/* * Xpram.c -- the S/390 expanded memory RAM-disk * * significant parts of this code are based on * the sbull device driver presented in * A. Rubini: Linux Device Drivers * * Author of XPRAM specific coding: Reinhard Buendgen * buendgen@de.ibm.com * Rewrite for 2.5: Martin Schwidefsky <schwidefsky@de.ibm.com> * * External interfaces: * Interfaces to linux kernel * xpram_setup: read kernel parameters * Device specific file operations * xpram_iotcl * xpram_open * * "ad-hoc" partitioning: * the expanded memory can be partitioned among several devices * (with different minors). The partitioning set up can be * set by kernel or module parameters (int devs & int sizes[]) * * Potential future improvements: * generic hard disk support to replace ad-hoc partitioning */ #include <linux/module.h> #include <linux/version.h> #include <linux/ctype.h> /* isdigit, isxdigit */ #include <linux/errno.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/blk.h> #include <linux/blkpg.h> #include <linux/hdreg.h> /* HDIO_GETGEO */ #include <linux/device.h> #include <linux/bio.h> #include <asm/uaccess.h> #define XPRAM_NAME "xpram" #define XPRAM_DEVS 1 /* one partition */ #define XPRAM_MAX_DEVS 32 /* maximal number of devices (partitions) */ #define PRINT_DEBUG(x...) printk(KERN_DEBUG XPRAM_NAME " debug:" x) #define PRINT_INFO(x...) printk(KERN_INFO XPRAM_NAME " info:" x) #define PRINT_WARN(x...) printk(KERN_WARNING XPRAM_NAME " warning:" x) #define PRINT_ERR(x...) printk(KERN_ERR XPRAM_NAME " error:" x) static struct sys_device xpram_sys_device = { .name = "S/390 expanded memory RAM disk", .dev = { .name = "S/390 expanded memory RAM disk", .bus_id = "xpram", }, }; typedef struct { unsigned long size; /* size of xpram segment in pages */ unsigned long offset; /* start page of xpram segment */ } xpram_device_t; static xpram_device_t xpram_devices[XPRAM_MAX_DEVS]; static int xpram_sizes[XPRAM_MAX_DEVS]; static struct gendisk *xpram_disks[XPRAM_MAX_DEVS]; static unsigned long xpram_pages; static int xpram_devs; static devfs_handle_t xpram_devfs_handle; /* * Parameter parsing functions. */ static int devs = XPRAM_DEVS; static unsigned long sizes[XPRAM_MAX_DEVS]; MODULE_PARM(devs,"i"); MODULE_PARM(sizes,"1-" __MODULE_STRING(XPRAM_MAX_DEVS) "i"); MODULE_PARM_DESC(devs, "number of devices (\"partitions\"), " \ "the default is " __MODULE_STRING(XPRAM_DEVS) "\n"); MODULE_PARM_DESC(sizes, "list of device (partition) sizes " \ "the defaults are 0s \n" \ "All devices with size 0 equally partition the " "remaining space on the expanded strorage not " "claimed by explicit sizes\n"); MODULE_LICENSE("GPL"); #ifndef MODULE /* * Parses the kernel parameters given in the kernel parameter line. * The expected format is * <number_of_partitions>[","<partition_size>]* * where * devices is a positive integer that initializes xpram_devs * each size is a non-negative integer possibly followed by a * magnitude (k,K,m,M,g,G), the list of sizes initialises * xpram_sizes * * Arguments * str: substring of kernel parameter line that contains xprams * kernel parameters. * * Result 0 on success, -EINVAL else -- only for Version > 2.3 * * Side effects * the global variabls devs is set to the value of * <number_of_partitions> and sizes[i] is set to the i-th * partition size (if provided). A parsing error of a value * results in this value being set to -EINVAL. */ static int __init xpram_setup (char *str) { char *cp; int i; devs = simple_strtoul(str, &cp, 10); if (cp <= str || devs > XPRAM_MAX_DEVS) return 0; for (i = 0; (i < devs) && (*cp++ == ','); i++) { sizes[i] = simple_strtoul(cp, &cp, 10); if (*cp == 'g' || *cp == 'G') { sizes[i] <<= 20; cp++; } else if (*cp == 'm' || *cp == 'M') { sizes[i] <<= 10; cp++; } else if (*cp == 'k' || *cp == 'K') cp++; while (isspace(*cp)) cp++; } if (*cp == ',' && i >= devs) PRINT_WARN("partition sizes list has too many entries.\n"); else if (*cp != 0) PRINT_WARN("ignored '%s' at end of parameter string.\n", cp); return 1; } __setup("xpram_parts=", xpram_setup); #endif /* * Copy expanded memory page (4kB) into main memory * Arguments * page_addr: address of target page * xpage_index: index of expandeded memory page * Return value * 0: if operation succeeds * -EIO: if pgin failed * -ENXIO: if xpram has vanished */ static int xpram_page_in (unsigned long page_addr, unsigned long xpage_index) { int cc; __asm__ __volatile( " lhi %0,2\n" /* return unused cc 2 if pgin traps */ " .insn rre,0xb22e0000,%1,%2\n" /* pgin %1,%2 */ "0: ipm %0\n" " srl %0,28\n" "1:\n" #ifndef CONFIG_ARCH_S390X ".section __ex_table,\"a\"\n" " .align 4\n" " .long 0b,1b\n" ".previous" #else ".section __ex_table,\"a\"\n" " .align 8\n" " .quad 0b,1b\n" ".previous" #endif : "=&d" (cc) : "a" (__pa(page_addr)), "a" (xpage_index) : "cc" ); if (cc == 3) return -ENXIO; if (cc == 2) { PRINT_ERR("expanded storage lost!\n"); return -ENXIO; } if (cc == 1) { PRINT_ERR("page in failed for page index %ld.\n", xpage_index); return -EIO; } return 0; } /* * Copy a 4kB page of main memory to an expanded memory page * Arguments * page_addr: address of source page * xpage_index: index of expandeded memory page * Return value * 0: if operation succeeds * -EIO: if pgout failed * -ENXIO: if xpram has vanished */ static long xpram_page_out (unsigned long page_addr, unsigned long xpage_index) { int cc; __asm__ __volatile( " lhi %0,2\n" /* return unused cc 2 if pgout traps */ " .insn rre,0xb22f0000,%1,%2\n" /* pgout %1,%2 */ "0: ipm %0\n" " srl %0,28\n" "1:\n" #ifndef CONFIG_ARCH_S390X ".section __ex_table,\"a\"\n" " .align 4\n" " .long 0b,1b\n" ".previous" #else ".section __ex_table,\"a\"\n" " .align 8\n" " .quad 0b,1b\n" ".previous" #endif : "=&d" (cc) : "a" (__pa(page_addr)), "a" (xpage_index) : "cc" ); if (cc == 3) return -ENXIO; if (cc == 2) { PRINT_ERR("expanded storage lost!\n"); return -ENXIO; } if (cc == 1) { PRINT_ERR("page out failed for page index %ld.\n", xpage_index); return -EIO; } return 0; } /* * Check if xpram is available. */ static int __init xpram_present(void) { unsigned long mem_page; int rc; mem_page = (unsigned long) __get_free_page(GFP_KERNEL); rc = xpram_page_in(mem_page, 0); free_page(mem_page); return rc ? -ENXIO : 0; } /* * Return index of the last available xpram page. */ static unsigned long __init xpram_highest_page_index(void) { unsigned long page_index, add_bit; unsigned long mem_page; mem_page = (unsigned long) __get_free_page(GFP_KERNEL); page_index = 0; add_bit = 1ULL << (sizeof(unsigned long)*8 - 1); while (add_bit > 0) { if (xpram_page_in(mem_page, page_index | add_bit) == 0) page_index |= add_bit; add_bit >>= 1; } free_page (mem_page); return page_index; } /* * Block device make request function. */ static int xpram_make_request(request_queue_t *q, struct bio *bio) { xpram_device_t *xdev = bio->bi_bdev->bd_disk->private_data; struct bio_vec *bvec; unsigned long index; unsigned long page_addr; unsigned long bytes; int i; if ((bio->bi_sector & 3) != 0 || (bio->bi_size & 4095) != 0) /* Request is not page-aligned. */ goto fail; if ((bio->bi_size >> 12) > xdev->size) /* Request size is no page-aligned. */ goto fail; index = (bio->bi_sector >> 3) + xdev->offset; bio_for_each_segment(bvec, bio, i) { page_addr = (unsigned long) kmap(bvec->bv_page) + bvec->bv_offset; bytes = bvec->bv_len; if ((page_addr & 4095) != 0 || (bytes & 4095) != 0) /* More paranoia. */ goto fail; while (bytes > 0) { if (bio_data_dir(bio) == READ) { if (xpram_page_in(page_addr, index) != 0) goto fail; } else { if (xpram_page_out(page_addr, index) != 0) goto fail; } page_addr += 4096; bytes -= 4096; index++; } } set_bit(BIO_UPTODATE, &bio->bi_flags); bytes = bio->bi_size; bio->bi_size = 0; bio->bi_end_io(bio, bytes, 0); return 0; fail: bio_io_error(bio, bio->bi_size); return 0; } static int xpram_ioctl (struct inode *inode, struct file *filp, unsigned int cmd, unsigned long arg) { struct hd_geometry *geo; unsigned long size; if (cmd != HDIO_GETGEO) return -EINVAL; /* * get geometry: we have to fake one... trim the size to a * multiple of 64 (32k): tell we have 16 sectors, 4 heads, * whatever cylinders. Tell also that data starts at sector. 4. */ geo = (struct hd_geometry *) arg; size = (xpram_pages * 8) & ~0x3f; put_user(size >> 6, &geo->cylinders); put_user(4, &geo->heads); put_user(16, &geo->sectors); put_user(4, &geo->start); return 0; } static struct block_device_operations xpram_devops = { .owner = THIS_MODULE, .ioctl = xpram_ioctl, }; /* * Setup xpram_sizes array. */ static int __init xpram_setup_sizes(unsigned long pages) { unsigned long mem_needed; unsigned long mem_auto; int mem_auto_no; int i; /* Check number of devices. */ if (devs <= 0 || devs > XPRAM_MAX_DEVS) { PRINT_ERR("invalid number %d of devices\n",devs); return -EINVAL; } xpram_devs = devs; /* * Copy sizes array to xpram_sizes and align partition * sizes to page boundary. */ mem_needed = 0; mem_auto_no = 0; for (i = 0; i < xpram_devs; i++) { xpram_sizes[i] = (sizes[i] + 3) & -4UL; if (xpram_sizes[i]) mem_needed += xpram_sizes[i]; else mem_auto_no++; } PRINT_INFO(" number of devices (partitions): %d \n", xpram_devs); for (i = 0; i < xpram_devs; i++) { if (xpram_sizes[i]) PRINT_INFO(" size of partition %d: %d kB\n", i, xpram_sizes[i]); else PRINT_INFO(" size of partition %d to be set " "automatically\n",i); } PRINT_DEBUG(" memory needed (for sized partitions): %ld kB\n", mem_needed); PRINT_DEBUG(" partitions to be sized automatically: %d\n", mem_auto_no); if (mem_needed > pages * 4) { PRINT_ERR("Not enough expanded memory available\n"); return -EINVAL; } /* * partitioning: * xpram_sizes[i] != 0; partition i has size xpram_sizes[i] kB * else: ; all partitions with zero xpram_sizes[i] * partition equally the remaining space */ if (mem_auto_no) { mem_auto = ((pages - mem_needed / 4) / mem_auto_no) * 4; PRINT_INFO(" automatically determined " "partition size: %ld kB\n", mem_auto); for (i = 0; i < xpram_devs; i++) if (xpram_sizes[i] == 0) xpram_sizes[i] = mem_auto; } return 0; } static struct request_queue xpram_queue; static int __init xpram_setup_blkdev(void) { unsigned long offset; int i, rc = -ENOMEM; for (i = 0; i < xpram_devs; i++) { struct gendisk *disk = alloc_disk(1); if (!disk) goto out; xpram_disks[i] = disk; } /* * Register xpram major. */ rc = register_blkdev(XPRAM_MAJOR, XPRAM_NAME, &xpram_devops); if (rc < 0) { PRINT_ERR("Can't get xpram major %d\n", XPRAM_MAJOR); goto out; } xpram_devfs_handle = devfs_mk_dir (NULL, "slram", NULL); devfs_register_series (xpram_devfs_handle, "%u", xpram_devs, DEVFS_FL_DEFAULT, XPRAM_MAJOR, 0, S_IFBLK | S_IRUSR | S_IWUSR, &xpram_devops, NULL); /* * Assign the other needed values: make request function, sizes and * hardsect size. All the minor devices feature the same value. */ blk_queue_make_request(&xpram_queue, xpram_make_request); blk_queue_hardsect_size(&xpram_queue, 4096); /* * Setup device structures. */ offset = 0; for (i = 0; i < xpram_devs; i++) { struct gendisk *disk = xpram_disks[i]; xpram_devices[i].size = xpram_sizes[i] / 4; xpram_devices[i].offset = offset; offset += xpram_devices[i].size; disk->major = XPRAM_MAJOR; disk->first_minor = i; disk->fops = &xpram_devops; disk->private_data = &xpram_devices[i]; disk->queue = &xpram_queue; sprintf(disk->disk_name, "slram%d", i); set_capacity(disk, xpram_sizes[i] << 1); add_disk(disk); } return 0; out: while (i--) put_disk(xpram_disks[i]); return rc; } /* * Finally, the init/exit functions. */ static void __exit xpram_exit(void) { int i; for (i = 0; i < xpram_devs; i++) { del_gendisk(xpram_disks[i]); put_disk(xpram_disks[i]); } unregister_blkdev(XPRAM_MAJOR, XPRAM_NAME); devfs_unregister(xpram_devfs_handle); sys_device_unregister(&xpram_sys_device); } static int __init xpram_init(void) { int rc; /* Find out size of expanded memory. */ if (xpram_present() != 0) { PRINT_WARN("No expanded memory available\n"); return -ENODEV; } xpram_pages = xpram_highest_page_index(); PRINT_INFO(" %li pages expanded memory found (%li KB).\n", xpram_pages, xpram_pages*4); rc = xpram_setup_sizes(xpram_pages); if (rc) return rc; rc = sys_device_register(&xpram_sys_device); if (rc) return rc; rc = xpram_setup_blkdev(); if (rc) sys_device_unregister(&xpram_sys_device); return rc; } module_init(xpram_init); module_exit(xpram_exit);