/* * This file contains the light-weight system call handlers (fsyscall-handlers). * * Copyright (C) 2003 Hewlett-Packard Co * David Mosberger-Tang <davidm@hpl.hp.com> * * 25-Sep-03 davidm Implement fsys_rt_sigprocmask(). * 18-Feb-03 louisk Implement fsys_gettimeofday(). * 28-Feb-03 davidm Fixed several bugs in fsys_gettimeofday(). Tuned it some more, * probably broke it along the way... ;-) */ #include <asm/asmmacro.h> #include <asm/errno.h> #include <asm/offsets.h> #include <asm/percpu.h> #include <asm/thread_info.h> #include <asm/sal.h> #include <asm/signal.h> #include <asm/system.h> #include <asm/unistd.h> #include "entry.h" /* * See Documentation/ia64/fsys.txt for details on fsyscalls. * * On entry to an fsyscall handler: * r10 = 0 (i.e., defaults to "successful syscall return") * r11 = saved ar.pfs (a user-level value) * r15 = system call number * r16 = "current" task pointer (in normal kernel-mode, this is in r13) * r32-r39 = system call arguments * b6 = return address (a user-level value) * ar.pfs = previous frame-state (a user-level value) * PSR.be = cleared to zero (i.e., little-endian byte order is in effect) * all other registers may contain values passed in from user-mode * * On return from an fsyscall handler: * r11 = saved ar.pfs (as passed into the fsyscall handler) * r15 = system call number (as passed into the fsyscall handler) * r32-r39 = system call arguments (as passed into the fsyscall handler) * b6 = return address (as passed into the fsyscall handler) * ar.pfs = previous frame-state (as passed into the fsyscall handler) */ ENTRY(fsys_ni_syscall) .prologue .altrp b6 .body mov r8=ENOSYS mov r10=-1 FSYS_RETURN END(fsys_ni_syscall) ENTRY(fsys_getpid) .prologue .altrp b6 .body add r9=TI_FLAGS+IA64_TASK_SIZE,r16 ;; ld4 r9=[r9] add r8=IA64_TASK_TGID_OFFSET,r16 ;; and r9=TIF_ALLWORK_MASK,r9 ld4 r8=[r8] // r8 = current->tgid ;; cmp.ne p8,p0=0,r9 (p8) br.spnt.many fsys_fallback_syscall FSYS_RETURN END(fsys_getpid) ENTRY(fsys_getppid) .prologue .altrp b6 .body add r17=IA64_TASK_GROUP_LEADER_OFFSET,r16 ;; ld8 r17=[r17] // r17 = current->group_leader add r9=TI_FLAGS+IA64_TASK_SIZE,r16 ;; ld4 r9=[r9] add r17=IA64_TASK_REAL_PARENT_OFFSET,r17 // r17 = ¤t->group_leader->real_parent ;; and r9=TIF_ALLWORK_MASK,r9 1: ld8 r18=[r17] // r18 = current->group_leader->real_parent ;; cmp.ne p8,p0=0,r9 add r8=IA64_TASK_TGID_OFFSET,r18 // r8 = ¤t->group_leader->real_parent->tgid ;; /* * The .acq is needed to ensure that the read of tgid has returned its data before * we re-check "real_parent". */ ld4.acq r8=[r8] // r8 = current->group_leader->real_parent->tgid #ifdef CONFIG_SMP /* * Re-read current->group_leader->real_parent. */ ld8 r19=[r17] // r19 = current->group_leader->real_parent (p8) br.spnt.many fsys_fallback_syscall ;; cmp.ne p6,p0=r18,r19 // did real_parent change? mov r19=0 // i must not leak kernel bits... (p6) br.cond.spnt.few 1b // yes -> redo the read of tgid and the check ;; mov r17=0 // i must not leak kernel bits... mov r18=0 // i must not leak kernel bits... #else mov r17=0 // i must not leak kernel bits... mov r18=0 // i must not leak kernel bits... mov r19=0 // i must not leak kernel bits... #endif FSYS_RETURN END(fsys_getppid) ENTRY(fsys_set_tid_address) .prologue .altrp b6 .body add r9=TI_FLAGS+IA64_TASK_SIZE,r16 ;; ld4 r9=[r9] tnat.z p6,p7=r32 // check argument register for being NaT ;; and r9=TIF_ALLWORK_MASK,r9 add r8=IA64_TASK_PID_OFFSET,r16 add r18=IA64_TASK_CLEAR_CHILD_TID_OFFSET,r16 ;; ld4 r8=[r8] cmp.ne p8,p0=0,r9 mov r17=-1 ;; (p6) st8 [r18]=r32 (p7) st8 [r18]=r17 (p8) br.spnt.many fsys_fallback_syscall ;; mov r17=0 // i must not leak kernel bits... mov r18=0 // i must not leak kernel bits... FSYS_RETURN END(fsys_set_tid_address) /* * Note 1: This routine uses floating-point registers, but only with registers that * operate on integers. Because of that, we don't need to set ar.fpsr to the * kernel default value. * * Note 2: For now, we will assume that all CPUs run at the same clock-frequency. * If that wasn't the case, we would have to disable preemption (e.g., * by disabling interrupts) between reading the ITC and reading * local_cpu_data->nsec_per_cyc. * * Note 3: On platforms where the ITC-drift bit is set in the SAL feature vector, * we ought to either skip the ITC-based interpolation or run an ntp-like * daemon to keep the ITCs from drifting too far apart. */ ENTRY(fsys_gettimeofday) .prologue .altrp b6 .body add r9=TI_FLAGS+IA64_TASK_SIZE,r16 addl r3=THIS_CPU(cpu_info),r0 mov.m r31=ar.itc // put time stamp into r31 (ITC) == now (35 cyc) #ifdef CONFIG_SMP movl r10=__per_cpu_offset movl r2=sal_platform_features ;; ld8 r2=[r2] movl r19=xtime // xtime is a timespec struct ld8 r10=[r10] // r10 <- __per_cpu_offset[0] addl r21=THIS_CPU(cpu_info),r0 ;; add r10=r21, r10 // r10 <- &cpu_data(time_keeper_id) tbit.nz p8,p0 = r2, IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT_BIT (p8) br.spnt.many fsys_fallback_syscall #else ;; mov r10=r3 movl r19=xtime // xtime is a timespec struct #endif ld4 r9=[r9] movl r17=xtime_lock ;; // r32, r33 should contain the 2 args of gettimeofday adds r21=IA64_CPUINFO_ITM_NEXT_OFFSET, r10 mov r2=-1 tnat.nz p6,p7=r32 // guard against NaT args ;; adds r10=IA64_CPUINFO_ITM_DELTA_OFFSET, r10 (p7) tnat.nz p6,p0=r33 (p6) br.cond.spnt.few .fail_einval adds r8=IA64_CPUINFO_NSEC_PER_CYC_OFFSET, r3 movl r24=2361183241434822607 // for division hack (only for / 1000) ;; ldf8 f7=[r10] // f7 now contains itm_delta setf.sig f11=r2 adds r10=8, r32 adds r20=IA64_TIMESPEC_TV_NSEC_OFFSET, r19 // r20 = &xtime->tv_nsec movl r26=jiffies setf.sig f9=r24 // f9 is used for division hack movl r27=wall_jiffies and r9=TIF_ALLWORK_MASK,r9 movl r25=last_nsec_offset ;; /* * Verify that we have permission to write to struct timeval. Note: * Another thread might unmap the mapping before we actually get * to store the result. That's OK as long as the stores are also * protect by EX(). */ EX(.fail_efault, probe.w.fault r32, 3) // this must come _after_ NaT-check EX(.fail_efault, probe.w.fault r10, 3) // this must come _after_ NaT-check nop 0 ldf8 f10=[r8] // f10 <- local_cpu_data->nsec_per_cyc value cmp.ne p8, p0=0, r9 (p8) br.spnt.many fsys_fallback_syscall ;; .retry: // *** seq = read_seqbegin(&xtime_lock); *** ld4.acq r23=[r17] // since &xtime_lock == &xtime_lock->sequence ld8 r14=[r25] // r14 (old) = last_nsec_offset ld8 r28=[r26] // r28 = jiffies ld8 r29=[r27] // r29 = wall_jiffies ;; ldf8 f8=[r21] // f8 now contains itm_next sub r28=r29, r28, 1 // r28 now contains "-(lost + 1)" tbit.nz p9, p10=r23, 0 // p9 <- is_odd(r23), p10 <- is_even(r23) ;; ld8 r2=[r19] // r2 = sec = xtime.tv_sec ld8 r29=[r20] // r29 = nsec = xtime.tv_nsec setf.sig f6=r28 // f6 <- -(lost + 1) (6 cyc) ;; mf xma.l f8=f6, f7, f8 // f8 (last_tick) <- -(lost + 1)*itm_delta + itm_next (5 cyc) nop 0 setf.sig f12=r31 // f12 <- ITC (6 cyc) // *** if (unlikely(read_seqretry(&xtime_lock, seq))) continue; *** ld4 r24=[r17] // r24 = xtime_lock->sequence (re-read) nop 0 ;; mov r31=ar.itc // re-read ITC in case we .retry (35 cyc) xma.l f8=f11, f8, f12 // f8 (elapsed_cycles) <- (-1*last_tick + now) = (now - last_tick) nop 0 ;; getf.sig r18=f8 // r18 <- (now - last_tick) xmpy.l f8=f8, f10 // f8 <- elapsed_cycles*nsec_per_cyc (5 cyc) add r3=r29, r14 // r3 = (nsec + old) ;; cmp.lt p7, p8=r18, r0 // if now < last_tick, set p7 = 1, p8 = 0 getf.sig r18=f8 // r18 = elapsed_cycles*nsec_per_cyc (6 cyc) nop 0 ;; (p10) cmp.ne p9, p0=r23, r24 // if xtime_lock->sequence != seq, set p9 shr.u r18=r18, IA64_NSEC_PER_CYC_SHIFT // r18 <- offset (p9) br.spnt.many .retry ;; mov ar.ccv=r14 // ar.ccv = old (1 cyc) cmp.leu p7, p8=r18, r14 // if (offset <= old), set p7 = 1, p8 = 0 ;; (p8) cmpxchg8.rel r24=[r25], r18, ar.ccv // compare-and-exchange (atomic!) (p8) add r3=r29, r18 // r3 = (nsec + offset) ;; shr.u r3=r3, 3 // initiate dividing r3 by 1000 ;; setf.sig f8=r3 // (6 cyc) mov r10=1000000 // r10 = 1000000 ;; (p8) cmp.ne.unc p9, p0=r24, r14 xmpy.hu f6=f8, f9 // (5 cyc) (p9) br.spnt.many .retry ;; getf.sig r3=f6 // (6 cyc) ;; shr.u r3=r3, 4 // end of division, r3 is divided by 1000 (=usec) ;; 1: cmp.geu p7, p0=r3, r10 // while (usec >= 1000000) ;; (p7) sub r3=r3, r10 // usec -= 1000000 (p7) adds r2=1, r2 // ++sec (p7) br.spnt.many 1b // finally: r2 = sec, r3 = usec EX(.fail_efault, st8 [r32]=r2) adds r9=8, r32 mov r8=r0 // success ;; EX(.fail_efault, st8 [r9]=r3) // store them in the timeval struct mov r10=0 FSYS_RETURN /* * Note: We are NOT clearing the scratch registers here. Since the only things * in those registers are time-related variables and some addresses (which * can be obtained from System.map), none of this should be security-sensitive * and we should be fine. */ .fail_einval: mov r8=EINVAL // r8 = EINVAL mov r10=-1 // r10 = -1 FSYS_RETURN .fail_efault: mov r8=EFAULT // r8 = EFAULT mov r10=-1 // r10 = -1 FSYS_RETURN END(fsys_gettimeofday) /* * long fsys_rt_sigprocmask (int how, sigset_t *set, sigset_t *oset, size_t sigsetsize). */ #if _NSIG_WORDS != 1 # error Sorry, fsys_rt_sigprocmask() needs to be updated for _NSIG_WORDS != 1. #endif ENTRY(fsys_rt_sigprocmask) .prologue .altrp b6 .body mf // ensure reading of current->blocked is ordered add r2=IA64_TASK_BLOCKED_OFFSET,r16 add r9=TI_FLAGS+IA64_TASK_SIZE,r16 ;; /* * Since we're only reading a single word, we can do it * atomically without acquiring current->sighand->siglock. To * be on the safe side, we need a fully-ordered load, though: */ ld8.acq r3=[r2] // read/prefetch current->blocked ld4 r9=[r9] add r31=IA64_TASK_SIGHAND_OFFSET,r16 ;; #ifdef CONFIG_SMP ld8 r31=[r31] // r31 <- current->sighand #endif and r9=TIF_ALLWORK_MASK,r9 tnat.nz p6,p0=r32 ;; cmp.ne p7,p0=0,r9 tnat.nz.or p6,p0=r35 tnat.nz p8,p0=r34 ;; cmp.ne p15,p0=r0,r34 // oset != NULL? cmp.ne.or p6,p0=_NSIG_WORDS*8,r35 tnat.nz.or p8,p0=r33 (p6) br.spnt.few .fail_einval // fail with EINVAL (p7) br.spnt.many fsys_fallback_syscall // got pending kernel work... (p8) br.spnt.few .fail_efault // fail with EFAULT ;; cmp.eq p6,p7=r0,r33 // set == NULL? add r31=IA64_SIGHAND_SIGLOCK_OFFSET,r31 // r31 <- current->sighand->siglock (p6) br.dpnt.many .store_mask // -> short-circuit to just reading the signal mask /* Argh, we actually have to do some work and _update_ the signal mask: */ EX(.fail_efault, probe.r.fault r33, 3) // verify user has read-access to *set EX(.fail_efault, ld8 r14=[r33]) // r14 <- *set mov r17=(1 << (SIGKILL - 1)) | (1 << (SIGSTOP - 1)) ;; rsm psr.i // mask interrupt delivery mov ar.ccv=0 andcm r14=r14,r17 // filter out SIGKILL & SIGSTOP #ifdef CONFIG_SMP mov r17=1 ;; cmpxchg4.acq r18=[r31],r17,ar.ccv // try to acquire the lock mov r8=EINVAL // default to EINVAL ;; ld8 r3=[r2] // re-read current->blocked now that we hold the lock cmp4.ne p6,p0=r18,r0 (p6) br.cond.spnt.many .lock_contention ;; #else ld8 r3=[r2] // re-read current->blocked now that we hold the lock mov r8=EINVAL // default to EINVAL #endif add r18=IA64_TASK_PENDING_OFFSET+IA64_SIGPENDING_SIGNAL_OFFSET,r16 add r19=IA64_TASK_SIGNAL_OFFSET,r16 cmp4.eq p6,p0=SIG_BLOCK,r32 ;; ld8 r19=[r19] // r19 <- current->signal cmp4.eq p7,p0=SIG_UNBLOCK,r32 cmp4.eq p8,p0=SIG_SETMASK,r32 ;; ld8 r18=[r18] // r18 <- current->pending.signal .pred.rel.mutex p6,p7,p8 (p6) or r14=r3,r14 // SIG_BLOCK (p7) andcm r14=r3,r14 // SIG_UNBLOCK (p8) mov r14=r14 // SIG_SETMASK (p6) mov r8=0 // clear error code // recalc_sigpending() add r17=IA64_SIGNAL_GROUP_STOP_COUNT_OFFSET,r19 add r19=IA64_SIGNAL_SHARED_PENDING_OFFSET+IA64_SIGPENDING_SIGNAL_OFFSET,r19 ;; ld4 r17=[r17] // r17 <- current->signal->group_stop_count (p7) mov r8=0 // clear error code ld8 r19=[r19] // r19 <- current->signal->shared_pending ;; cmp4.gt p6,p7=r17,r0 // p6/p7 <- (current->signal->group_stop_count > 0)? (p8) mov r8=0 // clear error code or r18=r18,r19 // r18 <- current->pending | current->signal->shared_pending ;; // r18 <- (current->pending | current->signal->shared_pending) & ~current->blocked: andcm r18=r18,r14 add r9=TI_FLAGS+IA64_TASK_SIZE,r16 ;; (p7) cmp.ne.or.andcm p6,p7=r18,r0 // p6/p7 <- signal pending mov r19=0 // i must not leak kernel bits... (p6) br.cond.dpnt.many .sig_pending ;; 1: ld4 r17=[r9] // r17 <- current->thread_info->flags ;; mov ar.ccv=r17 and r18=~_TIF_SIGPENDING,r17 // r18 <- r17 & ~(1 << TIF_SIGPENDING) ;; st8 [r2]=r14 // update current->blocked with new mask cmpxchg4.acq r14=[r9],r18,ar.ccv // current->thread_info->flags <- r18 ;; cmp.ne p6,p0=r17,r14 // update failed? (p6) br.cond.spnt.few 1b // yes -> retry #ifdef CONFIG_SMP st4.rel [r31]=r0 // release the lock #endif ssm psr.i cmp.ne p9,p0=r8,r0 // check for bad HOW value ;; srlz.d // ensure psr.i is set again mov r18=0 // i must not leak kernel bits... (p9) br.spnt.few .fail_einval // bail out for bad HOW value .store_mask: EX(.fail_efault, (p15) probe.w.fault r34, 3) // verify user has write-access to *oset EX(.fail_efault, (p15) st8 [r34]=r3) mov r2=0 // i must not leak kernel bits... mov r3=0 // i must not leak kernel bits... mov r8=0 // return 0 mov r9=0 // i must not leak kernel bits... mov r14=0 // i must not leak kernel bits... mov r17=0 // i must not leak kernel bits... mov r31=0 // i must not leak kernel bits... FSYS_RETURN .sig_pending: #ifdef CONFIG_SMP st4.rel [r31]=r0 // release the lock #endif ssm psr.i ;; srlz.d br.sptk.many fsys_fallback_syscall // with signal pending, do the heavy-weight syscall #ifdef CONFIG_SMP .lock_contention: /* Rather than spinning here, fall back on doing a heavy-weight syscall. */ ssm psr.i ;; srlz.d br.sptk.many fsys_fallback_syscall #endif END(fsys_rt_sigprocmask) ENTRY(fsys_fallback_syscall) .prologue .altrp b6 .body /* * We only get here from light-weight syscall handlers. Thus, we already * know that r15 contains a valid syscall number. No need to re-check. */ adds r17=-1024,r15 movl r14=sys_call_table ;; shladd r18=r17,3,r14 ;; ld8 r18=[r18] // load normal (heavy-weight) syscall entry-point mov r29=psr // read psr (12 cyc load latency) mov r27=ar.rsc mov r21=ar.fpsr mov r26=ar.pfs END(fsys_fallback_syscall) /* FALL THROUGH */ GLOBAL_ENTRY(fsys_bubble_down) .prologue .altrp b6 .body /* * We get here for syscalls that don't have a lightweight handler. For those, we * need to bubble down into the kernel and that requires setting up a minimal * pt_regs structure, and initializing the CPU state more or less as if an * interruption had occurred. To make syscall-restarts work, we setup pt_regs * such that cr_iip points to the second instruction in syscall_via_break. * Decrementing the IP hence will restart the syscall via break and not * decrementing IP will return us to the caller, as usual. Note that we preserve * the value of psr.pp rather than initializing it from dcr.pp. This makes it * possible to distinguish fsyscall execution from other privileged execution. * * On entry: * - normal fsyscall handler register usage, except that we also have: * - r18: address of syscall entry point * - r21: ar.fpsr * - r26: ar.pfs * - r27: ar.rsc * - r29: psr */ # define PSR_PRESERVED_BITS (IA64_PSR_UP | IA64_PSR_MFL | IA64_PSR_MFH | IA64_PSR_PK \ | IA64_PSR_DT | IA64_PSR_PP | IA64_PSR_SP | IA64_PSR_RT \ | IA64_PSR_IC) /* * Reading psr.l gives us only bits 0-31, psr.it, and psr.mc. The rest we have * to synthesize. */ # define PSR_ONE_BITS ((3 << IA64_PSR_CPL0_BIT) | (0x1 << IA64_PSR_RI_BIT) \ | IA64_PSR_BN) invala movl r8=PSR_ONE_BITS mov r25=ar.unat // save ar.unat (5 cyc) movl r9=PSR_PRESERVED_BITS mov ar.rsc=0 // set enforced lazy mode, pl 0, little-endian, loadrs=0 movl r28=__kernel_syscall_via_break ;; mov r23=ar.bspstore // save ar.bspstore (12 cyc) mov r31=pr // save pr (2 cyc) mov r20=r1 // save caller's gp in r20 ;; mov r2=r16 // copy current task addr to addl-addressable register and r9=r9,r29 mov r19=b6 // save b6 (2 cyc) ;; mov psr.l=r9 // slam the door (17 cyc to srlz.i) or r29=r8,r29 // construct cr.ipsr value to save addl r22=IA64_RBS_OFFSET,r2 // compute base of RBS ;; mov.m r24=ar.rnat // read ar.rnat (5 cyc lat) lfetch.fault.excl.nt1 [r22] adds r16=IA64_TASK_THREAD_ON_USTACK_OFFSET,r2 // ensure previous insn group is issued before we stall for srlz.i: ;; srlz.i // ensure new psr.l has been established ///////////////////////////////////////////////////////////////////////////// ////////// from this point on, execution is not interruptible anymore ///////////////////////////////////////////////////////////////////////////// addl r1=IA64_STK_OFFSET-IA64_PT_REGS_SIZE,r2 // compute base of memory stack cmp.ne pKStk,pUStk=r0,r0 // set pKStk <- 0, pUStk <- 1 ;; st1 [r16]=r0 // clear current->thread.on_ustack flag mov ar.bspstore=r22 // switch to kernel RBS mov b6=r18 // copy syscall entry-point to b6 (7 cyc) add r3=TI_FLAGS+IA64_TASK_SIZE,r2 ;; ld4 r3=[r3] // r2 = current_thread_info()->flags mov r18=ar.bsp // save (kernel) ar.bsp (12 cyc) mov ar.rsc=0x3 // set eager mode, pl 0, little-endian, loadrs=0 br.call.sptk.many b7=ia64_syscall_setup ;; ssm psr.i movl r2=ia64_ret_from_syscall ;; mov rp=r2 // set the real return addr tbit.z p8,p0=r3,TIF_SYSCALL_TRACE (p8) br.call.sptk.many b6=b6 // ignore this return addr br.cond.sptk ia64_trace_syscall END(fsys_bubble_down) .rodata .align 8 .globl fsyscall_table data8 fsys_bubble_down fsyscall_table: data8 fsys_ni_syscall data8 0 // exit // 1025 data8 0 // read data8 0 // write data8 0 // open data8 0 // close data8 0 // creat // 1030 data8 0 // link data8 0 // unlink data8 0 // execve data8 0 // chdir data8 0 // fchdir // 1035 data8 0 // utimes data8 0 // mknod data8 0 // chmod data8 0 // chown data8 0 // lseek // 1040 data8 fsys_getpid // getpid data8 fsys_getppid // getppid data8 0 // mount data8 0 // umount data8 0 // setuid // 1045 data8 0 // getuid data8 0 // geteuid data8 0 // ptrace data8 0 // access data8 0 // sync // 1050 data8 0 // fsync data8 0 // fdatasync data8 0 // kill data8 0 // rename data8 0 // mkdir // 1055 data8 0 // rmdir data8 0 // dup data8 0 // pipe data8 0 // times data8 0 // brk // 1060 data8 0 // setgid data8 0 // getgid data8 0 // getegid data8 0 // acct data8 0 // ioctl // 1065 data8 0 // fcntl data8 0 // umask data8 0 // chroot data8 0 // ustat data8 0 // dup2 // 1070 data8 0 // setreuid data8 0 // setregid data8 0 // getresuid data8 0 // setresuid data8 0 // getresgid // 1075 data8 0 // setresgid data8 0 // getgroups data8 0 // setgroups data8 0 // getpgid data8 0 // setpgid // 1080 data8 0 // setsid data8 0 // getsid data8 0 // sethostname data8 0 // setrlimit data8 0 // getrlimit // 1085 data8 0 // getrusage data8 fsys_gettimeofday // gettimeofday data8 0 // settimeofday data8 0 // select data8 0 // poll // 1090 data8 0 // symlink data8 0 // readlink data8 0 // uselib data8 0 // swapon data8 0 // swapoff // 1095 data8 0 // reboot data8 0 // truncate data8 0 // ftruncate data8 0 // fchmod data8 0 // fchown // 1100 data8 0 // getpriority data8 0 // setpriority data8 0 // statfs data8 0 // fstatfs data8 0 // gettid // 1105 data8 0 // semget data8 0 // semop data8 0 // semctl data8 0 // msgget data8 0 // msgsnd // 1110 data8 0 // msgrcv data8 0 // msgctl data8 0 // shmget data8 0 // shmat data8 0 // shmdt // 1115 data8 0 // shmctl data8 0 // syslog data8 0 // setitimer data8 0 // getitimer data8 0 // 1120 data8 0 data8 0 data8 0 // vhangup data8 0 // lchown data8 0 // remap_file_pages // 1125 data8 0 // wait4 data8 0 // sysinfo data8 0 // clone data8 0 // setdomainname data8 0 // newuname // 1130 data8 0 // adjtimex data8 0 data8 0 // init_module data8 0 // delete_module data8 0 // 1135 data8 0 data8 0 // quotactl data8 0 // bdflush data8 0 // sysfs data8 0 // personality // 1140 data8 0 // afs_syscall data8 0 // setfsuid data8 0 // setfsgid data8 0 // getdents data8 0 // flock // 1145 data8 0 // readv data8 0 // writev data8 0 // pread64 data8 0 // pwrite64 data8 0 // sysctl // 1150 data8 0 // mmap data8 0 // munmap data8 0 // mlock data8 0 // mlockall data8 0 // mprotect // 1155 data8 0 // mremap data8 0 // msync data8 0 // munlock data8 0 // munlockall data8 0 // sched_getparam // 1160 data8 0 // sched_setparam data8 0 // sched_getscheduler data8 0 // sched_setscheduler data8 0 // sched_yield data8 0 // sched_get_priority_max // 1165 data8 0 // sched_get_priority_min data8 0 // sched_rr_get_interval data8 0 // nanosleep data8 0 // nfsservctl data8 0 // prctl // 1170 data8 0 // getpagesize data8 0 // mmap2 data8 0 // pciconfig_read data8 0 // pciconfig_write data8 0 // perfmonctl // 1175 data8 0 // sigaltstack data8 0 // rt_sigaction data8 0 // rt_sigpending data8 fsys_rt_sigprocmask // rt_sigprocmask data8 0 // rt_sigqueueinfo // 1180 data8 0 // rt_sigreturn data8 0 // rt_sigsuspend data8 0 // rt_sigtimedwait data8 0 // getcwd data8 0 // capget // 1185 data8 0 // capset data8 0 // sendfile data8 0 data8 0 data8 0 // socket // 1190 data8 0 // bind data8 0 // connect data8 0 // listen data8 0 // accept data8 0 // getsockname // 1195 data8 0 // getpeername data8 0 // socketpair data8 0 // send data8 0 // sendto data8 0 // recv // 1200 data8 0 // recvfrom data8 0 // shutdown data8 0 // setsockopt data8 0 // getsockopt data8 0 // sendmsg // 1205 data8 0 // recvmsg data8 0 // pivot_root data8 0 // mincore data8 0 // madvise data8 0 // newstat // 1210 data8 0 // newlstat data8 0 // newfstat data8 0 // clone2 data8 0 // getdents64 data8 0 // getunwind // 1215 data8 0 // readahead data8 0 // setxattr data8 0 // lsetxattr data8 0 // fsetxattr data8 0 // getxattr // 1220 data8 0 // lgetxattr data8 0 // fgetxattr data8 0 // listxattr data8 0 // llistxattr data8 0 // flistxattr // 1225 data8 0 // removexattr data8 0 // lremovexattr data8 0 // fremovexattr data8 0 // tkill data8 0 // futex // 1230 data8 0 // sched_setaffinity data8 0 // sched_getaffinity data8 fsys_set_tid_address // set_tid_address data8 0 // fadvise64_64 data8 0 // tgkill // 1235 data8 0 // exit_group data8 0 // lookup_dcookie data8 0 // io_setup data8 0 // io_destroy data8 0 // io_getevents // 1240 data8 0 // io_submit data8 0 // io_cancel data8 0 // epoll_create data8 0 // epoll_ctl data8 0 // epoll_wait // 1245 data8 0 // restart_syscall data8 0 // semtimedop data8 0 // timer_create data8 0 // timer_settime data8 0 // timer_gettime // 1250 data8 0 // timer_getoverrun data8 0 // timer_delete data8 0 // clock_settime data8 0 // clock_gettime data8 0 // clock_getres // 1255 data8 0 // clock_nanosleep data8 0 // fstatfs64 data8 0 // statfs64 data8 0 data8 0 // 1260 data8 0 data8 0 data8 0 data8 0 data8 0 // 1265 data8 0 data8 0 data8 0 data8 0 data8 0 // 1270 data8 0 data8 0 data8 0 data8 0 data8 0 // 1275 data8 0 data8 0 data8 0 data8 0 .org fsyscall_table + 8*NR_syscalls // guard against failures to increase NR_syscalls