# # IP configuration # config IP_MULTICAST bool "IP: multicasting" depends on INET help This is code for addressing several networked computers at once, enlarging your kernel by about 2 KB. You need multicasting if you intend to participate in the MBONE, a high bandwidth network on top of the Internet which carries audio and video broadcasts. More information about the MBONE is on the WWW at <http://www-itg.lbl.gov/mbone/>. Information about the multicast capabilities of the various network cards is contained in <file:Documentation/networking/multicast.txt>. For most people, it's safe to say N. config IP_ADVANCED_ROUTER bool "IP: advanced router" depends on INET ---help--- If you intend to run your Linux box mostly as a router, i.e. as a computer that forwards and redistributes network packets, say Y; you will then be presented with several options that allow more precise control about the routing process. The answer to this question won't directly affect the kernel: answering N will just cause the configurator to skip all the questions about advanced routing. Note that your box can only act as a router if you enable IP forwarding in your kernel; you can do that by saying Y to "/proc file system support" and "Sysctl support" below and executing the line echo "1" > /proc/sys/net/ipv4/ip_forward at boot time after the /proc file system has been mounted. If you turn on IP forwarding, you will also get the rp_filter, which automatically rejects incoming packets if the routing table entry for their source address doesn't match the network interface they're arriving on. This has security advantages because it prevents the so-called IP spoofing, however it can pose problems if you use asymmetric routing (packets from you to a host take a different path than packets from that host to you) or if you operate a non-routing host which has several IP addresses on different interfaces. To turn rp_filter off use: echo 0 > /proc/sys/net/ipv4/conf/<device>/rp_filter or echo 0 > /proc/sys/net/ipv4/conf/all/rp_filter If unsure, say N here. config IP_MULTIPLE_TABLES bool "IP: policy routing" depends on IP_ADVANCED_ROUTER ---help--- Normally, a router decides what to do with a received packet based solely on the packet's final destination address. If you say Y here, the Linux router will also be able to take the packet's source address into account. Furthermore, if you also say Y to "Use TOS value as routing key" below, the TOS (Type-Of-Service) field of the packet can be used for routing decisions as well. In addition, if you say Y here and to "Fast network address translation" below, the router will also be able to modify source and destination addresses of forwarded packets. If you are interested in this, please see the preliminary documentation at <http://www.compendium.com.ar/policy-routing.txt> and <ftp://post.tepkom.ru/pub/vol2/Linux/docs/advanced-routing.tex>. You will need supporting software from <ftp://ftp.inr.ac.ru/ip-routing/>. If unsure, say N. config IP_ROUTE_FWMARK bool "IP: use netfilter MARK value as routing key" depends on IP_MULTIPLE_TABLES && NETFILTER help If you say Y here, you will be able to specify different routes for packets with different mark values (see iptables(8), MARK target). config IP_ROUTE_NAT bool "IP: fast network address translation" depends on IP_MULTIPLE_TABLES help If you say Y here, your router will be able to modify source and destination addresses of packets that pass through it, in a manner you specify. General information about Network Address Translation can be gotten from the document <http://www.csn.tu-chemnitz.de/~mha/linux-ip-nat/diplom/nat.html>. config IP_ROUTE_MULTIPATH bool "IP: equal cost multipath" depends on IP_ADVANCED_ROUTER help Normally, the routing tables specify a single action to be taken in a deterministic manner for a given packet. If you say Y here however, it becomes possible to attach several actions to a packet pattern, in effect specifying several alternative paths to travel for those packets. The router considers all these paths to be of equal "cost" and chooses one of them in a non-deterministic fashion if a matching packet arrives. config IP_ROUTE_TOS bool "IP: use TOS value as routing key" depends on IP_ADVANCED_ROUTER help The header of every IP packet carries a TOS (Type Of Service) value with which the packet requests a certain treatment, e.g. low latency (for interactive traffic), high throughput, or high reliability. If you say Y here, you will be able to specify different routes for packets with different TOS values. config IP_ROUTE_VERBOSE bool "IP: verbose route monitoring" depends on IP_ADVANCED_ROUTER help If you say Y here, which is recommended, then the kernel will print verbose messages regarding the routing, for example warnings about received packets which look strange and could be evidence of an attack or a misconfigured system somewhere. The information is handled by the klogd daemon which is responsible for kernel messages ("man klogd"). config IP_PNP bool "IP: kernel level autoconfiguration" depends on INET help This enables automatic configuration of IP addresses of devices and of the routing table during kernel boot, based on either information supplied on the kernel command line or by BOOTP or RARP protocols. You need to say Y only for diskless machines requiring network access to boot (in which case you want to say Y to "Root file system on NFS" as well), because all other machines configure the network in their startup scripts. config IP_PNP_DHCP bool "IP: DHCP support" depends on IP_PNP ---help--- If you want your Linux box to mount its whole root file system (the one containing the directory /) from some other computer over the net via NFS and you want the IP address of your computer to be discovered automatically at boot time using the DHCP protocol (a special protocol designed for doing this job), say Y here. In case the boot ROM of your network card was designed for booting Linux and does DHCP itself, providing all necessary information on the kernel command line, you can say N here. If unsure, say Y. Note that if you want to use DHCP, a DHCP server must be operating on your network. Read <file:Documentation/nfsroot.txt> for details. config IP_PNP_BOOTP bool "IP: BOOTP support" depends on IP_PNP ---help--- If you want your Linux box to mount its whole root file system (the one containing the directory /) from some other computer over the net via NFS and you want the IP address of your computer to be discovered automatically at boot time using the BOOTP protocol (a special protocol designed for doing this job), say Y here. In case the boot ROM of your network card was designed for booting Linux and does BOOTP itself, providing all necessary information on the kernel command line, you can say N here. If unsure, say Y. Note that if you want to use BOOTP, a BOOTP server must be operating on your network. Read <file:Documentation/nfsroot.txt> for details. config IP_PNP_RARP bool "IP: RARP support" depends on IP_PNP help If you want your Linux box to mount its whole root file system (the one containing the directory /) from some other computer over the net via NFS and you want the IP address of your computer to be discovered automatically at boot time using the RARP protocol (an older protocol which is being obsoleted by BOOTP and DHCP), say Y here. Note that if you want to use RARP, a RARP server must be operating on your network. Read <file:Documentation/nfsroot.txt> for details. # not yet ready.. # bool ' IP: ARP support' CONFIG_IP_PNP_ARP config NET_IPIP tristate "IP: tunneling" depends on INET ---help--- Tunneling means encapsulating data of one protocol type within another protocol and sending it over a channel that understands the encapsulating protocol. This particular tunneling driver implements encapsulation of IP within IP, which sounds kind of pointless, but can be useful if you want to make your (or some other) machine appear on a different network than it physically is, or to use mobile-IP facilities (allowing laptops to seamlessly move between networks without changing their IP addresses; check out <http://anchor.cs.binghamton.edu/~mobileip/LJ/index.html>). Saying Y to this option will produce two modules ( = code which can be inserted in and removed from the running kernel whenever you want). Most people won't need this and can say N. config NET_IPGRE tristate "IP: GRE tunnels over IP" depends on INET help Tunneling means encapsulating data of one protocol type within another protocol and sending it over a channel that understands the encapsulating protocol. This particular tunneling driver implements GRE (Generic Routing Encapsulation) and at this time allows encapsulating of IPv4 or IPv6 over existing IPv4 infrastructure. This driver is useful if the other endpoint is a Cisco router: Cisco likes GRE much better than the other Linux tunneling driver ("IP tunneling" above). In addition, GRE allows multicast redistribution through the tunnel. config NET_IPGRE_BROADCAST bool "IP: broadcast GRE over IP" depends on IP_MULTICAST && NET_IPGRE help One application of GRE/IP is to construct a broadcast WAN (Wide Area Network), which looks like a normal Ethernet LAN (Local Area Network), but can be distributed all over the Internet. If you want to do that, say Y here and to "IP multicast routing" below. config IP_MROUTE bool "IP: multicast routing" depends on IP_MULTICAST help This is used if you want your machine to act as a router for IP packets that have several destination addresses. It is needed on the MBONE, a high bandwidth network on top of the Internet which carries audio and video broadcasts. In order to do that, you would most likely run the program mrouted. Information about the multicast capabilities of the various network cards is contained in <file:Documentation/networking/multicast.txt>. If you haven't heard about it, you don't need it. config IP_PIMSM_V1 bool "IP: PIM-SM version 1 support" depends on IP_MROUTE help Kernel side support for Sparse Mode PIM (Protocol Independent Multicast) version 1. This multicast routing protocol is used widely because Cisco supports it. You need special software to use it (pimd-v1). Please see <http://netweb.usc.edu/pim/> for more information about PIM. Say Y if you want to use PIM-SM v1. Note that you can say N here if you just want to use Dense Mode PIM. config IP_PIMSM_V2 bool "IP: PIM-SM version 2 support" depends on IP_MROUTE help Kernel side support for Sparse Mode PIM version 2. In order to use this, you need an experimental routing daemon supporting it (pimd or gated-5). This routing protocol is not used widely, so say N unless you want to play with it. config ARPD bool "IP: ARP daemon support (EXPERIMENTAL)" depends on INET && EXPERIMENTAL ---help--- Normally, the kernel maintains an internal cache which maps IP addresses to hardware addresses on the local network, so that Ethernet/Token Ring/ etc. frames are sent to the proper address on the physical networking layer. For small networks having a few hundred directly connected hosts or less, keeping this address resolution (ARP) cache inside the kernel works well. However, maintaining an internal ARP cache does not work well for very large switched networks, and will use a lot of kernel memory if TCP/IP connections are made to many machines on the network. If you say Y here, the kernel's internal ARP cache will never grow to more than 256 entries (the oldest entries are expired in a LIFO manner) and communication will be attempted with the user space ARP daemon arpd. Arpd then answers the address resolution request either from its own cache or by asking the net. This code is experimental and also obsolete. If you want to use it, you need to find a version of the daemon arpd on the net somewhere, and you should also say Y to "Kernel/User network link driver", below. If unsure, say N. config INET_ECN bool "IP: TCP Explicit Congestion Notification support" depends on INET ---help--- Explicit Congestion Notification (ECN) allows routers to notify clients about network congestion, resulting in fewer dropped packets and increased network performance. This option adds ECN support to the Linux kernel, as well as a sysctl (/proc/sys/net/ipv4/tcp_ecn) which allows ECN support to be disabled at runtime. Note that, on the Internet, there are many broken firewalls which refuse connections from ECN-enabled machines, and it may be a while before these firewalls are fixed. Until then, to access a site behind such a firewall (some of which are major sites, at the time of this writing) you will have to disable this option, either by saying N now or by using the sysctl. If in doubt, say N. config SYN_COOKIES bool "IP: TCP syncookie support (disabled per default)" depends on INET ---help--- Normal TCP/IP networking is open to an attack known as "SYN flooding". This denial-of-service attack prevents legitimate remote users from being able to connect to your computer during an ongoing attack and requires very little work from the attacker, who can operate from anywhere on the Internet. SYN cookies provide protection against this type of attack. If you say Y here, the TCP/IP stack will use a cryptographic challenge protocol known as "SYN cookies" to enable legitimate users to continue to connect, even when your machine is under attack. There is no need for the legitimate users to change their TCP/IP software; SYN cookies work transparently to them. For technical information about SYN cookies, check out <http://cr.yp.to/syncookies.html>. If you are SYN flooded, the source address reported by the kernel is likely to have been forged by the attacker; it is only reported as an aid in tracing the packets to their actual source and should not be taken as absolute truth. SYN cookies may prevent correct error reporting on clients when the server is really overloaded. If this happens frequently better turn them off. If you say Y here, note that SYN cookies aren't enabled by default; you can enable them by saying Y to "/proc file system support" and "Sysctl support" below and executing the command echo 1 >/proc/sys/net/ipv4/tcp_syncookies at boot time after the /proc file system has been mounted. If unsure, say N. config INET_AH tristate "IP: AH transformation" select CRYPTO select CRYPTO_HMAC select CRYPTO_MD5 select CRYPTO_SHA1 ---help--- Support for IPsec AH. If unsure, say Y. config INET_ESP tristate "IP: ESP transformation" select CRYPTO select CRYPTO_HMAC select CRYPTO_MD5 select CRYPTO_SHA1 select CRYPTO_DES ---help--- Support for IPsec ESP. If unsure, say Y. config INET_IPCOMP tristate "IP: IPComp transformation" select CRYPTO select CRYPTO_DEFLATE ---help--- Support for IP Paylod Compression (RFC3173), typically needed for IPsec. If unsure, say Y. source "net/ipv4/ipvs/Kconfig"