Commit 18a1e69e authored by unknown's avatar unknown

Manual merge


mysql-test/r/partition.result:
  Auto merged
sql/handler.h:
  Auto merged
sql/item.h:
  Auto merged
sql/sql_class.cc:
  Auto merged
sql/sql_lex.h:
  Auto merged
sql/sql_select.cc:
  Auto merged
parents b58c076c 0f1fa93a
...@@ -271,3 +271,10 @@ t1 CREATE TABLE `t1` ( ...@@ -271,3 +271,10 @@ t1 CREATE TABLE `t1` (
`b` int(11) default NULL `b` int(11) default NULL
) ENGINE=MyISAM DEFAULT CHARSET=latin1 PARTITION BY RANGE (a) (PARTITION x1 VALUES LESS THAN (6) ENGINE = MyISAM, PARTITION x3 VALUES LESS THAN (8) ENGINE = MyISAM, PARTITION x4 VALUES LESS THAN (10) ENGINE = MyISAM, PARTITION x5 VALUES LESS THAN (12) ENGINE = MyISAM, PARTITION x6 VALUES LESS THAN (14) ENGINE = MyISAM, PARTITION x7 VALUES LESS THAN (16) ENGINE = MyISAM, PARTITION x8 VALUES LESS THAN (18) ENGINE = MyISAM, PARTITION x9 VALUES LESS THAN (20) ENGINE = MyISAM) ) ENGINE=MyISAM DEFAULT CHARSET=latin1 PARTITION BY RANGE (a) (PARTITION x1 VALUES LESS THAN (6) ENGINE = MyISAM, PARTITION x3 VALUES LESS THAN (8) ENGINE = MyISAM, PARTITION x4 VALUES LESS THAN (10) ENGINE = MyISAM, PARTITION x5 VALUES LESS THAN (12) ENGINE = MyISAM, PARTITION x6 VALUES LESS THAN (14) ENGINE = MyISAM, PARTITION x7 VALUES LESS THAN (16) ENGINE = MyISAM, PARTITION x8 VALUES LESS THAN (18) ENGINE = MyISAM, PARTITION x9 VALUES LESS THAN (20) ENGINE = MyISAM)
drop table t1; drop table t1;
create table t1 (a int not null, b int not null) partition by LIST (a+b) (
partition p0 values in (12),
partition p1 values in (14)
);
insert into t1 values (10,1);
ERROR HY000: Table has no partition for value 11
drop table t1;
...@@ -259,3 +259,48 @@ explain partitions select * from t1 where a is not null; ...@@ -259,3 +259,48 @@ explain partitions select * from t1 where a is not null;
id select_type table partitions type possible_keys key key_len ref rows Extra id select_type table partitions type possible_keys key key_len ref rows Extra
1 SIMPLE t1 p0,p1 ALL NULL NULL NULL NULL 2 Using where 1 SIMPLE t1 p0,p1 ALL NULL NULL NULL NULL 2 Using where
drop table t1; drop table t1;
create table t1 (a int not null, b int not null, key(a), key(b))
partition by hash(a) partitions 4;
insert into t1 values (1,1),(2,2),(3,3),(4,4);
explain partitions
select * from t1 X, t1 Y
where X.b = Y.b and (X.a=1 or X.a=2) and (Y.a=2 or Y.a=3);
id select_type table partitions type possible_keys key key_len ref rows Extra
1 SIMPLE X p1,p2 ALL a,b NULL NULL NULL 4 Using where
1 SIMPLE Y p2,p3 ref a,b b 4 test.X.b 2 Using where
explain partitions
select * from t1 X, t1 Y where X.a = Y.a and (X.a=1 or X.a=2);
id select_type table partitions type possible_keys key key_len ref rows Extra
1 SIMPLE X p1,p2 ALL a NULL NULL NULL 4 Using where
1 SIMPLE Y p1,p2 ref a a 4 test.X.a 2
drop table t1;
create table t1 (a int) partition by hash(a) partitions 20;
insert into t1 values (1),(2),(3);
explain partitions select * from t1 where a > 1 and a < 3;
id select_type table partitions type possible_keys key key_len ref rows Extra
1 SIMPLE t1 p2 ALL NULL NULL NULL NULL 3 Using where
explain partitions select * from t1 where a >= 1 and a < 3;
id select_type table partitions type possible_keys key key_len ref rows Extra
1 SIMPLE t1 p1,p2 ALL NULL NULL NULL NULL 3 Using where
explain partitions select * from t1 where a > 1 and a <= 3;
id select_type table partitions type possible_keys key key_len ref rows Extra
1 SIMPLE t1 p2,p3 ALL NULL NULL NULL NULL 3 Using where
explain partitions select * from t1 where a >= 1 and a <= 3;
id select_type table partitions type possible_keys key key_len ref rows Extra
1 SIMPLE t1 p1,p2,p3 ALL NULL NULL NULL NULL 3 Using where
drop table t1;
create table t1 (a int, b int)
partition by list(a) subpartition by hash(b) subpartitions 20
(
partition p0 values in (0),
partition p1 values in (1),
partition p2 values in (2),
partition p3 values in (3)
);
insert into t1 values (1,1),(2,2),(3,3);
explain partitions select * from t1 where b > 1 and b < 3;
id select_type table partitions type possible_keys key key_len ref rows Extra
1 SIMPLE t1 p0_sp2,p1_sp2,p2_sp2,p3_sp2 ALL NULL NULL NULL NULL 3 Using where
explain partitions select * from t1 where b > 1 and b < 3 and (a =1 or a =2);
id select_type table partitions type possible_keys key key_len ref rows Extra
1 SIMPLE t1 p1_sp2,p2_sp2 ALL NULL NULL NULL NULL 3 Using where
...@@ -343,3 +343,13 @@ ALTER TABLE t1 REORGANIZE PARTITION x0,x1,x2 INTO ...@@ -343,3 +343,13 @@ ALTER TABLE t1 REORGANIZE PARTITION x0,x1,x2 INTO
show create table t1; show create table t1;
drop table t1; drop table t1;
# Testcase for BUG#15819
create table t1 (a int not null, b int not null) partition by LIST (a+b) (
partition p0 values in (12),
partition p1 values in (14)
);
--error ER_NO_PARTITION_FOR_GIVEN_VALUE
insert into t1 values (10,1);
drop table t1;
...@@ -230,9 +230,45 @@ create table t1 (a int) partition by hash(a) partitions 2; ...@@ -230,9 +230,45 @@ create table t1 (a int) partition by hash(a) partitions 2;
insert into t1 values (1),(2); insert into t1 values (1),(2);
explain partitions select * from t1 where a is null; explain partitions select * from t1 where a is null;
# this selects both # this uses both partitions
explain partitions select * from t1 where a is not null; explain partitions select * from t1 where a is not null;
drop table t1; drop table t1;
# Join tests
create table t1 (a int not null, b int not null, key(a), key(b))
partition by hash(a) partitions 4;
insert into t1 values (1,1),(2,2),(3,3),(4,4);
explain partitions
select * from t1 X, t1 Y
where X.b = Y.b and (X.a=1 or X.a=2) and (Y.a=2 or Y.a=3);
explain partitions
select * from t1 X, t1 Y where X.a = Y.a and (X.a=1 or X.a=2);
drop table t1;
# Tests for "short ranges"
create table t1 (a int) partition by hash(a) partitions 20;
insert into t1 values (1),(2),(3);
explain partitions select * from t1 where a > 1 and a < 3;
explain partitions select * from t1 where a >= 1 and a < 3;
explain partitions select * from t1 where a > 1 and a <= 3;
explain partitions select * from t1 where a >= 1 and a <= 3;
drop table t1;
create table t1 (a int, b int)
partition by list(a) subpartition by hash(b) subpartitions 20
(
partition p0 values in (0),
partition p1 values in (1),
partition p2 values in (2),
partition p3 values in (3)
);
insert into t1 values (1,1),(2,2),(3,3);
explain partitions select * from t1 where b > 1 and b < 3;
explain partitions select * from t1 where b > 1 and b < 3 and (a =1 or a =2);
# No tests for NULLs in RANGE(monotonic_expr()) - they depend on BUG#15447 # No tests for NULLs in RANGE(monotonic_expr()) - they depend on BUG#15447
# being fixed. # being fixed.
...@@ -620,6 +620,8 @@ typedef struct { ...@@ -620,6 +620,8 @@ typedef struct {
uint32 end_part; uint32 end_part;
bool use_bit_array; bool use_bit_array;
} part_id_range; } part_id_range;
/** /**
* An enum and a struct to handle partitioning and subpartitioning. * An enum and a struct to handle partitioning and subpartitioning.
*/ */
...@@ -699,7 +701,109 @@ typedef int (*get_part_id_func)(partition_info *part_info, ...@@ -699,7 +701,109 @@ typedef int (*get_part_id_func)(partition_info *part_info,
longlong *func_value); longlong *func_value);
typedef uint32 (*get_subpart_id_func)(partition_info *part_info); typedef uint32 (*get_subpart_id_func)(partition_info *part_info);
class partition_info :public Sql_alloc {
struct st_partition_iter;
#define NOT_A_PARTITION_ID ((uint32)-1)
/*
A "Get next" function for partition iterator.
SYNOPSIS
partition_iter_func()
part_iter Partition iterator, you call only "iter.get_next(&iter)"
RETURN
NOT_A_PARTITION_ID if there are no more partitions.
[sub]partition_id of the next partition
*/
typedef uint32 (*partition_iter_func)(st_partition_iter* part_iter);
/*
Partition set iterator. Used to enumerate a set of [sub]partitions
obtained in partition interval analysis (see get_partitions_in_range_iter).
For the user, the only meaningful field is get_next, which may be used as
follows:
part_iterator.get_next(&part_iterator);
Initialization is done by any of the following calls:
- get_partitions_in_range_iter-type function call
- init_single_partition_iterator()
- init_all_partitions_iterator()
Cleanup is not needed.
*/
typedef struct st_partition_iter
{
partition_iter_func get_next;
union {
struct {
uint32 start_part_num;
uint32 end_part_num;
};
struct {
longlong start_val;
longlong end_val;
};
bool null_returned;
};
partition_info *part_info;
} PARTITION_ITERATOR;
/*
Get an iterator for set of partitions that match given field-space interval
SYNOPSIS
get_partitions_in_range_iter()
part_info Partitioning info
is_subpart
min_val Left edge, field value in opt_range_key format.
max_val Right edge, field value in opt_range_key format.
flags Some combination of NEAR_MIN, NEAR_MAX, NO_MIN_RANGE,
NO_MAX_RANGE.
part_iter Iterator structure to be initialized
DESCRIPTION
Functions with this signature are used to perform "Partitioning Interval
Analysis". This analysis is applicable for any type of [sub]partitioning
by some function of a single fieldX. The idea is as follows:
Given an interval "const1 <=? fieldX <=? const2", find a set of partitions
that may contain records with value of fieldX within the given interval.
The min_val, max_val and flags parameters specify the interval.
The set of partitions is returned by initializing an iterator in *part_iter
NOTES
There are currently two functions of this type:
- get_part_iter_for_interval_via_walking
- get_part_iter_for_interval_via_mapping
RETURN
0 - No matching partitions, iterator not initialized
1 - Some partitions would match, iterator intialized for traversing them
-1 - All partitions would match, iterator not initialized
*/
typedef int (*get_partitions_in_range_iter)(partition_info *part_info,
bool is_subpart,
byte *min_val, byte *max_val,
uint flags,
PARTITION_ITERATOR *part_iter);
/* Initialize the iterator to return a single partition with given part_id */
inline void init_single_partition_iterator(uint32 part_id,
PARTITION_ITERATOR *part_iter);
/* Initialize the iterator to enumerate all partitions */
inline void init_all_partitions_iterator(partition_info *part_info,
PARTITION_ITERATOR *part_iter);
class partition_info : public Sql_alloc
{
public: public:
/* /*
* Here comes a set of definitions needed for partitioned table handlers. * Here comes a set of definitions needed for partitioned table handlers.
...@@ -729,9 +833,9 @@ class partition_info :public Sql_alloc { ...@@ -729,9 +833,9 @@ class partition_info :public Sql_alloc {
*/ */
get_subpart_id_func get_subpartition_id; get_subpart_id_func get_subpartition_id;
/* NULL-terminated list of fields used in partitioned expression */ /* NULL-terminated array of fields used in partitioned expression */
Field **part_field_array; Field **part_field_array;
/* NULL-terminated list of fields used in subpartitioned expression */ /* NULL-terminated array of fields used in subpartitioned expression */
Field **subpart_field_array; Field **subpart_field_array;
/* /*
...@@ -748,11 +852,10 @@ class partition_info :public Sql_alloc { ...@@ -748,11 +852,10 @@ class partition_info :public Sql_alloc {
/* /*
A bitmap of partitions used by the current query. A bitmap of partitions used by the current query.
Usage pattern: Usage pattern:
* It is guaranteed that all partitions are set to be unused on query start. * The handler->extra(HA_EXTRA_RESET) call at query start/end sets all
partitions to be unused.
* Before index/rnd_init(), partition pruning code sets the bits for used * Before index/rnd_init(), partition pruning code sets the bits for used
partitions. partitions.
* The handler->extra(HA_EXTRA_RESET) call at query end sets all partitions
to be unused.
*/ */
MY_BITMAP used_partitions; MY_BITMAP used_partitions;
...@@ -760,6 +863,39 @@ class partition_info :public Sql_alloc { ...@@ -760,6 +863,39 @@ class partition_info :public Sql_alloc {
longlong *range_int_array; longlong *range_int_array;
LIST_PART_ENTRY *list_array; LIST_PART_ENTRY *list_array;
}; };
/********************************************
* INTERVAL ANALYSIS
********************************************/
/*
Partitioning interval analysis function for partitioning, or NULL if
interval analysis is not supported for this kind of partitioning.
*/
get_partitions_in_range_iter get_part_iter_for_interval;
/*
Partitioning interval analysis function for subpartitioning, or NULL if
interval analysis is not supported for this kind of partitioning.
*/
get_partitions_in_range_iter get_subpart_iter_for_interval;
/*
Valid iff
get_part_iter_for_interval=get_part_iter_for_interval_via_walking:
controls how we'll process "field < C" and "field > C" intervals.
If the partitioning function F is strictly increasing, then for any x, y
"x < y" => "F(x) < F(y)" (*), i.e. when we get interval "field < C"
we can perform partition pruning on the equivalent "F(field) < F(C)".
If the partitioning function not strictly increasing (it is simply
increasing), then instead of (*) we get "x < y" => "F(x) <= F(y)"
i.e. for interval "field < C" we can perform partition pruning for
"F(field) <= F(C)".
*/
bool range_analysis_include_bounds;
/********************************************
* INTERVAL ANALYSIS ENDS
********************************************/
char* part_info_string; char* part_info_string;
char *part_func_string; char *part_func_string;
...@@ -863,6 +999,25 @@ class partition_info :public Sql_alloc { ...@@ -863,6 +999,25 @@ class partition_info :public Sql_alloc {
#ifdef WITH_PARTITION_STORAGE_ENGINE #ifdef WITH_PARTITION_STORAGE_ENGINE
uint32 get_next_partition_id_range(struct st_partition_iter* part_iter);
inline void init_single_partition_iterator(uint32 part_id,
PARTITION_ITERATOR *part_iter)
{
part_iter->start_part_num= part_id;
part_iter->end_part_num= part_id+1;
part_iter->get_next= get_next_partition_id_range;
}
inline
void init_all_partitions_iterator(partition_info *part_info,
PARTITION_ITERATOR *part_iter)
{
part_iter->start_part_num= 0;
part_iter->end_part_num= part_info->no_parts;
part_iter->get_next= get_next_partition_id_range;
}
/* /*
Answers the question if subpartitioning is used for a certain table Answers the question if subpartitioning is used for a certain table
SYNOPSIS SYNOPSIS
......
...@@ -381,13 +381,20 @@ class Name_resolution_context_state ...@@ -381,13 +381,20 @@ class Name_resolution_context_state
put values of field_i into table record buffer; put values of field_i into table record buffer;
return item->val_int(); return item->val_int();
} }
NOTE
At the moment function monotonicity is not well defined (and so may be
incorrect) for Item trees with parameters/return types that are different
from INT_RESULT, may be NULL, or are unsigned.
It will be possible to address this issue once the related partitioning bugs
(BUG#16002, BUG#15447, BUG#13436) are fixed.
*/ */
typedef enum monotonicity_info typedef enum monotonicity_info
{ {
NON_MONOTONIC, /* none of the below holds */ NON_MONOTONIC, /* none of the below holds */
MONOTONIC_INCREASING, /* F() is unary and "x < y" => "F(x) < F(y)" */ MONOTONIC_INCREASING, /* F() is unary and (x < y) => (F(x) <= F(y)) */
MONOTONIC_STRICT_INCREASING /* F() is unary and "x < y" => "F(x) <= F(y)" */ MONOTONIC_STRICT_INCREASING /* F() is unary and (x < y) => (F(x) < F(y)) */
} enum_monotonicity_info; } enum_monotonicity_info;
/*************************************************************************/ /*************************************************************************/
......
...@@ -885,6 +885,21 @@ longlong Item_func_to_days::val_int() ...@@ -885,6 +885,21 @@ longlong Item_func_to_days::val_int()
return (longlong) calc_daynr(ltime.year,ltime.month,ltime.day); return (longlong) calc_daynr(ltime.year,ltime.month,ltime.day);
} }
/*
Get information about this Item tree monotonicity
SYNOPSIS
Item_func_to_days::get_monotonicity_info()
DESCRIPTION
Get information about monotonicity of the function represented by this item
tree.
RETURN
See enum_monotonicity_info.
*/
enum_monotonicity_info Item_func_to_days::get_monotonicity_info() const enum_monotonicity_info Item_func_to_days::get_monotonicity_info() const
{ {
if (args[0]->type() == Item::FIELD_ITEM) if (args[0]->type() == Item::FIELD_ITEM)
...@@ -1080,6 +1095,21 @@ longlong Item_func_year::val_int() ...@@ -1080,6 +1095,21 @@ longlong Item_func_year::val_int()
return (longlong) ltime.year; return (longlong) ltime.year;
} }
/*
Get information about this Item tree monotonicity
SYNOPSIS
Item_func_to_days::get_monotonicity_info()
DESCRIPTION
Get information about monotonicity of the function represented by this item
tree.
RETURN
See enum_monotonicity_info.
*/
enum_monotonicity_info Item_func_year::get_monotonicity_info() const enum_monotonicity_info Item_func_year::get_monotonicity_info() const
{ {
if (args[0]->type() == Item::FIELD_ITEM && if (args[0]->type() == Item::FIELD_ITEM &&
......
...@@ -313,11 +313,46 @@ class SEL_ARG :public Sql_alloc ...@@ -313,11 +313,46 @@ class SEL_ARG :public Sql_alloc
} }
SEL_ARG *clone_tree(); SEL_ARG *clone_tree();
/* Return TRUE if this represents "keypartK = const" or "keypartK IS NULL" */
/*
Check if this SEL_ARG object represents a single-point interval
SYNOPSIS
is_singlepoint()
DESCRIPTION
Check if this SEL_ARG object (not tree) represents a single-point
interval, i.e. if it represents a "keypart = const" or
"keypart IS NULL".
RETURN
TRUE This SEL_ARG object represents a singlepoint interval
FALSE Otherwise
*/
bool is_singlepoint() bool is_singlepoint()
{ {
return !min_flag && !max_flag && /*
!field->key_cmp((byte*) min_value, (byte*)max_value); Check for NEAR_MIN ("strictly less") and NO_MIN_RANGE (-inf < field)
flags, and the same for right edge.
*/
if (min_flag || max_flag)
return FALSE;
byte *min_val= min_value;
byte *max_val= min_value;
if (maybe_null)
{
/* First byte is a NULL value indicator */
if (*min_val != *max_val)
return FALSE;
if (*min_val)
return TRUE; /* This "x IS NULL" */
min_val++;
max_val++;
}
return !field->key_cmp(min_val, max_val);
} }
}; };
...@@ -2035,7 +2070,7 @@ int SQL_SELECT::test_quick_select(THD *thd, key_map keys_to_use, ...@@ -2035,7 +2070,7 @@ int SQL_SELECT::test_quick_select(THD *thd, key_map keys_to_use,
} }
/**************************************************************************** /****************************************************************************
* Partition pruning starts * Partition pruning module
****************************************************************************/ ****************************************************************************/
#ifdef WITH_PARTITION_STORAGE_ENGINE #ifdef WITH_PARTITION_STORAGE_ENGINE
...@@ -2080,7 +2115,7 @@ int SQL_SELECT::test_quick_select(THD *thd, key_map keys_to_use, ...@@ -2080,7 +2115,7 @@ int SQL_SELECT::test_quick_select(THD *thd, key_map keys_to_use,
The list of intervals we'll obtain will look like this: The list of intervals we'll obtain will look like this:
((t1.a, t1.b) = (1,'foo')), ((t1.a, t1.b) = (1,'foo')),
((t1.a, t1.b) = (2,'bar')), ((t1.a, t1.b) = (2,'bar')),
((t1,a, t1.b) > (10,'zz')) (**) ((t1,a, t1.b) > (10,'zz'))
2. for each interval I 2. for each interval I
{ {
...@@ -2110,7 +2145,7 @@ int SQL_SELECT::test_quick_select(THD *thd, key_map keys_to_use, ...@@ -2110,7 +2145,7 @@ int SQL_SELECT::test_quick_select(THD *thd, key_map keys_to_use,
Putting it all together, partitioning module works as follows: Putting it all together, partitioning module works as follows:
prune_partitions() { prune_partitions() {
call create_partition_index_descrition(); call create_partition_index_description();
call get_mm_tree(); // invoke the RangeAnalysisModule call get_mm_tree(); // invoke the RangeAnalysisModule
...@@ -2124,10 +2159,6 @@ struct st_part_prune_param; ...@@ -2124,10 +2159,6 @@ struct st_part_prune_param;
struct st_part_opt_info; struct st_part_opt_info;
typedef void (*mark_full_part_func)(partition_info*, uint32); typedef void (*mark_full_part_func)(partition_info*, uint32);
typedef uint32 (*part_num_to_partition_id_func)(struct st_part_prune_param*,
uint32);
typedef uint32 (*get_endpoint_func)(partition_info*, bool left_endpoint,
bool include_endpoint);
/* /*
Partition pruning operation context Partition pruning operation context
...@@ -2164,32 +2195,6 @@ typedef struct st_part_prune_param ...@@ -2164,32 +2195,6 @@ typedef struct st_part_prune_param
int last_part_partno; int last_part_partno;
int last_subpart_partno; /* Same as above for supartitioning */ int last_subpart_partno; /* Same as above for supartitioning */
/*
Function to be used to analyze non-singlepoint intervals (Can be pointer
to one of two functions - for RANGE and for LIST types). NULL means
partitioning type and/or expression doesn't allow non-singlepoint interval
analysis.
See get_list_array_idx_for_endpoint (or get_range_...) for description of
what the function does.
*/
get_endpoint_func get_endpoint;
/* Maximum possible value that can be returned by get_endpoint function */
uint32 max_endpoint_val;
/*
For RANGE partitioning, part_num_to_part_id_range, for LIST partitioning,
part_num_to_part_id_list. Just to avoid the if-else clutter.
*/
part_num_to_partition_id_func endpoints_walk_func;
/*
If true, process "key < const" as "part_func(key) < part_func(const)",
otherwise as "part_func(key) <= part_func(const)". Same for '>' and '>='.
This is defined iff get_endpoint != NULL.
*/
bool force_include_bounds;
/* /*
is_part_keypart[i] == test(keypart #i in partitioning index is a member is_part_keypart[i] == test(keypart #i in partitioning index is a member
used in partitioning) used in partitioning)
...@@ -2209,27 +2214,14 @@ typedef struct st_part_prune_param ...@@ -2209,27 +2214,14 @@ typedef struct st_part_prune_param
/* Same as cur_part_fields, but for subpartitioning */ /* Same as cur_part_fields, but for subpartitioning */
uint cur_subpart_fields; uint cur_subpart_fields;
/*************************************************************** /* Iterator to be used to obtain the "current" set of used partitions */
Following fields are used to store an 'iterator' that can be PARTITION_ITERATOR part_iter;
used to obtain a set of used artitions.
**************************************************************/
/*
Start and end+1 partition "numbers". They can have two meanings depending
depending of the value of part_num_to_part_id:
part_num_to_part_id_range - numbers are partition ids
part_num_to_part_id_list - numbers are indexes in part_info->list_array
*/
uint32 start_part_num;
uint32 end_part_num;
/* /* Initialized bitmap of no_subparts size */
A function that should be used to convert two above "partition numbers" MY_BITMAP subparts_bitmap;
to partition_ids.
*/
part_num_to_partition_id_func part_num_to_part_id;
} PART_PRUNE_PARAM; } PART_PRUNE_PARAM;
static bool create_partition_index_descrition(PART_PRUNE_PARAM *prune_par); static bool create_partition_index_description(PART_PRUNE_PARAM *prune_par);
static int find_used_partitions(PART_PRUNE_PARAM *ppar, SEL_ARG *key_tree); static int find_used_partitions(PART_PRUNE_PARAM *ppar, SEL_ARG *key_tree);
static int find_used_partitions_imerge(PART_PRUNE_PARAM *ppar, static int find_used_partitions_imerge(PART_PRUNE_PARAM *ppar,
SEL_IMERGE *imerge); SEL_IMERGE *imerge);
...@@ -2243,7 +2235,7 @@ static uint32 part_num_to_part_id_range(PART_PRUNE_PARAM* prune_par, ...@@ -2243,7 +2235,7 @@ static uint32 part_num_to_part_id_range(PART_PRUNE_PARAM* prune_par,
static void print_partitioning_index(KEY_PART *parts, KEY_PART *parts_end); static void print_partitioning_index(KEY_PART *parts, KEY_PART *parts_end);
static void dbug_print_field(Field *field); static void dbug_print_field(Field *field);
static void dbug_print_segment_range(SEL_ARG *arg, KEY_PART *part); static void dbug_print_segment_range(SEL_ARG *arg, KEY_PART *part);
static void dbug_print_onepoint_range(SEL_ARG **start, uint num); static void dbug_print_singlepoint_range(SEL_ARG **start, uint num);
#endif #endif
...@@ -2297,7 +2289,7 @@ bool prune_partitions(THD *thd, TABLE *table, Item *pprune_cond) ...@@ -2297,7 +2289,7 @@ bool prune_partitions(THD *thd, TABLE *table, Item *pprune_cond)
range_par->mem_root= &alloc; range_par->mem_root= &alloc;
range_par->old_root= thd->mem_root; range_par->old_root= thd->mem_root;
if (create_partition_index_descrition(&prune_param)) if (create_partition_index_description(&prune_param))
{ {
mark_all_partitions_as_used(part_info); mark_all_partitions_as_used(part_info);
free_root(&alloc,MYF(0)); // Return memory & allocator free_root(&alloc,MYF(0)); // Return memory & allocator
...@@ -2338,12 +2330,11 @@ bool prune_partitions(THD *thd, TABLE *table, Item *pprune_cond) ...@@ -2338,12 +2330,11 @@ bool prune_partitions(THD *thd, TABLE *table, Item *pprune_cond)
if (tree->merges.is_empty()) if (tree->merges.is_empty())
{ {
/* Range analysis has produced a single list of intervals. */
prune_param.arg_stack_end= prune_param.arg_stack; prune_param.arg_stack_end= prune_param.arg_stack;
prune_param.cur_part_fields= 0; prune_param.cur_part_fields= 0;
prune_param.cur_subpart_fields= 0; prune_param.cur_subpart_fields= 0;
prune_param.part_num_to_part_id= part_num_to_part_id_range; init_all_partitions_iterator(part_info, &prune_param.part_iter);
prune_param.start_part_num= 0;
prune_param.end_part_num= prune_param.part_info->no_parts;
if (!tree->keys[0] || (-1 == (res= find_used_partitions(&prune_param, if (!tree->keys[0] || (-1 == (res= find_used_partitions(&prune_param,
tree->keys[0])))) tree->keys[0]))))
goto all_used; goto all_used;
...@@ -2352,13 +2343,29 @@ bool prune_partitions(THD *thd, TABLE *table, Item *pprune_cond) ...@@ -2352,13 +2343,29 @@ bool prune_partitions(THD *thd, TABLE *table, Item *pprune_cond)
{ {
if (tree->merges.elements == 1) if (tree->merges.elements == 1)
{ {
if (-1 == (res |= find_used_partitions_imerge(&prune_param, /*
Range analysis has produced a "merge" of several intervals lists, a
SEL_TREE that represents an expression in form
sel_imerge = (tree1 OR tree2 OR ... OR treeN)
that cannot be reduced to one tree. This can only happen when
partitioning index has several keyparts and the condition is OR of
conditions that refer to different key parts. For example, we'll get
here for "partitioning_field=const1 OR subpartitioning_field=const2"
*/
if (-1 == (res= find_used_partitions_imerge(&prune_param,
tree->merges.head()))) tree->merges.head())))
goto all_used; goto all_used;
} }
else else
{ {
if (-1 == (res |= find_used_partitions_imerge_list(&prune_param, /*
Range analysis has produced a list of several imerges, i.e. a
structure that represents a condition in form
imerge_list= (sel_imerge1 AND sel_imerge2 AND ... AND sel_imergeN)
This is produced for complicated WHERE clauses that range analyzer
can't really analyze properly.
*/
if (-1 == (res= find_used_partitions_imerge_list(&prune_param,
tree->merges))) tree->merges)))
goto all_used; goto all_used;
} }
...@@ -2384,15 +2391,22 @@ bool prune_partitions(THD *thd, TABLE *table, Item *pprune_cond) ...@@ -2384,15 +2391,22 @@ bool prune_partitions(THD *thd, TABLE *table, Item *pprune_cond)
/* /*
Store key image to table record Store field key image to table record
SYNOPSIS SYNOPSIS
field Field which key image should be stored. store_key_image_to_rec()
ptr Field value in key format. field Field which key image should be stored
len Length of the value, in bytes. ptr Field value in key format
len Length of the value, in bytes
DESCRIPTION
Copy the field value from its key image to the table record. The source
is the value in key image format, occupying len bytes in buffer pointed
by ptr. The destination is table record, in "field value in table record"
format.
*/ */
static void store_key_image_to_rec(Field *field, char *ptr, uint len) void store_key_image_to_rec(Field *field, char *ptr, uint len)
{ {
/* Do the same as print_key() does */ /* Do the same as print_key() does */
if (field->real_maybe_null()) if (field->real_maybe_null())
...@@ -2414,8 +2428,12 @@ static void store_key_image_to_rec(Field *field, char *ptr, uint len) ...@@ -2414,8 +2428,12 @@ static void store_key_image_to_rec(Field *field, char *ptr, uint len)
SYNOPSIS SYNOPSIS
store_selargs_to_rec() store_selargs_to_rec()
ppar Partition pruning context ppar Partition pruning context
start Array SEL_ARG* for which the minimum values should be stored start Array of SEL_ARG* for which the minimum values should be stored
num Number of elements in the array num Number of elements in the array
DESCRIPTION
For each SEL_ARG* interval in the specified array, store the left edge
field value (sel_arg->min, key image format) into the table record.
*/ */
static void store_selargs_to_rec(PART_PRUNE_PARAM *ppar, SEL_ARG **start, static void store_selargs_to_rec(PART_PRUNE_PARAM *ppar, SEL_ARG **start,
...@@ -2449,19 +2467,6 @@ static void mark_full_partition_used_with_parts(partition_info *part_info, ...@@ -2449,19 +2467,6 @@ static void mark_full_partition_used_with_parts(partition_info *part_info,
bitmap_set_bit(&part_info->used_partitions, start); bitmap_set_bit(&part_info->used_partitions, start);
} }
/* See comment in PART_PRUNE_PARAM::part_num_to_part_id about what this is */
static uint32 part_num_to_part_id_range(PART_PRUNE_PARAM* ppar, uint32 num)
{
return num;
}
/* See comment in PART_PRUNE_PARAM::part_num_to_part_id about what this is */
static uint32 part_num_to_part_id_list(PART_PRUNE_PARAM* ppar, uint32 num)
{
return ppar->part_info->list_array[num].partition_id;
}
/* /*
Find the set of used partitions for List<SEL_IMERGE> Find the set of used partitions for List<SEL_IMERGE>
SYNOPSIS SYNOPSIS
...@@ -2473,7 +2478,7 @@ static uint32 part_num_to_part_id_list(PART_PRUNE_PARAM* ppar, uint32 num) ...@@ -2473,7 +2478,7 @@ static uint32 part_num_to_part_id_list(PART_PRUNE_PARAM* ppar, uint32 num)
List<SEL_IMERGE> represents "imerge1 AND imerge2 AND ...". List<SEL_IMERGE> represents "imerge1 AND imerge2 AND ...".
The set of used partitions is an intersection of used partitions sets The set of used partitions is an intersection of used partitions sets
for imerge_{i}. for imerge_{i}.
We accumulate this intersection a separate bitmap. We accumulate this intersection in a separate bitmap.
RETURN RETURN
See find_used_partitions() See find_used_partitions()
...@@ -2491,7 +2496,7 @@ static int find_used_partitions_imerge_list(PART_PRUNE_PARAM *ppar, ...@@ -2491,7 +2496,7 @@ static int find_used_partitions_imerge_list(PART_PRUNE_PARAM *ppar,
bitmap_bytes))) bitmap_bytes)))
{ {
/* /*
Fallback, process just first SEL_IMERGE. This can leave us with more Fallback, process just the first SEL_IMERGE. This can leave us with more
partitions marked as used then actually needed. partitions marked as used then actually needed.
*/ */
return find_used_partitions_imerge(ppar, merges.head()); return find_used_partitions_imerge(ppar, merges.head());
...@@ -2549,9 +2554,7 @@ int find_used_partitions_imerge(PART_PRUNE_PARAM *ppar, SEL_IMERGE *imerge) ...@@ -2549,9 +2554,7 @@ int find_used_partitions_imerge(PART_PRUNE_PARAM *ppar, SEL_IMERGE *imerge)
ppar->arg_stack_end= ppar->arg_stack; ppar->arg_stack_end= ppar->arg_stack;
ppar->cur_part_fields= 0; ppar->cur_part_fields= 0;
ppar->cur_subpart_fields= 0; ppar->cur_subpart_fields= 0;
ppar->part_num_to_part_id= part_num_to_part_id_range; init_all_partitions_iterator(ppar->part_info, &ppar->part_iter);
ppar->start_part_num= 0;
ppar->end_part_num= ppar->part_info->no_parts;
if (-1 == (res |= find_used_partitions(ppar, (*ptree)->keys[0]))) if (-1 == (res |= find_used_partitions(ppar, (*ptree)->keys[0])))
return -1; return -1;
} }
...@@ -2560,41 +2563,106 @@ int find_used_partitions_imerge(PART_PRUNE_PARAM *ppar, SEL_IMERGE *imerge) ...@@ -2560,41 +2563,106 @@ int find_used_partitions_imerge(PART_PRUNE_PARAM *ppar, SEL_IMERGE *imerge)
/* /*
Recursively walk the SEL_ARG tree, find/mark partitions that need to be used Collect partitioning ranges for the SEL_ARG tree and mark partitions as used
SYNOPSIS SYNOPSIS
find_used_partitions() find_used_partitions()
ppar Partition pruning context. ppar Partition pruning context.
key_tree Intervals tree to perform pruning for. key_tree SEL_ARG range tree to perform pruning for
DESCRIPTION DESCRIPTION
This function This function
* recursively walks the SEL_ARG* tree, collecting partitioning * recursively walks the SEL_ARG* tree collecting partitioning "intervals"
"intervals"; * finds the partitions one needs to use to get rows in these intervals
* finds the partitions one needs to use to get rows in these intervals;
* marks these partitions as used. * marks these partitions as used.
The next session desribes the process in greater detail.
WHAT IS CONSIDERED TO BE "INTERVALS" IMPLEMENTATION
A partition pruning "interval" is equivalent to condition in one of the TYPES OF RESTRICTIONS THAT WE CAN OBTAIN PARTITIONS FOR
forms: We can find out which [sub]partitions to use if we obtain restrictions on
[sub]partitioning fields in the following form:
"partition_field1=const1 AND ... partition_fieldN=constN" (1) 1. "partition_field1=const1 AND ... AND partition_fieldN=constN"
"subpartition_field1=const1 AND ... subpartition_fieldN=constN" (2) 1.1 Same as (1) but for subpartition fields
"(1) AND (2)" (3)
If partitioning supports interval analysis (i.e. partitioning is a
In (1) and (2) all [sub]partitioning fields must be used, and "x=const" function of a single table field, and partition_info::
includes "x IS NULL". get_part_iter_for_interval != NULL), then we can also use condition in
this form:
If partitioning is performed using 2. "const1 <=? partition_field <=? const2"
2.1 Same as (2) but for subpartition_field
PARTITION BY RANGE(unary_monotonic_func(single_partition_field)),
INFERRING THE RESTRICTIONS FROM SEL_ARG TREE
then the following is also an interval:
The below is an example of what SEL_ARG tree may represent:
" const1 OP1 single_partition_field OR const2" (4)
(start)
| $
| Partitioning keyparts $ subpartitioning keyparts
| $
| ... ... $
| | | $
| +---------+ +---------+ $ +-----------+ +-----------+
\-| par1=c1 |--| par2=c2 |-----| subpar1=c3|--| subpar2=c5|
+---------+ +---------+ $ +-----------+ +-----------+
| $ | |
| $ | +-----------+
| $ | | subpar2=c6|
| $ | +-----------+
| $ |
| $ +-----------+ +-----------+
| $ | subpar1=c4|--| subpar2=c8|
| $ +-----------+ +-----------+
| $
| $
+---------+ $ +------------+ +------------+
| par1=c2 |------------------| subpar1=c10|--| subpar2=c12|
+---------+ $ +------------+ +------------+
| $
... $
The up-down connections are connections via SEL_ARG::left and
SEL_ARG::right. A horizontal connection to the right is the
SEL_ARG::next_key_part connection.
find_used_partitions() traverses the entire tree via recursion on
* SEL_ARG::next_key_part (from left to right on the picture)
* SEL_ARG::left|right (up/down on the pic). Left-right recursion is
performed for each depth level.
Recursion descent on SEL_ARG::next_key_part is used to accumulate (in
ppar->arg_stack) constraints on partitioning and subpartitioning fields.
For the example in the above picture, one of stack states is:
in find_used_partitions(key_tree = "subpar2=c5") (***)
in find_used_partitions(key_tree = "subpar1=c3")
in find_used_partitions(key_tree = "par2=c2") (**)
in find_used_partitions(key_tree = "par1=c1")
in prune_partitions(...)
We apply partitioning limits as soon as possible, e.g. when we reach the
depth (**), we find which partition(s) correspond to "par1=c1 AND par2=c2",
and save them in ppar->part_iter.
When we reach the depth (***), we find which subpartition(s) correspond to
"subpar1=c3 AND subpar2=c5", and then mark appropriate subpartitions in
appropriate subpartitions as used.
It is possible that constraints on some partitioning fields are missing.
For the above example, consider this stack state:
in find_used_partitions(key_tree = "subpar2=c12") (***)
in find_used_partitions(key_tree = "subpar1=c10")
in find_used_partitions(key_tree = "par1=c2")
in prune_partitions(...)
Here we don't have constraints for all partitioning fields. Since we've
never set the ppar->part_iter to contain used set of partitions, we use
its default "all partitions" value. We get subpartition id for
"subpar1=c3 AND subpar2=c5", and mark that subpartition as used in every
partition.
The inverse is also possible: we may get constraints on partitioning
fields, but not constraints on subpartitioning fields. In that case,
calls to find_used_partitions() with depth below (**) will return -1,
and we will mark entire partition as used.
where OP1 and OP2 are '<' OR '<=', and const_i can be +/- inf. TODO
Everything else is not a partition pruning "interval". Replace recursion on SEL_ARG::left and SEL_ARG::right with a loop
RETURN RETURN
1 OK, one or more [sub]partitions are marked as used. 1 OK, one or more [sub]partitions are marked as used.
...@@ -2620,58 +2688,29 @@ int find_used_partitions(PART_PRUNE_PARAM *ppar, SEL_ARG *key_tree) ...@@ -2620,58 +2688,29 @@ int find_used_partitions(PART_PRUNE_PARAM *ppar, SEL_ARG *key_tree)
if (key_tree->type == SEL_ARG::KEY_RANGE) if (key_tree->type == SEL_ARG::KEY_RANGE)
{ {
if (partno == 0 && (NULL != ppar->get_endpoint)) if (partno == 0 && (NULL != ppar->part_info->get_part_iter_for_interval))
{ {
/* /*
Partitioning is done by RANGE|INTERVAL(monotonic_expr(fieldX)), and Partitioning is done by RANGE|INTERVAL(monotonic_expr(fieldX)), and
we got "const1 < fieldX < const2" interval. we got "const1 CMP fieldX CMP const2" interval <-- psergey-todo: change
*/ */
DBUG_EXECUTE("info", dbug_print_segment_range(key_tree, DBUG_EXECUTE("info", dbug_print_segment_range(key_tree,
ppar->range_param. ppar->range_param.
key_parts);); key_parts););
/* Find minimum */ res= ppar->part_info->
if (key_tree->min_flag & NO_MIN_RANGE) get_part_iter_for_interval(ppar->part_info,
ppar->start_part_num= 0; FALSE,
else key_tree->min_value,
{ key_tree->max_value,
/* key_tree->min_flag | key_tree->max_flag,
Store the interval edge in the record buffer, and call the &ppar->part_iter);
function that maps the edge in table-field space to an edge if (!res)
in ordered-set-of-partitions (for RANGE partitioning) or goto go_right; /* res=0 --> no satisfying partitions */
indexes-in-ordered-array-of-list-constants (for LIST) space. if (res == -1)
*/
store_key_image_to_rec(key_tree->field, key_tree->min_value,
ppar->range_param.key_parts[0].length);
bool include_endp= ppar->force_include_bounds ||
!test(key_tree->min_flag & NEAR_MIN);
ppar->start_part_num= ppar->get_endpoint(ppar->part_info, 1,
include_endp);
if (ppar->start_part_num == ppar->max_endpoint_val)
{
res= 0; /* No satisfying partitions */
goto pop_and_go_right;
}
}
/* Find maximum, do the same as above but for right interval bound */
if (key_tree->max_flag & NO_MAX_RANGE)
ppar->end_part_num= ppar->max_endpoint_val;
else
{
store_key_image_to_rec(key_tree->field, key_tree->max_value,
ppar->range_param.key_parts[0].length);
bool include_endp= ppar->force_include_bounds ||
!test(key_tree->max_flag & NEAR_MAX);
ppar->end_part_num= ppar->get_endpoint(ppar->part_info, 0,
include_endp);
if (ppar->start_part_num == ppar->end_part_num)
{ {
res= 0; /* No satisfying partitions */ //get a full range iterator
goto pop_and_go_right; init_all_partitions_iterator(ppar->part_info, &ppar->part_iter);
}
} }
ppar->part_num_to_part_id= ppar->endpoints_walk_func;
/* /*
Save our intent to mark full partition as used if we will not be able Save our intent to mark full partition as used if we will not be able
to obtain further limits on subpartitions to obtain further limits on subpartitions
...@@ -2680,6 +2719,42 @@ int find_used_partitions(PART_PRUNE_PARAM *ppar, SEL_ARG *key_tree) ...@@ -2680,6 +2719,42 @@ int find_used_partitions(PART_PRUNE_PARAM *ppar, SEL_ARG *key_tree)
goto process_next_key_part; goto process_next_key_part;
} }
if (partno == ppar->last_subpart_partno &&
(NULL != ppar->part_info->get_subpart_iter_for_interval))
{
PARTITION_ITERATOR subpart_iter;
DBUG_EXECUTE("info", dbug_print_segment_range(key_tree,
ppar->range_param.
key_parts););
res= ppar->part_info->
get_subpart_iter_for_interval(ppar->part_info,
TRUE,
key_tree->min_value,
key_tree->max_value,
key_tree->min_flag | key_tree->max_flag,
&subpart_iter);
DBUG_ASSERT(res); /* We can't get "no satisfying subpartitions" */
if (res == -1)
return -1; /* all subpartitions satisfy */
uint32 subpart_id;
bitmap_clear_all(&ppar->subparts_bitmap);
while ((subpart_id= subpart_iter.get_next(&subpart_iter)) != NOT_A_PARTITION_ID)
bitmap_set_bit(&ppar->subparts_bitmap, subpart_id);
/* Mark each partition as used in each subpartition. */
uint32 part_id;
while ((part_id= ppar->part_iter.get_next(&ppar->part_iter)) !=
NOT_A_PARTITION_ID)
{
for (uint i= 0; i < ppar->part_info->no_subparts; i++)
if (bitmap_is_set(&ppar->subparts_bitmap, i))
bitmap_set_bit(&ppar->part_info->used_partitions,
part_id * ppar->part_info->no_subparts + i);
}
goto go_right;
}
if (key_tree->is_singlepoint()) if (key_tree->is_singlepoint())
{ {
pushed= TRUE; pushed= TRUE;
...@@ -2695,11 +2770,11 @@ int find_used_partitions(PART_PRUNE_PARAM *ppar, SEL_ARG *key_tree) ...@@ -2695,11 +2770,11 @@ int find_used_partitions(PART_PRUNE_PARAM *ppar, SEL_ARG *key_tree)
fields. Save all constN constants into table record buffer. fields. Save all constN constants into table record buffer.
*/ */
store_selargs_to_rec(ppar, ppar->arg_stack, ppar->part_fields); store_selargs_to_rec(ppar, ppar->arg_stack, ppar->part_fields);
DBUG_EXECUTE("info", dbug_print_onepoint_range(ppar->arg_stack, DBUG_EXECUTE("info", dbug_print_singlepoint_range(ppar->arg_stack,
ppar->part_fields);); ppar->part_fields););
uint32 part_id; uint32 part_id;
longlong func_value; longlong func_value;
/* then find in which partition the {const1, ...,constN} tuple goes */ /* Find in which partition the {const1, ...,constN} tuple goes */
if (ppar->get_top_partition_id_func(ppar->part_info, &part_id, if (ppar->get_top_partition_id_func(ppar->part_info, &part_id,
&func_value)) &func_value))
{ {
...@@ -2707,9 +2782,7 @@ int find_used_partitions(PART_PRUNE_PARAM *ppar, SEL_ARG *key_tree) ...@@ -2707,9 +2782,7 @@ int find_used_partitions(PART_PRUNE_PARAM *ppar, SEL_ARG *key_tree)
goto pop_and_go_right; goto pop_and_go_right;
} }
/* Rembember the limit we got - single partition #part_id */ /* Rembember the limit we got - single partition #part_id */
ppar->part_num_to_part_id= part_num_to_part_id_range; init_single_partition_iterator(part_id, &ppar->part_iter);
ppar->start_part_num= part_id;
ppar->end_part_num= part_id + 1;
/* /*
If there are no subpartitions/we fail to get any limit for them, If there are no subpartitions/we fail to get any limit for them,
...@@ -2719,7 +2792,8 @@ int find_used_partitions(PART_PRUNE_PARAM *ppar, SEL_ARG *key_tree) ...@@ -2719,7 +2792,8 @@ int find_used_partitions(PART_PRUNE_PARAM *ppar, SEL_ARG *key_tree)
goto process_next_key_part; goto process_next_key_part;
} }
if (partno == ppar->last_subpart_partno) if (partno == ppar->last_subpart_partno &&
ppar->cur_subpart_fields == ppar->subpart_fields)
{ {
/* /*
Ok, we've got "fieldN<=>constN"-type SEL_ARGs for all subpartitioning Ok, we've got "fieldN<=>constN"-type SEL_ARGs for all subpartitioning
...@@ -2727,7 +2801,7 @@ int find_used_partitions(PART_PRUNE_PARAM *ppar, SEL_ARG *key_tree) ...@@ -2727,7 +2801,7 @@ int find_used_partitions(PART_PRUNE_PARAM *ppar, SEL_ARG *key_tree)
*/ */
store_selargs_to_rec(ppar, ppar->arg_stack_end - ppar->subpart_fields, store_selargs_to_rec(ppar, ppar->arg_stack_end - ppar->subpart_fields,
ppar->subpart_fields); ppar->subpart_fields);
DBUG_EXECUTE("info", dbug_print_onepoint_range(ppar->arg_stack_end - DBUG_EXECUTE("info", dbug_print_singlepoint_range(ppar->arg_stack_end-
ppar->subpart_fields, ppar->subpart_fields,
ppar->subpart_fields);); ppar->subpart_fields););
/* Find the subpartition (it's HASH/KEY so we always have one) */ /* Find the subpartition (it's HASH/KEY so we always have one) */
...@@ -2735,12 +2809,12 @@ int find_used_partitions(PART_PRUNE_PARAM *ppar, SEL_ARG *key_tree) ...@@ -2735,12 +2809,12 @@ int find_used_partitions(PART_PRUNE_PARAM *ppar, SEL_ARG *key_tree)
uint32 subpart_id= part_info->get_subpartition_id(part_info); uint32 subpart_id= part_info->get_subpartition_id(part_info);
/* Mark this partition as used in each subpartition. */ /* Mark this partition as used in each subpartition. */
for (uint32 num= ppar->start_part_num; num != ppar->end_part_num; uint32 part_id;
num++) while ((part_id= ppar->part_iter.get_next(&ppar->part_iter)) !=
NOT_A_PARTITION_ID)
{ {
bitmap_set_bit(&part_info->used_partitions, bitmap_set_bit(&part_info->used_partitions,
ppar->part_num_to_part_id(ppar, num) * part_id * part_info->no_subparts + subpart_id);
part_info->no_subparts + subpart_id);
} }
res= 1; /* Some partitions were marked as used */ res= 1; /* Some partitions were marked as used */
goto pop_and_go_right; goto pop_and_go_right;
...@@ -2764,28 +2838,25 @@ int find_used_partitions(PART_PRUNE_PARAM *ppar, SEL_ARG *key_tree) ...@@ -2764,28 +2838,25 @@ int find_used_partitions(PART_PRUNE_PARAM *ppar, SEL_ARG *key_tree)
else else
res= -1; res= -1;
if (res == -1) /* Got "full range" for key_tree->next_key_part call */
{
if (set_full_part_if_bad_ret) if (set_full_part_if_bad_ret)
{ {
for (uint32 num= ppar->start_part_num; num != ppar->end_part_num; if (res == -1)
num++)
{ {
ppar->mark_full_partition_used(ppar->part_info, /* Got "full range" for subpartitioning fields */
ppar->part_num_to_part_id(ppar, num)); uint32 part_id;
} bool found= FALSE;
res= 1; while ((part_id= ppar->part_iter.get_next(&ppar->part_iter)) != NOT_A_PARTITION_ID)
{
ppar->mark_full_partition_used(ppar->part_info, part_id);
found= TRUE;
} }
else res= test(found);
return -1;
} }
/*
if (set_full_part_if_bad_ret) Restore the "used partitions iterator" to the default setting that
{ specifies iteration over all partitions.
/* Restore the "used partition iterator" to its default */ */
ppar->part_num_to_part_id= part_num_to_part_id_range; init_all_partitions_iterator(ppar->part_info, &ppar->part_iter);
ppar->start_part_num= 0;
ppar->end_part_num= ppar->part_info->no_parts;
} }
if (pushed) if (pushed)
...@@ -2797,6 +2868,9 @@ int find_used_partitions(PART_PRUNE_PARAM *ppar, SEL_ARG *key_tree) ...@@ -2797,6 +2868,9 @@ int find_used_partitions(PART_PRUNE_PARAM *ppar, SEL_ARG *key_tree)
ppar->cur_subpart_fields-= ppar->is_subpart_keypart[partno]; ppar->cur_subpart_fields-= ppar->is_subpart_keypart[partno];
} }
if (res == -1)
return -1;
go_right:
if (key_tree->right != &null_element) if (key_tree->right != &null_element)
{ {
if (-1 == (right_res= find_used_partitions(ppar,key_tree->right))) if (-1 == (right_res= find_used_partitions(ppar,key_tree->right)))
...@@ -2854,7 +2928,7 @@ static bool fields_ok_for_partition_index(Field **pfield) ...@@ -2854,7 +2928,7 @@ static bool fields_ok_for_partition_index(Field **pfield)
struct struct
SYNOPSIS SYNOPSIS
create_partition_index_descrition() create_partition_index_description()
prune_par INOUT Partition pruning context prune_par INOUT Partition pruning context
DESCRIPTION DESCRIPTION
...@@ -2871,7 +2945,7 @@ static bool fields_ok_for_partition_index(Field **pfield) ...@@ -2871,7 +2945,7 @@ static bool fields_ok_for_partition_index(Field **pfield)
FALSE OK FALSE OK
*/ */
static bool create_partition_index_descrition(PART_PRUNE_PARAM *ppar) static bool create_partition_index_description(PART_PRUNE_PARAM *ppar)
{ {
RANGE_OPT_PARAM *range_par= &(ppar->range_param); RANGE_OPT_PARAM *range_par= &(ppar->range_param);
partition_info *part_info= ppar->part_info; partition_info *part_info= ppar->part_info;
...@@ -2903,38 +2977,6 @@ static bool create_partition_index_descrition(PART_PRUNE_PARAM *ppar) ...@@ -2903,38 +2977,6 @@ static bool create_partition_index_descrition(PART_PRUNE_PARAM *ppar)
ppar->get_top_partition_id_func= part_info->get_partition_id; ppar->get_top_partition_id_func= part_info->get_partition_id;
} }
enum_monotonicity_info minfo;
ppar->get_endpoint= NULL;
if (part_info->part_expr &&
(minfo= part_info->part_expr->get_monotonicity_info()) != NON_MONOTONIC)
{
/*
ppar->force_include_bounds controls how we'll process "field < C" and
"field > C" intervals.
If the partitioning function F is strictly increasing, then for any x, y
"x < y" => "F(x) < F(y)" (*), i.e. when we get interval "field < C"
we can perform partition pruning on the equivalent "F(field) < F(C)".
If the partitioning function not strictly increasing (it is simply
increasing), then instead of (*) we get "x < y" => "F(x) <= F(y)"
i.e. for interval "field < C" we can perform partition pruning for
"F(field) <= F(C)".
*/
ppar->force_include_bounds= test(minfo == MONOTONIC_INCREASING);
if (part_info->part_type == RANGE_PARTITION)
{
ppar->get_endpoint= get_partition_id_range_for_endpoint;
ppar->endpoints_walk_func= part_num_to_part_id_range;
ppar->max_endpoint_val= part_info->no_parts;
}
else if (part_info->part_type == LIST_PARTITION)
{
ppar->get_endpoint= get_list_array_idx_for_endpoint;
ppar->endpoints_walk_func= part_num_to_part_id_list;
ppar->max_endpoint_val= part_info->no_list_values;
}
}
KEY_PART *key_part; KEY_PART *key_part;
MEM_ROOT *alloc= range_par->mem_root; MEM_ROOT *alloc= range_par->mem_root;
if (!total_parts || if (!total_parts ||
...@@ -2948,10 +2990,18 @@ static bool create_partition_index_descrition(PART_PRUNE_PARAM *ppar) ...@@ -2948,10 +2990,18 @@ static bool create_partition_index_descrition(PART_PRUNE_PARAM *ppar)
total_parts))) total_parts)))
return TRUE; return TRUE;
if (ppar->subpart_fields)
{
uint32 *buf;
uint32 bufsize= bitmap_buffer_size(ppar->part_info->no_subparts);
if (!(buf= (uint32*)alloc_root(alloc, bufsize)))
return TRUE;
bitmap_init(&ppar->subparts_bitmap, buf, ppar->part_info->no_subparts, FALSE);
}
range_par->key_parts= key_part; range_par->key_parts= key_part;
Field **field= (ppar->part_fields)? part_info->part_field_array : Field **field= (ppar->part_fields)? part_info->part_field_array :
part_info->subpart_field_array; part_info->subpart_field_array;
bool subpart_fields= FALSE; bool in_subpart_fields= FALSE;
for (uint part= 0; part < total_parts; part++, key_part++) for (uint part= 0; part < total_parts; part++, key_part++)
{ {
key_part->key= 0; key_part->key= 0;
...@@ -2972,13 +3022,13 @@ static bool create_partition_index_descrition(PART_PRUNE_PARAM *ppar) ...@@ -2972,13 +3022,13 @@ static bool create_partition_index_descrition(PART_PRUNE_PARAM *ppar)
key_part->image_type = Field::itRAW; key_part->image_type = Field::itRAW;
/* We don't set key_parts->null_bit as it will not be used */ /* We don't set key_parts->null_bit as it will not be used */
ppar->is_part_keypart[part]= !subpart_fields; ppar->is_part_keypart[part]= !in_subpart_fields;
ppar->is_subpart_keypart[part]= subpart_fields; ppar->is_subpart_keypart[part]= in_subpart_fields;
if (!*(++field)) if (!*(++field))
{ {
field= part_info->subpart_field_array; field= part_info->subpart_field_array;
subpart_fields= TRUE; in_subpart_fields= TRUE;
} }
} }
range_par->key_parts_end= key_part; range_par->key_parts_end= key_part;
...@@ -3058,7 +3108,7 @@ static void dbug_print_segment_range(SEL_ARG *arg, KEY_PART *part) ...@@ -3058,7 +3108,7 @@ static void dbug_print_segment_range(SEL_ARG *arg, KEY_PART *part)
Print a singlepoint multi-keypart range interval to debug trace Print a singlepoint multi-keypart range interval to debug trace
SYNOPSIS SYNOPSIS
dbug_print_onepoint_range() dbug_print_singlepoint_range()
start Array of SEL_ARG* ptrs representing conditions on key parts start Array of SEL_ARG* ptrs representing conditions on key parts
num Number of elements in the array. num Number of elements in the array.
...@@ -3067,9 +3117,9 @@ static void dbug_print_segment_range(SEL_ARG *arg, KEY_PART *part) ...@@ -3067,9 +3117,9 @@ static void dbug_print_segment_range(SEL_ARG *arg, KEY_PART *part)
interval to debug trace. interval to debug trace.
*/ */
static void dbug_print_onepoint_range(SEL_ARG **start, uint num) static void dbug_print_singlepoint_range(SEL_ARG **start, uint num)
{ {
DBUG_ENTER("dbug_print_onepoint_range"); DBUG_ENTER("dbug_print_singlepoint_range");
DBUG_LOCK_FILE; DBUG_LOCK_FILE;
SEL_ARG **end= start + num; SEL_ARG **end= start + num;
......
...@@ -721,6 +721,7 @@ uint get_index_for_order(TABLE *table, ORDER *order, ha_rows limit); ...@@ -721,6 +721,7 @@ uint get_index_for_order(TABLE *table, ORDER *order, ha_rows limit);
#ifdef WITH_PARTITION_STORAGE_ENGINE #ifdef WITH_PARTITION_STORAGE_ENGINE
bool prune_partitions(THD *thd, TABLE *table, Item *pprune_cond); bool prune_partitions(THD *thd, TABLE *table, Item *pprune_cond);
void store_key_image_to_rec(Field *field, char *ptr, uint len);
#endif #endif
#endif #endif
...@@ -763,7 +763,10 @@ int THD::send_explain_fields(select_result *result) ...@@ -763,7 +763,10 @@ int THD::send_explain_fields(select_result *result)
#ifdef WITH_PARTITION_STORAGE_ENGINE #ifdef WITH_PARTITION_STORAGE_ENGINE
if (lex->describe & DESCRIBE_PARTITIONS) if (lex->describe & DESCRIBE_PARTITIONS)
{ {
field_list.push_back(item= new Item_empty_string("partitions", 10, cs)); /* Maximum length of string that make_used_partitions_str() can produce */
item= new Item_empty_string("partitions", MAX_PARTITIONS * (1 + FN_LEN),
cs);
field_list.push_back(item);
item->maybe_null= 1; item->maybe_null= 1;
} }
#endif #endif
......
...@@ -110,7 +110,7 @@ enum enum_sql_command { ...@@ -110,7 +110,7 @@ enum enum_sql_command {
#define DESCRIBE_NORMAL 1 #define DESCRIBE_NORMAL 1
#define DESCRIBE_EXTENDED 2 #define DESCRIBE_EXTENDED 2
/* /*
This is not #ifdef'ed because we want "EXPLAIN PARTITIONS ..." to produce This is not within #ifdef because we want "EXPLAIN PARTITIONS ..." to produce
additional "partitions" column even if partitioning is not compiled in. additional "partitions" column even if partitioning is not compiled in.
*/ */
#define DESCRIBE_PARTITIONS 4 #define DESCRIBE_PARTITIONS 4
......
...@@ -110,6 +110,21 @@ uint32 get_partition_id_linear_hash_sub(partition_info *part_info); ...@@ -110,6 +110,21 @@ uint32 get_partition_id_linear_hash_sub(partition_info *part_info);
uint32 get_partition_id_linear_key_sub(partition_info *part_info); uint32 get_partition_id_linear_key_sub(partition_info *part_info);
#endif #endif
static uint32 get_next_partition_via_walking(PARTITION_ITERATOR*);
static uint32 get_next_subpartition_via_walking(PARTITION_ITERATOR*);
uint32 get_next_partition_id_range(PARTITION_ITERATOR* part_iter);
uint32 get_next_partition_id_list(PARTITION_ITERATOR* part_iter);
int get_part_iter_for_interval_via_mapping(partition_info *part_info,
bool is_subpart,
byte *min_value, byte *max_value,
uint flags,
PARTITION_ITERATOR *part_iter);
int get_part_iter_for_interval_via_walking(partition_info *part_info,
bool is_subpart,
byte *min_value, byte *max_value,
uint flags,
PARTITION_ITERATOR *part_iter);
static void set_up_range_analysis_info(partition_info *part_info);
/* /*
A routine used by the parser to decide whether we are specifying a full A routine used by the parser to decide whether we are specifying a full
...@@ -2101,6 +2116,7 @@ bool fix_partition_func(THD *thd, const char* name, TABLE *table, ...@@ -2101,6 +2116,7 @@ bool fix_partition_func(THD *thd, const char* name, TABLE *table,
set_up_partition_key_maps(table, part_info); set_up_partition_key_maps(table, part_info);
set_up_partition_func_pointers(part_info); set_up_partition_func_pointers(part_info);
part_info->fixed= TRUE; part_info->fixed= TRUE;
set_up_range_analysis_info(part_info);
result= FALSE; result= FALSE;
end: end:
thd->set_query_id= save_set_query_id; thd->set_query_id= save_set_query_id;
...@@ -5494,13 +5510,21 @@ void mem_alloc_error(size_t size) ...@@ -5494,13 +5510,21 @@ void mem_alloc_error(size_t size)
my_error(ER_OUTOFMEMORY, MYF(0), size); my_error(ER_OUTOFMEMORY, MYF(0), size);
} }
#ifdef WITH_PARTITION_STORAGE_ENGINE
/* /*
Fill the string comma-separated line of used partitions names Return comma-separated list of used partitions in the provided given string
SYNOPSIS SYNOPSIS
make_used_partitions_str() make_used_partitions_str()
part_info IN Partitioning info part_info IN Partitioning info
parts_str OUT The string to fill parts_str OUT The string to fill
DESCRIPTION
Generate a list of used partitions (from bits in part_info->used_partitions
bitmap), asd store it into the provided String object.
NOTE
The produced string must not be longer then MAX_PARTITIONS * (1 + FN_LEN).
*/ */
void make_used_partitions_str(partition_info *part_info, String *parts_str) void make_used_partitions_str(partition_info *part_info, String *parts_str)
...@@ -5510,7 +5534,7 @@ void make_used_partitions_str(partition_info *part_info, String *parts_str) ...@@ -5510,7 +5534,7 @@ void make_used_partitions_str(partition_info *part_info, String *parts_str)
uint partition_id= 0; uint partition_id= 0;
List_iterator<partition_element> it(part_info->partitions); List_iterator<partition_element> it(part_info->partitions);
if (part_info->subpart_type != NOT_A_PARTITION) if (is_sub_partitioned(part_info))
{ {
partition_element *head_pe; partition_element *head_pe;
while ((head_pe= it++)) while ((head_pe= it++))
...@@ -5549,4 +5573,443 @@ void make_used_partitions_str(partition_info *part_info, String *parts_str) ...@@ -5549,4 +5573,443 @@ void make_used_partitions_str(partition_info *part_info, String *parts_str)
} }
} }
} }
#endif
/****************************************************************************
* Partition interval analysis support
***************************************************************************/
/*
Setup partition_info::* members related to partitioning range analysis
SYNOPSIS
set_up_partition_func_pointers()
part_info Partitioning info structure
DESCRIPTION
Assuming that passed partition_info structure already has correct values
for members that specify [sub]partitioning type, table fields, and
functions, set up partition_info::* members that are related to
Partitioning Interval Analysis (see get_partitions_in_range_iter for its
definition)
IMPLEMENTATION
There are two available interval analyzer functions:
(1) get_part_iter_for_interval_via_mapping
(2) get_part_iter_for_interval_via_walking
They both have limited applicability:
(1) is applicable for "PARTITION BY <RANGE|LIST>(func(t.field))", where
func is a monotonic function.
(2) is applicable for
"[SUB]PARTITION BY <any-partitioning-type>(any_func(t.integer_field))"
If both are applicable, (1) is preferred over (2).
This function sets part_info::get_part_iter_for_interval according to
this criteria, and also sets some auxilary fields that the function
uses.
*/
#ifdef WITH_PARTITION_STORAGE_ENGINE
static void set_up_range_analysis_info(partition_info *part_info)
{
enum_monotonicity_info minfo;
/* Set the catch-all default */
part_info->get_part_iter_for_interval= NULL;
part_info->get_subpart_iter_for_interval= NULL;
/*
Check if get_part_iter_for_interval_via_mapping() can be used for
partitioning
*/
switch (part_info->part_type) {
case RANGE_PARTITION:
case LIST_PARTITION:
minfo= part_info->part_expr->get_monotonicity_info();
if (minfo != NON_MONOTONIC)
{
part_info->range_analysis_include_bounds=
test(minfo == MONOTONIC_INCREASING);
part_info->get_part_iter_for_interval=
get_part_iter_for_interval_via_mapping;
goto setup_subparts;
}
default:
;
}
/*
Check get_part_iter_for_interval_via_walking() can be used for
partitioning
*/
if (part_info->no_part_fields == 1)
{
Field *field= part_info->part_field_array[0];
switch (field->type()) {
case MYSQL_TYPE_TINY:
case MYSQL_TYPE_SHORT:
case MYSQL_TYPE_LONG:
case MYSQL_TYPE_LONGLONG:
part_info->get_part_iter_for_interval=
get_part_iter_for_interval_via_walking;
break;
default:
;
}
}
setup_subparts:
/*
Check get_part_iter_for_interval_via_walking() can be used for
subpartitioning
*/
if (part_info->no_subpart_fields == 1)
{
Field *field= part_info->subpart_field_array[0];
switch (field->type()) {
case MYSQL_TYPE_TINY:
case MYSQL_TYPE_SHORT:
case MYSQL_TYPE_LONG:
case MYSQL_TYPE_LONGLONG:
part_info->get_subpart_iter_for_interval=
get_part_iter_for_interval_via_walking;
break;
default:
;
}
}
}
typedef uint32 (*get_endpoint_func)(partition_info*, bool left_endpoint,
bool include_endpoint);
/*
Partitioning Interval Analysis: Initialize the iterator for "mapping" case
SYNOPSIS
get_part_iter_for_interval_via_mapping()
part_info Partition info
is_subpart TRUE - act for subpartitioning
FALSE - act for partitioning
min_value minimum field value, in opt_range key format.
max_value minimum field value, in opt_range key format.
flags Some combination of NEAR_MIN, NEAR_MAX, NO_MIN_RANGE,
NO_MAX_RANGE.
part_iter Iterator structure to be initialized
DESCRIPTION
Initialize partition set iterator to walk over the interval in
ordered-array-of-partitions (for RANGE partitioning) or
ordered-array-of-list-constants (for LIST partitioning) space.
IMPLEMENTATION
This function is used when partitioning is done by
<RANGE|LIST>(ascending_func(t.field)), and we can map an interval in
t.field space into a sub-array of partition_info::range_int_array or
partition_info::list_array (see get_partition_id_range_for_endpoint,
get_list_array_idx_for_endpoint for details).
The function performs this interval mapping, and sets the iterator to
traverse the sub-array and return appropriate partitions.
RETURN
0 - No matching partitions (iterator not initialized)
1 - Ok, iterator intialized for traversal of matching partitions.
-1 - All partitions would match (iterator not initialized)
*/
int get_part_iter_for_interval_via_mapping(partition_info *part_info,
bool is_subpart,
byte *min_value, byte *max_value,
uint flags,
PARTITION_ITERATOR *part_iter)
{
DBUG_ASSERT(!is_subpart);
Field *field= part_info->part_field_array[0];
uint32 max_endpoint_val;
get_endpoint_func get_endpoint;
uint field_len= field->pack_length_in_rec();
if (part_info->part_type == RANGE_PARTITION)
{
get_endpoint= get_partition_id_range_for_endpoint;
max_endpoint_val= part_info->no_parts;
part_iter->get_next= get_next_partition_id_range;
}
else if (part_info->part_type == LIST_PARTITION)
{
get_endpoint= get_list_array_idx_for_endpoint;
max_endpoint_val= part_info->no_list_values;
part_iter->get_next= get_next_partition_id_list;
part_iter->part_info= part_info;
}
else
DBUG_ASSERT(0);
/* Find minimum */
if (flags & NO_MIN_RANGE)
part_iter->start_part_num= 0;
else
{
/*
Store the interval edge in the record buffer, and call the
function that maps the edge in table-field space to an edge
in ordered-set-of-partitions (for RANGE partitioning) or
index-in-ordered-array-of-list-constants (for LIST) space.
*/
store_key_image_to_rec(field, min_value, field_len);
bool include_endp= part_info->range_analysis_include_bounds ||
!test(flags & NEAR_MIN);
part_iter->start_part_num= get_endpoint(part_info, 1, include_endp);
if (part_iter->start_part_num == max_endpoint_val)
return 0; /* No partitions */
}
/* Find maximum, do the same as above but for right interval bound */
if (flags & NO_MAX_RANGE)
part_iter->end_part_num= max_endpoint_val;
else
{
store_key_image_to_rec(field, max_value, field_len);
bool include_endp= part_info->range_analysis_include_bounds ||
!test(flags & NEAR_MAX);
part_iter->end_part_num= get_endpoint(part_info, 0, include_endp);
if (part_iter->start_part_num == part_iter->end_part_num)
return 0; /* No partitions */
}
return 1; /* Ok, iterator initialized */
}
/* See get_part_iter_for_interval_via_walking for definition of what this is */
#define MAX_RANGE_TO_WALK 10
/*
Partitioning Interval Analysis: Initialize iterator to walk field interval
SYNOPSIS
get_part_iter_for_interval_via_walking()
part_info Partition info
is_subpart TRUE - act for subpartitioning
FALSE - act for partitioning
min_value minimum field value, in opt_range key format.
max_value minimum field value, in opt_range key format.
flags Some combination of NEAR_MIN, NEAR_MAX, NO_MIN_RANGE,
NO_MAX_RANGE.
part_iter Iterator structure to be initialized
DESCRIPTION
Initialize partition set iterator to walk over interval in integer field
space. That is, for "const1 <=? t.field <=? const2" interval, initialize
the iterator to return a set of [sub]partitions obtained with the
following procedure:
get partition id for t.field = const1, return it
get partition id for t.field = const1+1, return it
... t.field = const1+2, ...
... ... ...
... t.field = const2 ...
IMPLEMENTATION
See get_partitions_in_range_iter for general description of interval
analysis. We support walking over the following intervals:
"t.field IS NULL"
"c1 <=? t.field <=? c2", where c1 and c2 are finite.
Intervals with +inf/-inf, and [NULL, c1] interval can be processed but
that is more tricky and I don't have time to do it right now.
Additionally we have these requirements:
* number of values in the interval must be less then number of
[sub]partitions, and
* Number of values in the interval must be less then MAX_RANGE_TO_WALK.
The rationale behind these requirements is that if they are not met
we're likely to hit most of the partitions and traversing the interval
will only add overhead. So it's better return "all partitions used" in
that case.
RETURN
0 - No matching partitions, iterator not initialized
1 - Some partitions would match, iterator intialized for traversing them
-1 - All partitions would match, iterator not initialized
*/
int get_part_iter_for_interval_via_walking(partition_info *part_info,
bool is_subpart,
byte *min_value, byte *max_value,
uint flags,
PARTITION_ITERATOR *part_iter)
{
Field *field;
uint total_parts;
partition_iter_func get_next_func;
if (is_subpart)
{
field= part_info->subpart_field_array[0];
total_parts= part_info->no_subparts;
get_next_func= get_next_subpartition_via_walking;
}
else
{
field= part_info->part_field_array[0];
total_parts= part_info->no_parts;
get_next_func= get_next_partition_via_walking;
}
/* Handle the "t.field IS NULL" interval, it is a special case */
if (field->real_maybe_null() && !(flags & (NO_MIN_RANGE | NO_MAX_RANGE)) &&
*min_value && *max_value)
{
/*
We don't have a part_iter->get_next() function that would find which
partition "t.field IS NULL" belongs to, so find partition that contains
NULL right here, and return an iterator over singleton set.
*/
uint32 part_id;
field->set_null();
if (is_subpart)
{
part_id= part_info->get_subpartition_id(part_info);
init_single_partition_iterator(part_id, part_iter);
return 1; /* Ok, iterator initialized */
}
else
{
if (!part_info->get_partition_id(part_info, &part_id))
{
init_single_partition_iterator(part_id, part_iter);
return 1; /* Ok, iterator initialized */
}
}
return 0; /* No partitions match */
}
if (flags & (NO_MIN_RANGE | NO_MAX_RANGE))
return -1; /* Can't handle this interval, have to use all partitions */
/* Get integers for left and right interval bound */
longlong a, b;
uint len= field->pack_length_in_rec();
store_key_image_to_rec(field, min_value, len);
a= field->val_int();
store_key_image_to_rec(field, max_value, len);
b= field->val_int();
a += test(flags & NEAR_MIN);
b += test(!(flags & NEAR_MAX));
uint n_values= b - a;
if (n_values > total_parts || n_values > MAX_RANGE_TO_WALK)
return -1;
part_iter->start_val= a;
part_iter->end_val= b;
part_iter->part_info= part_info;
part_iter->get_next= get_next_func;
return 1;
}
/*
PARTITION_ITERATOR::get_next implementation: enumerate partitions in range
SYNOPSIS
get_next_partition_id_list()
part_iter Partition set iterator structure
DESCRIPTION
This is implementation of PARTITION_ITERATOR::get_next() that returns
[sub]partition ids in [min_partition_id, max_partition_id] range.
RETURN
partition id
NOT_A_PARTITION_ID if there are no more partitions
*/
uint32 get_next_partition_id_range(PARTITION_ITERATOR* part_iter)
{
if (part_iter->start_part_num == part_iter->end_part_num)
return NOT_A_PARTITION_ID;
else
return part_iter->start_part_num++;
}
/*
PARTITION_ITERATOR::get_next implementation for LIST partitioning
SYNOPSIS
get_next_partition_id_list()
part_iter Partition set iterator structure
DESCRIPTION
This implementation of PARTITION_ITERATOR::get_next() is special for
LIST partitioning: it enumerates partition ids in
part_info->list_array[i] where i runs over [min_idx, max_idx] interval.
RETURN
partition id
NOT_A_PARTITION_ID if there are no more partitions
*/
uint32 get_next_partition_id_list(PARTITION_ITERATOR *part_iter)
{
if (part_iter->start_part_num == part_iter->end_part_num)
return NOT_A_PARTITION_ID;
else
return part_iter->part_info->list_array[part_iter->
start_part_num++].partition_id;
}
/*
PARTITION_ITERATOR::get_next implementation: walk over field-space interval
SYNOPSIS
get_next_partition_via_walking()
part_iter Partitioning iterator
DESCRIPTION
This implementation of PARTITION_ITERATOR::get_next() returns ids of
partitions that contain records with partitioning field value within
[start_val, end_val] interval.
RETURN
partition id
NOT_A_PARTITION_ID if there are no more partitioning.
*/
static uint32 get_next_partition_via_walking(PARTITION_ITERATOR *part_iter)
{
uint32 part_id;
Field *field= part_iter->part_info->part_field_array[0];
while (part_iter->start_val != part_iter->end_val)
{
field->store(part_iter->start_val, FALSE);
part_iter->start_val++;
if (!part_iter->part_info->get_partition_id(part_iter->part_info,
&part_id))
return part_id;
}
return NOT_A_PARTITION_ID;
}
/* Same as get_next_partition_via_walking, but for subpartitions */
static uint32 get_next_subpartition_via_walking(PARTITION_ITERATOR *part_iter)
{
uint32 part_id;
Field *field= part_iter->part_info->subpart_field_array[0];
if (part_iter->start_val == part_iter->end_val)
return NOT_A_PARTITION_ID;
field->store(part_iter->start_val, FALSE);
part_iter->start_val++;
return part_iter->part_info->get_subpartition_id(part_iter->part_info);
}
#endif
...@@ -639,6 +639,11 @@ JOIN::optimize() ...@@ -639,6 +639,11 @@ JOIN::optimize()
TABLE_LIST *tbl; TABLE_LIST *tbl;
for (tbl= select_lex->leaf_tables; tbl; tbl= tbl->next_leaf) for (tbl= select_lex->leaf_tables; tbl; tbl= tbl->next_leaf)
{ {
/*
If tbl->embedding!=NULL that means that this table is in the inner
part of the nested outer join, and we can't do partition pruning
(TODO: check if this limitation can be lifted)
*/
if (!tbl->embedding) if (!tbl->embedding)
{ {
Item *prune_cond= tbl->on_expr? tbl->on_expr : conds; Item *prune_cond= tbl->on_expr? tbl->on_expr : conds;
......
...@@ -1415,7 +1415,7 @@ bool multi_update::send_data(List<Item> &not_used_values) ...@@ -1415,7 +1415,7 @@ bool multi_update::send_data(List<Item> &not_used_values)
memcpy((char*) tmp_table->field[0]->ptr, memcpy((char*) tmp_table->field[0]->ptr,
(char*) table->file->ref, table->file->ref_length); (char*) table->file->ref, table->file->ref_length);
/* Write row, ignoring duplicated updates to a row */ /* Write row, ignoring duplicated updates to a row */
if (error= tmp_table->file->ha_write_row(tmp_table->record[0])) if ((error= tmp_table->file->ha_write_row(tmp_table->record[0])))
{ {
if (error != HA_ERR_FOUND_DUPP_KEY && if (error != HA_ERR_FOUND_DUPP_KEY &&
error != HA_ERR_FOUND_DUPP_UNIQUE && error != HA_ERR_FOUND_DUPP_UNIQUE &&
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment