/* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * IPv4 Forwarding Information Base: semantics. * * Version: $Id: fib_semantics.c,v 1.19 2002/01/12 07:54:56 davem Exp $ * * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #include <linux/config.h> #include <asm/uaccess.h> #include <asm/system.h> #include <asm/bitops.h> #include <linux/types.h> #include <linux/kernel.h> #include <linux/jiffies.h> #include <linux/mm.h> #include <linux/string.h> #include <linux/socket.h> #include <linux/sockios.h> #include <linux/errno.h> #include <linux/in.h> #include <linux/inet.h> #include <linux/netdevice.h> #include <linux/if_arp.h> #include <linux/proc_fs.h> #include <linux/skbuff.h> #include <linux/netlink.h> #include <linux/init.h> #include <net/ip.h> #include <net/protocol.h> #include <net/route.h> #include <net/tcp.h> #include <net/sock.h> #include <net/ip_fib.h> #define FSprintk(a...) static struct fib_info *fib_info_list; static rwlock_t fib_info_lock = RW_LOCK_UNLOCKED; int fib_info_cnt; #define for_fib_info() { struct fib_info *fi; \ for (fi = fib_info_list; fi; fi = fi->fib_next) #define endfor_fib_info() } #ifdef CONFIG_IP_ROUTE_MULTIPATH static spinlock_t fib_multipath_lock = SPIN_LOCK_UNLOCKED; #define for_nexthops(fi) { int nhsel; const struct fib_nh * nh; \ for (nhsel=0, nh = (fi)->fib_nh; nhsel < (fi)->fib_nhs; nh++, nhsel++) #define change_nexthops(fi) { int nhsel; struct fib_nh * nh; \ for (nhsel=0, nh = (struct fib_nh*)((fi)->fib_nh); nhsel < (fi)->fib_nhs; nh++, nhsel++) #else /* CONFIG_IP_ROUTE_MULTIPATH */ /* Hope, that gcc will optimize it to get rid of dummy loop */ #define for_nexthops(fi) { int nhsel=0; const struct fib_nh * nh = (fi)->fib_nh; \ for (nhsel=0; nhsel < 1; nhsel++) #define change_nexthops(fi) { int nhsel=0; struct fib_nh * nh = (struct fib_nh*)((fi)->fib_nh); \ for (nhsel=0; nhsel < 1; nhsel++) #endif /* CONFIG_IP_ROUTE_MULTIPATH */ #define endfor_nexthops(fi) } static struct { int error; u8 scope; } fib_props[RTA_MAX + 1] = { { .error = 0, .scope = RT_SCOPE_NOWHERE, }, /* RTN_UNSPEC */ { .error = 0, .scope = RT_SCOPE_UNIVERSE, }, /* RTN_UNICAST */ { .error = 0, .scope = RT_SCOPE_HOST, }, /* RTN_LOCAL */ { .error = 0, .scope = RT_SCOPE_LINK, }, /* RTN_BROADCAST */ { .error = 0, .scope = RT_SCOPE_LINK, }, /* RTN_ANYCAST */ { .error = 0, .scope = RT_SCOPE_UNIVERSE, }, /* RTN_MULTICAST */ { .error = -EINVAL, .scope = RT_SCOPE_UNIVERSE, }, /* RTN_BLACKHOLE */ { .error = -EHOSTUNREACH, .scope = RT_SCOPE_UNIVERSE, }, /* RTN_UNREACHABLE */ { .error = -EACCES, .scope = RT_SCOPE_UNIVERSE, }, /* RTN_PROHIBIT */ { .error = -EAGAIN, .scope = RT_SCOPE_UNIVERSE, }, /* RTN_THROW */ #ifdef CONFIG_IP_ROUTE_NAT { .error = 0, .scope = RT_SCOPE_HOST, }, /* RTN_NAT */ #else { .error = -EINVAL, .scope = RT_SCOPE_NOWHERE, }, /* RTN_NAT */ #endif { .error = -EINVAL, .scope = RT_SCOPE_NOWHERE, }, /* RTN_XRESOLVE */ }; /* Release a nexthop info record */ void free_fib_info(struct fib_info *fi) { if (fi->fib_dead == 0) { printk("Freeing alive fib_info %p\n", fi); return; } change_nexthops(fi) { if (nh->nh_dev) dev_put(nh->nh_dev); nh->nh_dev = NULL; } endfor_nexthops(fi); fib_info_cnt--; kfree(fi); } void fib_release_info(struct fib_info *fi) { write_lock(&fib_info_lock); if (fi && --fi->fib_treeref == 0) { if (fi->fib_next) fi->fib_next->fib_prev = fi->fib_prev; if (fi->fib_prev) fi->fib_prev->fib_next = fi->fib_next; if (fi == fib_info_list) fib_info_list = fi->fib_next; fi->fib_dead = 1; fib_info_put(fi); } write_unlock(&fib_info_lock); } static __inline__ int nh_comp(const struct fib_info *fi, const struct fib_info *ofi) { const struct fib_nh *onh = ofi->fib_nh; for_nexthops(fi) { if (nh->nh_oif != onh->nh_oif || nh->nh_gw != onh->nh_gw || nh->nh_scope != onh->nh_scope || #ifdef CONFIG_IP_ROUTE_MULTIPATH nh->nh_weight != onh->nh_weight || #endif #ifdef CONFIG_NET_CLS_ROUTE nh->nh_tclassid != onh->nh_tclassid || #endif ((nh->nh_flags^onh->nh_flags)&~RTNH_F_DEAD)) return -1; onh++; } endfor_nexthops(fi); return 0; } static __inline__ struct fib_info * fib_find_info(const struct fib_info *nfi) { for_fib_info() { if (fi->fib_nhs != nfi->fib_nhs) continue; if (nfi->fib_protocol == fi->fib_protocol && nfi->fib_prefsrc == fi->fib_prefsrc && nfi->fib_priority == fi->fib_priority && memcmp(nfi->fib_metrics, fi->fib_metrics, sizeof(fi->fib_metrics)) == 0 && ((nfi->fib_flags^fi->fib_flags)&~RTNH_F_DEAD) == 0 && (nfi->fib_nhs == 0 || nh_comp(fi, nfi) == 0)) return fi; } endfor_fib_info(); return NULL; } /* Check, that the gateway is already configured. Used only by redirect accept routine. */ int ip_fib_check_default(u32 gw, struct net_device *dev) { read_lock(&fib_info_lock); for_fib_info() { if (fi->fib_flags & RTNH_F_DEAD) continue; for_nexthops(fi) { if (nh->nh_dev == dev && nh->nh_gw == gw && nh->nh_scope == RT_SCOPE_LINK && !(nh->nh_flags&RTNH_F_DEAD)) { read_unlock(&fib_info_lock); return 0; } } endfor_nexthops(fi); } endfor_fib_info(); read_unlock(&fib_info_lock); return -1; } #ifdef CONFIG_IP_ROUTE_MULTIPATH static u32 fib_get_attr32(struct rtattr *attr, int attrlen, int type) { while (RTA_OK(attr,attrlen)) { if (attr->rta_type == type) return *(u32*)RTA_DATA(attr); attr = RTA_NEXT(attr, attrlen); } return 0; } static int fib_count_nexthops(struct rtattr *rta) { int nhs = 0; struct rtnexthop *nhp = RTA_DATA(rta); int nhlen = RTA_PAYLOAD(rta); while (nhlen >= (int)sizeof(struct rtnexthop)) { if ((nhlen -= nhp->rtnh_len) < 0) return 0; nhs++; nhp = RTNH_NEXT(nhp); }; return nhs; } static int fib_get_nhs(struct fib_info *fi, const struct rtattr *rta, const struct rtmsg *r) { struct rtnexthop *nhp = RTA_DATA(rta); int nhlen = RTA_PAYLOAD(rta); change_nexthops(fi) { int attrlen = nhlen - sizeof(struct rtnexthop); if (attrlen < 0 || (nhlen -= nhp->rtnh_len) < 0) return -EINVAL; nh->nh_flags = (r->rtm_flags&~0xFF) | nhp->rtnh_flags; nh->nh_oif = nhp->rtnh_ifindex; nh->nh_weight = nhp->rtnh_hops + 1; if (attrlen) { nh->nh_gw = fib_get_attr32(RTNH_DATA(nhp), attrlen, RTA_GATEWAY); #ifdef CONFIG_NET_CLS_ROUTE nh->nh_tclassid = fib_get_attr32(RTNH_DATA(nhp), attrlen, RTA_FLOW); #endif } nhp = RTNH_NEXT(nhp); } endfor_nexthops(fi); return 0; } #endif int fib_nh_match(struct rtmsg *r, struct nlmsghdr *nlh, struct kern_rta *rta, struct fib_info *fi) { #ifdef CONFIG_IP_ROUTE_MULTIPATH struct rtnexthop *nhp; int nhlen; #endif if (rta->rta_priority && *rta->rta_priority != fi->fib_priority) return 1; if (rta->rta_oif || rta->rta_gw) { if ((!rta->rta_oif || *rta->rta_oif == fi->fib_nh->nh_oif) && (!rta->rta_gw || memcmp(rta->rta_gw, &fi->fib_nh->nh_gw, 4) == 0)) return 0; return 1; } #ifdef CONFIG_IP_ROUTE_MULTIPATH if (rta->rta_mp == NULL) return 0; nhp = RTA_DATA(rta->rta_mp); nhlen = RTA_PAYLOAD(rta->rta_mp); for_nexthops(fi) { int attrlen = nhlen - sizeof(struct rtnexthop); u32 gw; if (attrlen < 0 || (nhlen -= nhp->rtnh_len) < 0) return -EINVAL; if (nhp->rtnh_ifindex && nhp->rtnh_ifindex != nh->nh_oif) return 1; if (attrlen) { gw = fib_get_attr32(RTNH_DATA(nhp), attrlen, RTA_GATEWAY); if (gw && gw != nh->nh_gw) return 1; #ifdef CONFIG_NET_CLS_ROUTE gw = fib_get_attr32(RTNH_DATA(nhp), attrlen, RTA_FLOW); if (gw && gw != nh->nh_tclassid) return 1; #endif } nhp = RTNH_NEXT(nhp); } endfor_nexthops(fi); #endif return 0; } /* Picture ------- Semantics of nexthop is very messy by historical reasons. We have to take into account, that: a) gateway can be actually local interface address, so that gatewayed route is direct. b) gateway must be on-link address, possibly described not by an ifaddr, but also by a direct route. c) If both gateway and interface are specified, they should not contradict. d) If we use tunnel routes, gateway could be not on-link. Attempt to reconcile all of these (alas, self-contradictory) conditions results in pretty ugly and hairy code with obscure logic. I chose to generalized it instead, so that the size of code does not increase practically, but it becomes much more general. Every prefix is assigned a "scope" value: "host" is local address, "link" is direct route, [ ... "site" ... "interior" ... ] and "universe" is true gateway route with global meaning. Every prefix refers to a set of "nexthop"s (gw, oif), where gw must have narrower scope. This recursion stops when gw has LOCAL scope or if "nexthop" is declared ONLINK, which means that gw is forced to be on link. Code is still hairy, but now it is apparently logically consistent and very flexible. F.e. as by-product it allows to co-exists in peace independent exterior and interior routing processes. Normally it looks as following. {universe prefix} -> (gw, oif) [scope link] | |-> {link prefix} -> (gw, oif) [scope local] | |-> {local prefix} (terminal node) */ static int fib_check_nh(const struct rtmsg *r, struct fib_info *fi, struct fib_nh *nh) { int err; if (nh->nh_gw) { struct fib_result res; #ifdef CONFIG_IP_ROUTE_PERVASIVE if (nh->nh_flags&RTNH_F_PERVASIVE) return 0; #endif if (nh->nh_flags&RTNH_F_ONLINK) { struct net_device *dev; if (r->rtm_scope >= RT_SCOPE_LINK) return -EINVAL; if (inet_addr_type(nh->nh_gw) != RTN_UNICAST) return -EINVAL; if ((dev = __dev_get_by_index(nh->nh_oif)) == NULL) return -ENODEV; if (!(dev->flags&IFF_UP)) return -ENETDOWN; nh->nh_dev = dev; dev_hold(dev); nh->nh_scope = RT_SCOPE_LINK; return 0; } { struct flowi fl = { .nl_u = { .ip4_u = { .daddr = nh->nh_gw, .scope = r->rtm_scope + 1 } }, .oif = nh->nh_oif }; /* It is not necessary, but requires a bit of thinking */ if (fl.fl4_scope < RT_SCOPE_LINK) fl.fl4_scope = RT_SCOPE_LINK; if ((err = fib_lookup(&fl, &res)) != 0) return err; } err = -EINVAL; if (res.type != RTN_UNICAST && res.type != RTN_LOCAL) goto out; nh->nh_scope = res.scope; nh->nh_oif = FIB_RES_OIF(res); if ((nh->nh_dev = FIB_RES_DEV(res)) == NULL) goto out; dev_hold(nh->nh_dev); err = -ENETDOWN; if (!(nh->nh_dev->flags & IFF_UP)) goto out; err = 0; out: fib_res_put(&res); return err; } else { struct in_device *in_dev; if (nh->nh_flags&(RTNH_F_PERVASIVE|RTNH_F_ONLINK)) return -EINVAL; in_dev = inetdev_by_index(nh->nh_oif); if (in_dev == NULL) return -ENODEV; if (!(in_dev->dev->flags&IFF_UP)) { in_dev_put(in_dev); return -ENETDOWN; } nh->nh_dev = in_dev->dev; dev_hold(nh->nh_dev); nh->nh_scope = RT_SCOPE_HOST; in_dev_put(in_dev); } return 0; } struct fib_info * fib_create_info(const struct rtmsg *r, struct kern_rta *rta, const struct nlmsghdr *nlh, int *errp) { int err; struct fib_info *fi = NULL; struct fib_info *ofi; #ifdef CONFIG_IP_ROUTE_MULTIPATH int nhs = 1; #else const int nhs = 1; #endif /* Fast check to catch the most weird cases */ if (fib_props[r->rtm_type].scope > r->rtm_scope) goto err_inval; #ifdef CONFIG_IP_ROUTE_MULTIPATH if (rta->rta_mp) { nhs = fib_count_nexthops(rta->rta_mp); if (nhs == 0) goto err_inval; } #endif fi = kmalloc(sizeof(*fi)+nhs*sizeof(struct fib_nh), GFP_KERNEL); err = -ENOBUFS; if (fi == NULL) goto failure; fib_info_cnt++; memset(fi, 0, sizeof(*fi)+nhs*sizeof(struct fib_nh)); fi->fib_protocol = r->rtm_protocol; fi->fib_nhs = nhs; fi->fib_flags = r->rtm_flags; if (rta->rta_priority) fi->fib_priority = *rta->rta_priority; if (rta->rta_mx) { int attrlen = RTA_PAYLOAD(rta->rta_mx); struct rtattr *attr = RTA_DATA(rta->rta_mx); while (RTA_OK(attr, attrlen)) { unsigned flavor = attr->rta_type; if (flavor) { if (flavor > RTAX_MAX) goto err_inval; fi->fib_metrics[flavor-1] = *(unsigned*)RTA_DATA(attr); } attr = RTA_NEXT(attr, attrlen); } } if (rta->rta_prefsrc) memcpy(&fi->fib_prefsrc, rta->rta_prefsrc, 4); if (rta->rta_mp) { #ifdef CONFIG_IP_ROUTE_MULTIPATH if ((err = fib_get_nhs(fi, rta->rta_mp, r)) != 0) goto failure; if (rta->rta_oif && fi->fib_nh->nh_oif != *rta->rta_oif) goto err_inval; if (rta->rta_gw && memcmp(&fi->fib_nh->nh_gw, rta->rta_gw, 4)) goto err_inval; #ifdef CONFIG_NET_CLS_ROUTE if (rta->rta_flow && memcmp(&fi->fib_nh->nh_tclassid, rta->rta_flow, 4)) goto err_inval; #endif #else goto err_inval; #endif } else { struct fib_nh *nh = fi->fib_nh; if (rta->rta_oif) nh->nh_oif = *rta->rta_oif; if (rta->rta_gw) memcpy(&nh->nh_gw, rta->rta_gw, 4); #ifdef CONFIG_NET_CLS_ROUTE if (rta->rta_flow) memcpy(&nh->nh_tclassid, rta->rta_flow, 4); #endif nh->nh_flags = r->rtm_flags; #ifdef CONFIG_IP_ROUTE_MULTIPATH nh->nh_weight = 1; #endif } #ifdef CONFIG_IP_ROUTE_NAT if (r->rtm_type == RTN_NAT) { if (rta->rta_gw == NULL || nhs != 1 || rta->rta_oif) goto err_inval; memcpy(&fi->fib_nh->nh_gw, rta->rta_gw, 4); goto link_it; } #endif if (fib_props[r->rtm_type].error) { if (rta->rta_gw || rta->rta_oif || rta->rta_mp) goto err_inval; goto link_it; } if (r->rtm_scope > RT_SCOPE_HOST) goto err_inval; if (r->rtm_scope == RT_SCOPE_HOST) { struct fib_nh *nh = fi->fib_nh; /* Local address is added. */ if (nhs != 1 || nh->nh_gw) goto err_inval; nh->nh_scope = RT_SCOPE_NOWHERE; nh->nh_dev = dev_get_by_index(fi->fib_nh->nh_oif); err = -ENODEV; if (nh->nh_dev == NULL) goto failure; } else { change_nexthops(fi) { if ((err = fib_check_nh(r, fi, nh)) != 0) goto failure; } endfor_nexthops(fi) } if (fi->fib_prefsrc) { if (r->rtm_type != RTN_LOCAL || rta->rta_dst == NULL || memcmp(&fi->fib_prefsrc, rta->rta_dst, 4)) if (inet_addr_type(fi->fib_prefsrc) != RTN_LOCAL) goto err_inval; } link_it: if ((ofi = fib_find_info(fi)) != NULL) { fi->fib_dead = 1; free_fib_info(fi); ofi->fib_treeref++; return ofi; } fi->fib_treeref++; atomic_inc(&fi->fib_clntref); write_lock(&fib_info_lock); fi->fib_next = fib_info_list; fi->fib_prev = NULL; if (fib_info_list) fib_info_list->fib_prev = fi; fib_info_list = fi; write_unlock(&fib_info_lock); return fi; err_inval: err = -EINVAL; failure: *errp = err; if (fi) { fi->fib_dead = 1; free_fib_info(fi); } return NULL; } int fib_semantic_match(int type, struct fib_info *fi, const struct flowi *flp, struct fib_result *res) { int err = fib_props[type].error; if (err == 0) { if (fi->fib_flags&RTNH_F_DEAD) return 1; res->fi = fi; switch (type) { #ifdef CONFIG_IP_ROUTE_NAT case RTN_NAT: FIB_RES_RESET(*res); atomic_inc(&fi->fib_clntref); return 0; #endif case RTN_UNICAST: case RTN_LOCAL: case RTN_BROADCAST: case RTN_ANYCAST: case RTN_MULTICAST: for_nexthops(fi) { if (nh->nh_flags&RTNH_F_DEAD) continue; if (!flp->oif || flp->oif == nh->nh_oif) break; } #ifdef CONFIG_IP_ROUTE_MULTIPATH if (nhsel < fi->fib_nhs) { res->nh_sel = nhsel; atomic_inc(&fi->fib_clntref); return 0; } #else if (nhsel < 1) { atomic_inc(&fi->fib_clntref); return 0; } #endif endfor_nexthops(fi); res->fi = NULL; return 1; default: res->fi = NULL; printk(KERN_DEBUG "impossible 102\n"); return -EINVAL; } } return err; } /* Find appropriate source address to this destination */ u32 __fib_res_prefsrc(struct fib_result *res) { return inet_select_addr(FIB_RES_DEV(*res), FIB_RES_GW(*res), res->scope); } int fib_dump_info(struct sk_buff *skb, u32 pid, u32 seq, int event, u8 tb_id, u8 type, u8 scope, void *dst, int dst_len, u8 tos, struct fib_info *fi) { struct rtmsg *rtm; struct nlmsghdr *nlh; unsigned char *b = skb->tail; nlh = NLMSG_PUT(skb, pid, seq, event, sizeof(*rtm)); rtm = NLMSG_DATA(nlh); rtm->rtm_family = AF_INET; rtm->rtm_dst_len = dst_len; rtm->rtm_src_len = 0; rtm->rtm_tos = tos; rtm->rtm_table = tb_id; rtm->rtm_type = type; rtm->rtm_flags = fi->fib_flags; rtm->rtm_scope = scope; if (rtm->rtm_dst_len) RTA_PUT(skb, RTA_DST, 4, dst); rtm->rtm_protocol = fi->fib_protocol; if (fi->fib_priority) RTA_PUT(skb, RTA_PRIORITY, 4, &fi->fib_priority); #ifdef CONFIG_NET_CLS_ROUTE if (fi->fib_nh[0].nh_tclassid) RTA_PUT(skb, RTA_FLOW, 4, &fi->fib_nh[0].nh_tclassid); #endif if (rtnetlink_put_metrics(skb, fi->fib_metrics) < 0) goto rtattr_failure; if (fi->fib_prefsrc) RTA_PUT(skb, RTA_PREFSRC, 4, &fi->fib_prefsrc); if (fi->fib_nhs == 1) { if (fi->fib_nh->nh_gw) RTA_PUT(skb, RTA_GATEWAY, 4, &fi->fib_nh->nh_gw); if (fi->fib_nh->nh_oif) RTA_PUT(skb, RTA_OIF, sizeof(int), &fi->fib_nh->nh_oif); } #ifdef CONFIG_IP_ROUTE_MULTIPATH if (fi->fib_nhs > 1) { struct rtnexthop *nhp; struct rtattr *mp_head; if (skb_tailroom(skb) <= RTA_SPACE(0)) goto rtattr_failure; mp_head = (struct rtattr*)skb_put(skb, RTA_SPACE(0)); for_nexthops(fi) { if (skb_tailroom(skb) < RTA_ALIGN(RTA_ALIGN(sizeof(*nhp)) + 4)) goto rtattr_failure; nhp = (struct rtnexthop*)skb_put(skb, RTA_ALIGN(sizeof(*nhp))); nhp->rtnh_flags = nh->nh_flags & 0xFF; nhp->rtnh_hops = nh->nh_weight-1; nhp->rtnh_ifindex = nh->nh_oif; if (nh->nh_gw) RTA_PUT(skb, RTA_GATEWAY, 4, &nh->nh_gw); nhp->rtnh_len = skb->tail - (unsigned char*)nhp; } endfor_nexthops(fi); mp_head->rta_type = RTA_MULTIPATH; mp_head->rta_len = skb->tail - (u8*)mp_head; } #endif nlh->nlmsg_len = skb->tail - b; return skb->len; nlmsg_failure: rtattr_failure: skb_trim(skb, b - skb->data); return -1; } #ifndef CONFIG_IP_NOSIOCRT int fib_convert_rtentry(int cmd, struct nlmsghdr *nl, struct rtmsg *rtm, struct kern_rta *rta, struct rtentry *r) { int plen; u32 *ptr; memset(rtm, 0, sizeof(*rtm)); memset(rta, 0, sizeof(*rta)); if (r->rt_dst.sa_family != AF_INET) return -EAFNOSUPPORT; /* Check mask for validity: a) it must be contiguous. b) destination must have all host bits clear. c) if application forgot to set correct family (AF_INET), reject request unless it is absolutely clear i.e. both family and mask are zero. */ plen = 32; ptr = &((struct sockaddr_in*)&r->rt_dst)->sin_addr.s_addr; if (!(r->rt_flags&RTF_HOST)) { u32 mask = ((struct sockaddr_in*)&r->rt_genmask)->sin_addr.s_addr; if (r->rt_genmask.sa_family != AF_INET) { if (mask || r->rt_genmask.sa_family) return -EAFNOSUPPORT; } if (bad_mask(mask, *ptr)) return -EINVAL; plen = inet_mask_len(mask); } nl->nlmsg_flags = NLM_F_REQUEST; nl->nlmsg_pid = 0; nl->nlmsg_seq = 0; nl->nlmsg_len = NLMSG_LENGTH(sizeof(*rtm)); if (cmd == SIOCDELRT) { nl->nlmsg_type = RTM_DELROUTE; nl->nlmsg_flags = 0; } else { nl->nlmsg_type = RTM_NEWROUTE; nl->nlmsg_flags = NLM_F_REQUEST|NLM_F_CREATE; rtm->rtm_protocol = RTPROT_BOOT; } rtm->rtm_dst_len = plen; rta->rta_dst = ptr; if (r->rt_metric) { *(u32*)&r->rt_pad3 = r->rt_metric - 1; rta->rta_priority = (u32*)&r->rt_pad3; } if (r->rt_flags&RTF_REJECT) { rtm->rtm_scope = RT_SCOPE_HOST; rtm->rtm_type = RTN_UNREACHABLE; return 0; } rtm->rtm_scope = RT_SCOPE_NOWHERE; rtm->rtm_type = RTN_UNICAST; if (r->rt_dev) { char *colon; struct net_device *dev; char devname[IFNAMSIZ]; if (copy_from_user(devname, r->rt_dev, IFNAMSIZ-1)) return -EFAULT; devname[IFNAMSIZ-1] = 0; colon = strchr(devname, ':'); if (colon) *colon = 0; dev = __dev_get_by_name(devname); if (!dev) return -ENODEV; rta->rta_oif = &dev->ifindex; if (colon) { struct in_ifaddr *ifa; struct in_device *in_dev = __in_dev_get(dev); if (!in_dev) return -ENODEV; *colon = ':'; for (ifa = in_dev->ifa_list; ifa; ifa = ifa->ifa_next) if (strcmp(ifa->ifa_label, devname) == 0) break; if (ifa == NULL) return -ENODEV; rta->rta_prefsrc = &ifa->ifa_local; } } ptr = &((struct sockaddr_in*)&r->rt_gateway)->sin_addr.s_addr; if (r->rt_gateway.sa_family == AF_INET && *ptr) { rta->rta_gw = ptr; if (r->rt_flags&RTF_GATEWAY && inet_addr_type(*ptr) == RTN_UNICAST) rtm->rtm_scope = RT_SCOPE_UNIVERSE; } if (cmd == SIOCDELRT) return 0; if (r->rt_flags&RTF_GATEWAY && rta->rta_gw == NULL) return -EINVAL; if (rtm->rtm_scope == RT_SCOPE_NOWHERE) rtm->rtm_scope = RT_SCOPE_LINK; if (r->rt_flags&(RTF_MTU|RTF_WINDOW|RTF_IRTT)) { struct rtattr *rec; struct rtattr *mx = kmalloc(RTA_LENGTH(3*RTA_LENGTH(4)), GFP_KERNEL); if (mx == NULL) return -ENOMEM; rta->rta_mx = mx; mx->rta_type = RTA_METRICS; mx->rta_len = RTA_LENGTH(0); if (r->rt_flags&RTF_MTU) { rec = (void*)((char*)mx + RTA_ALIGN(mx->rta_len)); rec->rta_type = RTAX_ADVMSS; rec->rta_len = RTA_LENGTH(4); mx->rta_len += RTA_LENGTH(4); *(u32*)RTA_DATA(rec) = r->rt_mtu - 40; } if (r->rt_flags&RTF_WINDOW) { rec = (void*)((char*)mx + RTA_ALIGN(mx->rta_len)); rec->rta_type = RTAX_WINDOW; rec->rta_len = RTA_LENGTH(4); mx->rta_len += RTA_LENGTH(4); *(u32*)RTA_DATA(rec) = r->rt_window; } if (r->rt_flags&RTF_IRTT) { rec = (void*)((char*)mx + RTA_ALIGN(mx->rta_len)); rec->rta_type = RTAX_RTT; rec->rta_len = RTA_LENGTH(4); mx->rta_len += RTA_LENGTH(4); *(u32*)RTA_DATA(rec) = r->rt_irtt<<3; } } return 0; } #endif /* Update FIB if: - local address disappeared -> we must delete all the entries referring to it. - device went down -> we must shutdown all nexthops going via it. */ int fib_sync_down(u32 local, struct net_device *dev, int force) { int ret = 0; int scope = RT_SCOPE_NOWHERE; if (force) scope = -1; for_fib_info() { if (local && fi->fib_prefsrc == local) { fi->fib_flags |= RTNH_F_DEAD; ret++; } else if (dev && fi->fib_nhs) { int dead = 0; change_nexthops(fi) { if (nh->nh_flags&RTNH_F_DEAD) dead++; else if (nh->nh_dev == dev && nh->nh_scope != scope) { nh->nh_flags |= RTNH_F_DEAD; #ifdef CONFIG_IP_ROUTE_MULTIPATH spin_lock_bh(&fib_multipath_lock); fi->fib_power -= nh->nh_power; nh->nh_power = 0; spin_unlock_bh(&fib_multipath_lock); #endif dead++; } #ifdef CONFIG_IP_ROUTE_MULTIPATH if (force > 1 && nh->nh_dev == dev) { dead = fi->fib_nhs; break; } #endif } endfor_nexthops(fi) if (dead == fi->fib_nhs) { fi->fib_flags |= RTNH_F_DEAD; ret++; } } } endfor_fib_info(); return ret; } #ifdef CONFIG_IP_ROUTE_MULTIPATH /* Dead device goes up. We wake up dead nexthops. It takes sense only on multipath routes. */ int fib_sync_up(struct net_device *dev) { int ret = 0; if (!(dev->flags&IFF_UP)) return 0; for_fib_info() { int alive = 0; change_nexthops(fi) { if (!(nh->nh_flags&RTNH_F_DEAD)) { alive++; continue; } if (nh->nh_dev == NULL || !(nh->nh_dev->flags&IFF_UP)) continue; if (nh->nh_dev != dev || __in_dev_get(dev) == NULL) continue; alive++; spin_lock_bh(&fib_multipath_lock); nh->nh_power = 0; nh->nh_flags &= ~RTNH_F_DEAD; spin_unlock_bh(&fib_multipath_lock); } endfor_nexthops(fi) if (alive > 0) { fi->fib_flags &= ~RTNH_F_DEAD; ret++; } } endfor_fib_info(); return ret; } /* The algorithm is suboptimal, but it provides really fair weighted route distribution. */ void fib_select_multipath(const struct flowi *flp, struct fib_result *res) { struct fib_info *fi = res->fi; int w; spin_lock_bh(&fib_multipath_lock); if (fi->fib_power <= 0) { int power = 0; change_nexthops(fi) { if (!(nh->nh_flags&RTNH_F_DEAD)) { power += nh->nh_weight; nh->nh_power = nh->nh_weight; } } endfor_nexthops(fi); fi->fib_power = power; if (power <= 0) { spin_unlock_bh(&fib_multipath_lock); /* Race condition: route has just become dead. */ res->nh_sel = 0; return; } } /* w should be random number [0..fi->fib_power-1], it is pretty bad approximation. */ w = jiffies % fi->fib_power; change_nexthops(fi) { if (!(nh->nh_flags&RTNH_F_DEAD) && nh->nh_power) { if ((w -= nh->nh_power) <= 0) { nh->nh_power--; fi->fib_power--; res->nh_sel = nhsel; spin_unlock_bh(&fib_multipath_lock); return; } } } endfor_nexthops(fi); /* Race condition: route has just become dead. */ res->nh_sel = 0; spin_unlock_bh(&fib_multipath_lock); } #endif