Commit 6e0407a3 authored by Zardosht Kasheff's avatar Zardosht Kasheff Committed by Yoni Fogel

[t:3347], copy the handlerton over

git-svn-id: file:///svn/mysql/tokudb-engine/tokudb-engine@29148 c7de825b-a66e-492c-adef-691d508d4ae1
parent 4e992221
......@@ -64,7 +64,7 @@ static const char *ha_tokudb_exts[] = {
//
// This offset is calculated starting from AFTER the NULL bytes
//
inline u_int32_t get_var_len_offset(KEY_AND_COL_INFO* kc_info, TABLE_SHARE* table_share, uint keynr) {
inline u_int32_t get_fixed_field_size(KEY_AND_COL_INFO* kc_info, TABLE_SHARE* table_share, uint keynr) {
uint offset = 0;
for (uint i = 0; i < table_share->fields; i++) {
if (kc_info->field_lengths[i] && !bitmap_is_set(&kc_info->key_filters[keynr],i)) {
......@@ -291,7 +291,7 @@ static inline bool do_ignore_flag_optimization(THD* thd, TABLE* table, bool opt_
ulonglong ha_tokudb::table_flags() const {
return (table && do_ignore_flag_optimization(ha_thd(), table, share->replace_into_fast) ?
int_table_flags | HA_BINLOG_STMT_CAPABLE :
int_table_flags | HA_BINLOG_ROW_CAPABLE | HA_BINLOG_STMT_CAPABLE);
int_table_flags | HA_BINLOG_ROW_CAPABLE | HA_BINLOG_STMT_CAPABLE | HA_ONLINE_ALTER);
}
//
......@@ -745,33 +745,20 @@ inline const uchar* unpack_fixed_field(
}
inline uchar* pack_var_field(
inline uchar* write_var_field(
uchar* to_tokudb_offset_ptr, //location where offset data is going to be written
uchar* to_tokudb_data,
uchar* to_tokudb_offset_start, //location where offset starts
const uchar * from_mysql,
u_int32_t mysql_length_bytes,
u_int32_t offset_bytes
uchar* to_tokudb_data, // location where data is going to be written
uchar* to_tokudb_offset_start, //location where offset starts, IS THIS A BAD NAME????
const uchar * data, // the data to write
u_int32_t data_length, // length of data to write
u_int32_t offset_bytes // number of offset bytes
)
{
uint data_length = 0;
u_int32_t offset = 0;
switch(mysql_length_bytes) {
case(1):
data_length = from_mysql[0];
break;
case(2):
data_length = uint2korr(from_mysql);
break;
default:
assert(false);
break;
}
memcpy(to_tokudb_data, from_mysql + mysql_length_bytes, data_length);
memcpy(to_tokudb_data, data, data_length);
//
// for offset, we pack the offset where the data ENDS!
//
offset = to_tokudb_data + data_length - to_tokudb_offset_start;
u_int32_t offset = to_tokudb_data + data_length - to_tokudb_offset_start;
switch(offset_bytes) {
case (1):
to_tokudb_offset_ptr[0] = (uchar)offset;
......@@ -783,10 +770,49 @@ inline uchar* pack_var_field(
assert(false);
break;
}
return to_tokudb_data + data_length;
}
inline u_int32_t get_var_data_length(
const uchar * from_mysql,
u_int32_t mysql_length_bytes
)
{
u_int32_t data_length;
switch(mysql_length_bytes) {
case(1):
data_length = from_mysql[0];
break;
case(2):
data_length = uint2korr(from_mysql);
break;
default:
assert(false);
break;
}
return data_length;
}
inline uchar* pack_var_field(
uchar* to_tokudb_offset_ptr, //location where offset data is going to be written
uchar* to_tokudb_data, // pointer to where tokudb data should be written
uchar* to_tokudb_offset_start, //location where data starts, IS THIS A BAD NAME????
const uchar * from_mysql, // mysql data
u_int32_t mysql_length_bytes, //number of bytes used to store length in from_mysql
u_int32_t offset_bytes //number of offset_bytes used in tokudb row
)
{
uint data_length = get_var_data_length(from_mysql, mysql_length_bytes);
return write_var_field(
to_tokudb_offset_ptr,
to_tokudb_data,
to_tokudb_offset_start,
from_mysql + mysql_length_bytes,
data_length,
offset_bytes
);
}
inline void unpack_var_field(
uchar* to_mysql,
const uchar* from_tokudb_data,
......@@ -1174,6 +1200,7 @@ ha_tokudb::ha_tokudb(handlerton * hton, TABLE_SHARE * table_arg):handler(hton, t
rec_buff = NULL;
rec_update_buff = NULL;
transaction = NULL;
is_fast_alter_running = false;
cursor = NULL;
fixed_cols_for_query = NULL;
var_cols_for_query = NULL;
......@@ -1403,7 +1430,7 @@ int initialize_col_pack_info(KEY_AND_COL_INFO* kc_info, TABLE_SHARE* table_share
//
// set up the mcp_info
//
kc_info->mcp_info[keynr].var_len_offset = get_var_len_offset(
kc_info->mcp_info[keynr].fixed_field_size = get_fixed_field_size(
kc_info,
table_share,
keynr
......@@ -2146,7 +2173,7 @@ int ha_tokudb::pack_row_in_buff(
/* Copy null bits */
memcpy(row_buff, record, table_share->null_bytes);
fixed_field_ptr = row_buff + table_share->null_bytes;
var_field_offset_ptr = fixed_field_ptr + share->kc_info.mcp_info[index].var_len_offset;
var_field_offset_ptr = fixed_field_ptr + share->kc_info.mcp_info[index].fixed_field_size;
start_field_data_ptr = var_field_offset_ptr + share->kc_info.mcp_info[index].len_of_offsets;
var_field_data_ptr = var_field_offset_ptr + share->kc_info.mcp_info[index].len_of_offsets;
......@@ -2289,7 +2316,7 @@ int ha_tokudb::unpack_row(
memcpy(record, fixed_field_ptr, table_share->null_bytes);
fixed_field_ptr += table_share->null_bytes;
var_field_offset_ptr = fixed_field_ptr + share->kc_info.mcp_info[index].var_len_offset;
var_field_offset_ptr = fixed_field_ptr + share->kc_info.mcp_info[index].fixed_field_size;
var_field_data_ptr = var_field_offset_ptr + share->kc_info.mcp_info[index].len_of_offsets;
//
......@@ -2899,14 +2926,7 @@ bool ha_tokudb::check_if_incompatible_data(HA_CREATE_INFO * info, uint table_cha
// change is incompatible, and to rebuild the entire table
// This will need to be fixed
//
if ((info->used_fields & HA_CREATE_USED_AUTO) &&
info->auto_increment_value != 0) {
return COMPATIBLE_DATA_NO;
}
if (table_changes != IS_EQUAL_YES)
return COMPATIBLE_DATA_NO;
return COMPATIBLE_DATA_YES;
return COMPATIBLE_DATA_NO;
}
//
......@@ -5325,6 +5345,8 @@ int ha_tokudb::create_txn(THD* thd, tokudb_trx_data* trx) {
!trx->all &&
(thd_sql_command(thd) != SQLCOM_CREATE_TABLE) &&
(thd_sql_command(thd) != SQLCOM_DROP_TABLE) &&
(thd_sql_command(thd) != SQLCOM_DROP_INDEX) &&
(thd_sql_command(thd) != SQLCOM_CREATE_INDEX) &&
(thd_sql_command(thd) != SQLCOM_ALTER_TABLE)) {
/* QQQ We have to start a master transaction */
// DBUG_PRINT("trans", ("starting transaction all "));
......@@ -5402,6 +5424,7 @@ int ha_tokudb::external_lock(THD * thd, int lock_type) {
trx->sp_level = NULL;
}
if (lock_type != F_UNLCK) {
is_fast_alter_running = false;
if (!trx->tokudb_lock_count++) {
DBUG_ASSERT(trx->stmt == 0);
transaction = NULL; // Safety
......@@ -5434,15 +5457,19 @@ int ha_tokudb::external_lock(THD * thd, int lock_type) {
We must in this case commit the work to keep the row locks
*/
DBUG_PRINT("trans", ("commiting non-updating transaction"));
commit_txn(trx->stmt, 0);
reset_stmt_progress(&trx->stmt_progress);
if (tokudb_debug & TOKUDB_DEBUG_TXN)
TOKUDB_TRACE("commit:%p:%d\n", trx->stmt, error);
trx->stmt = NULL;
trx->sub_sp_level = NULL;
if (!is_fast_alter_running) {
commit_txn(trx->stmt, 0);
if (tokudb_debug & TOKUDB_DEBUG_TXN) {
TOKUDB_TRACE("commit:%p:%d\n", trx->stmt, error);
}
trx->stmt = NULL;
trx->sub_sp_level = NULL;
}
}
}
transaction = NULL;
is_fast_alter_running = false;
}
cleanup:
if (tokudb_debug & TOKUDB_DEBUG_LOCK)
......@@ -5611,11 +5638,6 @@ static int create_sub_table(const char *table_name, DBT* row_descriptor, DB_TXN*
goto exit;
}
error = file->set_descriptor(file, 1, row_descriptor);
if (error) {
DBUG_PRINT("error", ("Got error: %d when setting row descriptor for table '%s'", error, table_name));
goto exit;
}
if (block_size != 0) {
error = file->set_pagesize(file, block_size);
......@@ -5632,6 +5654,12 @@ static int create_sub_table(const char *table_name, DBT* row_descriptor, DB_TXN*
goto exit;
}
error = file->change_descriptor(file, txn, row_descriptor, (is_hot_index ? DB_IS_HOT_INDEX : 0));
if (error) {
DBUG_PRINT("error", ("Got error: %d when setting row descriptor for table '%s'", error, table_name));
goto exit;
}
error = 0;
exit:
if (file) {
......@@ -5731,6 +5759,59 @@ void ha_tokudb::trace_create_table_info(const char *name, TABLE * form) {
}
}
u_int32_t get_max_desc_size(KEY_AND_COL_INFO* kc_info, TABLE* form) {
u_int32_t max_row_desc_buff_size;
max_row_desc_buff_size = 2*(form->s->fields * 6)+10; // upper bound of key comparison descriptor
max_row_desc_buff_size += get_max_secondary_key_pack_desc_size(kc_info); // upper bound for sec. key part
max_row_desc_buff_size += get_max_clustering_val_pack_desc_size(form->s); // upper bound for clustering val part
return max_row_desc_buff_size;
}
u_int32_t create_secondary_key_descriptor(
uchar* buf,
KEY* key_info,
KEY* prim_key,
uint hpk,
TABLE* form,
uint primary_key,
u_int32_t keynr,
KEY_AND_COL_INFO* kc_info
)
{
uchar* ptr = NULL;
ptr = buf;
ptr += create_toku_key_descriptor(
ptr,
false,
key_info,
hpk,
prim_key
);
ptr += create_toku_secondary_key_pack_descriptor(
ptr,
hpk,
primary_key,
form->s,
form,
kc_info,
key_info,
prim_key
);
ptr += create_toku_clustering_val_pack_descriptor(
ptr,
primary_key,
form->s,
kc_info,
keynr,
key_info->flags & HA_CLUSTERING
);
return ptr - buf;
}
//
// creates dictionary for secondary index, with key description key_info, all using txn
//
......@@ -5746,7 +5827,6 @@ int ha_tokudb::create_secondary_dictionary(
int error;
DBT row_descriptor;
uchar* row_desc_buff = NULL;
uchar* ptr = NULL;
char* newname = NULL;
KEY* prim_key = NULL;
char dict_name[MAX_DICT_NAME_LEN];
......@@ -5756,14 +5836,10 @@ int ha_tokudb::create_secondary_dictionary(
bzero(&row_descriptor, sizeof(row_descriptor));
max_row_desc_buff_size = 2*(form->s->fields * 6)+10; // upper bound of key comparison descriptor
max_row_desc_buff_size += get_max_secondary_key_pack_desc_size(kc_info); // upper bound for sec. key part
max_row_desc_buff_size += get_max_clustering_val_pack_desc_size(form->s); // upper bound for clustering val part
max_row_desc_buff_size = get_max_desc_size(kc_info,form);
row_desc_buff = (uchar *)my_malloc(max_row_desc_buff_size, MYF(MY_WME));
if (row_desc_buff == NULL){ error = ENOMEM; goto cleanup;}
ptr = row_desc_buff;
newname = (char *)my_malloc(get_max_dict_name_path_length(name),MYF(MY_WME));
if (newname == NULL){ error = ENOMEM; goto cleanup;}
......@@ -5780,35 +5856,16 @@ int ha_tokudb::create_secondary_dictionary(
//
// save data necessary for key comparisons
//
ptr += create_toku_key_descriptor(
row_descriptor.size = create_secondary_key_descriptor(
row_desc_buff,
false,
key_info,
prim_key,
hpk,
prim_key
);
ptr += create_toku_secondary_key_pack_descriptor(
ptr,
hpk,
primary_key,
form->s,
form,
kc_info,
key_info,
prim_key
);
ptr += create_toku_clustering_val_pack_descriptor(
ptr,
primary_key,
form->s,
kc_info,
keynr,
key_info->flags & HA_CLUSTERING
kc_info
);
row_descriptor.size = ptr - row_desc_buff;
assert(row_descriptor.size <= max_row_desc_buff_size);
block_size = key_info->block_size << 10;
......@@ -5824,6 +5881,40 @@ int ha_tokudb::create_secondary_dictionary(
return error;
}
u_int32_t create_main_key_descriptor(
uchar* buf,
KEY* prim_key,
uint hpk,
uint primary_key,
TABLE* form,
KEY_AND_COL_INFO* kc_info
)
{
uchar* ptr = buf;
ptr += create_toku_key_descriptor(
ptr,
hpk,
prim_key,
false,
NULL
);
ptr += create_toku_main_key_pack_descriptor(
ptr
);
ptr += create_toku_clustering_val_pack_descriptor(
ptr,
primary_key,
form->s,
kc_info,
primary_key,
false
);
return ptr - buf;
}
//
// create and close the main dictionarr with name of "name" using table form, all within
// transaction txn.
......@@ -5832,7 +5923,6 @@ int ha_tokudb::create_main_dictionary(const char* name, TABLE* form, DB_TXN* txn
int error;
DBT row_descriptor;
uchar* row_desc_buff = NULL;
uchar* ptr = NULL;
char* newname = NULL;
KEY* prim_key = NULL;
u_int32_t max_row_desc_buff_size;
......@@ -5840,13 +5930,10 @@ int ha_tokudb::create_main_dictionary(const char* name, TABLE* form, DB_TXN* txn
uint32_t block_size;
bzero(&row_descriptor, sizeof(row_descriptor));
max_row_desc_buff_size = 2*(form->s->fields * 6)+10; // upper bound of key comparison descriptor
max_row_desc_buff_size += get_max_secondary_key_pack_desc_size(kc_info); // upper bound for sec. key part
max_row_desc_buff_size += get_max_clustering_val_pack_desc_size(form->s); // upper bound for clustering val part
max_row_desc_buff_size = get_max_desc_size(kc_info, form);
row_desc_buff = (uchar *)my_malloc(max_row_desc_buff_size, MYF(MY_WME));
if (row_desc_buff == NULL){ error = ENOMEM; goto cleanup;}
ptr = row_desc_buff;
newname = (char *)my_malloc(get_max_dict_name_path_length(name),MYF(MY_WME));
if (newname == NULL){ error = ENOMEM; goto cleanup;}
......@@ -5862,29 +5949,14 @@ int ha_tokudb::create_main_dictionary(const char* name, TABLE* form, DB_TXN* txn
//
// save data necessary for key comparisons
//
ptr += create_toku_key_descriptor(
row_desc_buff,
hpk,
row_descriptor.size = create_main_key_descriptor(
row_desc_buff,
prim_key,
false,
NULL
);
ptr += create_toku_main_key_pack_descriptor(
ptr
);
ptr += create_toku_clustering_val_pack_descriptor(
ptr,
primary_key,
form->s,
kc_info,
hpk,
primary_key,
false
form,
kc_info
);
row_descriptor.size = ptr - row_desc_buff;
assert(row_descriptor.size <= max_row_desc_buff_size);
block_size = 0;
......@@ -6565,14 +6637,21 @@ bool ha_tokudb::is_auto_inc_singleton(){
// Returns:
// 0 on success, error otherwise
//
int ha_tokudb::add_index(TABLE *table_arg, KEY *key_info, uint num_of_keys) {
TOKUDB_DBUG_ENTER("ha_tokudb::add_index");
int ha_tokudb::tokudb_add_index(
TABLE *table_arg,
KEY *key_info,
uint num_of_keys,
DB_TXN* txn,
bool* inc_num_DBs,
bool* modified_DBs
)
{
TOKUDB_DBUG_ENTER("ha_tokudb::tokudb_add_index");
int error;
uint curr_index = 0;
DBC* tmp_cursor = NULL;
int cursor_ret_val = 0;
DBT curr_pk_key, curr_pk_val;
DB_TXN* txn = NULL;
THD* thd = ha_thd();
DB_LOADER* loader = NULL;
DB_INDEXER* indexer = NULL;
......@@ -6584,14 +6663,14 @@ int ha_tokudb::add_index(TABLE *table_arg, KEY *key_info, uint num_of_keys) {
u_int32_t mult_put_flags[MAX_KEY + 1];
u_int32_t mult_dbt_flags[MAX_KEY + 1];
bool creating_hot_index = false;
bool incremented_numDBs = false;
struct loader_context lc;
memset(&lc, 0, sizeof lc);
lc.thd = thd;
lc.ha = this;
loader_error = 0;
bool rw_lock_taken = false;
bool modified_DBs = false;
*inc_num_DBs = false;
*modified_DBs = false;
for (u_int32_t i = 0; i < MAX_KEY+1; i++) {
mult_put_flags[i] = DB_YESOVERWRITE;
mult_dbt_flags[i] = DB_DBT_REALLOC;
......@@ -6609,8 +6688,6 @@ int ha_tokudb::add_index(TABLE *table_arg, KEY *key_info, uint num_of_keys) {
read_lock_wait_time = get_read_lock_wait_time(ha_thd());
thd_proc_info(thd, "Adding indexes");
error = db_env->txn_begin(db_env, 0, &txn, 0);
if (error) { goto cleanup; }
//
// in unpack_row, MySQL passes a buffer that is this long,
......@@ -6649,7 +6726,7 @@ int ha_tokudb::add_index(TABLE *table_arg, KEY *key_info, uint num_of_keys) {
goto cleanup;
}
curr_index = curr_num_DBs;
modified_DBs = true;
*modified_DBs = true;
for (uint i = 0; i < num_of_keys; i++, curr_index++) {
if (key_info[i].flags & HA_CLUSTERING) {
set_key_filter(
......@@ -6689,7 +6766,7 @@ int ha_tokudb::add_index(TABLE *table_arg, KEY *key_info, uint num_of_keys) {
if (creating_hot_index) {
share->num_DBs++;
incremented_numDBs = true;
*inc_num_DBs = true;
error = db_env->create_indexer(
db_env,
txn,
......@@ -6742,7 +6819,7 @@ int ha_tokudb::add_index(TABLE *table_arg, KEY *key_info, uint num_of_keys) {
//
// scan primary table, create each secondary key, add to each DB
//
if ((error = share->file->cursor(share->file, txn, &tmp_cursor, 0))) {
if ((error = share->file->cursor(share->file, txn, &tmp_cursor, DB_SERIALIZABLE))) {
tmp_cursor = NULL; // Safety
goto cleanup;
}
......@@ -6854,74 +6931,82 @@ int ha_tokudb::add_index(TABLE *table_arg, KEY *key_info, uint num_of_keys) {
thd_proc_info(thd, status_msg);
indexer->abort(indexer);
}
if (txn) {
if (error) {
//
// need to restore num_DBs, and we have to do it before we close the dictionaries
// so that there is not a window
//
if (incremented_numDBs) {
rw_wrlock(&share->num_DBs_lock);
share->num_DBs--;
}
if (modified_DBs) {
curr_index = curr_num_DBs; //3144
for (uint i = 0; i < num_of_keys; i++, curr_index++) {
reset_key_and_col_info(&share->kc_info, curr_index);
}
curr_index = curr_num_DBs;
for (uint i = 0; i < num_of_keys; i++, curr_index++) {
if (share->key_file[curr_index]) {
int r = share->key_file[curr_index]->close(
share->key_file[curr_index],
0
);
assert(r==0);
share->key_file[curr_index] = NULL;
}
}
}
abort_txn(txn);
if (incremented_numDBs) {
rw_unlock(&share->num_DBs_lock);
}
}
else {
commit_txn(txn,0);
}
}
if (error == DB_LOCK_NOTGRANTED && ((tokudb_debug & TOKUDB_DEBUG_HIDE_DDL_LOCK_ERRORS) == 0)) {
sql_print_error("Could not add indexes to table %s because \
if (error == DB_LOCK_NOTGRANTED && ((tokudb_debug & TOKUDB_DEBUG_HIDE_DDL_LOCK_ERRORS) == 0)) {
sql_print_error("Could not add indexes to table %s because \
another transaction has accessed the table. \
To add indexes, make sure no transactions touch the table.", share->table_name);
}
}
TOKUDB_DBUG_RETURN(error ? error : loader_error);
}
//
// Prepares to drop indexes to the table. For each value, i, in the array key_num,
// table->key_info[i] is a key that is to be dropped.
// ***********NOTE*******************
// Although prepare_drop_index is supposed to just get the DB's ready for removal,
// and not actually do the removal, we are doing it here and not in final_drop_index
// For the flags we expose in alter_table_flags, namely xxx_NO_WRITES, this is allowed
// Changes for "future-proofing" this so that it works when we have the equivalent flags
// that are not NO_WRITES are not worth it at the moments
// Parameters:
// [in] table_arg - table that is being modified, seems to be identical to this->table
// [in] key_num - array of indexes that specify which keys of the array table->key_info
// are to be dropped
// num_of_keys - size of array, key_num
// Returns:
// 0 on success, error otherwise
//
int ha_tokudb::prepare_drop_index(TABLE *table_arg, uint *key_num, uint num_of_keys) {
TOKUDB_DBUG_ENTER("ha_tokudb::prepare_drop_index");
int error;
DB_TXN* txn = NULL;
void ha_tokudb::restore_add_index(TABLE* table_arg, uint num_of_keys, bool incremented_numDBs, bool modified_DBs) {
uint curr_num_DBs = table_arg->s->keys + test(hidden_primary_key);
uint curr_index = 0;
//
// need to restore num_DBs, and we have to do it before we close the dictionaries
// so that there is not a window
//
if (incremented_numDBs) {
rw_wrlock(&share->num_DBs_lock);
share->num_DBs--;
}
if (modified_DBs) {
curr_index = curr_num_DBs;
for (uint i = 0; i < num_of_keys; i++, curr_index++) {
reset_key_and_col_info(&share->kc_info, curr_index);
}
curr_index = curr_num_DBs;
for (uint i = 0; i < num_of_keys; i++, curr_index++) {
if (share->key_file[curr_index]) {
int r = share->key_file[curr_index]->close(
share->key_file[curr_index],
0
);
assert(r==0);
share->key_file[curr_index] = NULL;
}
}
}
if (incremented_numDBs) {
rw_unlock(&share->num_DBs_lock);
}
}
int ha_tokudb::add_index(TABLE *table_arg, KEY *key_info, uint num_of_keys) {
TOKUDB_DBUG_ENTER("ha_tokudb::add_index");
DB_TXN* txn = NULL;
int error;
bool incremented_numDBs = false;
bool modified_DBs = false;
error = db_env->txn_begin(db_env, 0, &txn, 0);
if (error) { goto cleanup; }
error = tokudb_add_index(
table_arg,
key_info,
num_of_keys,
txn,
&incremented_numDBs,
&modified_DBs
);
if (error) { goto cleanup; }
cleanup:
if (error) {
restore_add_index(table_arg, num_of_keys, incremented_numDBs, modified_DBs);
abort_txn(txn);
}
else {
commit_txn(txn, 0);
}
TOKUDB_DBUG_RETURN(error);
}
int ha_tokudb::drop_indexes(TABLE *table_arg, uint *key_num, uint num_of_keys, DB_TXN* txn) {
TOKUDB_DBUG_ENTER("ha_tokudb::drop_indexes");
int error;
for (uint i = 0; i < num_of_keys; i++) {
uint curr_index = key_num[i];
......@@ -6944,31 +7029,6 @@ int ha_tokudb::prepare_drop_index(TABLE *table_arg, uint *key_num, uint num_of_k
}
cleanup:
if (txn) {
if (error) {
abort_txn(txn);
//
// reopen closed dictionaries
//
for (uint i = 0; i < num_of_keys; i++) {
int r;
uint curr_index = key_num[i];
if (share->key_file[curr_index] == NULL) {
r = open_secondary_dictionary(
&share->key_file[curr_index],
&table_share->key_info[curr_index],
share->table_name,
false, //
NULL
);
assert(!r);
}
}
}
else {
commit_txn(txn,0);
}
}
if (error == DB_LOCK_NOTGRANTED && ((tokudb_debug & TOKUDB_DEBUG_HIDE_DDL_LOCK_ERRORS) == 0)) {
sql_print_error("Could not drop indexes from table %s because \
another transaction has accessed the table. \
......@@ -6977,6 +7037,66 @@ To drop indexes, make sure no transactions touch the table.", share->table_name)
TOKUDB_DBUG_RETURN(error);
}
void ha_tokudb::restore_drop_indexes(TABLE *table_arg, uint *key_num, uint num_of_keys) {
//
// reopen closed dictionaries
//
for (uint i = 0; i < num_of_keys; i++) {
int r;
uint curr_index = key_num[i];
if (share->key_file[curr_index] == NULL) {
r = open_secondary_dictionary(
&share->key_file[curr_index],
&table_share->key_info[curr_index],
share->table_name,
false, //
NULL
);
assert(!r);
}
}
}
//
// Prepares to drop indexes to the table. For each value, i, in the array key_num,
// table->key_info[i] is a key that is to be dropped.
// ***********NOTE*******************
// Although prepare_drop_index is supposed to just get the DB's ready for removal,
// and not actually do the removal, we are doing it here and not in final_drop_index
// For the flags we expose in alter_table_flags, namely xxx_NO_WRITES, this is allowed
// Changes for "future-proofing" this so that it works when we have the equivalent flags
// that are not NO_WRITES are not worth it at the moments
// Parameters:
// [in] table_arg - table that is being modified, seems to be identical to this->table
// [in] key_num - array of indexes that specify which keys of the array table->key_info
// are to be dropped
// num_of_keys - size of array, key_num
// Returns:
// 0 on success, error otherwise
//
int ha_tokudb::prepare_drop_index(TABLE *table_arg, uint *key_num, uint num_of_keys) {
TOKUDB_DBUG_ENTER("ha_tokudb::prepare_drop_index");
int error;
DB_TXN* txn = NULL;
error = db_env->txn_begin(db_env, 0, &txn, 0);
if (error) { goto cleanup; }
error = drop_indexes(table_arg, key_num, num_of_keys, txn);
if (error) { goto cleanup; }
cleanup:
if (txn) {
if (error) {
abort_txn(txn);
restore_drop_indexes(table_arg, key_num, num_of_keys);
}
else {
commit_txn(txn,0);
}
}
TOKUDB_DBUG_RETURN(error);
}
// ***********NOTE*******************
// Although prepare_drop_index is supposed to just get the DB's ready for removal,
......@@ -7003,6 +7123,9 @@ void ha_tokudb::print_error(int error, myf errflag) {
if (error == DB_KEYEXIST) {
error = HA_ERR_FOUND_DUPP_KEY;
}
if (error == HA_ALTER_ERROR) {
error = HA_ERR_UNSUPPORTED;
}
handler::print_error(error, errflag);
}
......@@ -7284,6 +7407,1654 @@ void ha_tokudb::set_dup_value_for_pk(DBT* key) {
last_dup_key = primary_key;
}
inline u_int32_t get_null_bit_position(u_int32_t null_bit) {
u_int32_t retval = 0;
switch(null_bit) {
case (1):
retval = 0;
break;
case (2):
retval = 1;
break;
case (4):
retval = 2;
break;
case (8):
retval = 3;
break;
case (16):
retval = 4;
break;
case (32):
retval = 5;
break;
case (64):
retval = 6;
break;
case (128):
retval = 7;
break;
default:
assert(false);
}
return retval;
}
inline bool is_overall_null_position_set(uchar* data, u_int32_t pos) {
u_int32_t offset = pos/8;
uchar remainder = pos%8;
uchar null_bit = 1<<remainder;
return ((data[offset] & null_bit) != 0);
}
inline void set_overall_null_position(uchar* data, u_int32_t pos, bool is_null) {
u_int32_t offset = pos/8;
uchar remainder = pos%8;
uchar null_bit = 1<<remainder;
if (is_null) {
data[offset] |= null_bit;
}
else {
data[offset] &= ~null_bit;
}
}
inline u_int32_t get_overall_null_bit_position(TABLE* table, Field* field) {
u_int32_t offset = get_null_offset(table, field);
u_int32_t null_bit = field->null_bit;
return offset*8 + get_null_bit_position(null_bit);
}
bool are_null_bits_in_order(TABLE* table) {
u_int32_t curr_null_pos = 0;
bool first = true;
bool retval = true;
for (uint i = 0; i < table->s->fields; i++) {
Field* curr_field = table->field[i];
bool nullable = (curr_field->null_bit != 0);
if (nullable) {
u_int32_t pos = get_overall_null_bit_position(
table,
curr_field
);
if (!first && pos != curr_null_pos+1){
retval = false;
break;
}
first = false;
curr_null_pos = pos;
}
}
return retval;
}
u_int32_t get_first_null_bit_pos(TABLE* table) {
u_int32_t table_pos = 0;
for (uint i = 0; i < table->s->fields; i++) {
Field* curr_field = table->field[i];
bool nullable = (curr_field->null_bit != 0);
if (nullable) {
table_pos = get_overall_null_bit_position(
table,
curr_field
);
break;
}
}
return table_pos;
}
bool is_column_default_null(TABLE* src_table, u_int32_t field_index) {
Field* curr_field = src_table->field[field_index];
bool is_null_default = false;
bool nullable = curr_field->null_bit != 0;
if (nullable) {
u_int32_t null_bit_position = get_overall_null_bit_position(src_table, curr_field);
is_null_default = is_overall_null_position_set(
src_table->s->default_values,
null_bit_position
);
}
return is_null_default;
}
bool columns_have_default_null_blobs(
u_int32_t* changed_columns,
u_int32_t num_changed_columns,
TABLE* table
) {
bool retval = true;
for (u_int32_t i = 0; i < num_changed_columns; i++) {
Field* curr_field = table->field[changed_columns[i]];
TOKU_TYPE field_type = mysql_to_toku_type (curr_field);
if (field_type == toku_type_blob && !is_column_default_null(table,i)) {
retval = false;
break;
}
}
return retval;
}
bool tables_have_same_keys(TABLE* table, TABLE* altered_table, bool print_error) {
bool retval;
if (table->s->keys != altered_table->s->keys) {
if (print_error) {
sql_print_error("tables have different number of keys");
}
retval = false;
goto cleanup;
}
if (table->s->primary_key != altered_table->s->primary_key) {
if (print_error) {
sql_print_error(
"Tables have different primary keys, %d %d",
table->s->primary_key,
altered_table->s->primary_key
);
}
retval = false;
goto cleanup;
}
for (u_int32_t i=0; i < table->s->keys; i++) {
KEY* curr_orig_key = &table->key_info[i];
KEY* curr_altered_key = &altered_table->key_info[i];
if (strcmp(curr_orig_key->name, curr_altered_key->name)) {
if (print_error) {
sql_print_error(
"key %d has different name, %s %s",
i,
curr_orig_key->name,
curr_altered_key->name
);
}
retval = false;
goto cleanup;
}
if (((curr_orig_key->flags & HA_CLUSTERING) == 0) != ((curr_altered_key->flags & HA_CLUSTERING) == 0)) {
if (print_error) {
sql_print_error(
"keys disagree on if they are clustering, %d, %d",
curr_orig_key->key_parts,
curr_altered_key->key_parts
);
}
retval = false;
goto cleanup;
}
if (((curr_orig_key->flags & HA_NOSAME) == 0) != ((curr_altered_key->flags & HA_NOSAME) == 0)) {
if (print_error) {
sql_print_error(
"keys disagree on if they are unique, %d, %d",
curr_orig_key->key_parts,
curr_altered_key->key_parts
);
}
retval = false;
goto cleanup;
}
if (curr_orig_key->key_parts != curr_altered_key->key_parts) {
if (print_error) {
sql_print_error(
"keys have different number of parts, %d, %d",
curr_orig_key->key_parts,
curr_altered_key->key_parts
);
}
retval = false;
goto cleanup;
}
//
// now verify that each field in the key is the same
//
for (u_int32_t j = 0; j < curr_orig_key->key_parts; j++) {
KEY_PART_INFO* curr_orig_part = &curr_orig_key->key_part[j];
KEY_PART_INFO* curr_altered_part = &curr_altered_key->key_part[j];
Field* curr_orig_field = curr_orig_part->field;
Field* curr_altered_field = curr_altered_part->field;
if (curr_orig_part->length != curr_altered_part->length) {
if (print_error) {
sql_print_error(
"Key %s has different length at index %d",
curr_orig_key->name,
j
);
}
retval = false;
goto cleanup;
}
if (!are_two_fields_same(curr_orig_field,curr_altered_field)) {
if (print_error) {
sql_print_error(
"Key %s has different field at index %d",
curr_orig_key->name,
j
);
}
retval = false;
goto cleanup;
}
}
}
retval = true;
cleanup:
return retval;
}
void ha_tokudb::print_alter_info(
TABLE *altered_table,
HA_CREATE_INFO *create_info,
HA_ALTER_FLAGS *alter_flags,
uint table_changes
)
{
printf("***are keys of two tables same? %d\n", tables_have_same_keys(table,altered_table,false));
printf("***alter flags set ***\n");
for (uint i = 0; i < HA_MAX_ALTER_FLAGS; i++) {
if (alter_flags->is_set(i)) {
printf("flag: %d\n", i);
}
}
//
// everyone calculates data by doing some default_values - record[0], but I do not see why
// that is necessary
//
printf("******\n");
printf("***orig table***\n");
for (uint i = 0; i < table->s->fields; i++) {
//
// make sure to use table->field, and NOT table->s->field
//
Field* curr_field = table->field[i];
uint null_offset = get_null_offset(table, curr_field);
printf(
"name: %s, nullable: %d, null_offset: %d, is_null_field: %d, is_null %d, \n",
curr_field->field_name,
curr_field->null_bit,
null_offset,
(curr_field->null_ptr != NULL),
(curr_field->null_ptr != NULL) ? table->s->default_values[null_offset] & curr_field->null_bit : 0xffffffff
);
}
printf("******\n");
printf("***altered table***\n");
for (uint i = 0; i < altered_table->s->fields; i++) {
Field* curr_field = altered_table->field[i];
uint null_offset = get_null_offset(altered_table, curr_field);
printf(
"name: %s, nullable: %d, null_offset: %d, is_null_field: %d, is_null %d, \n",
curr_field->field_name,
curr_field->null_bit,
null_offset,
(curr_field->null_ptr != NULL),
(curr_field->null_ptr != NULL) ? altered_table->s->default_values[null_offset] & curr_field->null_bit : 0xffffffff
);
}
printf("******\n");
}
int find_changed_columns(
u_int32_t* changed_columns,
u_int32_t* num_changed_columns,
TABLE* smaller_table,
TABLE* bigger_table
)
{
uint curr_new_col_index = 0;
uint i = 0;
int retval;
u_int32_t curr_num_changed_columns=0;
assert(bigger_table->s->fields > smaller_table->s->fields);
for (i = 0; i < smaller_table->s->fields; i++, curr_new_col_index++) {
if (curr_new_col_index >= bigger_table->s->fields) {
sql_print_error("error in determining changed columns");
retval = 1;
goto cleanup;
}
Field* curr_field_in_new = bigger_table->field[curr_new_col_index];
Field* curr_field_in_orig = smaller_table->field[i];
while (!fields_have_same_name(curr_field_in_orig, curr_field_in_new)) {
if (curr_new_col_index >= bigger_table->s->fields) {
sql_print_error("error in determining changed columns");
retval = 1;
goto cleanup;
}
changed_columns[curr_num_changed_columns] = curr_new_col_index;
curr_num_changed_columns++;
curr_new_col_index++;
curr_field_in_new = bigger_table->field[curr_new_col_index];
}
// at this point, curr_field_in_orig and curr_field_in_new should be the same, let's verify
// make sure the two fields that have the same name are ok
if (!are_two_fields_same(curr_field_in_orig, curr_field_in_new)) {
sql_print_error(
"Two fields that were supposedly the same are not: \
%s in original, %s in new",
curr_field_in_orig->field_name,
curr_field_in_new->field_name
);
retval = 1;
goto cleanup;
}
}
for (i = curr_new_col_index; i < bigger_table->s->fields; i++) {
changed_columns[curr_num_changed_columns] = i;
curr_num_changed_columns++;
}
*num_changed_columns = curr_num_changed_columns;
retval = 0;
cleanup:
return retval;
}
int ha_tokudb::check_if_supported_alter(TABLE *altered_table,
HA_CREATE_INFO *create_info,
HA_ALTER_FLAGS *alter_flags,
uint table_changes)
{
TOKUDB_DBUG_ENTER("check_if_supported_alter");
int retval;
THD* thd = ha_thd();
bool keys_same = tables_have_same_keys(table,altered_table, false);
if (tokudb_debug & TOKUDB_DEBUG_ALTER_TABLE_INFO) {
print_alter_info(altered_table, create_info, alter_flags, table_changes);
}
bool has_added_columns = alter_flags->is_set(HA_ADD_COLUMN);
bool has_dropped_columns = alter_flags->is_set(HA_DROP_COLUMN);
bool has_indexing_changes = alter_flags->is_set(HA_DROP_INDEX) ||
alter_flags->is_set(HA_DROP_UNIQUE_INDEX) ||
alter_flags->is_set(HA_ADD_INDEX) ||
alter_flags->is_set(HA_ADD_UNIQUE_INDEX);
bool has_non_indexing_changes = false;
bool has_non_dropped_changes = false;
bool has_non_added_changes = false;
for (uint i = 0; i < HA_MAX_ALTER_FLAGS; i++) {
if (i == HA_DROP_INDEX ||
i == HA_DROP_UNIQUE_INDEX ||
i == HA_ADD_INDEX ||
i == HA_ADD_UNIQUE_INDEX)
{
continue;
}
if (alter_flags->is_set(i)) {
has_non_indexing_changes = true;
break;
}
}
for (uint i = 0; i < HA_MAX_ALTER_FLAGS; i++) {
if (i == HA_DROP_COLUMN) {
continue;
}
if (keys_same &&
(i == HA_ALTER_INDEX || i == HA_ALTER_UNIQUE_INDEX || i == HA_ALTER_PK_INDEX)) {
continue;
}
if (alter_flags->is_set(i)) {
has_non_dropped_changes = true;
break;
}
}
for (uint i = 0; i < HA_MAX_ALTER_FLAGS; i++) {
if (i == HA_ADD_COLUMN) {
continue;
}
if (keys_same &&
(i == HA_ALTER_INDEX || i == HA_ALTER_UNIQUE_INDEX || i == HA_ALTER_PK_INDEX)) {
continue;
}
if (alter_flags->is_set(i)) {
has_non_added_changes = true;
break;
}
}
if (tokudb_debug & TOKUDB_DEBUG_ALTER_TABLE_INFO) {
printf("has indexing changes %d, has non indexing changes %d\n", has_indexing_changes, has_non_indexing_changes);
}
if (table->s->tmp_table != NO_TMP_TABLE) {
retval = (get_disable_slow_alter(thd)) ? HA_ALTER_ERROR : HA_ALTER_NOT_SUPPORTED;
goto cleanup;
}
if (!(are_null_bits_in_order(table) &&
are_null_bits_in_order(altered_table)
)
)
{
sql_print_error("Problems parsing null bits of the original and altered table");
retval = (get_disable_slow_alter(thd)) ? HA_ALTER_ERROR : HA_ALTER_NOT_SUPPORTED;
goto cleanup;
}
if (has_added_columns && !has_non_added_changes) {
u_int32_t added_columns[altered_table->s->fields];
u_int32_t num_added_columns = 0;
int r = find_changed_columns(
added_columns,
&num_added_columns,
table,
altered_table
);
if (r) {
retval = (get_disable_slow_alter(thd)) ? HA_ALTER_ERROR : HA_ALTER_NOT_SUPPORTED;
goto cleanup;
}
if (!columns_have_default_null_blobs(
added_columns,
num_added_columns,
altered_table
))
{
sql_print_error("unexpectedly, an added column has a non-null default");
retval = HA_ALTER_ERROR;
goto cleanup;
}
if (tokudb_debug & TOKUDB_DEBUG_ALTER_TABLE_INFO) {
for (u_int32_t i = 0; i < num_added_columns; i++) {
u_int32_t curr_added_index = added_columns[i];
Field* curr_added_field = altered_table->field[curr_added_index];
printf(
"Added column: index %d, name %s\n",
curr_added_index,
curr_added_field->field_name
);
}
}
}
if (has_dropped_columns && !has_non_dropped_changes) {
u_int32_t dropped_columns[table->s->fields];
u_int32_t num_dropped_columns = 0;
int r = find_changed_columns(
dropped_columns,
&num_dropped_columns,
altered_table,
table
);
if (r) {
retval = (get_disable_slow_alter(thd)) ? HA_ALTER_ERROR : HA_ALTER_NOT_SUPPORTED;
goto cleanup;
}
if (tokudb_debug & TOKUDB_DEBUG_ALTER_TABLE_INFO) {
for (u_int32_t i = 0; i < num_dropped_columns; i++) {
u_int32_t curr_dropped_index = dropped_columns[i];
Field* curr_dropped_field = table->field[curr_dropped_index];
printf(
"Dropped column: index %d, name %s\n",
curr_dropped_index,
curr_dropped_field->field_name
);
}
}
}
if (has_indexing_changes && !has_non_indexing_changes) {
retval = HA_ALTER_SUPPORTED_WAIT_LOCK;
}
else if (has_dropped_columns && !has_non_dropped_changes) {
retval = HA_ALTER_SUPPORTED_WAIT_LOCK;
}
else if (has_added_columns && !has_non_added_changes) {
retval = HA_ALTER_SUPPORTED_WAIT_LOCK;
}
else {
retval = (get_disable_slow_alter(thd)) ? HA_ALTER_ERROR : HA_ALTER_NOT_SUPPORTED;
}
cleanup:
DBUG_RETURN(retval);
}
#define UP_COL_ADD_OR_DROP 0
#define COL_DROP 0xaa
#define COL_ADD 0xbb
#define COL_FIXED 0xcc
#define COL_VAR 0xdd
#define COL_BLOB 0xee
#define STATIC_ROW_MUTATOR_SIZE 1+8+2+8+8+8
/*
how much space do I need for the mutators?
static stuff first:
1 - UP_COL_ADD_OR_DROP
8 - old null, new null
2 - old num_offset, new num_offset
8 - old fixed_field size, new fixed_field_size
8 - old and new length of offsets
8 - old and new starting null bit position
TOTAL: 27
dynamic stuff:
4 - number of columns
for each column:
1 - add or drop
1 - is nullable
4 - if nullable, position
1 - if add, whether default is null or not
1 - if fixed, var, or not
for fixed, entire default
for var, 4 bytes length, then entire default
for blob, nothing
So, an upperbound is 4 + num_fields(12) + all default stuff
static blob stuff:
4 - num blobs
1 byte for each num blobs in old table
So, an upperbound is 4 + kc_info->num_blobs
dynamic blob stuff:
for each blob added:
1 - state if we are adding or dropping
4 - blob index
if add, 1 len bytes
at most, 4 0's
So, upperbound is num_blobs(1+4+1+4) = num_columns*10
*/
u_int32_t fill_static_row_mutator(
uchar* buf,
TABLE* orig_table,
TABLE* altered_table,
KEY_AND_COL_INFO* orig_kc_info,
KEY_AND_COL_INFO* altered_kc_info,
u_int32_t keynr
)
{
//
// start packing extra
//
uchar* pos = buf;
// says what the operation is
pos[0] = UP_COL_ADD_OR_DROP;
pos++;
//
// null byte information
//
memcpy(pos, &orig_table->s->null_bytes, sizeof(orig_table->s->null_bytes));
pos += sizeof(orig_table->s->null_bytes);
memcpy(pos, &altered_table->s->null_bytes, sizeof(orig_table->s->null_bytes));
pos += sizeof(altered_table->s->null_bytes);
//
// num_offset_bytes
//
assert(orig_kc_info->num_offset_bytes <= 2);
pos[0] = orig_kc_info->num_offset_bytes;
pos++;
assert(altered_kc_info->num_offset_bytes <= 2);
pos[0] = altered_kc_info->num_offset_bytes;
pos++;
//
// size of fixed fields
//
u_int32_t fixed_field_size = orig_kc_info->mcp_info[keynr].fixed_field_size;
memcpy(pos, &fixed_field_size, sizeof(fixed_field_size));
pos += sizeof(fixed_field_size);
fixed_field_size = altered_kc_info->mcp_info[keynr].fixed_field_size;
memcpy(pos, &fixed_field_size, sizeof(fixed_field_size));
pos += sizeof(fixed_field_size);
//
// length of offsets
//
u_int32_t len_of_offsets = orig_kc_info->mcp_info[keynr].len_of_offsets;
memcpy(pos, &len_of_offsets, sizeof(len_of_offsets));
pos += sizeof(len_of_offsets);
len_of_offsets = altered_kc_info->mcp_info[keynr].len_of_offsets;
memcpy(pos, &len_of_offsets, sizeof(len_of_offsets));
pos += sizeof(len_of_offsets);
u_int32_t orig_start_null_pos = get_first_null_bit_pos(orig_table);
memcpy(pos, &orig_start_null_pos, sizeof(orig_start_null_pos));
pos += sizeof(orig_start_null_pos);
u_int32_t altered_start_null_pos = get_first_null_bit_pos(altered_table);
memcpy(pos, &altered_start_null_pos, sizeof(altered_start_null_pos));
pos += sizeof(altered_start_null_pos);
assert((pos-buf) == STATIC_ROW_MUTATOR_SIZE);
return pos - buf;
}
u_int32_t fill_dynamic_row_mutator(
uchar* buf,
u_int32_t* columns,
u_int32_t num_columns,
TABLE* src_table,
KEY_AND_COL_INFO* src_kc_info,
u_int32_t keynr,
bool is_add,
bool* out_has_blobs
)
{
uchar* pos = buf;
bool has_blobs = false;
u_int32_t cols = num_columns;
memcpy(pos, &cols, sizeof(cols));
pos += sizeof(cols);
for (u_int32_t i = 0; i < num_columns; i++) {
u_int32_t curr_index = columns[i];
Field* curr_field = src_table->field[curr_index];
pos[0] = is_add ? COL_ADD : COL_DROP;
pos++;
//
// NULL bit information
//
bool is_null_default = false;
bool nullable = curr_field->null_bit != 0;
if (!nullable) {
pos[0] = 0;
pos++;
}
else {
pos[0] = 1;
pos++;
// write position of null byte that is to be removed
u_int32_t null_bit_position = get_overall_null_bit_position(src_table, curr_field);
memcpy(pos, &null_bit_position, sizeof(null_bit_position));
pos += sizeof(null_bit_position);
//
// if adding a column, write the value of the default null_bit
//
if (is_add) {
is_null_default = is_overall_null_position_set(
src_table->s->default_values,
null_bit_position
);
pos[0] = is_null_default ? 1 : 0;
pos++;
}
}
if (src_kc_info->field_lengths[curr_index] != 0) {
// we have a fixed field being dropped
// store the offset and the number of bytes
pos[0] = COL_FIXED;
pos++;
//store the offset
u_int32_t fixed_field_offset = src_kc_info->cp_info[keynr][curr_index].col_pack_val;
memcpy(pos, &fixed_field_offset, sizeof(fixed_field_offset));
pos += sizeof(fixed_field_offset);
//store the number of bytes
u_int32_t num_bytes = src_kc_info->field_lengths[curr_index];
memcpy(pos, &num_bytes, sizeof(num_bytes));
pos += sizeof(num_bytes);
if (is_add && !is_null_default) {
uint curr_field_offset = field_offset(curr_field, src_table);
memcpy(
pos,
src_table->s->default_values + curr_field_offset,
num_bytes
);
pos += num_bytes;
}
}
else if (src_kc_info->length_bytes[curr_index] != 0) {
pos[0] = COL_VAR;
pos++;
//store the index of the variable column
u_int32_t var_field_index = src_kc_info->cp_info[keynr][curr_index].col_pack_val;
memcpy(pos, &var_field_index, sizeof(var_field_index));
pos += sizeof(var_field_index);
if (is_add && !is_null_default) {
uint curr_field_offset = field_offset(curr_field, src_table);
u_int32_t len_bytes = src_kc_info->length_bytes[curr_index];
u_int32_t data_length = get_var_data_length(
src_table->s->default_values + curr_field_offset,
len_bytes
);
memcpy(pos, &data_length, sizeof(data_length));
pos += sizeof(data_length);
memcpy(
pos,
src_table->s->default_values + curr_field_offset + len_bytes,
data_length
);
pos += data_length;
}
}
else {
pos[0] = COL_BLOB;
pos++;
has_blobs = true;
}
}
*out_has_blobs = has_blobs;
return pos-buf;
}
u_int32_t fill_static_blob_row_mutator(
uchar* buf,
TABLE* src_table,
KEY_AND_COL_INFO* src_kc_info
)
{
uchar* pos = buf;
// copy number of blobs
memcpy(pos, &src_kc_info->num_blobs, sizeof(src_kc_info->num_blobs));
pos += sizeof(src_kc_info->num_blobs);
// copy length bytes for each blob
for (u_int32_t i = 0; i < src_kc_info->num_blobs; i++) {
u_int32_t curr_field_index = src_kc_info->blob_fields[i];
Field* field = src_table->field[curr_field_index];
u_int32_t len_bytes = field->row_pack_length();
assert(len_bytes <= 4);
pos[0] = len_bytes;
pos++;
}
return pos-buf;
}
u_int32_t fill_dynamic_blob_row_mutator(
uchar* buf,
u_int32_t* columns,
u_int32_t num_columns,
TABLE* src_table,
KEY_AND_COL_INFO* src_kc_info,
bool is_add
)
{
uchar* pos = buf;
for (u_int32_t i = 0; i < num_columns; i++) {
u_int32_t curr_field_index = columns[i];
Field* curr_field = src_table->field[curr_field_index];
if (src_kc_info->field_lengths[curr_field_index] == 0 &&
src_kc_info->length_bytes[curr_field_index]== 0
)
{
// find out which blob it is
u_int32_t blob_index = src_kc_info->num_blobs;
for (u_int32_t j = 0; j < src_kc_info->num_blobs; j++) {
if (curr_field_index == src_kc_info->blob_fields[j]) {
blob_index = j;
break;
}
}
// assert we found blob in list
assert(blob_index < src_kc_info->num_blobs);
pos[0] = is_add ? COL_ADD : COL_DROP;
pos++;
memcpy(pos, &blob_index, sizeof(blob_index));
pos += sizeof(blob_index);
if (is_add) {
bool is_null_default = is_column_default_null(
src_table,
curr_field_index
);
u_int32_t len_bytes = curr_field->row_pack_length();
assert(len_bytes <= 4);
pos[0] = len_bytes;
pos++;
if (is_null_default) {
// create a zero length blob field that can be directly copied in
bzero(pos,len_bytes);
pos += len_bytes;
}
else {
// in future, if is_null_default can be 0, we will have a default value placed here
// for now, in MySQL, we can only have blob fields that are null by default
// in check_if_supported_alter, we verify that all blob fields have null by default,
// so, we can assert this here.
assert(is_null_default);
}
}
}
else {
// not a blob, continue
continue;
}
}
return pos-buf;
}
// TODO: carefully review to make sure that the right information is used
// TODO: namely, when do we get stuff from share->kc_info and when we get
// TODO: it from altered_kc_info, and when is keynr associated with the right thing
u_int32_t ha_tokudb::fill_row_mutator(
uchar* buf,
u_int32_t* columns,
u_int32_t num_columns,
TABLE* altered_table,
KEY_AND_COL_INFO* altered_kc_info,
u_int32_t keynr,
bool is_add
)
{
if (tokudb_debug & TOKUDB_DEBUG_ALTER_TABLE_INFO) {
printf("*****some info:*************\n");
printf(
"old things: num_null_bytes %d, num_offset_bytes %d, fixed_field_size %d, fixed_field_size %d\n",
table->s->null_bytes,
share->kc_info.num_offset_bytes,
share->kc_info.mcp_info[keynr].fixed_field_size,
share->kc_info.mcp_info[keynr].len_of_offsets
);
printf(
"new things: num_null_bytes %d, num_offset_bytes %d, fixed_field_size %d, fixed_field_size %d\n",
altered_table->s->null_bytes,
altered_kc_info->num_offset_bytes,
altered_kc_info->mcp_info[keynr].fixed_field_size,
altered_kc_info->mcp_info[keynr].len_of_offsets
);
printf("****************************\n");
}
uchar* pos = buf;
bool has_blobs = false;
pos += fill_static_row_mutator(
pos,
table,
altered_table,
&share->kc_info,
altered_kc_info,
keynr
);
if (is_add) {
pos += fill_dynamic_row_mutator(
pos,
columns,
num_columns,
altered_table,
altered_kc_info,
keynr,
is_add,
&has_blobs
);
}
else {
pos += fill_dynamic_row_mutator(
pos,
columns,
num_columns,
table,
&share->kc_info,
keynr,
is_add,
&has_blobs
);
}
if (has_blobs) {
pos += fill_static_blob_row_mutator(
pos,
table,
&share->kc_info
);
if (is_add) {
pos += fill_dynamic_blob_row_mutator(
pos,
columns,
num_columns,
altered_table,
altered_kc_info,
is_add
);
}
else {
pos += fill_dynamic_blob_row_mutator(
pos,
columns,
num_columns,
table,
&share->kc_info,
is_add
);
}
}
return pos-buf;
}
int ha_tokudb::alter_table_phase2(
THD *thd,
TABLE *altered_table,
HA_CREATE_INFO *create_info,
HA_ALTER_INFO *alter_info,
HA_ALTER_FLAGS *alter_flags
)
{
TOKUDB_DBUG_ENTER("ha_tokudb::alter_table_phase2");
int error;
DB_TXN* txn = NULL;
bool incremented_numDBs = false;
bool modified_DBs = false;
bool has_dropped_columns = alter_flags->is_set(HA_DROP_COLUMN);
bool has_added_columns = alter_flags->is_set(HA_ADD_COLUMN);
KEY_AND_COL_INFO altered_kc_info;
bzero(&altered_kc_info, sizeof(altered_kc_info));
u_int32_t max_new_desc_size = 0;
uchar* row_desc_buff = NULL;
uchar* column_extra = NULL;
bool dropping_indexes = alter_info->index_drop_count > 0 && !tables_have_same_keys(table,altered_table,false);
bool adding_indexes = alter_info->index_add_count > 0 && !tables_have_same_keys(table,altered_table,false);
tokudb_trx_data* trx = (tokudb_trx_data *) thd_data_get(thd, tokudb_hton->slot);
is_fast_alter_running = true;
if (!trx ||
(trx->all != NULL) ||
(trx->sp_level != NULL) ||
(trx->stmt == NULL) ||
(trx->sub_sp_level != trx->stmt)
)
{
error = HA_ERR_UNSUPPORTED;
goto cleanup;
}
txn = trx->stmt;
error = allocate_key_and_col_info(altered_table->s, &altered_kc_info);
if (error) { goto cleanup; }
max_new_desc_size = get_max_desc_size(&altered_kc_info, altered_table);
row_desc_buff = (uchar *)my_malloc(max_new_desc_size, MYF(MY_WME));
if (row_desc_buff == NULL){ error = ENOMEM; goto cleanup;}
// drop indexes
if (dropping_indexes) {
error = drop_indexes(table, alter_info->index_drop_buffer, alter_info->index_drop_count, txn);
if (error) { goto cleanup; }
}
// add indexes
if (adding_indexes) {
KEY *key_info;
KEY *key;
uint *idx_p;
uint *idx_end_p;
KEY_PART_INFO *key_part;
KEY_PART_INFO *part_end;
/* The add_index() method takes an array of KEY structs. */
key_info= (KEY*) thd->alloc(sizeof(KEY) * alter_info->index_add_count);
key= key_info;
for (idx_p= alter_info->index_add_buffer, idx_end_p= idx_p + alter_info->index_add_count;
idx_p < idx_end_p;
idx_p++, key++)
{
/* Copy the KEY struct. */
*key= alter_info->key_info_buffer[*idx_p];
/* Fix the key parts. */
part_end= key->key_part + key->key_parts;
for (key_part= key->key_part; key_part < part_end; key_part++)
key_part->field = table->field[key_part->fieldnr];
}
error = tokudb_add_index(
table,
key_info,
alter_info->index_add_count,
txn,
&incremented_numDBs,
&modified_DBs
);
if (error) {
// hack for now, in case of duplicate key error,
// because at the moment we cannot display the right key
// information to the user, so that he knows potentially what went
// wrong.
last_dup_key = MAX_KEY;
goto cleanup;
}
}
if (has_dropped_columns || has_added_columns) {
DBT column_dbt;
bzero(&column_dbt, sizeof(DBT));
u_int32_t max_column_extra_size;
u_int32_t num_column_extra;
u_int32_t columns[table->s->fields + altered_table->s->fields]; // set size such that we know it is big enough for both cases
u_int32_t num_columns = 0;
u_int32_t curr_num_DBs = table->s->keys + test(hidden_primary_key);
memset(columns, 0, sizeof(columns));
if (has_added_columns && has_dropped_columns) {
error = HA_ERR_UNSUPPORTED;
goto cleanup;
}
if (!tables_have_same_keys(table, altered_table, true)) {
error = HA_ERR_UNSUPPORTED;
goto cleanup;
}
error = initialize_key_and_col_info(
altered_table->s,
altered_table,
&altered_kc_info,
hidden_primary_key,
primary_key
);
if (error) { goto cleanup; }
// generate the array of columns
if (has_dropped_columns) {
find_changed_columns(
columns,
&num_columns,
altered_table,
table
);
}
if (has_added_columns) {
find_changed_columns(
columns,
&num_columns,
table,
altered_table
);
}
max_column_extra_size =
STATIC_ROW_MUTATOR_SIZE + //max static row_mutator
4 + num_columns*(1+1+4+1+1+4) + altered_table->s->reclength + // max dynamic row_mutator
(4 + share->kc_info.num_blobs) + // max static blob size
(num_columns*(1+4+1+4)); // max dynamic blob size
column_extra = (uchar *)my_malloc(max_column_extra_size, MYF(MY_WME));
if (column_extra == NULL) { error = ENOMEM; goto cleanup; }
for (u_int32_t i = 0; i < curr_num_DBs; i++) {
DBT row_descriptor;
bzero(&row_descriptor, sizeof(row_descriptor));
KEY* prim_key = (hidden_primary_key) ? NULL : &altered_table->s->key_info[primary_key];
KEY* key_info = &altered_table->key_info[i];
if (i == primary_key) {
row_descriptor.size = create_main_key_descriptor(
row_desc_buff,
prim_key,
hidden_primary_key,
primary_key,
altered_table,
&altered_kc_info
);
row_descriptor.data = row_desc_buff;
}
else {
row_descriptor.size = create_secondary_key_descriptor(
row_desc_buff,
key_info,
prim_key,
hidden_primary_key,
altered_table,
primary_key,
i,
&altered_kc_info
);
row_descriptor.data = row_desc_buff;
}
error = share->key_file[i]->change_descriptor(
share->key_file[i],
txn,
&row_descriptor,
0
);
if (error) { goto cleanup; }
if (i == primary_key || table_share->key_info[i].flags & HA_CLUSTERING) {
num_column_extra = fill_row_mutator(
column_extra,
columns,
num_columns,
altered_table,
&altered_kc_info,
i,
has_added_columns // true if adding columns, otherwise is a drop
);
column_dbt.data = column_extra;
column_dbt.size = num_column_extra;
DBUG_ASSERT(num_column_extra <= max_column_extra_size);
error = share->key_file[i]->update_broadcast(
share->key_file[i],
txn,
&column_dbt,
DB_IS_RESETTING_OP
);
if (error) { goto cleanup; }
}
}
}
if (thd->killed) {
error = ER_ABORTING_CONNECTION;
goto cleanup;
}
error = 0;
cleanup:
free_key_and_col_info(&altered_kc_info);
my_free(row_desc_buff, MYF(MY_ALLOW_ZERO_PTR));
my_free(column_extra, MYF(MY_ALLOW_ZERO_PTR));
if (txn) {
if (error) {
if (adding_indexes) {
restore_add_index(table, alter_info->index_add_count, incremented_numDBs, modified_DBs);
}
abort_txn(txn);
trx->stmt = NULL;
trx->sub_sp_level = NULL;
if (dropping_indexes) {
restore_drop_indexes(table, alter_info->index_drop_buffer, alter_info->index_drop_count);
}
}
}
TOKUDB_DBUG_RETURN(error);
}
inline void copy_null_bits(
u_int32_t start_old_pos,
u_int32_t start_new_pos,
u_int32_t num_bits,
uchar* old_null_bytes,
uchar* new_null_bytes
)
{
for (u_int32_t i = 0; i < num_bits; i++) {
u_int32_t curr_old_pos = i + start_old_pos;
u_int32_t curr_new_pos = i + start_new_pos;
// copy over old null bytes
if (is_overall_null_position_set(old_null_bytes,curr_old_pos)) {
set_overall_null_position(new_null_bytes,curr_new_pos,true);
}
else {
set_overall_null_position(new_null_bytes,curr_new_pos,false);
}
}
}
inline void copy_var_fields(
u_int32_t start_old_num_var_field, //index of var fields that we should start writing
u_int32_t num_var_fields, // number of var fields to copy
uchar* old_var_field_offset_ptr, //static ptr to where offset bytes begin in old row
uchar old_num_offset_bytes, //number of offset bytes used in old row
uchar* start_new_var_field_data_ptr, // where the new var data should be written
uchar* start_new_var_field_offset_ptr, // where the new var offsets should be written
uchar* new_var_field_data_ptr, // pointer to beginning of var fields in new row
uchar* old_var_field_data_ptr, // pointer to beginning of var fields in old row
u_int32_t new_num_offset_bytes, // number of offset bytes used in new row
u_int32_t* num_data_bytes_written,
u_int32_t* num_offset_bytes_written
)
{
uchar* curr_new_var_field_data_ptr = start_new_var_field_data_ptr;
uchar* curr_new_var_field_offset_ptr = start_new_var_field_offset_ptr;
for (u_int32_t i = 0; i < num_var_fields; i++) {
u_int32_t field_len;
u_int32_t start_read_offset;
u_int32_t curr_old = i + start_old_num_var_field;
uchar* data_to_copy = NULL;
// get the length and pointer to data that needs to be copied
get_var_field_info(
&field_len,
&start_read_offset,
curr_old,
old_var_field_offset_ptr,
old_num_offset_bytes
);
data_to_copy = old_var_field_data_ptr + start_read_offset;
// now need to copy field_len bytes starting from data_to_copy
curr_new_var_field_data_ptr = write_var_field(
curr_new_var_field_offset_ptr,
curr_new_var_field_data_ptr,
new_var_field_data_ptr,
data_to_copy,
field_len,
new_num_offset_bytes
);
curr_new_var_field_offset_ptr += new_num_offset_bytes;
}
*num_data_bytes_written = (u_int32_t)(curr_new_var_field_data_ptr - start_new_var_field_data_ptr);
*num_offset_bytes_written = (u_int32_t)(curr_new_var_field_offset_ptr - start_new_var_field_offset_ptr);
}
inline u_int32_t copy_toku_blob(uchar* to_ptr, uchar* from_ptr, u_int32_t len_bytes, bool skip) {
u_int32_t length = 0;
if (!skip) {
memcpy(to_ptr, from_ptr, len_bytes);
}
length = get_blob_field_len(from_ptr,len_bytes);
if (!skip) {
memcpy(to_ptr + len_bytes, from_ptr + len_bytes, length);
}
return (length + len_bytes);
}
int tokudb_update_fun(
DB* db,
const DBT *key,
const DBT *old_val,
const DBT *extra,
void (*set_val)(const DBT *new_val, void *set_extra),
void *set_extra
)
{
u_int32_t max_num_bytes;
u_int32_t num_columns;
DBT new_val;
u_int32_t num_bytes_left;
u_int32_t num_var_fields_to_copy;
u_int32_t num_data_bytes_written = 0;
u_int32_t num_offset_bytes_written = 0;
int error;
bzero(&new_val, sizeof(DBT));
uchar operation;
uchar* new_val_data = NULL;
uchar* extra_pos = NULL;
uchar* extra_pos_start = NULL;
//
// info for pointers into rows
//
u_int32_t old_num_null_bytes;
u_int32_t new_num_null_bytes;
uchar old_num_offset_bytes;
uchar new_num_offset_bytes;
u_int32_t old_fixed_field_size;
u_int32_t new_fixed_field_size;
u_int32_t old_len_of_offsets;
u_int32_t new_len_of_offsets;
uchar* old_fixed_field_ptr = NULL;
uchar* new_fixed_field_ptr = NULL;
u_int32_t curr_old_fixed_offset;
u_int32_t curr_new_fixed_offset;
uchar* old_null_bytes = NULL;
uchar* new_null_bytes = NULL;
u_int32_t curr_old_null_pos;
u_int32_t curr_new_null_pos;
u_int32_t old_null_bits_left;
u_int32_t new_null_bits_left;
u_int32_t overall_null_bits_left;
u_int32_t old_num_var_fields;
u_int32_t new_num_var_fields;
u_int32_t curr_old_num_var_field;
u_int32_t curr_new_num_var_field;
uchar* old_var_field_offset_ptr = NULL;
uchar* new_var_field_offset_ptr = NULL;
uchar* curr_new_var_field_offset_ptr = NULL;
uchar* old_var_field_data_ptr = NULL;
uchar* new_var_field_data_ptr = NULL;
uchar* curr_new_var_field_data_ptr = NULL;
u_int32_t start_blob_offset;
uchar* start_blob_ptr;
u_int32_t num_blob_bytes;
// came across a delete, nothing to update
if (old_val == NULL) {
error = 0;
goto cleanup;
}
extra_pos_start = (uchar *)extra->data;
extra_pos = (uchar *)extra->data;
operation = extra_pos[0];
extra_pos++;
assert(operation == UP_COL_ADD_OR_DROP);
memcpy(&old_num_null_bytes, extra_pos, sizeof(u_int32_t));
extra_pos += sizeof(u_int32_t);
memcpy(&new_num_null_bytes, extra_pos, sizeof(u_int32_t));
extra_pos += sizeof(u_int32_t);
old_num_offset_bytes = extra_pos[0];
extra_pos++;
new_num_offset_bytes = extra_pos[0];
extra_pos++;
memcpy(&old_fixed_field_size, extra_pos, sizeof(u_int32_t));
extra_pos += sizeof(u_int32_t);
memcpy(&new_fixed_field_size, extra_pos, sizeof(u_int32_t));
extra_pos += sizeof(u_int32_t);
memcpy(&old_len_of_offsets, extra_pos, sizeof(u_int32_t));
extra_pos += sizeof(u_int32_t);
memcpy(&new_len_of_offsets, extra_pos, sizeof(u_int32_t));
extra_pos += sizeof(u_int32_t);
max_num_bytes = old_val->size + extra->size + new_len_of_offsets + new_fixed_field_size;
new_val_data = (uchar *)my_malloc(
max_num_bytes,
MYF(MY_FAE)
);
if (new_val_data == NULL) { goto cleanup; }
old_fixed_field_ptr = (uchar *) old_val->data;
old_fixed_field_ptr += old_num_null_bytes;
new_fixed_field_ptr = new_val_data + new_num_null_bytes;
curr_old_fixed_offset = 0;
curr_new_fixed_offset = 0;
old_num_var_fields = old_len_of_offsets/old_num_offset_bytes;
new_num_var_fields = new_len_of_offsets/new_num_offset_bytes;
// following fields will change as we write the variable data
old_var_field_offset_ptr = old_fixed_field_ptr + old_fixed_field_size;
new_var_field_offset_ptr = new_fixed_field_ptr + new_fixed_field_size;
old_var_field_data_ptr = old_var_field_offset_ptr + old_len_of_offsets;
new_var_field_data_ptr = new_var_field_offset_ptr + new_len_of_offsets;
curr_new_var_field_offset_ptr = new_var_field_offset_ptr;
curr_new_var_field_data_ptr = new_var_field_data_ptr;
curr_old_num_var_field = 0;
curr_new_num_var_field = 0;
old_null_bytes = (uchar *)old_val->data;
new_null_bytes = new_val_data;
memcpy(&curr_old_null_pos, extra_pos, sizeof(u_int32_t));
extra_pos += sizeof(u_int32_t);
memcpy(&curr_new_null_pos, extra_pos, sizeof(u_int32_t));
extra_pos += sizeof(u_int32_t);
memcpy(&num_columns, extra_pos, sizeof(num_columns));
extra_pos += sizeof(num_columns);
//
// now go through and apply the change into new_val_data
//
for (u_int32_t i = 0; i < num_columns; i++) {
uchar op_type = extra_pos[0];
bool is_null_default = false;
extra_pos++;
assert(op_type == COL_DROP || op_type == COL_ADD);
bool nullable = (extra_pos[0] != 0);
extra_pos++;
if (nullable) {
u_int32_t null_bit_position;
memcpy(&null_bit_position, extra_pos, sizeof(u_int32_t));
extra_pos += sizeof(u_int32_t);
u_int32_t num_bits;
if (op_type == COL_DROP) {
assert(curr_old_null_pos <= null_bit_position);
num_bits = null_bit_position - curr_old_null_pos;
}
else {
assert(curr_new_null_pos <= null_bit_position);
num_bits = null_bit_position - curr_new_null_pos;
}
copy_null_bits(
curr_old_null_pos,
curr_new_null_pos,
num_bits,
old_null_bytes,
new_null_bytes
);
// update the positions
curr_new_null_pos += num_bits;
curr_old_null_pos += num_bits;
if (op_type == COL_DROP) {
curr_old_null_pos++; // account for dropped column
}
else {
is_null_default = (extra_pos[0] != 0);
extra_pos++;
set_overall_null_position(
new_null_bytes,
null_bit_position,
is_null_default
);
curr_new_null_pos++; //account for added column
}
}
uchar col_type = extra_pos[0];
extra_pos++;
if (col_type == COL_FIXED) {
u_int32_t col_offset;
u_int32_t col_size;
u_int32_t num_bytes_to_copy;
memcpy(&col_offset, extra_pos, sizeof(u_int32_t));
extra_pos += sizeof(u_int32_t);
memcpy(&col_size, extra_pos, sizeof(u_int32_t));
extra_pos += sizeof(u_int32_t);
if (op_type == COL_DROP) {
num_bytes_to_copy = col_offset - curr_old_fixed_offset;
}
else {
num_bytes_to_copy = col_offset - curr_new_fixed_offset;
}
memcpy(
new_fixed_field_ptr + curr_new_fixed_offset,
old_fixed_field_ptr + curr_old_fixed_offset,
num_bytes_to_copy
);
curr_old_fixed_offset += num_bytes_to_copy;
curr_new_fixed_offset += num_bytes_to_copy;
if (op_type == COL_DROP) {
// move old_fixed_offset val to skip OVER column that is being dropped
curr_old_fixed_offset += col_size;
}
else {
if (is_null_default) {
// copy zeroes
bzero(new_fixed_field_ptr + curr_new_fixed_offset, col_size);
}
else {
// copy data from extra_pos into new row
memcpy(
new_fixed_field_ptr + curr_new_fixed_offset,
extra_pos,
col_size
);
extra_pos += col_size;
}
curr_new_fixed_offset += col_size;
}
}
else if (col_type == COL_VAR) {
u_int32_t var_col_index;
memcpy(&var_col_index, extra_pos, sizeof(u_int32_t));
extra_pos += sizeof(u_int32_t);
if (op_type == COL_DROP) {
num_var_fields_to_copy = var_col_index - curr_old_num_var_field;
}
else {
num_var_fields_to_copy = var_col_index - curr_new_num_var_field;
}
copy_var_fields(
curr_old_num_var_field,
num_var_fields_to_copy,
old_var_field_offset_ptr,
old_num_offset_bytes,
curr_new_var_field_data_ptr,
curr_new_var_field_offset_ptr,
new_var_field_data_ptr, // pointer to beginning of var fields in new row
old_var_field_data_ptr, // pointer to beginning of var fields in old row
new_num_offset_bytes, // number of offset bytes used in new row
&num_data_bytes_written,
&num_offset_bytes_written
);
curr_new_var_field_data_ptr += num_data_bytes_written;
curr_new_var_field_offset_ptr += num_offset_bytes_written;
curr_new_num_var_field += num_var_fields_to_copy;
curr_old_num_var_field += num_var_fields_to_copy;
if (op_type == COL_DROP) {
curr_old_num_var_field++; // skip over dropped field
}
else {
if (is_null_default) {
curr_new_var_field_data_ptr = write_var_field(
curr_new_var_field_offset_ptr,
curr_new_var_field_data_ptr,
new_var_field_data_ptr,
NULL, //copying no data
0, //copying 0 bytes
new_num_offset_bytes
);
curr_new_var_field_offset_ptr += new_num_offset_bytes;
}
else {
u_int32_t data_length;
memcpy(&data_length, extra_pos, sizeof(data_length));
extra_pos += sizeof(data_length);
curr_new_var_field_data_ptr = write_var_field(
curr_new_var_field_offset_ptr,
curr_new_var_field_data_ptr,
new_var_field_data_ptr,
extra_pos, //copying data from mutator
data_length, //copying data_length bytes
new_num_offset_bytes
);
extra_pos += data_length;
curr_new_var_field_offset_ptr += new_num_offset_bytes;
}
curr_new_num_var_field++; //account for added column
}
}
else if (col_type == COL_BLOB) {
// handle blob data later
continue;
}
else {
assert(false);
}
}
// finish copying the null stuff
old_null_bits_left = 8*old_num_null_bytes - curr_old_null_pos;
new_null_bits_left = 8*new_num_null_bytes - curr_new_null_pos;
overall_null_bits_left = old_null_bits_left;
set_if_smaller(overall_null_bits_left, new_null_bits_left);
copy_null_bits(
curr_old_null_pos,
curr_new_null_pos,
overall_null_bits_left,
old_null_bytes,
new_null_bytes
);
// finish copying fixed field stuff
num_bytes_left = old_fixed_field_size - curr_old_fixed_offset;
memcpy(
new_fixed_field_ptr + curr_new_fixed_offset,
old_fixed_field_ptr + curr_old_fixed_offset,
num_bytes_left
);
curr_old_fixed_offset += num_bytes_left;
curr_new_fixed_offset += num_bytes_left;
// sanity check
assert(curr_new_fixed_offset == new_fixed_field_size);
// finish copying var field stuff
num_var_fields_to_copy = old_num_var_fields - curr_old_num_var_field;
copy_var_fields(
curr_old_num_var_field,
num_var_fields_to_copy,
old_var_field_offset_ptr,
old_num_offset_bytes,
curr_new_var_field_data_ptr,
curr_new_var_field_offset_ptr,
new_var_field_data_ptr, // pointer to beginning of var fields in new row
old_var_field_data_ptr, // pointer to beginning of var fields in old row
new_num_offset_bytes, // number of offset bytes used in new row
&num_data_bytes_written,
&num_offset_bytes_written
);
curr_new_var_field_offset_ptr += num_offset_bytes_written;
curr_new_var_field_data_ptr += num_data_bytes_written;
// sanity check
assert(curr_new_var_field_offset_ptr == new_var_field_data_ptr);
// start handling blobs
get_blob_field_info(
&start_blob_offset,
old_len_of_offsets,
old_var_field_data_ptr,
old_num_offset_bytes
);
start_blob_ptr = old_var_field_data_ptr + start_blob_offset;
// if nothing else in extra, then there are no blobs to add or drop, so can copy blobs straight
if ((extra_pos - extra_pos_start) == extra->size) {
num_blob_bytes = old_val->size - (start_blob_ptr - old_null_bytes);
memcpy(curr_new_var_field_data_ptr, start_blob_ptr, num_blob_bytes);
curr_new_var_field_data_ptr += num_blob_bytes;
}
// else, there is blob information to process
else {
uchar* len_bytes = NULL;
u_int32_t curr_old_blob = 0;
u_int32_t curr_new_blob = 0;
u_int32_t num_old_blobs = 0;
uchar* curr_old_blob_ptr = start_blob_ptr;
memcpy(&num_old_blobs, extra_pos, sizeof(num_old_blobs));
extra_pos += sizeof(num_old_blobs);
len_bytes = extra_pos;
extra_pos += num_old_blobs;
// copy over blob fields one by one
while ((extra_pos - extra_pos_start) < extra->size) {
uchar op_type = extra_pos[0];
extra_pos++;
u_int32_t num_blobs_to_copy = 0;
u_int32_t blob_index;
memcpy(&blob_index, extra_pos, sizeof(blob_index));
extra_pos += sizeof(blob_index);
assert (op_type == COL_DROP || op_type == COL_ADD);
if (op_type == COL_DROP) {
num_blobs_to_copy = blob_index - curr_old_blob;
}
else {
num_blobs_to_copy = blob_index - curr_new_blob;
}
for (u_int32_t i = 0; i < num_blobs_to_copy; i++) {
u_int32_t num_bytes_written = copy_toku_blob(
curr_new_var_field_data_ptr,
curr_old_blob_ptr,
len_bytes[curr_old_blob + i],
false
);
curr_old_blob_ptr += num_bytes_written;
curr_new_var_field_data_ptr += num_bytes_written;
}
curr_old_blob += num_blobs_to_copy;
curr_new_blob += num_blobs_to_copy;
if (op_type == COL_DROP) {
// skip over blob in row
u_int32_t num_bytes = copy_toku_blob(
NULL,
curr_old_blob_ptr,
len_bytes[curr_old_blob],
true
);
curr_old_blob++;
curr_old_blob_ptr += num_bytes;
}
else {
// copy new data
u_int32_t new_len_bytes = extra_pos[0];
extra_pos++;
u_int32_t num_bytes = copy_toku_blob(
curr_new_var_field_data_ptr,
extra_pos,
new_len_bytes,
false
);
curr_new_blob++;
curr_new_var_field_data_ptr += num_bytes;
extra_pos += num_bytes;
}
}
num_blob_bytes = old_val->size - (curr_old_blob_ptr - old_null_bytes);
memcpy(curr_new_var_field_data_ptr, curr_old_blob_ptr, num_blob_bytes);
curr_new_var_field_data_ptr += num_blob_bytes;
}
new_val.data = new_val_data;
new_val.size = curr_new_var_field_data_ptr - new_val_data;
set_val(&new_val, set_extra);
error = 0;
cleanup:
my_free(new_val_data, MYF(MY_ALLOW_ZERO_PTR));
return error;
}
struct check_context {
THD *thd;
};
......
......@@ -15,6 +15,7 @@
class ha_tokudb;
typedef struct loader_context {
THD* thd;
char write_status_msg[200];
......@@ -129,6 +130,14 @@ int generate_row_for_put(
const DBT *src_key,
const DBT *src_val
);
int tokudb_update_fun(
DB* db,
const DBT *key,
const DBT *old_val,
const DBT *extra,
void (*set_val)(const DBT *new_val, void *set_extra),
void *set_extra
);
class ha_tokudb : public handler {
......@@ -221,7 +230,7 @@ class ha_tokudb : public handler {
// transaction used by ha_tokudb's cursor
//
DB_TXN *transaction;
bool is_fast_alter_running;
//
// instance of cursor being used for init_xxx and rnd_xxx functions
//
......@@ -363,6 +372,15 @@ class ha_tokudb : public handler {
int insert_row_to_main_dictionary(uchar* record, DBT* pk_key, DBT* pk_val, DB_TXN* txn);
int insert_rows_to_dictionaries_mult(DBT* pk_key, DBT* pk_val, DB_TXN* txn, THD* thd);
void test_row_packing(uchar* record, DBT* pk_key, DBT* pk_val);
u_int32_t fill_row_mutator(
uchar* buf,
u_int32_t* dropped_columns,
u_int32_t num_dropped_columns,
TABLE* altered_table,
KEY_AND_COL_INFO* altered_kc_info,
u_int32_t keynr,
bool is_add
);
public:
......@@ -497,9 +515,50 @@ class ha_tokudb : public handler {
bool check_if_incompatible_data(HA_CREATE_INFO * info, uint table_changes);
int add_index(TABLE *table_arg, KEY *key_info, uint num_of_keys);
int tokudb_add_index(
TABLE *table_arg,
KEY *key_info,
uint num_of_keys,
DB_TXN* txn,
bool* inc_num_DBs,
bool* modified_DB
);
void restore_add_index(TABLE* table_arg, uint num_of_keys, bool incremented_numDBs, bool modified_DBs);
int drop_indexes(TABLE *table_arg, uint *key_num, uint num_of_keys, DB_TXN* txn);
int prepare_drop_index(TABLE *table_arg, uint *key_num, uint num_of_keys);
void restore_drop_indexes(TABLE *table_arg, uint *key_num, uint num_of_keys);
int final_drop_index(TABLE *table_arg);
void print_alter_info(
TABLE *altered_table,
HA_CREATE_INFO *create_info,
HA_ALTER_FLAGS *alter_flags,
uint table_changes
);
int check_if_supported_alter(TABLE *altered_table,
HA_CREATE_INFO *create_info,
HA_ALTER_FLAGS *alter_flags,
uint table_changes
);
int alter_table_phase1(THD *thd,
TABLE *altered_table,
HA_CREATE_INFO *create_info,
HA_ALTER_INFO *alter_info,
HA_ALTER_FLAGS *alter_flags)
{
return 0;
}
int alter_table_phase2(THD *thd,
TABLE *altered_table,
HA_CREATE_INFO *create_info,
HA_ALTER_INFO *alter_info,
HA_ALTER_FLAGS *alter_flags);
int alter_table_phase3(THD *thd, TABLE *table)
{
return 0;
}
// delete all rows from the table
// effect: all dictionaries, including the main and indexes, should be empty
int discard_or_import_tablespace(my_bool discard);
......
......@@ -10,12 +10,12 @@ extern "C" {
#error "WORDS_BIGENDIAN not supported"
#endif
void get_var_field_info(
u_int32_t* field_len,
u_int32_t* start_offset,
u_int32_t var_field_index,
const uchar* var_field_offset_ptr,
u_int32_t num_offset_bytes
inline void get_var_field_info(
u_int32_t* field_len, // output: length of field
u_int32_t* start_offset, // output, length of offset where data starts
u_int32_t var_field_index, //input, index of var field we want info on
const uchar* var_field_offset_ptr, //input, pointer to where offset information for all var fields begins
u_int32_t num_offset_bytes //input, number of bytes used to store offsets starting at var_field_offset_ptr
)
{
u_int32_t data_start_offset = 0;
......@@ -2075,11 +2075,11 @@ u_int32_t pack_clustering_val_from_desc(
//
null_bytes_src_ptr = (uchar *)pk_val->data;
fixed_src_ptr = null_bytes_src_ptr + num_null_bytes;
var_src_offset_ptr = fixed_src_ptr + src_mcp_info.var_len_offset;
var_src_offset_ptr = fixed_src_ptr + src_mcp_info.fixed_field_size;
var_src_data_ptr = var_src_offset_ptr + src_mcp_info.len_of_offsets;
fixed_dest_ptr = buf + num_null_bytes;
var_dest_offset_ptr = fixed_dest_ptr + dest_mcp_info.var_len_offset;
var_dest_offset_ptr = fixed_dest_ptr + dest_mcp_info.fixed_field_size;
var_dest_data_ptr = var_dest_offset_ptr + dest_mcp_info.len_of_offsets;
orig_var_dest_data_ptr = var_dest_data_ptr;
......@@ -2585,7 +2585,7 @@ u_int32_t pack_key_from_desc(
}
null_bytes_ptr = (uchar *)pk_val->data;
fixed_field_ptr = null_bytes_ptr + num_null_bytes;
var_field_offset_ptr = fixed_field_ptr + mcp_info.var_len_offset;
var_field_offset_ptr = fixed_field_ptr + mcp_info.fixed_field_size;
var_field_data_ptr = var_field_offset_ptr + mcp_info.len_of_offsets;
while ( (u_int32_t)(desc_pos - (uchar *)row_desc) < row_desc_size) {
uchar col_fix_val;
......@@ -2852,4 +2852,149 @@ u_int32_t pack_key_from_desc(
return (u_int32_t)(packed_key_pos - buf); //
}
bool fields_have_same_name(
Field* a,
Field* b
)
{
return strcmp(a->field_name, b->field_name) == 0;
}
bool are_two_fields_same(
Field* a,
Field* b
)
{
bool retval = true;
enum_field_types a_mysql_type = a->real_type();
enum_field_types b_mysql_type = b->real_type();
// make sure have same names
if (strcmp(a->field_name, b->field_name) != 0) {
retval = false;
goto cleanup;
}
// make sure have same types
if (a_mysql_type != b_mysql_type) {
retval = false;
goto cleanup;
}
// make sure that either both are nullable, or both not nullable
if ((a->null_bit && !b->null_bit) || (!a->null_bit && b->null_bit)) {
retval = false;
goto cleanup;
}
switch (a_mysql_type) {
case MYSQL_TYPE_LONG:
case MYSQL_TYPE_LONGLONG:
case MYSQL_TYPE_TINY:
case MYSQL_TYPE_SHORT:
case MYSQL_TYPE_INT24:
case MYSQL_TYPE_DATE:
case MYSQL_TYPE_DATETIME:
case MYSQL_TYPE_YEAR:
case MYSQL_TYPE_NEWDATE:
case MYSQL_TYPE_TIME:
case MYSQL_TYPE_TIMESTAMP:
case MYSQL_TYPE_ENUM:
case MYSQL_TYPE_SET:
case MYSQL_TYPE_DOUBLE:
case MYSQL_TYPE_FLOAT:
case MYSQL_TYPE_NEWDECIMAL:
case MYSQL_TYPE_BIT:
{
TOKU_TYPE toku_type = mysql_to_toku_type(a);
if (toku_type == toku_type_int) {
if ( ((a->flags & UNSIGNED_FLAG) == 0) != ((b->flags & UNSIGNED_FLAG) == 0) ) {
retval = false;
goto cleanup;
}
}
if (a->pack_length() != b->pack_length()) {
retval = false;
goto cleanup;
}
}
break;
case MYSQL_TYPE_TINY_BLOB:
case MYSQL_TYPE_MEDIUM_BLOB:
case MYSQL_TYPE_BLOB:
case MYSQL_TYPE_LONG_BLOB:
// test the charset
if (a->charset()->number != b->charset()->number) {
retval = false;
goto cleanup;
}
if (a->row_pack_length() != b->row_pack_length()) {
retval = false;
goto cleanup;
}
break;
case MYSQL_TYPE_STRING:
if (a->pack_length() != b->pack_length()) {
retval = false;
goto cleanup;
}
// if both are binary, we know have same pack lengths,
// so we can goto end
if (a->binary() && b->binary()) {
// nothing to do, we are good
}
else if (!a->binary() && !b->binary()) {
// test the charset
if (a->charset()->number != b->charset()->number) {
retval = false;
goto cleanup;
}
}
else {
// one is binary and the other is not, so not the same
retval = false;
goto cleanup;
}
break;
case MYSQL_TYPE_VARCHAR:
if (a->field_length != b->field_length) {
retval = false;
goto cleanup;
}
// if both are binary, we know have same pack lengths,
// so we can goto end
if (a->binary() && b->binary()) {
// nothing to do, we are good
}
else if (!a->binary() && !b->binary()) {
// test the charset
if (a->charset()->number != b->charset()->number) {
retval = false;
goto cleanup;
}
}
else {
// one is binary and the other is not, so not the same
retval = false;
goto cleanup;
}
break;
//
// I believe these are old types that are no longer
// in any 5.1 tables, so tokudb does not need
// to worry about them
// Putting in this assert in case I am wrong.
// Do not support geometry yet.
//
case MYSQL_TYPE_GEOMETRY:
case MYSQL_TYPE_DECIMAL:
case MYSQL_TYPE_VAR_STRING:
default:
assert(false);
}
cleanup:
return retval;
}
#ifndef _HATOKU_CMP
#define _HATOKU_CMP
#include "toku_mysql_priv.h"
extern "C" {
#include "stdint.h"
}
#include <db.h>
typedef struct st_col_pack_info {
u_int32_t col_pack_val; //offset if fixed, pack_index if var
} COL_PACK_INFO;
typedef struct st_multi_col_pack_info {
u_int32_t var_len_offset; //where the fixed length stuff ends and the offsets for var stuff begins
u_int32_t len_of_offsets; //length of the offset bytes in a packed row
} MULTI_COL_PACK_INFO;
typedef struct st_key_and_col_info {
MY_BITMAP key_filters[MAX_KEY+1];
u_int16_t* field_lengths; //stores the field lengths of fixed size fields (1<<16 - 1 max)
uchar* length_bytes; // stores the length of lengths of varchars and varbinaries
u_int32_t* blob_fields; // list of indexes of blob fields
u_int32_t num_blobs;
MULTI_COL_PACK_INFO mcp_info[MAX_KEY+1];
COL_PACK_INFO* cp_info[MAX_KEY+1];
u_int32_t num_offset_bytes; //number of bytes needed to encode the offset
} KEY_AND_COL_INFO;
void get_var_field_info(
u_int32_t* field_len,
u_int32_t* start_offset,
u_int32_t var_field_index,
const uchar* var_field_offset_ptr,
u_int32_t num_offset_bytes
);
void get_blob_field_info(
u_int32_t* start_offset,
u_int32_t len_of_offsets,
const uchar* var_field_data_ptr,
u_int32_t num_offset_bytes
);
inline u_int32_t get_blob_field_len(
const uchar* from_tokudb,
u_int32_t len_bytes
)
{
u_int32_t length = 0;
switch (len_bytes) {
case (1):
length = (u_int32_t)(*from_tokudb);
break;
case (2):
length = uint2korr(from_tokudb);
break;
case (3):
length = uint3korr(from_tokudb);
break;
case (4):
length = uint4korr(from_tokudb);
break;
default:
assert(false);
}
return length;
}
inline const uchar* unpack_toku_field_blob(
uchar *to_mysql,
const uchar* from_tokudb,
u_int32_t len_bytes,
bool skip
)
{
u_int32_t length = 0;
const uchar* data_ptr = NULL;
if (!skip) {
memcpy(to_mysql, from_tokudb, len_bytes);
}
length = get_blob_field_len(from_tokudb,len_bytes);
data_ptr = from_tokudb + len_bytes;
if (!skip) {
memcpy(to_mysql + len_bytes, (uchar *)(&data_ptr), sizeof(uchar *));
}
return (from_tokudb + len_bytes + length);
}
inline uint get_null_offset(TABLE* table, Field* field) {
return (uint) ((uchar*) field->null_ptr - (uchar*) table->record[0]);
}
typedef enum {
toku_type_int = 0,
toku_type_double,
toku_type_float,
toku_type_fixbinary,
toku_type_fixstring,
toku_type_varbinary,
toku_type_varstring,
toku_type_blob,
toku_type_hpk, //for hidden primary key
toku_type_unknown
} TOKU_TYPE;
TOKU_TYPE mysql_to_toku_type (Field* field);
uchar* pack_toku_varbinary_from_desc(
uchar* to_tokudb,
const uchar* from_desc,
u_int32_t key_part_length, //number of bytes to use to encode the length in to_tokudb
u_int32_t field_length //length of field
);
uchar* pack_toku_varstring_from_desc(
uchar* to_tokudb,
const uchar* from_desc,
u_int32_t key_part_length, //number of bytes to use to encode the length in to_tokudb
u_int32_t field_length,
u_int32_t charset_num//length of field
);
uchar* pack_toku_key_field(
uchar* to_tokudb,
uchar* from_mysql,
Field* field,
u_int32_t key_part_length //I really hope this is temporary as I phase out the pack_cmp stuff
);
uchar* pack_key_toku_key_field(
uchar* to_tokudb,
uchar* from_mysql,
Field* field,
u_int32_t key_part_length //I really hope this is temporary as I phase out the pack_cmp stuff
);
uchar* unpack_toku_key_field(
uchar* to_mysql,
uchar* from_tokudb,
Field* field,
u_int32_t key_part_length
);
//
// for storing NULL byte in keys
//
#define NULL_COL_VAL 0
#define NONNULL_COL_VAL 1
//
// for storing if rest of key is +/- infinity
//
#define COL_NEG_INF -1
#define COL_ZERO 0
#define COL_POS_INF 1
//
// information for hidden primary keys
//
#define TOKUDB_HIDDEN_PRIMARY_KEY_LENGTH 8
//
// function to convert a hidden primary key into a byte stream that can be stored in DBT
//
inline void hpk_num_to_char(uchar* to, ulonglong num) {
int8store(to, num);
}
//
// function that takes a byte stream of a hidden primary key and returns a ulonglong
//
inline ulonglong hpk_char_to_num(uchar* val) {
return uint8korr(val);
}
int tokudb_compare_two_keys(
const void* new_key_data,
const u_int32_t new_key_size,
const void* saved_key_data,
const u_int32_t saved_key_size,
const void* row_desc,
const u_int32_t row_desc_size,
bool cmp_prefix
);
int tokudb_cmp_dbt_key(DB *file, const DBT *keya, const DBT *keyb);
//TODO: QQQ Only do one direction for prefix.
int tokudb_prefix_cmp_dbt_key(DB *file, const DBT *keya, const DBT *keyb);
int create_toku_key_descriptor(
uchar* buf,
bool is_first_hpk,
KEY* first_key,
bool is_second_hpk,
KEY* second_key
);
u_int32_t create_toku_main_key_pack_descriptor (
uchar* buf
);
u_int32_t get_max_clustering_val_pack_desc_size(
TABLE_SHARE* table_share
);
u_int32_t create_toku_clustering_val_pack_descriptor (
uchar* buf,
uint pk_index,
TABLE_SHARE* table_share,
KEY_AND_COL_INFO* kc_info,
u_int32_t keynr,
bool is_clustering
);
inline bool is_key_clustering(
void* row_desc,
u_int32_t row_desc_size
)
{
return (row_desc_size > 0);
}
u_int32_t pack_clustering_val_from_desc(
uchar* buf,
void* row_desc,
u_int32_t row_desc_size,
const DBT* pk_val
);
u_int32_t get_max_secondary_key_pack_desc_size(
KEY_AND_COL_INFO* kc_info
);
u_int32_t create_toku_secondary_key_pack_descriptor (
uchar* buf,
bool has_hpk,
uint pk_index,
TABLE_SHARE* table_share,
TABLE* table,
KEY_AND_COL_INFO* kc_info,
KEY* key_info,
KEY* prim_key
);
inline bool is_key_pk(
void* row_desc,
u_int32_t row_desc_size
)
{
uchar* buf = (uchar *)row_desc;
return buf[0];
}
u_int32_t max_key_size_from_desc(
void* row_desc,
u_int32_t row_desc_size
);
u_int32_t pack_key_from_desc(
uchar* buf,
void* row_desc,
u_int32_t row_desc_size,
const DBT* pk_key,
const DBT* pk_val
);
#endif
#ifndef _HATOKU_CMP
#define _HATOKU_CMP
#include "toku_mysql_priv.h"
extern "C" {
#include "stdint.h"
}
#include <db.h>
//
// A MySQL row is encoded in TokuDB, as follows:
// Keys:
// Keys pack the defined columns in the order that they are declared.
// The primary key contains only the columns listed
// If no primary key is defined, then an eight byte hidden primary key is autogenerated (like an auto increment) and used
// Secondary keys contains the defined key and the primary key.
// Two examples:
// 1) table foo (a int, b int, c int, d int, key(b))
// The key of the main dictionary contains an eight byte autogenerated hidden primary key
// The key of key-b is the column 'b' followed by the hidden primary key
// 2) table foo (a int, b int, c int, d int, primary key(a), key(b))
// The key of the main dictionary contains 'a'
// The key of key-b is the column 'b followed by 'a'
// Vals:
// For secondary keys they are empty.
// For the main dictionary and clustering keys, they contain all columns that do not show up in the dictionary's key
// Two examples:
// 1) table foo (a int, b int, c int, d varchar(100), primary key(a), clustering key d(d), clustering key d2(d(20))
// the val of the main dictionary contains (b,c,d)
// the val of d contains (b,c)
// the val of d2 contains (b,c,d). d is there because the entire row does not show up in the key
// Vals are encoded as follows. They have four components:
// 1) Null bytes: contains a bit field that states what columns are NULL.
// 2) Fixed fields: all fixed fields are then packed together. If a fixed field is NULL, its data is considered junk
// 3) varchars and varbinaries: stored in two pieces, first all the offsets and then all the data. If a var field is NULL, its data is considered junk
// 4) blobs: stored in (length, data) pairs. If a blob is NULL, its data is considered junk
// An example:
// Table: (a int, b varchar(20), c blob, d bigint, e varbinary(10), f largeblob, g varchar(10)) <-- no primary key defined
// Row inserted: (1, "bbb", "cc", 100, "eeeee", "ffff", "g")
// The packed format of the val looks like:
// NULL byte <-- 1 byte to encode nothing is NULL
// 1 <-- four bytes for 'a'
// 100 <-- four bytes for 'd'
// 3,8,9 <--offsets for location of data fields, note offsets point to where data ENDS
// "bbbeeeeeg" <-- data for variable length stuff
// 2,"cc",4,"ffff"<-- data that stores the blobs
// The structures below describe are used for the TokuDB encoding of a row
//
// used for queries
typedef struct st_col_pack_info {
u_int32_t col_pack_val; //offset if fixed, pack_index if var
} COL_PACK_INFO;
//
// used to define a couple of characteristics of a packed val for the main dictionary or a clustering dictionary
// fixed_field_size is the size of the fixed fields in the val.
// len_of_offsets is the size of the bytes that make up the offsets of variable size columns
// Some notes:
// If the val has no fixed fields, fixed_field_size is 0
// If the val has no variable fields, len_of_offsets is 0
// The number of null bytes at the beginning of a row is not saved, it is derived from table_share->null_bytes
// The pointer to where the variable data in a val starts is table_share->null_bytes + fixed_field_size + len_of_offsets
// To figure out where the blobs start, find the last offset listed (if offsets exist)
//
typedef struct st_multi_col_pack_info {
u_int32_t fixed_field_size; //where the fixed length stuff ends and the offsets for var stuff begins
u_int32_t len_of_offsets; //length of the offset bytes in a packed row
} MULTI_COL_PACK_INFO;
typedef struct st_key_and_col_info {
//
// bitmaps for each key. key_filters[i] is associated with the i'th dictionary
// States what columns are not stored in the vals of each key, because
// the column is stored in the key. So, for example, the table (a int, b int, c int, d int, primary key (b,d)) will
// have the second and fourth bit of the primary key's bitmap set for the main dictionary's bitmap,
// because 'b' and 'd' do not show up in the val
//
MY_BITMAP key_filters[MAX_KEY+1];
//
// following three arrays are used to identify the types of rows in the field
// If table->field[i] is a fixed field:
// field_lengths[i] stores the field length, which is fixed
// length_bytes[i] is 0
// 'i' does not show up in the array blob_fields
// If table->field[i] is a varchar or varbinary:
// field_lengths[i] is 0
// length_bytes[i] stores the number of bytes MySQL uses to encode the length of the field in table->record[0]
// 'i' does not show up in the array blob_fields
// If table->field[i] is a blob:
// field_lengths[i] is 0
// length_bytes[i] is 0
// 'i' shows up in blob_fields
//
u_int16_t* field_lengths; //stores the field lengths of fixed size fields (1<<16 - 1 max),
uchar* length_bytes; // stores the length of lengths of varchars and varbinaries
u_int32_t* blob_fields; // list of indexes of blob fields,
u_int32_t num_blobs; // number of blobs in the table
//
// val packing info for all dictionaries. i'th one represents info for i'th dictionary
//
MULTI_COL_PACK_INFO mcp_info[MAX_KEY+1];
COL_PACK_INFO* cp_info[MAX_KEY+1];
//
// number bytes used to represent an offset in a val. Can be 1 or 2.
// The number of var fields in a val for dictionary i can be evaluated by
// mcp_info[i].len_of_offsets/num_offset_bytes.
//
u_int32_t num_offset_bytes; //number of bytes needed to encode the offset
} KEY_AND_COL_INFO;
void get_var_field_info(
u_int32_t* field_len,
u_int32_t* start_offset,
u_int32_t var_field_index,
const uchar* var_field_offset_ptr,
u_int32_t num_offset_bytes
);
void get_blob_field_info(
u_int32_t* start_offset,
u_int32_t len_of_offsets,
const uchar* var_field_data_ptr,
u_int32_t num_offset_bytes
);
inline u_int32_t get_blob_field_len(
const uchar* from_tokudb,
u_int32_t len_bytes
)
{
u_int32_t length = 0;
switch (len_bytes) {
case (1):
length = (u_int32_t)(*from_tokudb);
break;
case (2):
length = uint2korr(from_tokudb);
break;
case (3):
length = uint3korr(from_tokudb);
break;
case (4):
length = uint4korr(from_tokudb);
break;
default:
assert(false);
}
return length;
}
inline const uchar* unpack_toku_field_blob(
uchar *to_mysql,
const uchar* from_tokudb,
u_int32_t len_bytes,
bool skip
)
{
u_int32_t length = 0;
const uchar* data_ptr = NULL;
if (!skip) {
memcpy(to_mysql, from_tokudb, len_bytes);
}
length = get_blob_field_len(from_tokudb,len_bytes);
data_ptr = from_tokudb + len_bytes;
if (!skip) {
memcpy(to_mysql + len_bytes, (uchar *)(&data_ptr), sizeof(uchar *));
}
return (from_tokudb + len_bytes + length);
}
inline uint get_null_offset(TABLE* table, Field* field) {
return (uint) ((uchar*) field->null_ptr - (uchar*) table->record[0]);
}
typedef enum {
toku_type_int = 0,
toku_type_double,
toku_type_float,
toku_type_fixbinary,
toku_type_fixstring,
toku_type_varbinary,
toku_type_varstring,
toku_type_blob,
toku_type_hpk, //for hidden primary key
toku_type_unknown
} TOKU_TYPE;
TOKU_TYPE mysql_to_toku_type (Field* field);
uchar* pack_toku_varbinary_from_desc(
uchar* to_tokudb,
const uchar* from_desc,
u_int32_t key_part_length, //number of bytes to use to encode the length in to_tokudb
u_int32_t field_length //length of field
);
uchar* pack_toku_varstring_from_desc(
uchar* to_tokudb,
const uchar* from_desc,
u_int32_t key_part_length, //number of bytes to use to encode the length in to_tokudb
u_int32_t field_length,
u_int32_t charset_num//length of field
);
uchar* pack_toku_key_field(
uchar* to_tokudb,
uchar* from_mysql,
Field* field,
u_int32_t key_part_length //I really hope this is temporary as I phase out the pack_cmp stuff
);
uchar* pack_key_toku_key_field(
uchar* to_tokudb,
uchar* from_mysql,
Field* field,
u_int32_t key_part_length //I really hope this is temporary as I phase out the pack_cmp stuff
);
uchar* unpack_toku_key_field(
uchar* to_mysql,
uchar* from_tokudb,
Field* field,
u_int32_t key_part_length
);
//
// for storing NULL byte in keys
//
#define NULL_COL_VAL 0
#define NONNULL_COL_VAL 1
//
// for storing if rest of key is +/- infinity
//
#define COL_NEG_INF -1
#define COL_ZERO 0
#define COL_POS_INF 1
//
// information for hidden primary keys
//
#define TOKUDB_HIDDEN_PRIMARY_KEY_LENGTH 8
//
// function to convert a hidden primary key into a byte stream that can be stored in DBT
//
inline void hpk_num_to_char(uchar* to, ulonglong num) {
int8store(to, num);
}
//
// function that takes a byte stream of a hidden primary key and returns a ulonglong
//
inline ulonglong hpk_char_to_num(uchar* val) {
return uint8korr(val);
}
int tokudb_compare_two_keys(
const void* new_key_data,
const u_int32_t new_key_size,
const void* saved_key_data,
const u_int32_t saved_key_size,
const void* row_desc,
const u_int32_t row_desc_size,
bool cmp_prefix
);
int tokudb_cmp_dbt_key(DB *file, const DBT *keya, const DBT *keyb);
//TODO: QQQ Only do one direction for prefix.
int tokudb_prefix_cmp_dbt_key(DB *file, const DBT *keya, const DBT *keyb);
int create_toku_key_descriptor(
uchar* buf,
bool is_first_hpk,
KEY* first_key,
bool is_second_hpk,
KEY* second_key
);
u_int32_t create_toku_main_key_pack_descriptor (
uchar* buf
);
u_int32_t get_max_clustering_val_pack_desc_size(
TABLE_SHARE* table_share
);
u_int32_t create_toku_clustering_val_pack_descriptor (
uchar* buf,
uint pk_index,
TABLE_SHARE* table_share,
KEY_AND_COL_INFO* kc_info,
u_int32_t keynr,
bool is_clustering
);
inline bool is_key_clustering(
void* row_desc,
u_int32_t row_desc_size
)
{
return (row_desc_size > 0);
}
u_int32_t pack_clustering_val_from_desc(
uchar* buf,
void* row_desc,
u_int32_t row_desc_size,
const DBT* pk_val
);
u_int32_t get_max_secondary_key_pack_desc_size(
KEY_AND_COL_INFO* kc_info
);
u_int32_t create_toku_secondary_key_pack_descriptor (
uchar* buf,
bool has_hpk,
uint pk_index,
TABLE_SHARE* table_share,
TABLE* table,
KEY_AND_COL_INFO* kc_info,
KEY* key_info,
KEY* prim_key
);
inline bool is_key_pk(
void* row_desc,
u_int32_t row_desc_size
)
{
uchar* buf = (uchar *)row_desc;
return buf[0];
}
u_int32_t max_key_size_from_desc(
void* row_desc,
u_int32_t row_desc_size
);
u_int32_t pack_key_from_desc(
uchar* buf,
void* row_desc,
u_int32_t row_desc_size,
const DBT* pk_key,
const DBT* pk_val
);
bool fields_have_same_name(
Field* a,
Field* b
);
bool are_two_fields_same(
Field* a,
Field* b
);
#endif
......@@ -37,6 +37,7 @@ extern ulong tokudb_debug;
#define TOKUDB_DEBUG_LOCKRETRY 512
#define TOKUDB_DEBUG_CHECK_KEY 1024
#define TOKUDB_DEBUG_HIDE_DDL_LOCK_ERRORS 2048
#define TOKUDB_DEBUG_ALTER_TABLE_INFO 4096
#define TOKUDB_TRACE(f, ...) \
printf("%d:%s:%d:" f, my_tid(), __FILE__, __LINE__, ##__VA_ARGS__);
......
......@@ -97,6 +97,13 @@ static MYSQL_THDVAR_BOOL(load_save_space,
NULL,
FALSE
);
static MYSQL_THDVAR_BOOL(disable_slow_alter,
0,
"if on, alter tables that require copy are disabled",
NULL,
NULL,
FALSE
);
static MYSQL_THDVAR_BOOL(create_index_online,
0,
"if on, create index done online",
......@@ -386,7 +393,8 @@ static int tokudb_init_func(void *p) {
assert(!r);
r = db_env->set_generate_row_callback_for_del(db_env,generate_row_for_del);
assert(!r);
db_env->set_update(db_env, tokudb_update_fun);
r = db_env->open(db_env, tokudb_home, tokudb_init_flags, S_IRUSR|S_IWUSR|S_IRGRP|S_IWGRP|S_IROTH|S_IWOTH);
if (tokudb_debug & TOKUDB_DEBUG_INIT) TOKUDB_TRACE("%s:env opened:return=%d\n", __FUNCTION__, r);
......@@ -560,6 +568,10 @@ bool get_load_save_space(THD* thd) {
return (THDVAR(thd, load_save_space) != 0);
}
bool get_disable_slow_alter(THD* thd) {
return (THDVAR(thd, disable_slow_alter) != 0);
}
bool get_create_index_online(THD* thd) {
return (THDVAR(thd, create_index_online) != 0);
}
......@@ -1056,6 +1068,14 @@ static bool tokudb_show_engine_status(THD * thd, stat_print_fn * stat_print) {
STATPRINT("dictionary updates", buf);
snprintf(buf, bufsiz, "%" PRIu64, engstat.updates_fail);
STATPRINT("dictionary updates fail", buf);
snprintf(buf, bufsiz, "%" PRIu64, engstat.updates_broadcast);
STATPRINT("dictionary broadcast updates", buf);
snprintf(buf, bufsiz, "%" PRIu64, engstat.updates_broadcast_fail);
STATPRINT("dictionary broadcast updates fail", buf);
snprintf(buf, bufsiz, "%" PRIu64, engstat.le_updates);
STATPRINT("leafentry updates", buf);
snprintf(buf, bufsiz, "%" PRIu64, engstat.le_updates_broadcast);
STATPRINT("leafentry broadcast updates", buf);
snprintf(buf, bufsiz, "%" PRIu64, engstat.multi_inserts);
STATPRINT("dictionary inserts multi", buf);
snprintf(buf, bufsiz, "%" PRIu64, engstat.multi_inserts_fail);
......@@ -1380,7 +1400,7 @@ void tokudb_cleanup_log_files(void) {
static uint tokudb_alter_table_flags(uint flags)
{
return (HA_ONLINE_ADD_INDEX_NO_WRITES| HA_ONLINE_DROP_INDEX_NO_WRITES |
HA_ONLINE_ADD_UNIQUE_INDEX_NO_WRITES| HA_ONLINE_DROP_UNIQUE_INDEX_NO_WRITES);
HA_ONLINE_ADD_UNIQUE_INDEX_NO_WRITES| HA_ONLINE_DROP_UNIQUE_INDEX_NO_WRITES|HA_GENERAL_ONLINE);
}
......@@ -1429,6 +1449,7 @@ static struct st_mysql_sys_var *tokudb_system_variables[] = {
MYSQL_SYSVAR(read_lock_wait),
MYSQL_SYSVAR(pk_insert_mode),
MYSQL_SYSVAR(load_save_space),
MYSQL_SYSVAR(disable_slow_alter),
MYSQL_SYSVAR(create_index_online),
MYSQL_SYSVAR(version),
MYSQL_SYSVAR(init_flags),
......
......@@ -15,6 +15,7 @@ ulonglong get_write_lock_wait_time (THD* thd);
ulonglong get_read_lock_wait_time (THD* thd);
uint get_pk_insert_mode(THD* thd);
bool get_load_save_space(THD* thd);
bool get_disable_slow_alter(THD* thd);
bool get_create_index_online(THD* thd);
bool get_prelock_empty(THD* thd);
uint get_tokudb_block_size(THD* thd);
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment