/* * linux/fs/nfs/direct.c * * Copyright (C) 2003 by Chuck Lever <cel@netapp.com> * * High-performance uncached I/O for the Linux NFS client * * There are important applications whose performance or correctness * depends on uncached access to file data. Database clusters * (multiple copies of the same instance running on separate hosts) * implement their own cache coherency protocol that subsumes file * system cache protocols. Applications that process datasets * considerably larger than the client's memory do not always benefit * from a local cache. A streaming video server, for instance, has no * need to cache the contents of a file. * * When an application requests uncached I/O, all read and write requests * are made directly to the server; data stored or fetched via these * requests is not cached in the Linux page cache. The client does not * correct unaligned requests from applications. All requested bytes are * held on permanent storage before a direct write system call returns to * an application. * * Solaris implements an uncached I/O facility called directio() that * is used for backups and sequential I/O to very large files. Solaris * also supports uncaching whole NFS partitions with "-o forcedirectio," * an undocumented mount option. * * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with * help from Andrew Morton. * * 18 Dec 2001 Initial implementation for 2.4 --cel * 08 Jul 2002 Version for 2.4.19, with bug fixes --trondmy * 08 Jun 2003 Port to 2.5 APIs --cel * 31 Mar 2004 Handle direct I/O without VFS support --cel * */ #include <linux/config.h> #include <linux/errno.h> #include <linux/sched.h> #include <linux/kernel.h> #include <linux/smp_lock.h> #include <linux/file.h> #include <linux/pagemap.h> #include <linux/nfs_fs.h> #include <linux/nfs_page.h> #include <linux/sunrpc/clnt.h> #include <asm/system.h> #include <asm/uaccess.h> #define NFSDBG_FACILITY NFSDBG_VFS #define VERF_SIZE (2 * sizeof(__u32)) #define MAX_DIRECTIO_SIZE (4096UL << PAGE_SHIFT) /** * nfs_get_user_pages - find and set up pages underlying user's buffer * rw: direction (read or write) * user_addr: starting address of this segment of user's buffer * count: size of this segment * @pages: returned array of page struct pointers underlying user's buffer */ static inline int nfs_get_user_pages(int rw, unsigned long user_addr, size_t size, struct page ***pages) { int result = -ENOMEM; unsigned long page_count; size_t array_size; /* set an arbitrary limit to prevent arithmetic overflow */ if (size > MAX_DIRECTIO_SIZE) return -EFBIG; page_count = (user_addr + size + PAGE_SIZE - 1) >> PAGE_SHIFT; page_count -= user_addr >> PAGE_SHIFT; array_size = (page_count * sizeof(struct page *)); *pages = kmalloc(array_size, GFP_KERNEL); if (*pages) { down_read(¤t->mm->mmap_sem); result = get_user_pages(current, current->mm, user_addr, page_count, (rw == READ), 0, *pages, NULL); up_read(¤t->mm->mmap_sem); } return result; } /** * nfs_free_user_pages - tear down page struct array * @pages: array of page struct pointers underlying target buffer */ static void nfs_free_user_pages(struct page **pages, int npages, int do_dirty) { int i; for (i = 0; i < npages; i++) { if (do_dirty) set_page_dirty_lock(pages[i]); page_cache_release(pages[i]); } kfree(pages); } /** * nfs_direct_read_seg - Read in one iov segment. Generate separate * read RPCs for each "rsize" bytes. * @inode: target inode * @file: target file (may be NULL) * user_addr: starting address of this segment of user's buffer * count: size of this segment * file_offset: offset in file to begin the operation * @pages: array of addresses of page structs defining user's buffer * nr_pages: size of pages array */ static int nfs_direct_read_seg(struct inode *inode, struct file *file, unsigned long user_addr, size_t count, loff_t file_offset, struct page **pages, int nr_pages) { const unsigned int rsize = NFS_SERVER(inode)->rsize; int tot_bytes = 0; int curpage = 0; struct nfs_read_data rdata = { .inode = inode, .args = { .fh = NFS_FH(inode), .lockowner = current->files, }, .res = { .fattr = &rdata.fattr, }, }; rdata.args.pgbase = user_addr & ~PAGE_MASK; rdata.args.offset = file_offset; do { int result; rdata.args.count = count; if (rdata.args.count > rsize) rdata.args.count = rsize; rdata.args.pages = &pages[curpage]; dprintk("NFS: direct read: c=%u o=%Ld ua=%lu, pb=%u, cp=%u\n", rdata.args.count, (long long) rdata.args.offset, user_addr + tot_bytes, rdata.args.pgbase, curpage); lock_kernel(); result = NFS_PROTO(inode)->read(&rdata, file); unlock_kernel(); if (result <= 0) { if (tot_bytes > 0) break; if (result == -EISDIR) result = -EINVAL; return result; } tot_bytes += result; if (rdata.res.eof) break; rdata.args.offset += result; rdata.args.pgbase += result; curpage += rdata.args.pgbase >> PAGE_SHIFT; rdata.args.pgbase &= ~PAGE_MASK; count -= result; } while (count != 0); /* XXX: should we zero the rest of the user's buffer if we * hit eof? */ return tot_bytes; } /** * nfs_direct_read - For each iov segment, map the user's buffer * then generate read RPCs. * @inode: target inode * @file: target file (may be NULL) * @iov: array of vectors that define I/O buffer * file_offset: offset in file to begin the operation * nr_segs: size of iovec array * * generic_file_direct_IO has already pushed out any non-direct * writes so that this read will see them when we read from the * server. */ static ssize_t nfs_direct_read(struct inode *inode, struct file *file, const struct iovec *iov, loff_t file_offset, unsigned long nr_segs) { ssize_t tot_bytes = 0; unsigned long seg = 0; while ((seg < nr_segs) && (tot_bytes >= 0)) { ssize_t result; int page_count; struct page **pages; const struct iovec *vec = &iov[seg++]; unsigned long user_addr = (unsigned long) vec->iov_base; size_t size = vec->iov_len; page_count = nfs_get_user_pages(READ, user_addr, size, &pages); if (page_count < 0) { nfs_free_user_pages(pages, 0, 0); if (tot_bytes > 0) break; return page_count; } result = nfs_direct_read_seg(inode, file, user_addr, size, file_offset, pages, page_count); nfs_free_user_pages(pages, page_count, 1); if (result <= 0) { if (tot_bytes > 0) break; return result; } tot_bytes += result; file_offset += result; if (result < size) break; } return tot_bytes; } /** * nfs_direct_write_seg - Write out one iov segment. Generate separate * write RPCs for each "wsize" bytes, then commit. * @inode: target inode * @file: target file (may be NULL) * user_addr: starting address of this segment of user's buffer * count: size of this segment * file_offset: offset in file to begin the operation * @pages: array of addresses of page structs defining user's buffer * nr_pages: size of pages array */ static int nfs_direct_write_seg(struct inode *inode, struct file *file, unsigned long user_addr, size_t count, loff_t file_offset, struct page **pages, int nr_pages) { const unsigned int wsize = NFS_SERVER(inode)->wsize; size_t request; int curpage, need_commit, result, tot_bytes; struct nfs_writeverf first_verf; struct nfs_write_data wdata = { .inode = inode, .args = { .fh = NFS_FH(inode), .lockowner = current->files, }, .res = { .fattr = &wdata.fattr, .verf = &wdata.verf, }, }; wdata.args.stable = NFS_UNSTABLE; if (IS_SYNC(inode) || NFS_PROTO(inode)->version == 2 || count <= wsize) wdata.args.stable = NFS_FILE_SYNC; nfs_begin_data_update(inode); retry: need_commit = 0; tot_bytes = 0; curpage = 0; request = count; wdata.args.pgbase = user_addr & ~PAGE_MASK; wdata.args.offset = file_offset; do { wdata.args.count = request; if (wdata.args.count > wsize) wdata.args.count = wsize; wdata.args.pages = &pages[curpage]; dprintk("NFS: direct write: c=%u o=%Ld ua=%lu, pb=%u, cp=%u\n", wdata.args.count, (long long) wdata.args.offset, user_addr + tot_bytes, wdata.args.pgbase, curpage); lock_kernel(); result = NFS_PROTO(inode)->write(&wdata, file); unlock_kernel(); if (result <= 0) { if (tot_bytes > 0) break; goto out; } if (tot_bytes == 0) memcpy(&first_verf.verifier, &wdata.verf.verifier, VERF_SIZE); if (wdata.verf.committed != NFS_FILE_SYNC) { need_commit = 1; if (memcmp(&first_verf.verifier, &wdata.verf.verifier, VERF_SIZE)) goto sync_retry; } tot_bytes += result; wdata.args.offset += result; wdata.args.pgbase += result; curpage += wdata.args.pgbase >> PAGE_SHIFT; wdata.args.pgbase &= ~PAGE_MASK; request -= result; } while (request != 0); /* * Commit data written so far, even in the event of an error */ if (need_commit) { wdata.args.count = tot_bytes; wdata.args.offset = file_offset; lock_kernel(); result = NFS_PROTO(inode)->commit(&wdata, file); unlock_kernel(); if (result < 0 || memcmp(&first_verf.verifier, &wdata.verf.verifier, VERF_SIZE) != 0) goto sync_retry; } result = tot_bytes; out: nfs_end_data_update_defer(inode); return result; sync_retry: wdata.args.stable = NFS_FILE_SYNC; goto retry; } /** * nfs_direct_write - For each iov segment, map the user's buffer * then generate write and commit RPCs. * @inode: target inode * @file: target file (may be NULL) * @iov: array of vectors that define I/O buffer * file_offset: offset in file to begin the operation * nr_segs: size of iovec array * * Upon return, generic_file_direct_IO invalidates any cached pages * that non-direct readers might access, so they will pick up these * writes immediately. */ static ssize_t nfs_direct_write(struct inode *inode, struct file *file, const struct iovec *iov, loff_t file_offset, unsigned long nr_segs) { ssize_t tot_bytes = 0; unsigned long seg = 0; while ((seg < nr_segs) && (tot_bytes >= 0)) { ssize_t result; int page_count; struct page **pages; const struct iovec *vec = &iov[seg++]; unsigned long user_addr = (unsigned long) vec->iov_base; size_t size = vec->iov_len; page_count = nfs_get_user_pages(WRITE, user_addr, size, &pages); if (page_count < 0) { nfs_free_user_pages(pages, 0, 0); if (tot_bytes > 0) break; return page_count; } result = nfs_direct_write_seg(inode, file, user_addr, size, file_offset, pages, page_count); nfs_free_user_pages(pages, page_count, 0); if (result <= 0) { if (tot_bytes > 0) break; return result; } tot_bytes += result; file_offset += result; if (result < size) break; } return tot_bytes; } /** * nfs_direct_IO - NFS address space operation for direct I/O * rw: direction (read or write) * @iocb: target I/O control block * @iov: array of vectors that define I/O buffer * file_offset: offset in file to begin the operation * nr_segs: size of iovec array * */ ssize_t nfs_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, loff_t file_offset, unsigned long nr_segs) { ssize_t result = -EINVAL; struct file *file = iocb->ki_filp; struct dentry *dentry = file->f_dentry; struct inode *inode = dentry->d_inode; /* * No support for async yet */ if (!is_sync_kiocb(iocb)) return result; switch (rw) { case READ: dprintk("NFS: direct_IO(read) (%s) off/no(%Lu/%lu)\n", dentry->d_name.name, file_offset, nr_segs); result = nfs_direct_read(inode, file, iov, file_offset, nr_segs); break; case WRITE: dprintk("NFS: direct_IO(write) (%s) off/no(%Lu/%lu)\n", dentry->d_name.name, file_offset, nr_segs); result = nfs_direct_write(inode, file, iov, file_offset, nr_segs); break; default: break; } return result; } /** * nfs_file_direct_read - file direct read operation for NFS files * @iocb: target I/O control block * @buf: user's buffer into which to read data * count: number of bytes to read * pos: byte offset in file where reading starts * * We use this function for direct reads instead of calling * generic_file_aio_read() in order to avoid gfar's check to see if * the request starts before the end of the file. For that check * to work, we must generate a GETATTR before each direct read, and * even then there is a window between the GETATTR and the subsequent * READ where the file size could change. So our preference is simply * to do all reads the application wants, and the server will take * care of managing the end of file boundary. * * This function also eliminates unnecessarily updating the file's * atime locally, as the NFS server sets the file's atime, and this * client must read the updated atime from the server back into its * cache. */ ssize_t nfs_file_direct_read(struct kiocb *iocb, char *buf, size_t count, loff_t pos) { ssize_t retval = -EINVAL; loff_t *ppos = &iocb->ki_pos; struct file *file = iocb->ki_filp; struct dentry *dentry = file->f_dentry; struct address_space *mapping = file->f_mapping; struct inode *inode = mapping->host; struct iovec iov = { .iov_base = buf, .iov_len = count, }; dprintk("nfs: direct read(%s/%s, %lu@%lu)\n", dentry->d_parent->d_name.name, dentry->d_name.name, (unsigned long) count, (unsigned long) pos); if (!is_sync_kiocb(iocb)) goto out; if (count < 0) goto out; retval = -EFAULT; if (!access_ok(VERIFY_WRITE, iov.iov_base, iov.iov_len)) goto out; retval = 0; if (!count) goto out; if (mapping->nrpages) { retval = filemap_fdatawrite(mapping); if (retval == 0) retval = filemap_fdatawait(mapping); if (retval) goto out; } retval = nfs_direct_read(inode, file, &iov, pos, 1); if (retval > 0) *ppos = pos + retval; out: return retval; } /** * nfs_file_direct_write - file direct write operation for NFS files * @iocb: target I/O control block * @buf: user's buffer from which to write data * count: number of bytes to write * pos: byte offset in file where writing starts * * We use this function for direct writes instead of calling * generic_file_aio_write() in order to avoid taking the inode * semaphore and updating the i_size. The NFS server will set * the new i_size and this client must read the updated size * back into its cache. We let the server do generic write * parameter checking and report problems. * * We also avoid an unnecessary invocation of generic_osync_inode(), * as it is fairly meaningless to sync the metadata of an NFS file. * * We eliminate local atime updates, see direct read above. * * We avoid unnecessary page cache invalidations for normal cached * readers of this file. * * Note that O_APPEND is not supported for NFS direct writes, as there * is no atomic O_APPEND write facility in the NFS protocol. */ ssize_t nfs_file_direct_write(struct kiocb *iocb, const char *buf, size_t count, loff_t pos) { ssize_t retval = -EINVAL; loff_t *ppos = &iocb->ki_pos; unsigned long limit = current->rlim[RLIMIT_FSIZE].rlim_cur; struct file *file = iocb->ki_filp; struct dentry *dentry = file->f_dentry; struct address_space *mapping = file->f_mapping; struct inode *inode = mapping->host; struct iovec iov = { .iov_base = (void __user *)buf, .iov_len = count, }; dfprintk(VFS, "nfs: direct write(%s/%s(%ld), %lu@%lu)\n", dentry->d_parent->d_name.name, dentry->d_name.name, inode->i_ino, (unsigned long) count, (unsigned long) pos); if (!is_sync_kiocb(iocb)) goto out; if (count < 0) goto out; if (pos < 0) goto out; retval = -EFAULT; if (!access_ok(VERIFY_READ, iov.iov_base, iov.iov_len)) goto out; if (file->f_error) { retval = file->f_error; file->f_error = 0; goto out; } retval = -EFBIG; if (limit != RLIM_INFINITY) { if (pos >= limit) { send_sig(SIGXFSZ, current, 0); goto out; } if (count > limit - (unsigned long) pos) count = limit - (unsigned long) pos; } retval = 0; if (!count) goto out; if (mapping->nrpages) { retval = filemap_fdatawrite(mapping); if (retval == 0) retval = filemap_fdatawait(mapping); if (retval) goto out; } retval = nfs_direct_write(inode, file, &iov, pos, 1); if (mapping->nrpages) invalidate_inode_pages2(mapping); if (retval > 0) *ppos = pos + retval; out: return retval; }