Commit 2e42948e authored by unknown's avatar unknown

MWL#89

  
- Post-review fixes. Intermediate commit to address review point 1.6.
- Fixed valgrind warnings
parent 0bee625f
......@@ -3653,8 +3653,8 @@ bool JOIN::optimize_unflattened_subqueries()
*/
bool JOIN::choose_subquery_plan(table_map join_tables)
{ /* The original QEP of the subquery. */
Query_plan_state save_qep;
{
Query_plan_state save_qep; /* The original QEP of the subquery. */
enum_reopt_result reopt_result= REOPT_NONE;
Item_in_subselect *in_subs;
......@@ -3681,32 +3681,50 @@ bool JOIN::choose_subquery_plan(table_map join_tables)
if (in_subs->in_strategy & SUBS_MATERIALIZATION &&
in_subs->in_strategy & SUBS_IN_TO_EXISTS)
{
JOIN *outer_join= unit->outer_select() ? unit->outer_select()->join : NULL;
JOIN *outer_join;
JOIN *inner_join= this;
/* Cost of the outer JOIN. */
double outer_read_time, outer_record_count;
/* Cost of the unmodified subquery. */
/* Number of (partial) rows of the outer JOIN filtered by the IN predicate. */
double outer_record_count;
/* Number of unique value combinations filtered by the IN predicate. */
double outer_lookup_keys;
/* Cost and row count of the unmodified subquery. */
double inner_read_time_1, inner_record_count_1;
/* Cost of the subquery with injected IN-EXISTS predicates. */
double inner_read_time_2, inner_record_count_2;
/* Cost and row count of the subquery with injected IN-EXISTS predicates. */
double inner_read_time_2;
/* The cost to compute IN via materialization. */
double materialize_strategy_cost;
/* The cost of the IN->EXISTS strategy. */
double in_exists_strategy_cost;
double dummy;
/*
A. Estimate the number of rows of the outer table that will be filtered
by the IN predicate.
*/
outer_join= unit->outer_select() ? unit->outer_select()->join : NULL;
if (outer_join)
{
uint outer_partial_plan_len;
/*
Make_cond_for_table is called for predicates only in the WHERE/ON
clauses. In all other cases, predicates are not pushed to any
JOIN_TAB, and their joi_tab_idx remains MAX_TABLES. Such predicates
are evaluated for each complete row.
are evaluated for each complete row of the outer join.
*/
uint partial_plan_len= (in_subs->get_join_tab_idx() == MAX_TABLES) ?
outer_partial_plan_len= (in_subs->get_join_tab_idx() == MAX_TABLES) ?
outer_join->tables :
in_subs->get_join_tab_idx() + 1;
outer_join->get_partial_join_cost(partial_plan_len,
&outer_read_time, &outer_record_count);
outer_join->get_partial_join_cost(outer_partial_plan_len, &dummy,
&outer_record_count);
if (outer_join->tables > outer_join->const_tables)
outer_lookup_keys= prev_record_reads(outer_join->best_positions,
outer_partial_plan_len,
in_subs->used_tables());
else
{
/* If all tables are constant, positions is undefined. */
outer_lookup_keys= 1;
}
}
else
{
......@@ -3714,15 +3732,17 @@ bool JOIN::choose_subquery_plan(table_map join_tables)
TODO: outer_join can be NULL for DELETE statements.
How to compute its cost?
*/
outer_read_time= 1; /* TODO */
outer_record_count= 1; /* TODO */
outer_record_count= 1;
outer_lookup_keys=1;
}
DBUG_ASSERT(outer_lookup_keys <= outer_record_count);
inner_join->get_partial_join_cost(inner_join->tables,
&inner_read_time_1,
&inner_record_count_1);
/* inner_read_time_1 above is a dummy, get the correct total join cost. */
/*
B. Estimate the cost and number of records of the subquery both
unmodified, and with injected IN->EXISTS predicates.
*/
inner_read_time_1= inner_join->best_read;
inner_record_count_1= inner_join->record_count;
if (in_to_exists_where && const_tables != tables)
{
......@@ -3734,9 +3754,6 @@ bool JOIN::choose_subquery_plan(table_map join_tables)
if (reopt_result == REOPT_ERROR)
return TRUE;
inner_join->get_partial_join_cost(inner_join->tables,
&inner_read_time_2,
&inner_record_count_2);
/* inner_read_time_2 above is a dummy, get the correct total join cost. */
inner_read_time_2= inner_join->best_read;
......@@ -3745,13 +3762,12 @@ bool JOIN::choose_subquery_plan(table_map join_tables)
{
/* Reoptimization would not produce any better plan. */
inner_read_time_2= inner_read_time_1;
inner_record_count_2= inner_record_count_1;
}
/* Compute execution costs. */
/*
1. Compute the cost of the materialization strategy.
C. Compute execution costs.
*/
/* C.1 Compute the cost of the materialization strategy. */
uint rowlen= get_tmp_table_rec_length(unit->first_select()->item_list);
/* The cost of writing one row into the temporary table. */
double write_cost= get_tmp_table_write_cost(thd, inner_record_count_1,
......@@ -3769,12 +3785,10 @@ bool JOIN::choose_subquery_plan(table_map join_tables)
materialize_strategy_cost= materialization_cost +
outer_record_count * lookup_cost;
/*
2. Compute the cost of the IN=>EXISTS strategy.
*/
in_exists_strategy_cost= outer_record_count * inner_read_time_2;
/* C.2 Compute the cost of the IN=>EXISTS strategy. */
in_exists_strategy_cost= outer_lookup_keys * inner_read_time_2;
/* Compare the costs and choose the cheaper strategy. */
/* C.3 Compare the costs and choose the cheaper strategy. */
if (materialize_strategy_cost >= in_exists_strategy_cost)
in_subs->in_strategy&= ~SUBS_MATERIALIZATION;
else
......
......@@ -65,8 +65,6 @@ static bool sort_and_filter_keyuse(DYNAMIC_ARRAY *keyuse);
static int sort_keyuse(KEYUSE *a,KEYUSE *b);
static bool create_ref_for_key(JOIN *join, JOIN_TAB *j, KEYUSE *org_keyuse,
table_map used_tables);
bool choose_plan(JOIN *join,table_map join_tables);
void best_access_path(JOIN *join, JOIN_TAB *s,
table_map remaining_tables, uint idx,
bool disable_jbuf, double record_count,
......@@ -90,7 +88,6 @@ static int join_tab_cmp_embedded_first(const void *emb, const void* ptr1, const
static bool find_best(JOIN *join,table_map rest_tables,uint index,
double record_count,double read_time);
static uint cache_record_length(JOIN *join,uint index);
static double prev_record_reads(JOIN *join, uint idx, table_map found_ref);
static bool get_best_combination(JOIN *join);
static store_key *get_store_key(THD *thd,
KEYUSE *keyuse, table_map used_tables,
......@@ -3143,6 +3140,7 @@ make_join_statistics(JOIN *join, TABLE_LIST *tables_arg, COND *conds,
{
memcpy((uchar*) join->best_positions,(uchar*) join->positions,
sizeof(POSITION)*join->const_tables);
join->record_count= 1.0;
join->best_read=1.0;
}
if (join->choose_subquery_plan(all_table_map & ~join->const_table_map))
......@@ -4505,8 +4503,8 @@ best_access_path(JOIN *join,
if (!(keyuse->used_tables & ~join->const_table_map))
const_part|= keyuse->keypart_map;
double tmp2= prev_record_reads(join, idx, (found_ref |
keyuse->used_tables));
double tmp2= prev_record_reads(join->positions, idx,
(found_ref | keyuse->used_tables));
if (tmp2 < best_prev_record_reads)
{
best_part_found_ref= keyuse->used_tables & ~join->const_table_map;
......@@ -4546,7 +4544,7 @@ best_access_path(JOIN *join,
Really, there should be records=0.0 (yes!)
but 1.0 would be probably safer
*/
tmp= prev_record_reads(join, idx, found_ref);
tmp= prev_record_reads(join->positions, idx, found_ref);
records= 1.0;
}
else
......@@ -4561,7 +4559,7 @@ best_access_path(JOIN *join,
max_key_part= (uint) ~0;
if ((keyinfo->flags & (HA_NOSAME | HA_NULL_PART_KEY)) == HA_NOSAME)
{
tmp = prev_record_reads(join, idx, found_ref);
tmp = prev_record_reads(join->positions, idx, found_ref);
records=1.0;
}
else
......@@ -5275,6 +5273,7 @@ optimize_straight_join(JOIN *join, table_map join_tables)
read_time+= record_count; // We have to make a temp table
memcpy((uchar*) join->best_positions, (uchar*) join->positions,
sizeof(POSITION)*idx);
join->record_count= record_count;
join->best_read= read_time;
}
......@@ -5487,7 +5486,7 @@ void JOIN::get_partial_join_cost(uint n_tables,
double record_count= 1;
double read_time= 0.0;
DBUG_ASSERT(n_tables <= tables && n_tables > 0);
DBUG_ASSERT(n_tables <= tables);
for (uint i= const_tables; i < n_tables; i++)
{
......@@ -5502,8 +5501,6 @@ void JOIN::get_partial_join_cost(uint n_tables,
}
/**
Find a good, possibly optimal, query execution plan (QEP) by a possibly
exhaustive search.
......@@ -5756,6 +5753,7 @@ best_extension_by_limited_search(JOIN *join,
{
memcpy((uchar*) join->best_positions, (uchar*) join->positions,
sizeof(POSITION) * (idx + 1));
join->record_count= current_record_count;
join->best_read= current_read_time - 0.001;
}
DBUG_EXECUTE("opt", print_plan(join, idx+1,
......@@ -5981,12 +5979,12 @@ cache_record_length(JOIN *join,uint idx)
Expected number of row combinations
*/
static double
prev_record_reads(JOIN *join, uint idx, table_map found_ref)
double
prev_record_reads(POSITION *positions, uint idx, table_map found_ref)
{
double found=1.0;
POSITION *pos_end= join->positions - 1;
for (POSITION *pos= join->positions + idx - 1; pos != pos_end; pos--)
POSITION *pos_end= positions - 1;
for (POSITION *pos= positions + idx - 1; pos != pos_end; pos--)
{
if (pos->table->table->map & found_ref)
{
......@@ -19478,7 +19476,10 @@ JOIN::reoptimize(Item *added_where, table_map join_tables,
}
if (!added_keyuse.elements)
{
delete_dynamic(&added_keyuse);
return REOPT_OLD_PLAN;
}
if (save_to)
save_query_plan(save_to);
......
......@@ -1376,7 +1376,8 @@ class JOIN :public Sql_alloc
protected:
/**
???
The subset of the state of a JOIN that represents an optimized query
execution plan. Allows saving/restoring different plans for the same query.
*/
class Query_plan_state {
public:
......@@ -1512,6 +1513,13 @@ class JOIN :public Sql_alloc
account the changes made by test_if_skip_sort_order()).
*/
double best_read;
/*
Estimated result rows (fanout) of the whole query. If this is a subquery
that is reexecuted multiple times, this value includes the estiamted # of
reexecutions. This value is equal to the multiplication of all
join->positions[i].records_read of a JOIN.
*/
double record_count;
List<Item> *fields;
List<Cached_item> group_fields, group_fields_cache;
TABLE *tmp_table;
......@@ -2054,7 +2062,7 @@ inline Item * and_items(Item* cond, Item *item)
{
return (cond? (new Item_cond_and(cond, item)) : item);
}
bool choose_plan(JOIN *join,table_map join_tables);
bool choose_plan(JOIN *join, table_map join_tables);
void optimize_wo_join_buffering(JOIN *join, uint first_tab, uint last_tab,
table_map last_remaining_tables,
bool first_alt, uint no_jbuf_before,
......@@ -2099,5 +2107,6 @@ bool create_internal_tmp_table(TABLE *table, KEY *keyinfo,
ulonglong options);
bool open_tmp_table(TABLE *table);
void setup_tmp_table_column_bitmaps(TABLE *table, uchar *bitmaps);
double prev_record_reads(POSITION *positions, uint idx, table_map found_ref);
#endif /* SQL_SELECT_INCLUDED */
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment