/* * Debug Store support * * This provides a low-level interface to the hardware's Debug Store * feature that is used for branch trace store (BTS) and * precise-event based sampling (PEBS). * * It manages: * - per-thread and per-cpu allocation of BTS and PEBS * - buffer overflow handling (to be done) * - buffer access * * It assumes: * - get_task_struct on all traced tasks * - current is allowed to trace tasks * * * Copyright (C) 2007-2008 Intel Corporation. * Markus Metzger <markus.t.metzger@intel.com>, 2007-2008 */ #include <asm/ds.h> #include <linux/errno.h> #include <linux/string.h> #include <linux/slab.h> #include <linux/sched.h> #include <linux/mm.h> #include <linux/kernel.h> /* * The configuration for a particular DS hardware implementation. */ struct ds_configuration { /* the size of the DS structure in bytes */ unsigned char sizeof_ds; /* the size of one pointer-typed field in the DS structure in bytes; this covers the first 8 fields related to buffer management. */ unsigned char sizeof_field; /* the size of a BTS/PEBS record in bytes */ unsigned char sizeof_rec[2]; }; static struct ds_configuration ds_cfg; /* * A BTS or PEBS tracer. * * This holds the configuration of the tracer and serves as a handle * to identify tracers. */ struct ds_tracer { /* the DS context (partially) owned by this tracer */ struct ds_context *context; /* the buffer provided on ds_request() and its size in bytes */ void *buffer; size_t size; }; struct bts_tracer { /* the common DS part */ struct ds_tracer ds; /* buffer overflow notification function */ bts_ovfl_callback_t ovfl; }; struct pebs_tracer { /* the common DS part */ struct ds_tracer ds; /* buffer overflow notification function */ pebs_ovfl_callback_t ovfl; }; /* * Debug Store (DS) save area configuration (see Intel64 and IA32 * Architectures Software Developer's Manual, section 18.5) * * The DS configuration consists of the following fields; different * architetures vary in the size of those fields. * - double-word aligned base linear address of the BTS buffer * - write pointer into the BTS buffer * - end linear address of the BTS buffer (one byte beyond the end of * the buffer) * - interrupt pointer into BTS buffer * (interrupt occurs when write pointer passes interrupt pointer) * - double-word aligned base linear address of the PEBS buffer * - write pointer into the PEBS buffer * - end linear address of the PEBS buffer (one byte beyond the end of * the buffer) * - interrupt pointer into PEBS buffer * (interrupt occurs when write pointer passes interrupt pointer) * - value to which counter is reset following counter overflow * * Later architectures use 64bit pointers throughout, whereas earlier * architectures use 32bit pointers in 32bit mode. * * * We compute the base address for the first 8 fields based on: * - the field size stored in the DS configuration * - the relative field position * - an offset giving the start of the respective region * * This offset is further used to index various arrays holding * information for BTS and PEBS at the respective index. * * On later 32bit processors, we only access the lower 32bit of the * 64bit pointer fields. The upper halves will be zeroed out. */ enum ds_field { ds_buffer_base = 0, ds_index, ds_absolute_maximum, ds_interrupt_threshold, }; enum ds_qualifier { ds_bts = 0, ds_pebs }; static inline unsigned long ds_get(const unsigned char *base, enum ds_qualifier qual, enum ds_field field) { base += (ds_cfg.sizeof_field * (field + (4 * qual))); return *(unsigned long *)base; } static inline void ds_set(unsigned char *base, enum ds_qualifier qual, enum ds_field field, unsigned long value) { base += (ds_cfg.sizeof_field * (field + (4 * qual))); (*(unsigned long *)base) = value; } #define DS_ALIGNMENT (1 << 3) /* BTS and PEBS buffer alignment */ /* * Locking is done only for allocating BTS or PEBS resources. */ static spinlock_t ds_lock = __SPIN_LOCK_UNLOCKED(ds_lock); /* * We either support (system-wide) per-cpu or per-thread allocation. * We distinguish the two based on the task_struct pointer, where a * NULL pointer indicates per-cpu allocation for the current cpu. * * Allocations are use-counted. As soon as resources are allocated, * further allocations must be of the same type (per-cpu or * per-thread). We model this by counting allocations (i.e. the number * of tracers of a certain type) for one type negatively: * =0 no tracers * >0 number of per-thread tracers * <0 number of per-cpu tracers * * The below functions to get and put tracers and to check the * allocation type require the ds_lock to be held by the caller. * * Tracers essentially gives the number of ds contexts for a certain * type of allocation. */ static long tracers; static inline void get_tracer(struct task_struct *task) { tracers += (task ? 1 : -1); } static inline void put_tracer(struct task_struct *task) { tracers -= (task ? 1 : -1); } static inline int check_tracer(struct task_struct *task) { return (task ? (tracers >= 0) : (tracers <= 0)); } /* * The DS context is either attached to a thread or to a cpu: * - in the former case, the thread_struct contains a pointer to the * attached context. * - in the latter case, we use a static array of per-cpu context * pointers. * * Contexts are use-counted. They are allocated on first access and * deallocated when the last user puts the context. */ static DEFINE_PER_CPU(struct ds_context *, system_context); #define this_system_context per_cpu(system_context, smp_processor_id()) static inline struct ds_context *ds_get_context(struct task_struct *task) { struct ds_context **p_context = (task ? &task->thread.ds_ctx : &this_system_context); struct ds_context *context = *p_context; unsigned long irq; if (!context) { context = kzalloc(sizeof(*context), GFP_KERNEL); if (!context) return NULL; spin_lock_irqsave(&ds_lock, irq); if (*p_context) { kfree(context); context = *p_context; } else { *p_context = context; context->this = p_context; context->task = task; if (task) set_tsk_thread_flag(task, TIF_DS_AREA_MSR); if (!task || (task == current)) wrmsrl(MSR_IA32_DS_AREA, (unsigned long)context->ds); } spin_unlock_irqrestore(&ds_lock, irq); } context->count++; return context; } static inline void ds_put_context(struct ds_context *context) { unsigned long irq; if (!context) return; spin_lock_irqsave(&ds_lock, irq); if (--context->count) goto out; *(context->this) = NULL; if (context->task) clear_tsk_thread_flag(context->task, TIF_DS_AREA_MSR); if (!context->task || (context->task == current)) wrmsrl(MSR_IA32_DS_AREA, 0); kfree(context); out: spin_unlock_irqrestore(&ds_lock, irq); } /* * Handle a buffer overflow * * context: the ds context * qual: the buffer type */ static void ds_overflow(struct ds_context *context, enum ds_qualifier qual) { switch (qual) { case ds_bts: { struct bts_tracer *tracer = container_of(context->owner[qual], struct bts_tracer, ds); if (tracer->ovfl) tracer->ovfl(tracer); } break; case ds_pebs: { struct pebs_tracer *tracer = container_of(context->owner[qual], struct pebs_tracer, ds); if (tracer->ovfl) tracer->ovfl(tracer); } break; } } static void ds_install_ds_config(struct ds_context *context, enum ds_qualifier qual, void *base, size_t size, size_t ith) { unsigned long buffer, adj; /* adjust the buffer address and size to meet alignment * constraints: * - buffer is double-word aligned * - size is multiple of record size * * We checked the size at the very beginning; we have enough * space to do the adjustment. */ buffer = (unsigned long)base; adj = ALIGN(buffer, DS_ALIGNMENT) - buffer; buffer += adj; size -= adj; size /= ds_cfg.sizeof_rec[qual]; size *= ds_cfg.sizeof_rec[qual]; ds_set(context->ds, qual, ds_buffer_base, buffer); ds_set(context->ds, qual, ds_index, buffer); ds_set(context->ds, qual, ds_absolute_maximum, buffer + size); /* The value for 'no threshold' is -1, which will set the * threshold outside of the buffer, just like we want it. */ ds_set(context->ds, qual, ds_interrupt_threshold, buffer + size - ith); } static int ds_request(struct ds_tracer *tracer, enum ds_qualifier qual, struct task_struct *task, void *base, size_t size, size_t th) { struct ds_context *context; unsigned long irq; int error; error = -EOPNOTSUPP; if (!ds_cfg.sizeof_ds) goto out; error = -EINVAL; if (!base) goto out; /* we require some space to do alignment adjustments below */ error = -EINVAL; if (size < (DS_ALIGNMENT + ds_cfg.sizeof_rec[qual])) goto out; if (th != (size_t)-1) { th *= ds_cfg.sizeof_rec[qual]; error = -EINVAL; if (size <= th) goto out; } tracer->buffer = base; tracer->size = size; error = -ENOMEM; context = ds_get_context(task); if (!context) goto out; tracer->context = context; spin_lock_irqsave(&ds_lock, irq); error = -EPERM; if (!check_tracer(task)) goto out_unlock; get_tracer(task); error = -EPERM; if (context->owner[qual]) goto out_put_tracer; context->owner[qual] = tracer; spin_unlock_irqrestore(&ds_lock, irq); ds_install_ds_config(context, qual, base, size, th); return 0; out_put_tracer: put_tracer(task); out_unlock: spin_unlock_irqrestore(&ds_lock, irq); ds_put_context(context); tracer->context = NULL; out: return error; } struct bts_tracer *ds_request_bts(struct task_struct *task, void *base, size_t size, bts_ovfl_callback_t ovfl, size_t th) { struct bts_tracer *tracer; int error; /* buffer overflow notification is not yet implemented */ error = -EOPNOTSUPP; if (ovfl) goto out; error = -ENOMEM; tracer = kzalloc(sizeof(*tracer), GFP_KERNEL); if (!tracer) goto out; tracer->ovfl = ovfl; error = ds_request(&tracer->ds, ds_bts, task, base, size, th); if (error < 0) goto out_tracer; return tracer; out_tracer: kfree(tracer); out: return ERR_PTR(error); } struct pebs_tracer *ds_request_pebs(struct task_struct *task, void *base, size_t size, pebs_ovfl_callback_t ovfl, size_t th) { struct pebs_tracer *tracer; int error; /* buffer overflow notification is not yet implemented */ error = -EOPNOTSUPP; if (ovfl) goto out; error = -ENOMEM; tracer = kzalloc(sizeof(*tracer), GFP_KERNEL); if (!tracer) goto out; tracer->ovfl = ovfl; error = ds_request(&tracer->ds, ds_pebs, task, base, size, th); if (error < 0) goto out_tracer; return tracer; out_tracer: kfree(tracer); out: return ERR_PTR(error); } static void ds_release(struct ds_tracer *tracer, enum ds_qualifier qual) { WARN_ON_ONCE(tracer->context->owner[qual] != tracer); tracer->context->owner[qual] = NULL; put_tracer(tracer->context->task); ds_put_context(tracer->context); } int ds_release_bts(struct bts_tracer *tracer) { if (!tracer) return -EINVAL; ds_release(&tracer->ds, ds_bts); kfree(tracer); return 0; } int ds_release_pebs(struct pebs_tracer *tracer) { if (!tracer) return -EINVAL; ds_release(&tracer->ds, ds_pebs); kfree(tracer); return 0; } static size_t ds_get_index(struct ds_context *context, enum ds_qualifier qual) { unsigned long base, index; base = ds_get(context->ds, qual, ds_buffer_base); index = ds_get(context->ds, qual, ds_index); return (index - base) / ds_cfg.sizeof_rec[qual]; } int ds_get_bts_index(struct bts_tracer *tracer, size_t *pos) { if (!tracer) return -EINVAL; if (!pos) return -EINVAL; *pos = ds_get_index(tracer->ds.context, ds_bts); return 0; } int ds_get_pebs_index(struct pebs_tracer *tracer, size_t *pos) { if (!tracer) return -EINVAL; if (!pos) return -EINVAL; *pos = ds_get_index(tracer->ds.context, ds_pebs); return 0; } static size_t ds_get_end(struct ds_context *context, enum ds_qualifier qual) { unsigned long base, max; base = ds_get(context->ds, qual, ds_buffer_base); max = ds_get(context->ds, qual, ds_absolute_maximum); return (max - base) / ds_cfg.sizeof_rec[qual]; } int ds_get_bts_end(struct bts_tracer *tracer, size_t *pos) { if (!tracer) return -EINVAL; if (!pos) return -EINVAL; *pos = ds_get_end(tracer->ds.context, ds_bts); return 0; } int ds_get_pebs_end(struct pebs_tracer *tracer, size_t *pos) { if (!tracer) return -EINVAL; if (!pos) return -EINVAL; *pos = ds_get_end(tracer->ds.context, ds_pebs); return 0; } static int ds_access(struct ds_context *context, enum ds_qualifier qual, size_t index, const void **record) { unsigned long base, idx; if (!record) return -EINVAL; base = ds_get(context->ds, qual, ds_buffer_base); idx = base + (index * ds_cfg.sizeof_rec[qual]); if (idx > ds_get(context->ds, qual, ds_absolute_maximum)) return -EINVAL; *record = (const void *)idx; return ds_cfg.sizeof_rec[qual]; } int ds_access_bts(struct bts_tracer *tracer, size_t index, const void **record) { if (!tracer) return -EINVAL; return ds_access(tracer->ds.context, ds_bts, index, record); } int ds_access_pebs(struct pebs_tracer *tracer, size_t index, const void **record) { if (!tracer) return -EINVAL; return ds_access(tracer->ds.context, ds_pebs, index, record); } static int ds_write(struct ds_context *context, enum ds_qualifier qual, const void *record, size_t size) { int bytes_written = 0; if (!record) return -EINVAL; while (size) { unsigned long base, index, end, write_end, int_th; unsigned long write_size, adj_write_size; /* * write as much as possible without producing an * overflow interrupt. * * interrupt_threshold must either be * - bigger than absolute_maximum or * - point to a record between buffer_base and absolute_maximum * * index points to a valid record. */ base = ds_get(context->ds, qual, ds_buffer_base); index = ds_get(context->ds, qual, ds_index); end = ds_get(context->ds, qual, ds_absolute_maximum); int_th = ds_get(context->ds, qual, ds_interrupt_threshold); write_end = min(end, int_th); /* if we are already beyond the interrupt threshold, * we fill the entire buffer */ if (write_end <= index) write_end = end; if (write_end <= index) break; write_size = min((unsigned long) size, write_end - index); memcpy((void *)index, record, write_size); record = (const char *)record + write_size; size -= write_size; bytes_written += write_size; adj_write_size = write_size / ds_cfg.sizeof_rec[qual]; adj_write_size *= ds_cfg.sizeof_rec[qual]; /* zero out trailing bytes */ memset((char *)index + write_size, 0, adj_write_size - write_size); index += adj_write_size; if (index >= end) index = base; ds_set(context->ds, qual, ds_index, index); if (index >= int_th) ds_overflow(context, qual); } return bytes_written; } int ds_write_bts(struct bts_tracer *tracer, const void *record, size_t size) { if (!tracer) return -EINVAL; return ds_write(tracer->ds.context, ds_bts, record, size); } int ds_write_pebs(struct pebs_tracer *tracer, const void *record, size_t size) { if (!tracer) return -EINVAL; return ds_write(tracer->ds.context, ds_pebs, record, size); } static void ds_reset_or_clear(struct ds_context *context, enum ds_qualifier qual, int clear) { unsigned long base, end; base = ds_get(context->ds, qual, ds_buffer_base); end = ds_get(context->ds, qual, ds_absolute_maximum); if (clear) memset((void *)base, 0, end - base); ds_set(context->ds, qual, ds_index, base); } int ds_reset_bts(struct bts_tracer *tracer) { if (!tracer) return -EINVAL; ds_reset_or_clear(tracer->ds.context, ds_bts, /* clear = */ 0); return 0; } int ds_reset_pebs(struct pebs_tracer *tracer) { if (!tracer) return -EINVAL; ds_reset_or_clear(tracer->ds.context, ds_pebs, /* clear = */ 0); return 0; } int ds_clear_bts(struct bts_tracer *tracer) { if (!tracer) return -EINVAL; ds_reset_or_clear(tracer->ds.context, ds_bts, /* clear = */ 1); return 0; } int ds_clear_pebs(struct pebs_tracer *tracer) { if (!tracer) return -EINVAL; ds_reset_or_clear(tracer->ds.context, ds_pebs, /* clear = */ 1); return 0; } int ds_get_pebs_reset(struct pebs_tracer *tracer, u64 *value) { if (!tracer) return -EINVAL; if (!value) return -EINVAL; *value = *(u64 *)(tracer->ds.context->ds + (ds_cfg.sizeof_field * 8)); return 0; } int ds_set_pebs_reset(struct pebs_tracer *tracer, u64 value) { if (!tracer) return -EINVAL; *(u64 *)(tracer->ds.context->ds + (ds_cfg.sizeof_field * 8)) = value; return 0; } static const struct ds_configuration ds_cfg_var = { .sizeof_ds = sizeof(long) * 12, .sizeof_field = sizeof(long), .sizeof_rec[ds_bts] = sizeof(long) * 3, #ifdef __i386__ .sizeof_rec[ds_pebs] = sizeof(long) * 10 #else .sizeof_rec[ds_pebs] = sizeof(long) * 18 #endif }; static const struct ds_configuration ds_cfg_64 = { .sizeof_ds = 8 * 12, .sizeof_field = 8, .sizeof_rec[ds_bts] = 8 * 3, #ifdef __i386__ .sizeof_rec[ds_pebs] = 8 * 10 #else .sizeof_rec[ds_pebs] = 8 * 18 #endif }; static inline void ds_configure(const struct ds_configuration *cfg) { ds_cfg = *cfg; printk(KERN_INFO "DS available\n"); WARN_ON_ONCE(MAX_SIZEOF_DS < ds_cfg.sizeof_ds); } void __cpuinit ds_init_intel(struct cpuinfo_x86 *c) { switch (c->x86) { case 0x6: switch (c->x86_model) { case 0 ... 0xC: /* sorry, don't know about them */ break; case 0xD: case 0xE: /* Pentium M */ ds_configure(&ds_cfg_var); break; default: /* Core2, Atom, ... */ ds_configure(&ds_cfg_64); break; } break; case 0xF: switch (c->x86_model) { case 0x0: case 0x1: case 0x2: /* Netburst */ ds_configure(&ds_cfg_var); break; default: /* sorry, don't know about them */ break; } break; default: /* sorry, don't know about them */ break; } } void ds_free(struct ds_context *context) { /* This is called when the task owning the parameter context * is dying. There should not be any user of that context left * to disturb us, anymore. */ unsigned long leftovers = context->count; while (leftovers--) { put_tracer(context->task); ds_put_context(context); } }