/* * Port for PPC64 David Engebretsen, IBM Corp. * Contains common pci routines for ppc64 platform, pSeries and iSeries brands. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #include <linux/config.h> #include <linux/kernel.h> #include <linux/pci.h> #include <linux/delay.h> #include <linux/string.h> #include <linux/init.h> #include <linux/capability.h> #include <linux/sched.h> #include <linux/errno.h> #include <linux/bootmem.h> #include <linux/mm.h> #include <asm/processor.h> #include <asm/io.h> #include <asm/prom.h> #include <asm/pci-bridge.h> #include <asm/byteorder.h> #include <asm/irq.h> #include <asm/uaccess.h> #include <asm/ppcdebug.h> #include <asm/naca.h> #include <asm/pci_dma.h> #include <asm/machdep.h> #include <asm/eeh.h> #include "pci.h" /* pci_io_base -- the base address from which io bars are offsets. * This is the lowest I/O base address (so bar values are always positive), * and it *must* be the start of ISA space if an ISA bus exists because * ISA drivers use hard coded offsets. If no ISA bus exists a dummy * page is mapped and isa_io_limit prevents access to it. */ unsigned long isa_io_base = 0; /* NULL if no ISA bus */ unsigned long pci_io_base = 0; unsigned long isa_mem_base = 0; unsigned long pci_dram_offset = 0; /****************************************************************** * Forward declare of prototypes ******************************************************************/ static void pcibios_fixup_resources(struct pci_dev* dev); static void fixup_broken_pcnet32(struct pci_dev* dev); static void fixup_windbond_82c105(struct pci_dev* dev); void fixup_resources(struct pci_dev* dev); void iSeries_pcibios_init(void); void pSeries_pcibios_init(void); int pci_assign_all_busses = 0; struct pci_controller* hose_head; struct pci_controller** hose_tail = &hose_head; LIST_HEAD(iSeries_Global_Device_List); /******************************************************************* * Counters and control flags. *******************************************************************/ long Pci_Io_Read_Count = 0; long Pci_Io_Write_Count = 0; long Pci_Cfg_Read_Count = 0; long Pci_Cfg_Write_Count= 0; long Pci_Error_Count = 0; int Pci_Retry_Max = 3; /* Only retry 3 times */ int Pci_Error_Flag = 1; /* Set Retry Error on. */ int Pci_Trace_Flag = 0; /****************************************************************** * ******************************************************************/ int global_phb_number = 0; /* Global phb counter */ int Pci_Large_Bus_System = 0; int Pci_Set_IOA_Address = 0; int Pci_Manage_Phb_Space = 0; struct pci_controller *phbtab[PCI_MAX_PHB]; static int pci_bus_count; /* Cached ISA bridge dev. */ struct pci_dev *ppc64_isabridge_dev = NULL; struct pci_fixup pcibios_fixups[] = { { PCI_FIXUP_HEADER, PCI_VENDOR_ID_TRIDENT, PCI_ANY_ID, fixup_broken_pcnet32 }, { PCI_FIXUP_HEADER, PCI_VENDOR_ID_WINBOND, PCI_DEVICE_ID_WINBOND_82C105, fixup_windbond_82c105 }, { PCI_FIXUP_HEADER, PCI_ANY_ID, PCI_ANY_ID, pcibios_fixup_resources }, { 0 } }; static void fixup_broken_pcnet32(struct pci_dev* dev) { if ((dev->class>>8 == PCI_CLASS_NETWORK_ETHERNET)) { dev->vendor = PCI_VENDOR_ID_AMD; pci_write_config_word(dev, PCI_VENDOR_ID, PCI_VENDOR_ID_AMD); pci_name_device(dev); } } static void fixup_windbond_82c105(struct pci_dev* dev) { /* Assume the windbond 82c105 is the IDE controller on a * p610. We should probably be more careful in case * someone tries to plug in a similar adapter. */ unsigned int reg; printk("Using INTC for W82c105 IDE controller.\n"); pci_read_config_dword(dev, 0x40, ®); /* Enable LEGIRQ to use INTC instead of ISA interrupts */ pci_write_config_dword(dev, 0x40, reg | (1<<11)); } void pcibios_fixup_pbus_ranges(struct pci_bus *pbus, struct pbus_set_ranges_data *pranges) { } void pcibios_update_resource(struct pci_dev *dev, struct resource *root, struct resource *res, int resource) { u32 new, check; int reg; struct pci_controller* hose = PCI_GET_PHB_PTR(dev); new = res->start; if (hose && res->flags & IORESOURCE_MEM) new -= hose->pci_mem_offset; new |= (res->flags & PCI_REGION_FLAG_MASK); if (resource < 6) { reg = PCI_BASE_ADDRESS_0 + 4*resource; } else if (resource == PCI_ROM_RESOURCE) { res->flags |= PCI_ROM_ADDRESS_ENABLE; reg = dev->rom_base_reg; } else { /* Somebody might have asked allocation of a non-standard resource */ return; } pci_write_config_dword(dev, reg, new); pci_read_config_dword(dev, reg, &check); if ((new ^ check) & ((new & PCI_BASE_ADDRESS_SPACE_IO) ? PCI_BASE_ADDRESS_IO_MASK : PCI_BASE_ADDRESS_MEM_MASK)) { printk(KERN_ERR "PCI: Error while updating region " "%s/%d (%08x != %08x)\n", dev->slot_name, resource, new, check); } } static void pcibios_fixup_resources(struct pci_dev* dev) { fixup_resources(dev); } /* * We need to avoid collisions with `mirrored' VGA ports * and other strange ISA hardware, so we always want the * addresses to be allocated in the 0x000-0x0ff region * modulo 0x400. * * Why? Because some silly external IO cards only decode * the low 10 bits of the IO address. The 0x00-0xff region * is reserved for motherboard devices that decode all 16 * bits, so it's ok to allocate at, say, 0x2800-0x28ff, * but we want to try to avoid allocating at 0x2900-0x2bff * which might have be mirrored at 0x0100-0x03ff.. */ void pcibios_align_resource(void *data, struct resource *res, unsigned long size, unsigned long align) { struct pci_dev *dev = data; if (res->flags & IORESOURCE_IO) { unsigned long start = res->start; if (size > 0x100) { printk(KERN_ERR "PCI: Can not align I/O Region %s %s because size %ld is too large.\n", dev->slot_name, res->name, size); } if (start & 0x300) { start = (start + 0x3ff) & ~0x3ff; res->start = start; } } } /* * Handle resources of PCI devices. If the world were perfect, we could * just allocate all the resource regions and do nothing more. It isn't. * On the other hand, we cannot just re-allocate all devices, as it would * require us to know lots of host bridge internals. So we attempt to * keep as much of the original configuration as possible, but tweak it * when it's found to be wrong. * * Known BIOS problems we have to work around: * - I/O or memory regions not configured * - regions configured, but not enabled in the command register * - bogus I/O addresses above 64K used * - expansion ROMs left enabled (this may sound harmless, but given * the fact the PCI specs explicitly allow address decoders to be * shared between expansion ROMs and other resource regions, it's * at least dangerous) * * Our solution: * (1) Allocate resources for all buses behind PCI-to-PCI bridges. * This gives us fixed barriers on where we can allocate. * (2) Allocate resources for all enabled devices. If there is * a collision, just mark the resource as unallocated. Also * disable expansion ROMs during this step. * (3) Try to allocate resources for disabled devices. If the * resources were assigned correctly, everything goes well, * if they weren't, they won't disturb allocation of other * resources. * (4) Assign new addresses to resources which were either * not configured at all or misconfigured. If explicitly * requested by the user, configure expansion ROM address * as well. */ static void __init pcibios_allocate_bus_resources(struct list_head *bus_list) { struct list_head *ln; struct pci_bus *bus; int i; struct resource *res, *pr; /* Depth-First Search on bus tree */ for (ln=bus_list->next; ln != bus_list; ln=ln->next) { bus = pci_bus_b(ln); for (i = 0; i < 4; ++i) { if ((res = bus->resource[i]) == NULL || !res->flags) continue; if (bus->parent == NULL) pr = (res->flags & IORESOURCE_IO)? &ioport_resource: &iomem_resource; else pr = pci_find_parent_resource(bus->self, res); if (pr == res) continue; /* transparent bus or undefined */ if (pr && request_resource(pr, res) == 0) continue; printk(KERN_ERR "PCI: Cannot allocate resource region " "%d of PCI bridge %x\n", i, bus->number); printk(KERN_ERR "PCI: resource is %lx..%lx (%lx), parent %p\n", res->start, res->end, res->flags, pr); } pcibios_allocate_bus_resources(&bus->children); } } static void __init pcibios_allocate_resources(int pass) { struct pci_dev *dev; int idx, disabled; u16 command; struct resource *r, *pr; pci_for_each_dev(dev) { pci_read_config_word(dev, PCI_COMMAND, &command); for(idx = 0; idx < 6; idx++) { r = &dev->resource[idx]; if (r->parent) /* Already allocated */ continue; if (!r->start) /* Address not assigned at all */ continue; if (r->flags & IORESOURCE_IO) disabled = !(command & PCI_COMMAND_IO); else disabled = !(command & PCI_COMMAND_MEMORY); if (pass == disabled) { PPCDBG(PPCDBG_PHBINIT, "PCI: Resource %08lx-%08lx (f=%lx, d=%d, p=%d)\n", r->start, r->end, r->flags, disabled, pass); pr = pci_find_parent_resource(dev, r); if (!pr || request_resource(pr, r) < 0) { PPCDBG(PPCDBG_PHBINIT, "PCI: Cannot allocate resource region %d of device %s, pr = 0x%lx\n", idx, dev->slot_name, pr); if(pr) { PPCDBG(PPCDBG_PHBINIT, "PCI: Cannot allocate resource 0x%lx\n", request_resource(pr,r)); } /* We'll assign a new address later */ r->end -= r->start; r->start = 0; } } } if (!pass) { r = &dev->resource[PCI_ROM_RESOURCE]; if (r->flags & PCI_ROM_ADDRESS_ENABLE) { /* Turn the ROM off, leave the resource region, but keep it unregistered. */ u32 reg; r->flags &= ~PCI_ROM_ADDRESS_ENABLE; pci_read_config_dword(dev, dev->rom_base_reg, ®); pci_write_config_dword(dev, dev->rom_base_reg, reg & ~PCI_ROM_ADDRESS_ENABLE); } } } } static void __init pcibios_assign_resources(void) { struct pci_dev *dev; int idx; struct resource *r; pci_for_each_dev(dev) { int class = dev->class >> 8; /* Don't touch classless devices and host bridges */ if (!class || class == PCI_CLASS_BRIDGE_HOST) continue; for (idx = 0; idx < 6; idx++) { r = &dev->resource[idx]; /* * We shall assign a new address to this resource, * either because the BIOS (sic) forgot to do so * or because we have decided the old address was * unusable for some reason. */ if (!r->start && r->end) pci_assign_resource(dev, idx); } #if 0 /* don't assign ROMs */ r = &dev->resource[PCI_ROM_RESOURCE]; r->end -= r->start; r->start = 0; if (r->end) pci_assign_resource(dev, PCI_ROM_RESOURCE); #endif } } /* * Allocate pci_controller(phb) initialized common variables. */ struct pci_controller * __init pci_alloc_pci_controller(char *model, enum phb_types controller_type) { struct pci_controller *hose; PPCDBG(PPCDBG_PHBINIT, "PCI: Allocate pci_controller for %s\n",model); hose = (struct pci_controller *)alloc_bootmem(sizeof(struct pci_controller)); if(hose == NULL) { printk(KERN_ERR "PCI: Allocate pci_controller failed.\n"); return NULL; } memset(hose, 0, sizeof(struct pci_controller)); if(strlen(model) < 8) strcpy(hose->what,model); else memcpy(hose->what,model,7); hose->type = controller_type; hose->global_number = global_phb_number; phbtab[global_phb_number++] = hose; *hose_tail = hose; hose_tail = &hose->next; return hose; } static int __init pcibios_init(void) { struct pci_controller *hose; struct pci_bus *bus; int next_busno; #ifndef CONFIG_PPC_ISERIES pSeries_pcibios_init(); #else iSeries_pcibios_init(); #endif printk("PCI: Probing PCI hardware\n"); PPCDBG(PPCDBG_BUSWALK,"PCI: Probing PCI hardware\n"); /* Scan all of the recorded PCI controllers. */ for (next_busno = 0, hose = hose_head; hose; hose = hose->next) { hose->last_busno = 0xff; bus = pci_scan_bus(hose->first_busno, hose->ops, hose->arch_data); hose->bus = bus; hose->last_busno = bus->subordinate; if (pci_assign_all_busses || next_busno <= hose->last_busno) next_busno = hose->last_busno+1; } pci_bus_count = next_busno; /* Call machine dependant fixup */ if (ppc_md.pcibios_fixup) { ppc_md.pcibios_fixup(); } /* Allocate and assign resources */ pcibios_allocate_bus_resources(&pci_root_buses); pcibios_allocate_resources(0); pcibios_allocate_resources(1); pcibios_assign_resources(); #ifndef CONFIG_PPC_ISERIES pci_fix_bus_sysdata(); create_tce_tables(); PPCDBG(PPCDBG_BUSWALK,"pSeries create_tce_tables()\n"); #endif /* Cache the location of the ISA bridge (if we have one) */ ppc64_isabridge_dev = pci_find_class(PCI_CLASS_BRIDGE_ISA << 8, NULL); if (ppc64_isabridge_dev != NULL) printk("ISA bridge at %s\n", ppc64_isabridge_dev->slot_name); printk("PCI: Probing PCI hardware done\n"); PPCDBG(PPCDBG_BUSWALK,"PCI: Probing PCI hardware done.\n"); } subsys_initcall(pcibios_init); int __init pcibios_assign_all_busses(void) { return pci_assign_all_busses; } unsigned long resource_fixup(struct pci_dev * dev, struct resource * res, unsigned long start, unsigned long size) { return start; } void __init pcibios_fixup_bus(struct pci_bus *bus) { #ifndef CONFIG_PPC_ISERIES struct pci_controller *phb = PCI_GET_PHB_PTR(bus); struct resource *res; int i; if (bus->parent == NULL) { /* This is a host bridge - fill in its resources */ phb->bus = bus; bus->resource[0] = res = &phb->io_resource; if (!res->flags) BUG(); /* No I/O resource for this PHB? */ for (i = 0; i < 3; ++i) { res = &phb->mem_resources[i]; if (!res->flags) { if (i == 0) BUG(); /* No memory resource for this PHB? */ } bus->resource[i+1] = res; } } else { /* This is a subordinate bridge */ pci_read_bridge_bases(bus); for (i = 0; i < 4; ++i) { if ((res = bus->resource[i]) == NULL) continue; if (!res->flags) continue; if (res == pci_find_parent_resource(bus->self, res)) { /* Transparent resource -- don't try to "fix" it. */ continue; } if (is_eeh_implemented()) { if (res->flags & (IORESOURCE_IO|IORESOURCE_MEM)) { res->start = eeh_token(phb->global_number, bus->number, 0, 0); res->end = eeh_token(phb->global_number, bus->number, 0xff, 0xffffffff); } } else { if (res->flags & IORESOURCE_IO) { res->start += (unsigned long)phb->io_base_virt; res->end += (unsigned long)phb->io_base_virt; } else if (phb->pci_mem_offset && (res->flags & IORESOURCE_MEM)) { if (res->start < phb->pci_mem_offset) { res->start += phb->pci_mem_offset; res->end += phb->pci_mem_offset; } } } } } #endif if ( ppc_md.pcibios_fixup_bus ) ppc_md.pcibios_fixup_bus(bus); } char __init *pcibios_setup(char *str) { return str; } int pcibios_enable_device(struct pci_dev *dev, int mask) { u16 cmd, old_cmd; int idx; struct resource *r; PPCDBG(PPCDBG_BUSWALK,"PCI: %s for device %s \n", __FUNCTION__, dev->slot_name); pci_read_config_word(dev, PCI_COMMAND, &cmd); old_cmd = cmd; for (idx = 0; idx < 6; idx++) { /* Only set up the requested stuff */ if (!(mask & (1<<idx))) continue; r = &dev->resource[idx]; if (!r->start && r->end) { printk(KERN_ERR "PCI: Device %s not available because of resource collisions\n", dev->slot_name); return -EINVAL; } if (r->flags & IORESOURCE_IO) cmd |= PCI_COMMAND_IO; if (r->flags & IORESOURCE_MEM) cmd |= PCI_COMMAND_MEMORY; } if (cmd != old_cmd) { printk("PCI: Enabling device %s (%04x -> %04x)\n", dev->slot_name, old_cmd, cmd); PPCDBG(PPCDBG_BUSWALK,"PCI: Enabling device %s \n", dev->slot_name); pci_write_config_word(dev, PCI_COMMAND, cmd); } return 0; } struct pci_controller* pci_bus_to_hose(int bus) { struct pci_controller* hose = hose_head; for (; hose; hose = hose->next) if (bus >= hose->first_busno && bus <= hose->last_busno) return hose; return NULL; } void* pci_bus_io_base(unsigned int bus) { struct pci_controller *hose; hose = pci_bus_to_hose(bus); if (!hose) return NULL; return hose->io_base_virt; } unsigned long pci_bus_io_base_phys(unsigned int bus) { struct pci_controller *hose; hose = pci_bus_to_hose(bus); if (!hose) return 0; return hose->io_base_phys; } unsigned long pci_bus_mem_base_phys(unsigned int bus) { struct pci_controller *hose; hose = pci_bus_to_hose(bus); if (!hose) return 0; return hose->pci_mem_offset; } /* * Return the index of the PCI controller for device pdev. */ int pci_controller_num(struct pci_dev *dev) { struct pci_controller *hose = PCI_GET_PHB_PTR(dev); return hose->global_number; } /* * Platform support for /proc/bus/pci/X/Y mmap()s, * modelled on the sparc64 implementation by Dave Miller. * -- paulus. */ /* * Adjust vm_pgoff of VMA such that it is the physical page offset * corresponding to the 32-bit pci bus offset for DEV requested by the user. * * Basically, the user finds the base address for his device which he wishes * to mmap. They read the 32-bit value from the config space base register, * add whatever PAGE_SIZE multiple offset they wish, and feed this into the * offset parameter of mmap on /proc/bus/pci/XXX for that device. * * Returns negative error code on failure, zero on success. */ static __inline__ int __pci_mmap_make_offset(struct pci_dev *dev, struct vm_area_struct *vma, enum pci_mmap_state mmap_state) { struct pci_controller *hose = PCI_GET_PHB_PTR(dev); unsigned long offset = vma->vm_pgoff << PAGE_SHIFT; unsigned long io_offset = 0; int i, res_bit; if (hose == 0) return -EINVAL; /* should never happen */ /* If memory, add on the PCI bridge address offset */ if (mmap_state == pci_mmap_mem) { offset += hose->pci_mem_offset; res_bit = IORESOURCE_MEM; } else { io_offset = (unsigned long)hose->io_base_virt; offset += io_offset; res_bit = IORESOURCE_IO; } /* * Check that the offset requested corresponds to one of the * resources of the device. */ for (i = 0; i <= PCI_ROM_RESOURCE; i++) { struct resource *rp = &dev->resource[i]; int flags = rp->flags; /* treat ROM as memory (should be already) */ if (i == PCI_ROM_RESOURCE) flags |= IORESOURCE_MEM; /* Active and same type? */ if ((flags & res_bit) == 0) continue; /* In the range of this resource? */ if (offset < (rp->start & PAGE_MASK) || offset > rp->end) continue; /* found it! construct the final physical address */ if (mmap_state == pci_mmap_io) offset += hose->io_base_phys - io_offset; vma->vm_pgoff = offset >> PAGE_SHIFT; return 0; } return -EINVAL; } /* * Set vm_flags of VMA, as appropriate for this architecture, for a pci device * mapping. */ static __inline__ void __pci_mmap_set_flags(struct pci_dev *dev, struct vm_area_struct *vma, enum pci_mmap_state mmap_state) { vma->vm_flags |= VM_SHM | VM_LOCKED | VM_IO; } /* * Set vm_page_prot of VMA, as appropriate for this architecture, for a pci * device mapping. */ static __inline__ void __pci_mmap_set_pgprot(struct pci_dev *dev, struct vm_area_struct *vma, enum pci_mmap_state mmap_state, int write_combine) { long prot = pgprot_val(vma->vm_page_prot); /* XXX would be nice to have a way to ask for write-through */ prot |= _PAGE_NO_CACHE; if (!write_combine) prot |= _PAGE_GUARDED; vma->vm_page_prot = __pgprot(prot); } /* * Perform the actual remap of the pages for a PCI device mapping, as * appropriate for this architecture. The region in the process to map * is described by vm_start and vm_end members of VMA, the base physical * address is found in vm_pgoff. * The pci device structure is provided so that architectures may make mapping * decisions on a per-device or per-bus basis. * * Returns a negative error code on failure, zero on success. */ int pci_mmap_page_range(struct pci_dev *dev, struct vm_area_struct *vma, enum pci_mmap_state mmap_state, int write_combine) { int ret; ret = __pci_mmap_make_offset(dev, vma, mmap_state); if (ret < 0) return ret; __pci_mmap_set_flags(dev, vma, mmap_state); __pci_mmap_set_pgprot(dev, vma, mmap_state, write_combine); ret = remap_page_range(vma, vma->vm_start, vma->vm_pgoff << PAGE_SHIFT, vma->vm_end - vma->vm_start, vma->vm_page_prot); return ret; } /* Provide information on locations of various I/O regions in physical * memory. Do this on a per-card basis so that we choose the right * root bridge. * Note that the returned IO or memory base is a physical address */ long sys_pciconfig_iobase(long which, unsigned long bus, unsigned long devfn) { struct pci_controller* hose = pci_bus_to_hose(bus); long result = -EOPNOTSUPP; if (!hose) return -ENODEV; switch (which) { case IOBASE_BRIDGE_NUMBER: return (long)hose->first_busno; case IOBASE_MEMORY: return (long)hose->pci_mem_offset; case IOBASE_IO: return (long)hose->io_base_phys; case IOBASE_ISA_IO: return (long)isa_io_base; case IOBASE_ISA_MEM: return (long)isa_mem_base; } return result; } /************************************************************************/ /* Formats the device information and location for service. */ /* - Pass in pci_dev* pointer to the device. */ /* - Pass in buffer to place the data. Danger here is the buffer must */ /* be as big as the client says it is. Should be at least 128 bytes.*/ /* Return will the length of the string data put in the buffer. */ /* The brand specific method device_Location is called. */ /* Format: */ /* PCI: Bus 0, Device 26, Vendor 0x12AE Frame 1, Card C10 Ethernet */ /* PCI: Bus 0, Device 26, Vendor 0x12AE Location U0.3-P1-I8 Ethernet */ /* For pSeries, see the Product Topology in the RS/6000 Architecture. */ /* For iSeries, see the Service Manuals. */ /************************************************************************/ int format_device_location(struct pci_dev* PciDev,char* BufPtr, int BufferSize) { struct device_node* DevNode = (struct device_node*)PciDev->sysdata; int LineLen = 0; if (DevNode != NULL && BufferSize >= 128) { LineLen += device_Location(PciDev,BufPtr+LineLen); LineLen += sprintf(BufPtr+LineLen," %12s",pci_class_name(PciDev->class >> 8) ); } return LineLen; } /************************************************************************ * Saves the config registers for a device. * ************************************************************************ * Note: This does byte reads so the data may appear byte swapped, * * The data returned in the pci_config_reg_save_area structure can be * * used to the restore of the data. If the save failed, the data * * will not be restore. Yes I know, you are most likey toast. * ************************************************************************/ int pci_save_config_regs(struct pci_dev* PciDev,struct pci_config_reg_save_area* SaveArea) { memset(SaveArea,0x00,sizeof(struct pci_config_reg_save_area) ); SaveArea->PciDev = PciDev; SaveArea->RCode = 0; SaveArea->Register = 0; /****************************************************************** * Save All the Regs, NOTE: restore skips the first 16 bytes. * ******************************************************************/ while (SaveArea->Register < REG_SAVE_SIZE && SaveArea->RCode == 0) { SaveArea->RCode = pci_read_config_byte(PciDev, SaveArea->Register, &SaveArea->Regs[SaveArea->Register]); ++SaveArea->Register; } if (SaveArea->RCode != 0) { /* Ouch */ SaveArea->Flags = 0x80; printk("PCI: pci_restore_save_regs failed! %p\n 0x%04X",PciDev,SaveArea->RCode); } else { SaveArea->Flags = 0x01; } return SaveArea->RCode; } /************************************************************************ * Restores the registers saved via the save function. See the save * * function for details. * ************************************************************************/ int pci_restore_config_regs(struct pci_dev* PciDev,struct pci_config_reg_save_area* SaveArea) { if (SaveArea->PciDev != PciDev || SaveArea->Flags == 0x80 || SaveArea->RCode != 0) { printk("PCI: pci_restore_config_regs failed! %p\n",PciDev); return -1; } /****************************************************************** * Don't touch the Cmd or BIST regs, user must restore those. * * Restore PCI_VENDOR_ID & PCI_DEVICE_ID * * Restore PCI_CACHE_LINE_SIZE & PCI_LATENCY_TIMER * * Restore Saved Regs from 0x10 to 0x3F * ******************************************************************/ SaveArea->Register = 0; while(SaveArea->Register < REG_SAVE_SIZE && SaveArea->RCode == 0) { SaveArea->RCode = pci_write_config_byte(PciDev,SaveArea->Register,SaveArea->Regs[SaveArea->Register]); ++SaveArea->Register; if ( SaveArea->Register == PCI_COMMAND) SaveArea->Register = PCI_CACHE_LINE_SIZE; else if (SaveArea->Register == PCI_HEADER_TYPE) SaveArea->Register = PCI_BASE_ADDRESS_0; } if (SaveArea->RCode != 0) { printk("PCI: pci_restore_config_regs failed! %p\n 0x%04X",PciDev,SaveArea->RCode); } return SaveArea->RCode; } /************************************************************************/ /* Interface to toggle the reset line */ /* Time is in .1 seconds, need for seconds. */ /************************************************************************/ int pci_reset_device(struct pci_dev* PciDev, int AssertTime, int DelayTime) { unsigned long AssertDelay, WaitDelay; int RtnCode; /******************************************************************** * Set defaults, Assert is .5 second, Wait is 3 seconds. ********************************************************************/ if (AssertTime == 0) AssertDelay = ( 5 * HZ)/10; else AssertDelay = (AssertTime*HZ)/10; if (WaitDelay == 0) WaitDelay = (30 * HZ)/10; else WaitDelay = (DelayTime* HZ)/10; /******************************************************************** * Assert reset, wait, de-assert reset, wait for IOA to reset. * - Don't waste the CPU time on jiffies. ********************************************************************/ RtnCode = pci_set_reset(PciDev,1); if (RtnCode == 0) { set_current_state(TASK_UNINTERRUPTIBLE); schedule_timeout(AssertDelay); /* Sleep for the time */ RtnCode = pci_set_reset(PciDev,0); set_current_state(TASK_UNINTERRUPTIBLE); schedule_timeout(WaitDelay); } if (RtnCode != 0) { printk("PCI: Bus%3d, Device%3d, Reset Failed:0x%04X\n",PciDev->bus->number,PCI_SLOT(PciDev->devfn),RtnCode ); } return RtnCode; } /***************************************************** * Dump Resource information *****************************************************/ void dumpResources(struct resource* Resource) { if(Resource != NULL) { int Flags = 0x00000F00 & Resource->flags; if(Resource->start == 0 && Resource->end == 0) return; else if(Resource->start == Resource->end ) return; else { if (Flags == IORESOURCE_IO) udbg_printf("IO.:"); else if(Flags == IORESOURCE_MEM) udbg_printf("MEM:"); else if(Flags == IORESOURCE_IRQ) udbg_printf("IRQ:"); else udbg_printf("0x%02X:",Resource->flags); } udbg_printf("0x%016LX / 0x%016LX (0x%08X)\n", Resource->start, Resource->end, Resource->end - Resource->start); } } int resourceSize(struct resource* Resource) { if(Resource->start == 0 && Resource->end == 0) return 0; else if(Resource->start == Resource->end ) return 0; else return (Resource->end-1)-Resource->start; } /***************************************************** * Dump PHB information for Debug *****************************************************/ void dumpPci_Controller(struct pci_controller* phb) { udbg_printf("\tpci_controller= 0x%016LX\n", phb); if (phb != NULL) { udbg_printf("\twhat & type = %s 0x%02X\n ",phb->what,phb->type); udbg_printf("\tbus = "); if (phb->bus != NULL) udbg_printf("0x%02X\n", phb->bus->number); else udbg_printf("<NULL>\n"); udbg_printf("\tarch_data = 0x%016LX\n", phb->arch_data); udbg_printf("\tfirst_busno = 0x%02X\n", phb->first_busno); udbg_printf("\tlast_busno = 0x%02X\n", phb->last_busno); udbg_printf("\tio_base_virt* = 0x%016LX\n", phb->io_base_virt); udbg_printf("\tio_base_phys = 0x%016LX\n", phb->io_base_phys); udbg_printf("\tpci_mem_offset= 0x%016LX\n", phb->pci_mem_offset); udbg_printf("\tpci_io_offset = 0x%016LX\n", phb->pci_io_offset); udbg_printf("\tResources\n"); dumpResources(&phb->io_resource); if (phb->mem_resource_count > 0) dumpResources(&phb->mem_resources[0]); if (phb->mem_resource_count > 1) dumpResources(&phb->mem_resources[1]); if (phb->mem_resource_count > 2) dumpResources(&phb->mem_resources[2]); udbg_printf("\tglobal_num = 0x%02X\n", phb->global_number); udbg_printf("\tlocal_num = 0x%02X\n", phb->local_number); } } /***************************************************** * Dump PHB information for Debug *****************************************************/ void dumpPci_Bus(struct pci_bus* Pci_Bus) { int i; udbg_printf("\tpci_bus = 0x%016LX \n",Pci_Bus); if (Pci_Bus != NULL) { udbg_printf("\tnumber = 0x%02X \n",Pci_Bus->number); udbg_printf("\tprimary = 0x%02X \n",Pci_Bus->primary); udbg_printf("\tsecondary = 0x%02X \n",Pci_Bus->secondary); udbg_printf("\tsubordinate = 0x%02X \n",Pci_Bus->subordinate); for (i=0;i<4;++i) { if(Pci_Bus->resource[i] == NULL) continue; if(Pci_Bus->resource[i]->start == 0 && Pci_Bus->resource[i]->end == 0) break; udbg_printf("\tResources[%d]",i); dumpResources(Pci_Bus->resource[i]); } } } /***************************************************** * Dump Device information for Debug *****************************************************/ void dumpPci_Dev(struct pci_dev* Pci_Dev) { int i; udbg_printf("\tpci_dev* = 0x%p\n",Pci_Dev); if ( Pci_Dev == NULL ) return; udbg_printf("\tname = %s \n",Pci_Dev->name); udbg_printf("\tbus* = 0x%p\n",Pci_Dev->bus); udbg_printf("\tsysdata* = 0x%p\n",Pci_Dev->sysdata); udbg_printf("\tDevice = 0x%4X%02X:%02X.%02X 0x%04X:%04X\n", PCI_GET_PHB_NUMBER(Pci_Dev), PCI_GET_BUS_NUMBER(Pci_Dev), PCI_SLOT(Pci_Dev->devfn), PCI_FUNC(Pci_Dev->devfn), Pci_Dev->vendor, Pci_Dev->device); udbg_printf("\tHdr/Irq = 0x%02X/0x%02X \n",Pci_Dev->hdr_type,Pci_Dev->irq); for (i=0;i<DEVICE_COUNT_RESOURCE;++i) { if (Pci_Dev->resource[i].start == 0 && Pci_Dev->resource[i].end == 0) continue; udbg_printf("\tResources[%d] ",i); dumpResources(&Pci_Dev->resource[i]); } dumpResources(&Pci_Dev->resource[i]); }