#ifndef __LINUX_UHCI_HCD_H #define __LINUX_UHCI_HCD_H #include <linux/list.h> #include <linux/usb.h> #define usb_packetid(pipe) (usb_pipein(pipe) ? USB_PID_IN : USB_PID_OUT) #define PIPE_DEVEP_MASK 0x0007ff00 /* * Universal Host Controller Interface data structures and defines */ /* Command register */ #define USBCMD 0 #define USBCMD_RS 0x0001 /* Run/Stop */ #define USBCMD_HCRESET 0x0002 /* Host reset */ #define USBCMD_GRESET 0x0004 /* Global reset */ #define USBCMD_EGSM 0x0008 /* Global Suspend Mode */ #define USBCMD_FGR 0x0010 /* Force Global Resume */ #define USBCMD_SWDBG 0x0020 /* SW Debug mode */ #define USBCMD_CF 0x0040 /* Config Flag (sw only) */ #define USBCMD_MAXP 0x0080 /* Max Packet (0 = 32, 1 = 64) */ /* Status register */ #define USBSTS 2 #define USBSTS_USBINT 0x0001 /* Interrupt due to IOC */ #define USBSTS_ERROR 0x0002 /* Interrupt due to error */ #define USBSTS_RD 0x0004 /* Resume Detect */ #define USBSTS_HSE 0x0008 /* Host System Error - basically PCI problems */ #define USBSTS_HCPE 0x0010 /* Host Controller Process Error - the scripts were buggy */ #define USBSTS_HCH 0x0020 /* HC Halted */ /* Interrupt enable register */ #define USBINTR 4 #define USBINTR_TIMEOUT 0x0001 /* Timeout/CRC error enable */ #define USBINTR_RESUME 0x0002 /* Resume interrupt enable */ #define USBINTR_IOC 0x0004 /* Interrupt On Complete enable */ #define USBINTR_SP 0x0008 /* Short packet interrupt enable */ #define USBFRNUM 6 #define USBFLBASEADD 8 #define USBSOF 12 /* USB port status and control registers */ #define USBPORTSC1 16 #define USBPORTSC2 18 #define USBPORTSC_CCS 0x0001 /* Current Connect Status ("device present") */ #define USBPORTSC_CSC 0x0002 /* Connect Status Change */ #define USBPORTSC_PE 0x0004 /* Port Enable */ #define USBPORTSC_PEC 0x0008 /* Port Enable Change */ #define USBPORTSC_LS 0x0030 /* Line Status */ #define USBPORTSC_RD 0x0040 /* Resume Detect */ #define USBPORTSC_LSDA 0x0100 /* Low Speed Device Attached */ #define USBPORTSC_PR 0x0200 /* Port Reset */ #define USBPORTSC_OC 0x0400 /* Over Current condition */ #define USBPORTSC_SUSP 0x1000 /* Suspend */ /* Legacy support register */ #define USBLEGSUP 0xc0 #define USBLEGSUP_DEFAULT 0x2000 /* only PIRQ enable set */ #define UHCI_NULL_DATA_SIZE 0x7FF /* for UHCI controller TD */ #define UHCI_PTR_BITS cpu_to_le32(0x000F) #define UHCI_PTR_TERM cpu_to_le32(0x0001) #define UHCI_PTR_QH cpu_to_le32(0x0002) #define UHCI_PTR_DEPTH cpu_to_le32(0x0004) #define UHCI_PTR_BREADTH cpu_to_le32(0x0000) #define UHCI_NUMFRAMES 1024 /* in the frame list [array] */ #define UHCI_MAX_SOF_NUMBER 2047 /* in an SOF packet */ #define CAN_SCHEDULE_FRAMES 1000 /* how far future frames can be scheduled */ struct uhci_frame_list { __u32 frame[UHCI_NUMFRAMES]; void *frame_cpu[UHCI_NUMFRAMES]; dma_addr_t dma_handle; }; struct urb_priv; /* * One role of a QH is to hold a queue of TDs for some endpoint. Each QH is * used with one URB, and qh->element (updated by the HC) is either: * - the next unprocessed TD for the URB, or * - UHCI_PTR_TERM (when there's no more traffic for this endpoint), or * - the QH for the next URB queued to the same endpoint. * * The other role of a QH is to serve as a "skeleton" framelist entry, so we * can easily splice a QH for some endpoint into the schedule at the right * place. Then qh->element is UHCI_PTR_TERM. * * In the frame list, qh->link maintains a list of QHs seen by the HC: * skel1 --> ep1-qh --> ep2-qh --> ... --> skel2 --> ... */ struct uhci_qh { /* Hardware fields */ __u32 link; /* Next queue */ __u32 element; /* Queue element pointer */ /* Software fields */ dma_addr_t dma_handle; struct usb_device *dev; struct urb_priv *urbp; struct list_head list; /* P: uhci->frame_list_lock */ struct list_head remove_list; /* P: uhci->remove_list_lock */ } __attribute__((aligned(16))); /* * for TD <status>: */ #define td_status(td) le32_to_cpu((td)->status) #define TD_CTRL_SPD (1 << 29) /* Short Packet Detect */ #define TD_CTRL_C_ERR_MASK (3 << 27) /* Error Counter bits */ #define TD_CTRL_C_ERR_SHIFT 27 #define TD_CTRL_LS (1 << 26) /* Low Speed Device */ #define TD_CTRL_IOS (1 << 25) /* Isochronous Select */ #define TD_CTRL_IOC (1 << 24) /* Interrupt on Complete */ #define TD_CTRL_ACTIVE (1 << 23) /* TD Active */ #define TD_CTRL_STALLED (1 << 22) /* TD Stalled */ #define TD_CTRL_DBUFERR (1 << 21) /* Data Buffer Error */ #define TD_CTRL_BABBLE (1 << 20) /* Babble Detected */ #define TD_CTRL_NAK (1 << 19) /* NAK Received */ #define TD_CTRL_CRCTIMEO (1 << 18) /* CRC/Time Out Error */ #define TD_CTRL_BITSTUFF (1 << 17) /* Bit Stuff Error */ #define TD_CTRL_ACTLEN_MASK 0x7FF /* actual length, encoded as n - 1 */ #define TD_CTRL_ANY_ERROR (TD_CTRL_STALLED | TD_CTRL_DBUFERR | \ TD_CTRL_BABBLE | TD_CTRL_CRCTIME | TD_CTRL_BITSTUFF) #define uhci_maxerr(err) ((err) << TD_CTRL_C_ERR_SHIFT) #define uhci_status_bits(ctrl_sts) ((ctrl_sts) & 0xFE0000) #define uhci_actual_length(ctrl_sts) (((ctrl_sts) + 1) & TD_CTRL_ACTLEN_MASK) /* 1-based */ /* * for TD <info>: (a.k.a. Token) */ #define td_token(td) le32_to_cpu((td)->token) #define TD_TOKEN_DEVADDR_SHIFT 8 #define TD_TOKEN_TOGGLE_SHIFT 19 #define TD_TOKEN_TOGGLE (1 << 19) #define TD_TOKEN_EXPLEN_SHIFT 21 #define TD_TOKEN_EXPLEN_MASK 0x7FF /* expected length, encoded as n - 1 */ #define TD_TOKEN_PID_MASK 0xFF #define uhci_explen(len) ((len) << TD_TOKEN_EXPLEN_SHIFT) #define uhci_expected_length(token) ((((token) >> 21) + 1) & TD_TOKEN_EXPLEN_MASK) #define uhci_toggle(token) (((token) >> TD_TOKEN_TOGGLE_SHIFT) & 1) #define uhci_endpoint(token) (((token) >> 15) & 0xf) #define uhci_devaddr(token) (((token) >> TD_TOKEN_DEVADDR_SHIFT) & 0x7f) #define uhci_devep(token) (((token) >> TD_TOKEN_DEVADDR_SHIFT) & 0x7ff) #define uhci_packetid(token) ((token) & TD_TOKEN_PID_MASK) #define uhci_packetout(token) (uhci_packetid(token) != USB_PID_IN) #define uhci_packetin(token) (uhci_packetid(token) == USB_PID_IN) /* * The documentation says "4 words for hardware, 4 words for software". * * That's silly, the hardware doesn't care. The hardware only cares that * the hardware words are 16-byte aligned, and we can have any amount of * sw space after the TD entry as far as I can tell. * * But let's just go with the documentation, at least for 32-bit machines. * On 64-bit machines we probably want to take advantage of the fact that * hw doesn't really care about the size of the sw-only area. * * Alas, not anymore, we have more than 4 words for software, woops. * Everything still works tho, surprise! -jerdfelt * * td->link points to either another TD (not necessarily for the same urb or * even the same endpoint), or nothing (PTR_TERM), or a QH (for queued urbs) */ struct uhci_td { /* Hardware fields */ __u32 link; __u32 status; __u32 token; __u32 buffer; /* Software fields */ dma_addr_t dma_handle; struct usb_device *dev; struct urb *urb; struct list_head list; /* P: urb->lock */ int frame; /* for iso: what frame? */ struct list_head fl_list; /* P: uhci->frame_list_lock */ } __attribute__((aligned(16))); /* * The UHCI driver places Interrupt, Control and Bulk into QH's both * to group together TD's for one transfer, and also to faciliate queuing * of URB's. To make it easy to insert entries into the schedule, we have * a skeleton of QH's for each predefined Interrupt latency, low speed * control, high speed control and terminating QH (see explanation for * the terminating QH below). * * When we want to add a new QH, we add it to the end of the list for the * skeleton QH. * * For instance, the queue can look like this: * * skel int128 QH * dev 1 interrupt QH * dev 5 interrupt QH * skel int64 QH * skel int32 QH * ... * skel int1 QH * skel low speed control QH * dev 5 control QH * skel high speed control QH * skel bulk QH * dev 1 bulk QH * dev 2 bulk QH * skel terminating QH * * The terminating QH is used for 2 reasons: * - To place a terminating TD which is used to workaround a PIIX bug * (see Intel errata for explanation) * - To loop back to the high speed control queue for full speed bandwidth * reclamation * * Isochronous transfers are stored before the start of the skeleton * schedule and don't use QH's. While the UHCI spec doesn't forbid the * use of QH's for Isochronous, it doesn't use them either. Since we don't * need to use them either, we follow the spec diagrams in hope that it'll * be more compatible with future UHCI implementations. */ #define UHCI_NUM_SKELQH 12 #define skel_int128_qh skelqh[0] #define skel_int64_qh skelqh[1] #define skel_int32_qh skelqh[2] #define skel_int16_qh skelqh[3] #define skel_int8_qh skelqh[4] #define skel_int4_qh skelqh[5] #define skel_int2_qh skelqh[6] #define skel_int1_qh skelqh[7] #define skel_ls_control_qh skelqh[8] #define skel_hs_control_qh skelqh[9] #define skel_bulk_qh skelqh[10] #define skel_term_qh skelqh[11] /* * Search tree for determining where <interval> fits in the skelqh[] * skeleton. * * An interrupt request should be placed into the slowest skelqh[] * which meets the interval/period/frequency requirement. * An interrupt request is allowed to be faster than <interval> but not slower. * * For a given <interval>, this function returns the appropriate/matching * skelqh[] index value. */ static inline int __interval_to_skel(int interval) { if (interval < 16) { if (interval < 4) { if (interval < 2) return 7; /* int1 for 0-1 ms */ return 6; /* int2 for 2-3 ms */ } if (interval < 8) return 5; /* int4 for 4-7 ms */ return 4; /* int8 for 8-15 ms */ } if (interval < 64) { if (interval < 32) return 3; /* int16 for 16-31 ms */ return 2; /* int32 for 32-63 ms */ } if (interval < 128) return 1; /* int64 for 64-127 ms */ return 0; /* int128 for 128-255 ms (Max.) */ } /* * Device states for the host controller. * * To prevent "bouncing" in the presence of electrical noise, * we insist on a 1-second "grace" period, before switching to * the RUNNING or SUSPENDED states, during which the state is * not allowed to change. * * The resume process is divided into substates in order to avoid * potentially length delays during the timer handler. * * States in which the host controller is halted must have values <= 0. */ enum uhci_state { UHCI_RESET, UHCI_RUNNING_GRACE, /* Before RUNNING */ UHCI_RUNNING, /* The normal state */ UHCI_SUSPENDING_GRACE, /* Before SUSPENDED */ UHCI_SUSPENDED = -10, /* When no devices are attached */ UHCI_RESUMING_1, UHCI_RESUMING_2 }; #define hcd_to_uhci(hcd_ptr) container_of(hcd_ptr, struct uhci_hcd, hcd) /* * This describes the full uhci information. * * Note how the "proper" USB information is just * a subset of what the full implementation needs. */ struct uhci_hcd { struct usb_hcd hcd; #ifdef CONFIG_PROC_FS /* procfs */ struct proc_dir_entry *proc_entry; #endif /* Grabbed from PCI */ unsigned long io_addr; struct pci_pool *qh_pool; struct pci_pool *td_pool; struct usb_bus *bus; struct uhci_td *term_td; /* Terminating TD, see UHCI bug */ struct uhci_qh *skelqh[UHCI_NUM_SKELQH]; /* Skeleton QH's */ spinlock_t frame_list_lock; struct uhci_frame_list *fl; /* P: uhci->frame_list_lock */ int fsbr; /* Full speed bandwidth reclamation */ unsigned long fsbrtimeout; /* FSBR delay */ enum uhci_state state; /* FIXME: needs a spinlock */ unsigned long state_end; /* Time of next transition */ int resume_detect; /* Need a Global Resume */ /* Main list of URB's currently controlled by this HC */ spinlock_t urb_list_lock; struct list_head urb_list; /* P: uhci->urb_list_lock */ /* List of QH's that are done, but waiting to be unlinked (race) */ spinlock_t qh_remove_list_lock; struct list_head qh_remove_list; /* P: uhci->qh_remove_list_lock */ /* List of asynchronously unlinked URB's */ spinlock_t urb_remove_list_lock; struct list_head urb_remove_list; /* P: uhci->urb_remove_list_lock */ /* List of URB's awaiting completion callback */ spinlock_t complete_list_lock; struct list_head complete_list; /* P: uhci->complete_list_lock */ int rh_numports; struct timer_list stall_timer; }; struct urb_priv { struct list_head urb_list; struct urb *urb; struct usb_device *dev; struct uhci_qh *qh; /* QH for this URB */ struct list_head td_list; /* P: urb->lock */ int fsbr : 1; /* URB turned on FSBR */ int fsbr_timeout : 1; /* URB timed out on FSBR */ int queued : 1; /* QH was queued (not linked in) */ int short_control_packet : 1; /* If we get a short packet during */ /* a control transfer, retrigger */ /* the status phase */ int status; /* Final status */ unsigned long inserttime; /* In jiffies */ unsigned long fsbrtime; /* In jiffies */ struct list_head queue_list; /* P: uhci->frame_list_lock */ struct list_head complete_list; /* P: uhci->complete_list_lock */ }; /* * Locking in uhci.c * * spinlocks are used extensively to protect the many lists and data * structures we have. It's not that pretty, but it's necessary. We * need to be done with all of the locks (except complete_list_lock) when * we call urb->complete. I've tried to make it simple enough so I don't * have to spend hours racking my brain trying to figure out if the * locking is safe. * * Here's the safe locking order to prevent deadlocks: * * #1 uhci->urb_list_lock * #2 urb->lock * #3 uhci->urb_remove_list_lock, uhci->frame_list_lock, * uhci->qh_remove_list_lock * #4 uhci->complete_list_lock * * If you're going to grab 2 or more locks at once, ALWAYS grab the lock * at the lowest level FIRST and NEVER grab locks at the same level at the * same time. * * So, if you need uhci->urb_list_lock, grab it before you grab urb->lock */ #endif