMAC pmac_ide_probe(); #endif #ifdef CONFIG_BLK_DEV_IDE_ICSIDE icside_init(); #endif #ifdef CONFIG_BLK_DEV_IDE_RAPIDE rapide_init(); #endif #ifdef CONFIG_BLK_DEV_GAYLE gayle_init(); #endif #ifdef CONFIG_BLK_DEV_FALCON_IDE falconide_init(); #endif #ifdef CONFIG_BLK_DEV_MAC_IDE macide_init(); #endif #ifdef CONFIG_BLK_DEV_Q40IDE q40ide_init(); #endif #ifdef CONFIG_BLK_DEV_BUDDHA buddha_init(); #endif #if defined(CONFIG_BLK_DEV_ISAPNP) && defined(CONFIG_ISAPNP) pnpide_init(1); #endif #if defined(CONFIG_BLK_DEV_IDE) || defined(CONFIG_BLK_DEV_IDE_MODULE) # if defined(__mc68000__) || defined(CONFIG_APUS) if (ide_hwifs[0].io_ports[IDE_DATA_OFFSET]) { ide_get_lock(&ide_intr_lock, NULL, NULL);/* for atari only */ disable_irq(ide_hwifs[0].irq); /* disable_irq_nosync ?? */ // disable_irq_nosync(ide_hwifs[0].irq); } # endif ideprobe_init(); # if defined(__mc68000__) || defined(CONFIG_APUS) if (ide_hwifs[0].io_ports[IDE_DATA_OFFSET]) { enable_irq(ide_hwifs[0].irq); ide_release_lock(&ide_intr_lock);/* for atari only */ } # endif #endif #ifdef CONFIG_PROC_FS proc_ide_create(); #endif /* * Initialize all device type driver modules. */ #ifdef CONFIG_BLK_DEV_IDEDISK idedisk_init(); #endif #ifdef CONFIG_BLK_DEV_IDECD ide_cdrom_init(); #endif #ifdef CONFIG_BLK_DEV_IDETAPE idetape_init(); #endif #ifdef CONFIG_BLK_DEV_IDEFLOPPY idefloppy_init(); #endif #ifdef CONFIG_BLK_DEV_IDESCSI # ifdef CONFIG_SCSI idescsi_init(); # else #warning ATA SCSI emulation selected but no SCSI-subsystem in kernel # endif #endif initializing = 0; for (h = 0; h < MAX_HWIFS; ++h) { struct ata_channel *channel = &ide_hwifs[h]; if (channel->present) ide_geninit(channel); } register_reboot_notifier(&ide_notifier); return 0; } static char *options = NULL; MODULE_PARM(options,"s"); MODULE_LICENSE("GPL"); static void __init parse_options (char *line) { char *next = line; if (line == NULL || !*line) return; while ((line = next) != NULL) { if ((next = strchr(line,' ')) != NULL) *next++ = 0; if (!ide_setup(line)) printk ("Unknown option '%s'\n", line); } } static int __init init_ata (void) { parse_options(options); return ata_module_init(); } static void __exit cleanup_ata (void) { int h; unregister_reboot_notifier(&ide_notifier); for (h = 0; h < MAX_HWIFS; ++h) { ide_unregister(&ide_hwifs[h]); } # ifdef CONFIG_PROC_FS proc_ide_destroy(); # endif devfs_unregister(ide_devfs_handle); } module_init(init_ata); module_exit(cleanup_ata); #ifndef MODULE /* command line option parser */ __setup("", ide_setup); #endif