// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2015-2018 Etnaviv Project */ #include <linux/clk.h> #include <linux/component.h> #include <linux/delay.h> #include <linux/dma-fence.h> #include <linux/dma-mapping.h> #include <linux/moduleparam.h> #include <linux/of_device.h> #include <linux/regulator/consumer.h> #include <linux/thermal.h> #include "etnaviv_cmdbuf.h" #include "etnaviv_dump.h" #include "etnaviv_gpu.h" #include "etnaviv_gem.h" #include "etnaviv_mmu.h" #include "etnaviv_perfmon.h" #include "etnaviv_sched.h" #include "common.xml.h" #include "state.xml.h" #include "state_hi.xml.h" #include "cmdstream.xml.h" #ifndef PHYS_OFFSET #define PHYS_OFFSET 0 #endif static const struct platform_device_id gpu_ids[] = { { .name = "etnaviv-gpu,2d" }, { }, }; /* * Driver functions: */ int etnaviv_gpu_get_param(struct etnaviv_gpu *gpu, u32 param, u64 *value) { switch (param) { case ETNAVIV_PARAM_GPU_MODEL: *value = gpu->identity.model; break; case ETNAVIV_PARAM_GPU_REVISION: *value = gpu->identity.revision; break; case ETNAVIV_PARAM_GPU_FEATURES_0: *value = gpu->identity.features; break; case ETNAVIV_PARAM_GPU_FEATURES_1: *value = gpu->identity.minor_features0; break; case ETNAVIV_PARAM_GPU_FEATURES_2: *value = gpu->identity.minor_features1; break; case ETNAVIV_PARAM_GPU_FEATURES_3: *value = gpu->identity.minor_features2; break; case ETNAVIV_PARAM_GPU_FEATURES_4: *value = gpu->identity.minor_features3; break; case ETNAVIV_PARAM_GPU_FEATURES_5: *value = gpu->identity.minor_features4; break; case ETNAVIV_PARAM_GPU_FEATURES_6: *value = gpu->identity.minor_features5; break; case ETNAVIV_PARAM_GPU_FEATURES_7: *value = gpu->identity.minor_features6; break; case ETNAVIV_PARAM_GPU_FEATURES_8: *value = gpu->identity.minor_features7; break; case ETNAVIV_PARAM_GPU_FEATURES_9: *value = gpu->identity.minor_features8; break; case ETNAVIV_PARAM_GPU_FEATURES_10: *value = gpu->identity.minor_features9; break; case ETNAVIV_PARAM_GPU_FEATURES_11: *value = gpu->identity.minor_features10; break; case ETNAVIV_PARAM_GPU_FEATURES_12: *value = gpu->identity.minor_features11; break; case ETNAVIV_PARAM_GPU_STREAM_COUNT: *value = gpu->identity.stream_count; break; case ETNAVIV_PARAM_GPU_REGISTER_MAX: *value = gpu->identity.register_max; break; case ETNAVIV_PARAM_GPU_THREAD_COUNT: *value = gpu->identity.thread_count; break; case ETNAVIV_PARAM_GPU_VERTEX_CACHE_SIZE: *value = gpu->identity.vertex_cache_size; break; case ETNAVIV_PARAM_GPU_SHADER_CORE_COUNT: *value = gpu->identity.shader_core_count; break; case ETNAVIV_PARAM_GPU_PIXEL_PIPES: *value = gpu->identity.pixel_pipes; break; case ETNAVIV_PARAM_GPU_VERTEX_OUTPUT_BUFFER_SIZE: *value = gpu->identity.vertex_output_buffer_size; break; case ETNAVIV_PARAM_GPU_BUFFER_SIZE: *value = gpu->identity.buffer_size; break; case ETNAVIV_PARAM_GPU_INSTRUCTION_COUNT: *value = gpu->identity.instruction_count; break; case ETNAVIV_PARAM_GPU_NUM_CONSTANTS: *value = gpu->identity.num_constants; break; case ETNAVIV_PARAM_GPU_NUM_VARYINGS: *value = gpu->identity.varyings_count; break; default: DBG("%s: invalid param: %u", dev_name(gpu->dev), param); return -EINVAL; } return 0; } #define etnaviv_is_model_rev(gpu, mod, rev) \ ((gpu)->identity.model == chipModel_##mod && \ (gpu)->identity.revision == rev) #define etnaviv_field(val, field) \ (((val) & field##__MASK) >> field##__SHIFT) static void etnaviv_hw_specs(struct etnaviv_gpu *gpu) { if (gpu->identity.minor_features0 & chipMinorFeatures0_MORE_MINOR_FEATURES) { u32 specs[4]; unsigned int streams; specs[0] = gpu_read(gpu, VIVS_HI_CHIP_SPECS); specs[1] = gpu_read(gpu, VIVS_HI_CHIP_SPECS_2); specs[2] = gpu_read(gpu, VIVS_HI_CHIP_SPECS_3); specs[3] = gpu_read(gpu, VIVS_HI_CHIP_SPECS_4); gpu->identity.stream_count = etnaviv_field(specs[0], VIVS_HI_CHIP_SPECS_STREAM_COUNT); gpu->identity.register_max = etnaviv_field(specs[0], VIVS_HI_CHIP_SPECS_REGISTER_MAX); gpu->identity.thread_count = etnaviv_field(specs[0], VIVS_HI_CHIP_SPECS_THREAD_COUNT); gpu->identity.vertex_cache_size = etnaviv_field(specs[0], VIVS_HI_CHIP_SPECS_VERTEX_CACHE_SIZE); gpu->identity.shader_core_count = etnaviv_field(specs[0], VIVS_HI_CHIP_SPECS_SHADER_CORE_COUNT); gpu->identity.pixel_pipes = etnaviv_field(specs[0], VIVS_HI_CHIP_SPECS_PIXEL_PIPES); gpu->identity.vertex_output_buffer_size = etnaviv_field(specs[0], VIVS_HI_CHIP_SPECS_VERTEX_OUTPUT_BUFFER_SIZE); gpu->identity.buffer_size = etnaviv_field(specs[1], VIVS_HI_CHIP_SPECS_2_BUFFER_SIZE); gpu->identity.instruction_count = etnaviv_field(specs[1], VIVS_HI_CHIP_SPECS_2_INSTRUCTION_COUNT); gpu->identity.num_constants = etnaviv_field(specs[1], VIVS_HI_CHIP_SPECS_2_NUM_CONSTANTS); gpu->identity.varyings_count = etnaviv_field(specs[2], VIVS_HI_CHIP_SPECS_3_VARYINGS_COUNT); /* This overrides the value from older register if non-zero */ streams = etnaviv_field(specs[3], VIVS_HI_CHIP_SPECS_4_STREAM_COUNT); if (streams) gpu->identity.stream_count = streams; } /* Fill in the stream count if not specified */ if (gpu->identity.stream_count == 0) { if (gpu->identity.model >= 0x1000) gpu->identity.stream_count = 4; else gpu->identity.stream_count = 1; } /* Convert the register max value */ if (gpu->identity.register_max) gpu->identity.register_max = 1 << gpu->identity.register_max; else if (gpu->identity.model == chipModel_GC400) gpu->identity.register_max = 32; else gpu->identity.register_max = 64; /* Convert thread count */ if (gpu->identity.thread_count) gpu->identity.thread_count = 1 << gpu->identity.thread_count; else if (gpu->identity.model == chipModel_GC400) gpu->identity.thread_count = 64; else if (gpu->identity.model == chipModel_GC500 || gpu->identity.model == chipModel_GC530) gpu->identity.thread_count = 128; else gpu->identity.thread_count = 256; if (gpu->identity.vertex_cache_size == 0) gpu->identity.vertex_cache_size = 8; if (gpu->identity.shader_core_count == 0) { if (gpu->identity.model >= 0x1000) gpu->identity.shader_core_count = 2; else gpu->identity.shader_core_count = 1; } if (gpu->identity.pixel_pipes == 0) gpu->identity.pixel_pipes = 1; /* Convert virtex buffer size */ if (gpu->identity.vertex_output_buffer_size) { gpu->identity.vertex_output_buffer_size = 1 << gpu->identity.vertex_output_buffer_size; } else if (gpu->identity.model == chipModel_GC400) { if (gpu->identity.revision < 0x4000) gpu->identity.vertex_output_buffer_size = 512; else if (gpu->identity.revision < 0x4200) gpu->identity.vertex_output_buffer_size = 256; else gpu->identity.vertex_output_buffer_size = 128; } else { gpu->identity.vertex_output_buffer_size = 512; } switch (gpu->identity.instruction_count) { case 0: if (etnaviv_is_model_rev(gpu, GC2000, 0x5108) || gpu->identity.model == chipModel_GC880) gpu->identity.instruction_count = 512; else gpu->identity.instruction_count = 256; break; case 1: gpu->identity.instruction_count = 1024; break; case 2: gpu->identity.instruction_count = 2048; break; default: gpu->identity.instruction_count = 256; break; } if (gpu->identity.num_constants == 0) gpu->identity.num_constants = 168; if (gpu->identity.varyings_count == 0) { if (gpu->identity.minor_features1 & chipMinorFeatures1_HALTI0) gpu->identity.varyings_count = 12; else gpu->identity.varyings_count = 8; } /* * For some cores, two varyings are consumed for position, so the * maximum varying count needs to be reduced by one. */ if (etnaviv_is_model_rev(gpu, GC5000, 0x5434) || etnaviv_is_model_rev(gpu, GC4000, 0x5222) || etnaviv_is_model_rev(gpu, GC4000, 0x5245) || etnaviv_is_model_rev(gpu, GC4000, 0x5208) || etnaviv_is_model_rev(gpu, GC3000, 0x5435) || etnaviv_is_model_rev(gpu, GC2200, 0x5244) || etnaviv_is_model_rev(gpu, GC2100, 0x5108) || etnaviv_is_model_rev(gpu, GC2000, 0x5108) || etnaviv_is_model_rev(gpu, GC1500, 0x5246) || etnaviv_is_model_rev(gpu, GC880, 0x5107) || etnaviv_is_model_rev(gpu, GC880, 0x5106)) gpu->identity.varyings_count -= 1; } static void etnaviv_hw_identify(struct etnaviv_gpu *gpu) { u32 chipIdentity; chipIdentity = gpu_read(gpu, VIVS_HI_CHIP_IDENTITY); /* Special case for older graphic cores. */ if (etnaviv_field(chipIdentity, VIVS_HI_CHIP_IDENTITY_FAMILY) == 0x01) { gpu->identity.model = chipModel_GC500; gpu->identity.revision = etnaviv_field(chipIdentity, VIVS_HI_CHIP_IDENTITY_REVISION); } else { gpu->identity.model = gpu_read(gpu, VIVS_HI_CHIP_MODEL); gpu->identity.revision = gpu_read(gpu, VIVS_HI_CHIP_REV); /* * !!!! HACK ALERT !!!! * Because people change device IDs without letting software * know about it - here is the hack to make it all look the * same. Only for GC400 family. */ if ((gpu->identity.model & 0xff00) == 0x0400 && gpu->identity.model != chipModel_GC420) { gpu->identity.model = gpu->identity.model & 0x0400; } /* Another special case */ if (etnaviv_is_model_rev(gpu, GC300, 0x2201)) { u32 chipDate = gpu_read(gpu, VIVS_HI_CHIP_DATE); u32 chipTime = gpu_read(gpu, VIVS_HI_CHIP_TIME); if (chipDate == 0x20080814 && chipTime == 0x12051100) { /* * This IP has an ECO; put the correct * revision in it. */ gpu->identity.revision = 0x1051; } } /* * NXP likes to call the GPU on the i.MX6QP GC2000+, but in * reality it's just a re-branded GC3000. We can identify this * core by the upper half of the revision register being all 1. * Fix model/rev here, so all other places can refer to this * core by its real identity. */ if (etnaviv_is_model_rev(gpu, GC2000, 0xffff5450)) { gpu->identity.model = chipModel_GC3000; gpu->identity.revision &= 0xffff; } } dev_info(gpu->dev, "model: GC%x, revision: %x\n", gpu->identity.model, gpu->identity.revision); gpu->idle_mask = ~VIVS_HI_IDLE_STATE_AXI_LP; /* * If there is a match in the HWDB, we aren't interested in the * remaining register values, as they might be wrong. */ if (etnaviv_fill_identity_from_hwdb(gpu)) return; gpu->identity.features = gpu_read(gpu, VIVS_HI_CHIP_FEATURE); /* Disable fast clear on GC700. */ if (gpu->identity.model == chipModel_GC700) gpu->identity.features &= ~chipFeatures_FAST_CLEAR; if ((gpu->identity.model == chipModel_GC500 && gpu->identity.revision < 2) || (gpu->identity.model == chipModel_GC300 && gpu->identity.revision < 0x2000)) { /* * GC500 rev 1.x and GC300 rev < 2.0 doesn't have these * registers. */ gpu->identity.minor_features0 = 0; gpu->identity.minor_features1 = 0; gpu->identity.minor_features2 = 0; gpu->identity.minor_features3 = 0; gpu->identity.minor_features4 = 0; gpu->identity.minor_features5 = 0; } else gpu->identity.minor_features0 = gpu_read(gpu, VIVS_HI_CHIP_MINOR_FEATURE_0); if (gpu->identity.minor_features0 & chipMinorFeatures0_MORE_MINOR_FEATURES) { gpu->identity.minor_features1 = gpu_read(gpu, VIVS_HI_CHIP_MINOR_FEATURE_1); gpu->identity.minor_features2 = gpu_read(gpu, VIVS_HI_CHIP_MINOR_FEATURE_2); gpu->identity.minor_features3 = gpu_read(gpu, VIVS_HI_CHIP_MINOR_FEATURE_3); gpu->identity.minor_features4 = gpu_read(gpu, VIVS_HI_CHIP_MINOR_FEATURE_4); gpu->identity.minor_features5 = gpu_read(gpu, VIVS_HI_CHIP_MINOR_FEATURE_5); } /* GC600 idle register reports zero bits where modules aren't present */ if (gpu->identity.model == chipModel_GC600) gpu->idle_mask = VIVS_HI_IDLE_STATE_TX | VIVS_HI_IDLE_STATE_RA | VIVS_HI_IDLE_STATE_SE | VIVS_HI_IDLE_STATE_PA | VIVS_HI_IDLE_STATE_SH | VIVS_HI_IDLE_STATE_PE | VIVS_HI_IDLE_STATE_DE | VIVS_HI_IDLE_STATE_FE; etnaviv_hw_specs(gpu); } static void etnaviv_gpu_load_clock(struct etnaviv_gpu *gpu, u32 clock) { gpu_write(gpu, VIVS_HI_CLOCK_CONTROL, clock | VIVS_HI_CLOCK_CONTROL_FSCALE_CMD_LOAD); gpu_write(gpu, VIVS_HI_CLOCK_CONTROL, clock); } static void etnaviv_gpu_update_clock(struct etnaviv_gpu *gpu) { if (gpu->identity.minor_features2 & chipMinorFeatures2_DYNAMIC_FREQUENCY_SCALING) { clk_set_rate(gpu->clk_core, gpu->base_rate_core >> gpu->freq_scale); clk_set_rate(gpu->clk_shader, gpu->base_rate_shader >> gpu->freq_scale); } else { unsigned int fscale = 1 << (6 - gpu->freq_scale); u32 clock = gpu_read(gpu, VIVS_HI_CLOCK_CONTROL); clock &= ~VIVS_HI_CLOCK_CONTROL_FSCALE_VAL__MASK; clock |= VIVS_HI_CLOCK_CONTROL_FSCALE_VAL(fscale); etnaviv_gpu_load_clock(gpu, clock); } } static int etnaviv_hw_reset(struct etnaviv_gpu *gpu) { u32 control, idle; unsigned long timeout; bool failed = true; /* We hope that the GPU resets in under one second */ timeout = jiffies + msecs_to_jiffies(1000); while (time_is_after_jiffies(timeout)) { /* enable clock */ unsigned int fscale = 1 << (6 - gpu->freq_scale); control = VIVS_HI_CLOCK_CONTROL_FSCALE_VAL(fscale); etnaviv_gpu_load_clock(gpu, control); /* isolate the GPU. */ control |= VIVS_HI_CLOCK_CONTROL_ISOLATE_GPU; gpu_write(gpu, VIVS_HI_CLOCK_CONTROL, control); if (gpu->sec_mode == ETNA_SEC_KERNEL) { gpu_write(gpu, VIVS_MMUv2_AHB_CONTROL, VIVS_MMUv2_AHB_CONTROL_RESET); } else { /* set soft reset. */ control |= VIVS_HI_CLOCK_CONTROL_SOFT_RESET; gpu_write(gpu, VIVS_HI_CLOCK_CONTROL, control); } /* wait for reset. */ usleep_range(10, 20); /* reset soft reset bit. */ control &= ~VIVS_HI_CLOCK_CONTROL_SOFT_RESET; gpu_write(gpu, VIVS_HI_CLOCK_CONTROL, control); /* reset GPU isolation. */ control &= ~VIVS_HI_CLOCK_CONTROL_ISOLATE_GPU; gpu_write(gpu, VIVS_HI_CLOCK_CONTROL, control); /* read idle register. */ idle = gpu_read(gpu, VIVS_HI_IDLE_STATE); /* try reseting again if FE it not idle */ if ((idle & VIVS_HI_IDLE_STATE_FE) == 0) { dev_dbg(gpu->dev, "FE is not idle\n"); continue; } /* read reset register. */ control = gpu_read(gpu, VIVS_HI_CLOCK_CONTROL); /* is the GPU idle? */ if (((control & VIVS_HI_CLOCK_CONTROL_IDLE_3D) == 0) || ((control & VIVS_HI_CLOCK_CONTROL_IDLE_2D) == 0)) { dev_dbg(gpu->dev, "GPU is not idle\n"); continue; } /* disable debug registers, as they are not normally needed */ control |= VIVS_HI_CLOCK_CONTROL_DISABLE_DEBUG_REGISTERS; gpu_write(gpu, VIVS_HI_CLOCK_CONTROL, control); failed = false; break; } if (failed) { idle = gpu_read(gpu, VIVS_HI_IDLE_STATE); control = gpu_read(gpu, VIVS_HI_CLOCK_CONTROL); dev_err(gpu->dev, "GPU failed to reset: FE %sidle, 3D %sidle, 2D %sidle\n", idle & VIVS_HI_IDLE_STATE_FE ? "" : "not ", control & VIVS_HI_CLOCK_CONTROL_IDLE_3D ? "" : "not ", control & VIVS_HI_CLOCK_CONTROL_IDLE_2D ? "" : "not "); return -EBUSY; } /* We rely on the GPU running, so program the clock */ etnaviv_gpu_update_clock(gpu); return 0; } static void etnaviv_gpu_enable_mlcg(struct etnaviv_gpu *gpu) { u32 pmc, ppc; /* enable clock gating */ ppc = gpu_read(gpu, VIVS_PM_POWER_CONTROLS); ppc |= VIVS_PM_POWER_CONTROLS_ENABLE_MODULE_CLOCK_GATING; /* Disable stall module clock gating for 4.3.0.1 and 4.3.0.2 revs */ if (gpu->identity.revision == 0x4301 || gpu->identity.revision == 0x4302) ppc |= VIVS_PM_POWER_CONTROLS_DISABLE_STALL_MODULE_CLOCK_GATING; gpu_write(gpu, VIVS_PM_POWER_CONTROLS, ppc); pmc = gpu_read(gpu, VIVS_PM_MODULE_CONTROLS); /* Disable PA clock gating for GC400+ without bugfix except for GC420 */ if (gpu->identity.model >= chipModel_GC400 && gpu->identity.model != chipModel_GC420 && !(gpu->identity.minor_features3 & chipMinorFeatures3_BUG_FIXES12)) pmc |= VIVS_PM_MODULE_CONTROLS_DISABLE_MODULE_CLOCK_GATING_PA; /* * Disable PE clock gating on revs < 5.0.0.0 when HZ is * present without a bug fix. */ if (gpu->identity.revision < 0x5000 && gpu->identity.minor_features0 & chipMinorFeatures0_HZ && !(gpu->identity.minor_features1 & chipMinorFeatures1_DISABLE_PE_GATING)) pmc |= VIVS_PM_MODULE_CONTROLS_DISABLE_MODULE_CLOCK_GATING_PE; if (gpu->identity.revision < 0x5422) pmc |= BIT(15); /* Unknown bit */ /* Disable TX clock gating on affected core revisions. */ if (etnaviv_is_model_rev(gpu, GC4000, 0x5222) || etnaviv_is_model_rev(gpu, GC2000, 0x5108)) pmc |= VIVS_PM_MODULE_CONTROLS_DISABLE_MODULE_CLOCK_GATING_TX; pmc |= VIVS_PM_MODULE_CONTROLS_DISABLE_MODULE_CLOCK_GATING_RA_HZ; pmc |= VIVS_PM_MODULE_CONTROLS_DISABLE_MODULE_CLOCK_GATING_RA_EZ; gpu_write(gpu, VIVS_PM_MODULE_CONTROLS, pmc); } void etnaviv_gpu_start_fe(struct etnaviv_gpu *gpu, u32 address, u16 prefetch) { gpu_write(gpu, VIVS_FE_COMMAND_ADDRESS, address); gpu_write(gpu, VIVS_FE_COMMAND_CONTROL, VIVS_FE_COMMAND_CONTROL_ENABLE | VIVS_FE_COMMAND_CONTROL_PREFETCH(prefetch)); if (gpu->sec_mode == ETNA_SEC_KERNEL) { gpu_write(gpu, VIVS_MMUv2_SEC_COMMAND_CONTROL, VIVS_MMUv2_SEC_COMMAND_CONTROL_ENABLE | VIVS_MMUv2_SEC_COMMAND_CONTROL_PREFETCH(prefetch)); } } static void etnaviv_gpu_setup_pulse_eater(struct etnaviv_gpu *gpu) { /* * Base value for VIVS_PM_PULSE_EATER register on models where it * cannot be read, extracted from vivante kernel driver. */ u32 pulse_eater = 0x01590880; if (etnaviv_is_model_rev(gpu, GC4000, 0x5208) || etnaviv_is_model_rev(gpu, GC4000, 0x5222)) { pulse_eater |= BIT(23); } if (etnaviv_is_model_rev(gpu, GC1000, 0x5039) || etnaviv_is_model_rev(gpu, GC1000, 0x5040)) { pulse_eater &= ~BIT(16); pulse_eater |= BIT(17); } if ((gpu->identity.revision > 0x5420) && (gpu->identity.features & chipFeatures_PIPE_3D)) { /* Performance fix: disable internal DFS */ pulse_eater = gpu_read(gpu, VIVS_PM_PULSE_EATER); pulse_eater |= BIT(18); } gpu_write(gpu, VIVS_PM_PULSE_EATER, pulse_eater); } static void etnaviv_gpu_hw_init(struct etnaviv_gpu *gpu) { u16 prefetch; if ((etnaviv_is_model_rev(gpu, GC320, 0x5007) || etnaviv_is_model_rev(gpu, GC320, 0x5220)) && gpu_read(gpu, VIVS_HI_CHIP_TIME) != 0x2062400) { u32 mc_memory_debug; mc_memory_debug = gpu_read(gpu, VIVS_MC_DEBUG_MEMORY) & ~0xff; if (gpu->identity.revision == 0x5007) mc_memory_debug |= 0x0c; else mc_memory_debug |= 0x08; gpu_write(gpu, VIVS_MC_DEBUG_MEMORY, mc_memory_debug); } /* enable module-level clock gating */ etnaviv_gpu_enable_mlcg(gpu); /* * Update GPU AXI cache atttribute to "cacheable, no allocate". * This is necessary to prevent the iMX6 SoC locking up. */ gpu_write(gpu, VIVS_HI_AXI_CONFIG, VIVS_HI_AXI_CONFIG_AWCACHE(2) | VIVS_HI_AXI_CONFIG_ARCACHE(2)); /* GC2000 rev 5108 needs a special bus config */ if (etnaviv_is_model_rev(gpu, GC2000, 0x5108)) { u32 bus_config = gpu_read(gpu, VIVS_MC_BUS_CONFIG); bus_config &= ~(VIVS_MC_BUS_CONFIG_FE_BUS_CONFIG__MASK | VIVS_MC_BUS_CONFIG_TX_BUS_CONFIG__MASK); bus_config |= VIVS_MC_BUS_CONFIG_FE_BUS_CONFIG(1) | VIVS_MC_BUS_CONFIG_TX_BUS_CONFIG(0); gpu_write(gpu, VIVS_MC_BUS_CONFIG, bus_config); } if (gpu->sec_mode == ETNA_SEC_KERNEL) { u32 val = gpu_read(gpu, VIVS_MMUv2_AHB_CONTROL); val |= VIVS_MMUv2_AHB_CONTROL_NONSEC_ACCESS; gpu_write(gpu, VIVS_MMUv2_AHB_CONTROL, val); } /* setup the pulse eater */ etnaviv_gpu_setup_pulse_eater(gpu); /* setup the MMU */ etnaviv_iommu_restore(gpu); /* Start command processor */ prefetch = etnaviv_buffer_init(gpu); gpu_write(gpu, VIVS_HI_INTR_ENBL, ~0U); etnaviv_gpu_start_fe(gpu, etnaviv_cmdbuf_get_va(&gpu->buffer), prefetch); } int etnaviv_gpu_init(struct etnaviv_gpu *gpu) { int ret, i; ret = pm_runtime_get_sync(gpu->dev); if (ret < 0) { dev_err(gpu->dev, "Failed to enable GPU power domain\n"); return ret; } etnaviv_hw_identify(gpu); if (gpu->identity.model == 0) { dev_err(gpu->dev, "Unknown GPU model\n"); ret = -ENXIO; goto fail; } /* Exclude VG cores with FE2.0 */ if (gpu->identity.features & chipFeatures_PIPE_VG && gpu->identity.features & chipFeatures_FE20) { dev_info(gpu->dev, "Ignoring GPU with VG and FE2.0\n"); ret = -ENXIO; goto fail; } /* * Set the GPU linear window to be at the end of the DMA window, where * the CMA area is likely to reside. This ensures that we are able to * map the command buffers while having the linear window overlap as * much RAM as possible, so we can optimize mappings for other buffers. * * For 3D cores only do this if MC2.0 is present, as with MC1.0 it leads * to different views of the memory on the individual engines. */ if (!(gpu->identity.features & chipFeatures_PIPE_3D) || (gpu->identity.minor_features0 & chipMinorFeatures0_MC20)) { u32 dma_mask = (u32)dma_get_required_mask(gpu->dev); if (dma_mask < PHYS_OFFSET + SZ_2G) gpu->memory_base = PHYS_OFFSET; else gpu->memory_base = dma_mask - SZ_2G + 1; } else if (PHYS_OFFSET >= SZ_2G) { dev_info(gpu->dev, "Need to move linear window on MC1.0, disabling TS\n"); gpu->memory_base = PHYS_OFFSET; gpu->identity.features &= ~chipFeatures_FAST_CLEAR; } /* * On cores with security features supported, we claim control over the * security states. */ if ((gpu->identity.minor_features7 & chipMinorFeatures7_BIT_SECURITY) && (gpu->identity.minor_features10 & chipMinorFeatures10_SECURITY_AHB)) gpu->sec_mode = ETNA_SEC_KERNEL; ret = etnaviv_hw_reset(gpu); if (ret) { dev_err(gpu->dev, "GPU reset failed\n"); goto fail; } gpu->mmu = etnaviv_iommu_new(gpu); if (IS_ERR(gpu->mmu)) { dev_err(gpu->dev, "Failed to instantiate GPU IOMMU\n"); ret = PTR_ERR(gpu->mmu); goto fail; } gpu->cmdbuf_suballoc = etnaviv_cmdbuf_suballoc_new(gpu); if (IS_ERR(gpu->cmdbuf_suballoc)) { dev_err(gpu->dev, "Failed to create cmdbuf suballocator\n"); ret = PTR_ERR(gpu->cmdbuf_suballoc); goto destroy_iommu; } /* Create buffer: */ ret = etnaviv_cmdbuf_init(gpu->cmdbuf_suballoc, &gpu->buffer, PAGE_SIZE); if (ret) { dev_err(gpu->dev, "could not create command buffer\n"); goto destroy_suballoc; } if (gpu->mmu->version == ETNAVIV_IOMMU_V1 && etnaviv_cmdbuf_get_va(&gpu->buffer) > 0x80000000) { ret = -EINVAL; dev_err(gpu->dev, "command buffer outside valid memory window\n"); goto free_buffer; } /* Setup event management */ spin_lock_init(&gpu->event_spinlock); init_completion(&gpu->event_free); bitmap_zero(gpu->event_bitmap, ETNA_NR_EVENTS); for (i = 0; i < ARRAY_SIZE(gpu->event); i++) complete(&gpu->event_free); /* Now program the hardware */ mutex_lock(&gpu->lock); etnaviv_gpu_hw_init(gpu); gpu->exec_state = -1; mutex_unlock(&gpu->lock); pm_runtime_mark_last_busy(gpu->dev); pm_runtime_put_autosuspend(gpu->dev); return 0; free_buffer: etnaviv_cmdbuf_free(&gpu->buffer); gpu->buffer.suballoc = NULL; destroy_suballoc: etnaviv_cmdbuf_suballoc_destroy(gpu->cmdbuf_suballoc); gpu->cmdbuf_suballoc = NULL; destroy_iommu: etnaviv_iommu_destroy(gpu->mmu); gpu->mmu = NULL; fail: pm_runtime_mark_last_busy(gpu->dev); pm_runtime_put_autosuspend(gpu->dev); return ret; } #ifdef CONFIG_DEBUG_FS struct dma_debug { u32 address[2]; u32 state[2]; }; static void verify_dma(struct etnaviv_gpu *gpu, struct dma_debug *debug) { u32 i; debug->address[0] = gpu_read(gpu, VIVS_FE_DMA_ADDRESS); debug->state[0] = gpu_read(gpu, VIVS_FE_DMA_DEBUG_STATE); for (i = 0; i < 500; i++) { debug->address[1] = gpu_read(gpu, VIVS_FE_DMA_ADDRESS); debug->state[1] = gpu_read(gpu, VIVS_FE_DMA_DEBUG_STATE); if (debug->address[0] != debug->address[1]) break; if (debug->state[0] != debug->state[1]) break; } } int etnaviv_gpu_debugfs(struct etnaviv_gpu *gpu, struct seq_file *m) { struct dma_debug debug; u32 dma_lo, dma_hi, axi, idle; int ret; seq_printf(m, "%s Status:\n", dev_name(gpu->dev)); ret = pm_runtime_get_sync(gpu->dev); if (ret < 0) return ret; dma_lo = gpu_read(gpu, VIVS_FE_DMA_LOW); dma_hi = gpu_read(gpu, VIVS_FE_DMA_HIGH); axi = gpu_read(gpu, VIVS_HI_AXI_STATUS); idle = gpu_read(gpu, VIVS_HI_IDLE_STATE); verify_dma(gpu, &debug); seq_puts(m, "\tfeatures\n"); seq_printf(m, "\t major_features: 0x%08x\n", gpu->identity.features); seq_printf(m, "\t minor_features0: 0x%08x\n", gpu->identity.minor_features0); seq_printf(m, "\t minor_features1: 0x%08x\n", gpu->identity.minor_features1); seq_printf(m, "\t minor_features2: 0x%08x\n", gpu->identity.minor_features2); seq_printf(m, "\t minor_features3: 0x%08x\n", gpu->identity.minor_features3); seq_printf(m, "\t minor_features4: 0x%08x\n", gpu->identity.minor_features4); seq_printf(m, "\t minor_features5: 0x%08x\n", gpu->identity.minor_features5); seq_printf(m, "\t minor_features6: 0x%08x\n", gpu->identity.minor_features6); seq_printf(m, "\t minor_features7: 0x%08x\n", gpu->identity.minor_features7); seq_printf(m, "\t minor_features8: 0x%08x\n", gpu->identity.minor_features8); seq_printf(m, "\t minor_features9: 0x%08x\n", gpu->identity.minor_features9); seq_printf(m, "\t minor_features10: 0x%08x\n", gpu->identity.minor_features10); seq_printf(m, "\t minor_features11: 0x%08x\n", gpu->identity.minor_features11); seq_puts(m, "\tspecs\n"); seq_printf(m, "\t stream_count: %d\n", gpu->identity.stream_count); seq_printf(m, "\t register_max: %d\n", gpu->identity.register_max); seq_printf(m, "\t thread_count: %d\n", gpu->identity.thread_count); seq_printf(m, "\t vertex_cache_size: %d\n", gpu->identity.vertex_cache_size); seq_printf(m, "\t shader_core_count: %d\n", gpu->identity.shader_core_count); seq_printf(m, "\t pixel_pipes: %d\n", gpu->identity.pixel_pipes); seq_printf(m, "\t vertex_output_buffer_size: %d\n", gpu->identity.vertex_output_buffer_size); seq_printf(m, "\t buffer_size: %d\n", gpu->identity.buffer_size); seq_printf(m, "\t instruction_count: %d\n", gpu->identity.instruction_count); seq_printf(m, "\t num_constants: %d\n", gpu->identity.num_constants); seq_printf(m, "\t varyings_count: %d\n", gpu->identity.varyings_count); seq_printf(m, "\taxi: 0x%08x\n", axi); seq_printf(m, "\tidle: 0x%08x\n", idle); idle |= ~gpu->idle_mask & ~VIVS_HI_IDLE_STATE_AXI_LP; if ((idle & VIVS_HI_IDLE_STATE_FE) == 0) seq_puts(m, "\t FE is not idle\n"); if ((idle & VIVS_HI_IDLE_STATE_DE) == 0) seq_puts(m, "\t DE is not idle\n"); if ((idle & VIVS_HI_IDLE_STATE_PE) == 0) seq_puts(m, "\t PE is not idle\n"); if ((idle & VIVS_HI_IDLE_STATE_SH) == 0) seq_puts(m, "\t SH is not idle\n"); if ((idle & VIVS_HI_IDLE_STATE_PA) == 0) seq_puts(m, "\t PA is not idle\n"); if ((idle & VIVS_HI_IDLE_STATE_SE) == 0) seq_puts(m, "\t SE is not idle\n"); if ((idle & VIVS_HI_IDLE_STATE_RA) == 0) seq_puts(m, "\t RA is not idle\n"); if ((idle & VIVS_HI_IDLE_STATE_TX) == 0) seq_puts(m, "\t TX is not idle\n"); if ((idle & VIVS_HI_IDLE_STATE_VG) == 0) seq_puts(m, "\t VG is not idle\n"); if ((idle & VIVS_HI_IDLE_STATE_IM) == 0) seq_puts(m, "\t IM is not idle\n"); if ((idle & VIVS_HI_IDLE_STATE_FP) == 0) seq_puts(m, "\t FP is not idle\n"); if ((idle & VIVS_HI_IDLE_STATE_TS) == 0) seq_puts(m, "\t TS is not idle\n"); if (idle & VIVS_HI_IDLE_STATE_AXI_LP) seq_puts(m, "\t AXI low power mode\n"); if (gpu->identity.features & chipFeatures_DEBUG_MODE) { u32 read0 = gpu_read(gpu, VIVS_MC_DEBUG_READ0); u32 read1 = gpu_read(gpu, VIVS_MC_DEBUG_READ1); u32 write = gpu_read(gpu, VIVS_MC_DEBUG_WRITE); seq_puts(m, "\tMC\n"); seq_printf(m, "\t read0: 0x%08x\n", read0); seq_printf(m, "\t read1: 0x%08x\n", read1); seq_printf(m, "\t write: 0x%08x\n", write); } seq_puts(m, "\tDMA "); if (debug.address[0] == debug.address[1] && debug.state[0] == debug.state[1]) { seq_puts(m, "seems to be stuck\n"); } else if (debug.address[0] == debug.address[1]) { seq_puts(m, "address is constant\n"); } else { seq_puts(m, "is running\n"); } seq_printf(m, "\t address 0: 0x%08x\n", debug.address[0]); seq_printf(m, "\t address 1: 0x%08x\n", debug.address[1]); seq_printf(m, "\t state 0: 0x%08x\n", debug.state[0]); seq_printf(m, "\t state 1: 0x%08x\n", debug.state[1]); seq_printf(m, "\t last fetch 64 bit word: 0x%08x 0x%08x\n", dma_lo, dma_hi); ret = 0; pm_runtime_mark_last_busy(gpu->dev); pm_runtime_put_autosuspend(gpu->dev); return ret; } #endif void etnaviv_gpu_recover_hang(struct etnaviv_gpu *gpu) { unsigned int i = 0; dev_err(gpu->dev, "recover hung GPU!\n"); if (pm_runtime_get_sync(gpu->dev) < 0) return; mutex_lock(&gpu->lock); etnaviv_hw_reset(gpu); /* complete all events, the GPU won't do it after the reset */ spin_lock(&gpu->event_spinlock); for_each_set_bit_from(i, gpu->event_bitmap, ETNA_NR_EVENTS) complete(&gpu->event_free); bitmap_zero(gpu->event_bitmap, ETNA_NR_EVENTS); spin_unlock(&gpu->event_spinlock); etnaviv_gpu_hw_init(gpu); gpu->exec_state = -1; mutex_unlock(&gpu->lock); pm_runtime_mark_last_busy(gpu->dev); pm_runtime_put_autosuspend(gpu->dev); } /* fence object management */ struct etnaviv_fence { struct etnaviv_gpu *gpu; struct dma_fence base; }; static inline struct etnaviv_fence *to_etnaviv_fence(struct dma_fence *fence) { return container_of(fence, struct etnaviv_fence, base); } static const char *etnaviv_fence_get_driver_name(struct dma_fence *fence) { return "etnaviv"; } static const char *etnaviv_fence_get_timeline_name(struct dma_fence *fence) { struct etnaviv_fence *f = to_etnaviv_fence(fence); return dev_name(f->gpu->dev); } static bool etnaviv_fence_signaled(struct dma_fence *fence) { struct etnaviv_fence *f = to_etnaviv_fence(fence); return (s32)(f->gpu->completed_fence - f->base.seqno) >= 0; } static void etnaviv_fence_release(struct dma_fence *fence) { struct etnaviv_fence *f = to_etnaviv_fence(fence); kfree_rcu(f, base.rcu); } static const struct dma_fence_ops etnaviv_fence_ops = { .get_driver_name = etnaviv_fence_get_driver_name, .get_timeline_name = etnaviv_fence_get_timeline_name, .signaled = etnaviv_fence_signaled, .release = etnaviv_fence_release, }; static struct dma_fence *etnaviv_gpu_fence_alloc(struct etnaviv_gpu *gpu) { struct etnaviv_fence *f; /* * GPU lock must already be held, otherwise fence completion order might * not match the seqno order assigned here. */ lockdep_assert_held(&gpu->lock); f = kzalloc(sizeof(*f), GFP_KERNEL); if (!f) return NULL; f->gpu = gpu; dma_fence_init(&f->base, &etnaviv_fence_ops, &gpu->fence_spinlock, gpu->fence_context, ++gpu->next_fence); return &f->base; } /* returns true if fence a comes after fence b */ static inline bool fence_after(u32 a, u32 b) { return (s32)(a - b) > 0; } /* * event management: */ static int event_alloc(struct etnaviv_gpu *gpu, unsigned nr_events, unsigned int *events) { unsigned long timeout = msecs_to_jiffies(10 * 10000); unsigned i, acquired = 0; for (i = 0; i < nr_events; i++) { unsigned long ret; ret = wait_for_completion_timeout(&gpu->event_free, timeout); if (!ret) { dev_err(gpu->dev, "wait_for_completion_timeout failed"); goto out; } acquired++; timeout = ret; } spin_lock(&gpu->event_spinlock); for (i = 0; i < nr_events; i++) { int event = find_first_zero_bit(gpu->event_bitmap, ETNA_NR_EVENTS); events[i] = event; memset(&gpu->event[event], 0, sizeof(struct etnaviv_event)); set_bit(event, gpu->event_bitmap); } spin_unlock(&gpu->event_spinlock); return 0; out: for (i = 0; i < acquired; i++) complete(&gpu->event_free); return -EBUSY; } static void event_free(struct etnaviv_gpu *gpu, unsigned int event) { if (!test_bit(event, gpu->event_bitmap)) { dev_warn(gpu->dev, "event %u is already marked as free", event); } else { clear_bit(event, gpu->event_bitmap); complete(&gpu->event_free); } } /* * Cmdstream submission/retirement: */ int etnaviv_gpu_wait_fence_interruptible(struct etnaviv_gpu *gpu, u32 id, struct timespec *timeout) { struct dma_fence *fence; int ret; /* * Look up the fence and take a reference. We might still find a fence * whose refcount has already dropped to zero. dma_fence_get_rcu * pretends we didn't find a fence in that case. */ rcu_read_lock(); fence = idr_find(&gpu->fence_idr, id); if (fence) fence = dma_fence_get_rcu(fence); rcu_read_unlock(); if (!fence) return 0; if (!timeout) { /* No timeout was requested: just test for completion */ ret = dma_fence_is_signaled(fence) ? 0 : -EBUSY; } else { unsigned long remaining = etnaviv_timeout_to_jiffies(timeout); ret = dma_fence_wait_timeout(fence, true, remaining); if (ret == 0) ret = -ETIMEDOUT; else if (ret != -ERESTARTSYS) ret = 0; } dma_fence_put(fence); return ret; } /* * Wait for an object to become inactive. This, on it's own, is not race * free: the object is moved by the scheduler off the active list, and * then the iova is put. Moreover, the object could be re-submitted just * after we notice that it's become inactive. * * Although the retirement happens under the gpu lock, we don't want to hold * that lock in this function while waiting. */ int etnaviv_gpu_wait_obj_inactive(struct etnaviv_gpu *gpu, struct etnaviv_gem_object *etnaviv_obj, struct timespec *timeout) { unsigned long remaining; long ret; if (!timeout) return !is_active(etnaviv_obj) ? 0 : -EBUSY; remaining = etnaviv_timeout_to_jiffies(timeout); ret = wait_event_interruptible_timeout(gpu->fence_event, !is_active(etnaviv_obj), remaining); if (ret > 0) return 0; else if (ret == -ERESTARTSYS) return -ERESTARTSYS; else return -ETIMEDOUT; } static void sync_point_perfmon_sample(struct etnaviv_gpu *gpu, struct etnaviv_event *event, unsigned int flags) { const struct etnaviv_gem_submit *submit = event->submit; unsigned int i; for (i = 0; i < submit->nr_pmrs; i++) { const struct etnaviv_perfmon_request *pmr = submit->pmrs + i; if (pmr->flags == flags) etnaviv_perfmon_process(gpu, pmr, submit->exec_state); } } static void sync_point_perfmon_sample_pre(struct etnaviv_gpu *gpu, struct etnaviv_event *event) { u32 val; /* disable clock gating */ val = gpu_read(gpu, VIVS_PM_POWER_CONTROLS); val &= ~VIVS_PM_POWER_CONTROLS_ENABLE_MODULE_CLOCK_GATING; gpu_write(gpu, VIVS_PM_POWER_CONTROLS, val); /* enable debug register */ val = gpu_read(gpu, VIVS_HI_CLOCK_CONTROL); val &= ~VIVS_HI_CLOCK_CONTROL_DISABLE_DEBUG_REGISTERS; gpu_write(gpu, VIVS_HI_CLOCK_CONTROL, val); sync_point_perfmon_sample(gpu, event, ETNA_PM_PROCESS_PRE); } static void sync_point_perfmon_sample_post(struct etnaviv_gpu *gpu, struct etnaviv_event *event) { const struct etnaviv_gem_submit *submit = event->submit; unsigned int i; u32 val; sync_point_perfmon_sample(gpu, event, ETNA_PM_PROCESS_POST); for (i = 0; i < submit->nr_pmrs; i++) { const struct etnaviv_perfmon_request *pmr = submit->pmrs + i; *pmr->bo_vma = pmr->sequence; } /* disable debug register */ val = gpu_read(gpu, VIVS_HI_CLOCK_CONTROL); val |= VIVS_HI_CLOCK_CONTROL_DISABLE_DEBUG_REGISTERS; gpu_write(gpu, VIVS_HI_CLOCK_CONTROL, val); /* enable clock gating */ val = gpu_read(gpu, VIVS_PM_POWER_CONTROLS); val |= VIVS_PM_POWER_CONTROLS_ENABLE_MODULE_CLOCK_GATING; gpu_write(gpu, VIVS_PM_POWER_CONTROLS, val); } /* add bo's to gpu's ring, and kick gpu: */ struct dma_fence *etnaviv_gpu_submit(struct etnaviv_gem_submit *submit) { struct etnaviv_gpu *gpu = submit->gpu; struct dma_fence *gpu_fence; unsigned int i, nr_events = 1, event[3]; int ret; if (!submit->runtime_resumed) { ret = pm_runtime_get_sync(gpu->dev); if (ret < 0) return NULL; submit->runtime_resumed = true; } /* * if there are performance monitor requests we need to have * - a sync point to re-configure gpu and process ETNA_PM_PROCESS_PRE * requests. * - a sync point to re-configure gpu, process ETNA_PM_PROCESS_POST requests * and update the sequence number for userspace. */ if (submit->nr_pmrs) nr_events = 3; ret = event_alloc(gpu, nr_events, event); if (ret) { DRM_ERROR("no free events\n"); return NULL; } mutex_lock(&gpu->lock); gpu_fence = etnaviv_gpu_fence_alloc(gpu); if (!gpu_fence) { for (i = 0; i < nr_events; i++) event_free(gpu, event[i]); goto out_unlock; } if (submit->nr_pmrs) { gpu->event[event[1]].sync_point = &sync_point_perfmon_sample_pre; kref_get(&submit->refcount); gpu->event[event[1]].submit = submit; etnaviv_sync_point_queue(gpu, event[1]); } gpu->event[event[0]].fence = gpu_fence; submit->cmdbuf.user_size = submit->cmdbuf.size - 8; etnaviv_buffer_queue(gpu, submit->exec_state, event[0], &submit->cmdbuf); if (submit->nr_pmrs) { gpu->event[event[2]].sync_point = &sync_point_perfmon_sample_post; kref_get(&submit->refcount); gpu->event[event[2]].submit = submit; etnaviv_sync_point_queue(gpu, event[2]); } out_unlock: mutex_unlock(&gpu->lock); return gpu_fence; } static void sync_point_worker(struct work_struct *work) { struct etnaviv_gpu *gpu = container_of(work, struct etnaviv_gpu, sync_point_work); struct etnaviv_event *event = &gpu->event[gpu->sync_point_event]; u32 addr = gpu_read(gpu, VIVS_FE_DMA_ADDRESS); event->sync_point(gpu, event); etnaviv_submit_put(event->submit); event_free(gpu, gpu->sync_point_event); /* restart FE last to avoid GPU and IRQ racing against this worker */ etnaviv_gpu_start_fe(gpu, addr + 2, 2); } static void dump_mmu_fault(struct etnaviv_gpu *gpu) { u32 status_reg, status; int i; if (gpu->sec_mode == ETNA_SEC_NONE) status_reg = VIVS_MMUv2_STATUS; else status_reg = VIVS_MMUv2_SEC_STATUS; status = gpu_read(gpu, status_reg); dev_err_ratelimited(gpu->dev, "MMU fault status 0x%08x\n", status); for (i = 0; i < 4; i++) { u32 address_reg; if (!(status & (VIVS_MMUv2_STATUS_EXCEPTION0__MASK << (i * 4)))) continue; if (gpu->sec_mode == ETNA_SEC_NONE) address_reg = VIVS_MMUv2_EXCEPTION_ADDR(i); else address_reg = VIVS_MMUv2_SEC_EXCEPTION_ADDR; dev_err_ratelimited(gpu->dev, "MMU %d fault addr 0x%08x\n", i, gpu_read(gpu, address_reg)); } } static irqreturn_t irq_handler(int irq, void *data) { struct etnaviv_gpu *gpu = data; irqreturn_t ret = IRQ_NONE; u32 intr = gpu_read(gpu, VIVS_HI_INTR_ACKNOWLEDGE); if (intr != 0) { int event; pm_runtime_mark_last_busy(gpu->dev); dev_dbg(gpu->dev, "intr 0x%08x\n", intr); if (intr & VIVS_HI_INTR_ACKNOWLEDGE_AXI_BUS_ERROR) { dev_err(gpu->dev, "AXI bus error\n"); intr &= ~VIVS_HI_INTR_ACKNOWLEDGE_AXI_BUS_ERROR; } if (intr & VIVS_HI_INTR_ACKNOWLEDGE_MMU_EXCEPTION) { dump_mmu_fault(gpu); intr &= ~VIVS_HI_INTR_ACKNOWLEDGE_MMU_EXCEPTION; } while ((event = ffs(intr)) != 0) { struct dma_fence *fence; event -= 1; intr &= ~(1 << event); dev_dbg(gpu->dev, "event %u\n", event); if (gpu->event[event].sync_point) { gpu->sync_point_event = event; queue_work(gpu->wq, &gpu->sync_point_work); } fence = gpu->event[event].fence; if (!fence) continue; gpu->event[event].fence = NULL; /* * Events can be processed out of order. Eg, * - allocate and queue event 0 * - allocate event 1 * - event 0 completes, we process it * - allocate and queue event 0 * - event 1 and event 0 complete * we can end up processing event 0 first, then 1. */ if (fence_after(fence->seqno, gpu->completed_fence)) gpu->completed_fence = fence->seqno; dma_fence_signal(fence); event_free(gpu, event); } ret = IRQ_HANDLED; } return ret; } static int etnaviv_gpu_clk_enable(struct etnaviv_gpu *gpu) { int ret; if (gpu->clk_reg) { ret = clk_prepare_enable(gpu->clk_reg); if (ret) return ret; } if (gpu->clk_bus) { ret = clk_prepare_enable(gpu->clk_bus); if (ret) return ret; } if (gpu->clk_core) { ret = clk_prepare_enable(gpu->clk_core); if (ret) goto disable_clk_bus; } if (gpu->clk_shader) { ret = clk_prepare_enable(gpu->clk_shader); if (ret) goto disable_clk_core; } return 0; disable_clk_core: if (gpu->clk_core) clk_disable_unprepare(gpu->clk_core); disable_clk_bus: if (gpu->clk_bus) clk_disable_unprepare(gpu->clk_bus); return ret; } static int etnaviv_gpu_clk_disable(struct etnaviv_gpu *gpu) { if (gpu->clk_shader) clk_disable_unprepare(gpu->clk_shader); if (gpu->clk_core) clk_disable_unprepare(gpu->clk_core); if (gpu->clk_bus) clk_disable_unprepare(gpu->clk_bus); if (gpu->clk_reg) clk_disable_unprepare(gpu->clk_reg); return 0; } int etnaviv_gpu_wait_idle(struct etnaviv_gpu *gpu, unsigned int timeout_ms) { unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms); do { u32 idle = gpu_read(gpu, VIVS_HI_IDLE_STATE); if ((idle & gpu->idle_mask) == gpu->idle_mask) return 0; if (time_is_before_jiffies(timeout)) { dev_warn(gpu->dev, "timed out waiting for idle: idle=0x%x\n", idle); return -ETIMEDOUT; } udelay(5); } while (1); } static int etnaviv_gpu_hw_suspend(struct etnaviv_gpu *gpu) { if (gpu->buffer.suballoc) { /* Replace the last WAIT with END */ mutex_lock(&gpu->lock); etnaviv_buffer_end(gpu); mutex_unlock(&gpu->lock); /* * We know that only the FE is busy here, this should * happen quickly (as the WAIT is only 200 cycles). If * we fail, just warn and continue. */ etnaviv_gpu_wait_idle(gpu, 100); } return etnaviv_gpu_clk_disable(gpu); } #ifdef CONFIG_PM static int etnaviv_gpu_hw_resume(struct etnaviv_gpu *gpu) { int ret; ret = mutex_lock_killable(&gpu->lock); if (ret) return ret; etnaviv_gpu_update_clock(gpu); etnaviv_gpu_hw_init(gpu); gpu->exec_state = -1; mutex_unlock(&gpu->lock); return 0; } #endif static int etnaviv_gpu_cooling_get_max_state(struct thermal_cooling_device *cdev, unsigned long *state) { *state = 6; return 0; } static int etnaviv_gpu_cooling_get_cur_state(struct thermal_cooling_device *cdev, unsigned long *state) { struct etnaviv_gpu *gpu = cdev->devdata; *state = gpu->freq_scale; return 0; } static int etnaviv_gpu_cooling_set_cur_state(struct thermal_cooling_device *cdev, unsigned long state) { struct etnaviv_gpu *gpu = cdev->devdata; mutex_lock(&gpu->lock); gpu->freq_scale = state; if (!pm_runtime_suspended(gpu->dev)) etnaviv_gpu_update_clock(gpu); mutex_unlock(&gpu->lock); return 0; } static struct thermal_cooling_device_ops cooling_ops = { .get_max_state = etnaviv_gpu_cooling_get_max_state, .get_cur_state = etnaviv_gpu_cooling_get_cur_state, .set_cur_state = etnaviv_gpu_cooling_set_cur_state, }; static int etnaviv_gpu_bind(struct device *dev, struct device *master, void *data) { struct drm_device *drm = data; struct etnaviv_drm_private *priv = drm->dev_private; struct etnaviv_gpu *gpu = dev_get_drvdata(dev); int ret; if (IS_ENABLED(CONFIG_DRM_ETNAVIV_THERMAL)) { gpu->cooling = thermal_of_cooling_device_register(dev->of_node, (char *)dev_name(dev), gpu, &cooling_ops); if (IS_ERR(gpu->cooling)) return PTR_ERR(gpu->cooling); } gpu->wq = alloc_ordered_workqueue(dev_name(dev), 0); if (!gpu->wq) { ret = -ENOMEM; goto out_thermal; } ret = etnaviv_sched_init(gpu); if (ret) goto out_workqueue; #ifdef CONFIG_PM ret = pm_runtime_get_sync(gpu->dev); #else ret = etnaviv_gpu_clk_enable(gpu); #endif if (ret < 0) goto out_sched; gpu->drm = drm; gpu->fence_context = dma_fence_context_alloc(1); idr_init(&gpu->fence_idr); spin_lock_init(&gpu->fence_spinlock); INIT_WORK(&gpu->sync_point_work, sync_point_worker); init_waitqueue_head(&gpu->fence_event); priv->gpu[priv->num_gpus++] = gpu; pm_runtime_mark_last_busy(gpu->dev); pm_runtime_put_autosuspend(gpu->dev); return 0; out_sched: etnaviv_sched_fini(gpu); out_workqueue: destroy_workqueue(gpu->wq); out_thermal: if (IS_ENABLED(CONFIG_DRM_ETNAVIV_THERMAL)) thermal_cooling_device_unregister(gpu->cooling); return ret; } static void etnaviv_gpu_unbind(struct device *dev, struct device *master, void *data) { struct etnaviv_gpu *gpu = dev_get_drvdata(dev); DBG("%s", dev_name(gpu->dev)); flush_workqueue(gpu->wq); destroy_workqueue(gpu->wq); etnaviv_sched_fini(gpu); #ifdef CONFIG_PM pm_runtime_get_sync(gpu->dev); pm_runtime_put_sync_suspend(gpu->dev); #else etnaviv_gpu_hw_suspend(gpu); #endif if (gpu->buffer.suballoc) etnaviv_cmdbuf_free(&gpu->buffer); if (gpu->cmdbuf_suballoc) { etnaviv_cmdbuf_suballoc_destroy(gpu->cmdbuf_suballoc); gpu->cmdbuf_suballoc = NULL; } if (gpu->mmu) { etnaviv_iommu_destroy(gpu->mmu); gpu->mmu = NULL; } gpu->drm = NULL; idr_destroy(&gpu->fence_idr); if (IS_ENABLED(CONFIG_DRM_ETNAVIV_THERMAL)) thermal_cooling_device_unregister(gpu->cooling); gpu->cooling = NULL; } static const struct component_ops gpu_ops = { .bind = etnaviv_gpu_bind, .unbind = etnaviv_gpu_unbind, }; static const struct of_device_id etnaviv_gpu_match[] = { { .compatible = "vivante,gc" }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, etnaviv_gpu_match); static int etnaviv_gpu_platform_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct etnaviv_gpu *gpu; int err; gpu = devm_kzalloc(dev, sizeof(*gpu), GFP_KERNEL); if (!gpu) return -ENOMEM; gpu->dev = &pdev->dev; mutex_init(&gpu->lock); mutex_init(&gpu->fence_lock); /* Map registers: */ gpu->mmio = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(gpu->mmio)) return PTR_ERR(gpu->mmio); /* Get Interrupt: */ gpu->irq = platform_get_irq(pdev, 0); if (gpu->irq < 0) { dev_err(dev, "failed to get irq: %d\n", gpu->irq); return gpu->irq; } err = devm_request_irq(&pdev->dev, gpu->irq, irq_handler, 0, dev_name(gpu->dev), gpu); if (err) { dev_err(dev, "failed to request IRQ%u: %d\n", gpu->irq, err); return err; } /* Get Clocks: */ gpu->clk_reg = devm_clk_get(&pdev->dev, "reg"); DBG("clk_reg: %p", gpu->clk_reg); if (IS_ERR(gpu->clk_reg)) gpu->clk_reg = NULL; gpu->clk_bus = devm_clk_get(&pdev->dev, "bus"); DBG("clk_bus: %p", gpu->clk_bus); if (IS_ERR(gpu->clk_bus)) gpu->clk_bus = NULL; gpu->clk_core = devm_clk_get(&pdev->dev, "core"); DBG("clk_core: %p", gpu->clk_core); if (IS_ERR(gpu->clk_core)) gpu->clk_core = NULL; gpu->base_rate_core = clk_get_rate(gpu->clk_core); gpu->clk_shader = devm_clk_get(&pdev->dev, "shader"); DBG("clk_shader: %p", gpu->clk_shader); if (IS_ERR(gpu->clk_shader)) gpu->clk_shader = NULL; gpu->base_rate_shader = clk_get_rate(gpu->clk_shader); /* TODO: figure out max mapped size */ dev_set_drvdata(dev, gpu); /* * We treat the device as initially suspended. The runtime PM * autosuspend delay is rather arbitary: no measurements have * yet been performed to determine an appropriate value. */ pm_runtime_use_autosuspend(gpu->dev); pm_runtime_set_autosuspend_delay(gpu->dev, 200); pm_runtime_enable(gpu->dev); err = component_add(&pdev->dev, &gpu_ops); if (err < 0) { dev_err(&pdev->dev, "failed to register component: %d\n", err); return err; } return 0; } static int etnaviv_gpu_platform_remove(struct platform_device *pdev) { component_del(&pdev->dev, &gpu_ops); pm_runtime_disable(&pdev->dev); return 0; } #ifdef CONFIG_PM static int etnaviv_gpu_rpm_suspend(struct device *dev) { struct etnaviv_gpu *gpu = dev_get_drvdata(dev); u32 idle, mask; /* If there are any jobs in the HW queue, we're not idle */ if (atomic_read(&gpu->sched.hw_rq_count)) return -EBUSY; /* Check whether the hardware (except FE) is idle */ mask = gpu->idle_mask & ~VIVS_HI_IDLE_STATE_FE; idle = gpu_read(gpu, VIVS_HI_IDLE_STATE) & mask; if (idle != mask) return -EBUSY; return etnaviv_gpu_hw_suspend(gpu); } static int etnaviv_gpu_rpm_resume(struct device *dev) { struct etnaviv_gpu *gpu = dev_get_drvdata(dev); int ret; ret = etnaviv_gpu_clk_enable(gpu); if (ret) return ret; /* Re-initialise the basic hardware state */ if (gpu->drm && gpu->buffer.suballoc) { ret = etnaviv_gpu_hw_resume(gpu); if (ret) { etnaviv_gpu_clk_disable(gpu); return ret; } } return 0; } #endif static const struct dev_pm_ops etnaviv_gpu_pm_ops = { SET_RUNTIME_PM_OPS(etnaviv_gpu_rpm_suspend, etnaviv_gpu_rpm_resume, NULL) }; struct platform_driver etnaviv_gpu_driver = { .driver = { .name = "etnaviv-gpu", .owner = THIS_MODULE, .pm = &etnaviv_gpu_pm_ops, .of_match_table = etnaviv_gpu_match, }, .probe = etnaviv_gpu_platform_probe, .remove = etnaviv_gpu_platform_remove, .id_table = gpu_ids, };