Commit a70bfd6c authored by sergefp@mysql.com's avatar sergefp@mysql.com

Merge mysql.com:/home/psergey/tmp_merge3

into  mysql.com:/home/psergey/mysql-5.1-merge2
parents ff71980a 2956dbe8
......@@ -3411,3 +3411,19 @@ SELECT * FROM t1;
i
255
DROP TABLE t1;
create table t1 (a int);
insert into t1 values (0),(1),(2),(3),(4),(5),(6),(7),(8),(9);
create table t2 (a int, b int, c int, e int, primary key(a,b,c));
insert into t2 select A.a, B.a, C.a, C.a from t1 A, t1 B, t1 C;
analyze table t2;
Table Op Msg_type Msg_text
test.t2 analyze status OK
select 'In next EXPLAIN, B.rows must be exactly 10:' Z;
Z
In next EXPLAIN, B.rows must be exactly 10:
explain select * from t2 A, t2 B where A.a=5 and A.b=5 and A.C<5
and B.a=5 and B.b=A.e and (B.b =1 or B.b = 3 or B.b=5);
id select_type table type possible_keys key key_len ref rows Extra
1 SIMPLE A range PRIMARY PRIMARY 12 NULL 3 Using where
1 SIMPLE B ref PRIMARY PRIMARY 8 const,test.A.e 10
drop table t1, t2;
......@@ -1480,7 +1480,7 @@ Note 1003 select `test`.`t1`.`s1` AS `s1`,not(<in_optimizer>(`test`.`t1`.`s1`,<e
explain extended select s1, s1 NOT IN (SELECT s1 FROM t2 WHERE s1 < 'a2') from t1;
id select_type table type possible_keys key key_len ref rows Extra
1 PRIMARY t1 index NULL s1 6 NULL 3 Using index
2 DEPENDENT SUBQUERY t2 index_subquery s1 s1 6 func 1 Using index; Using where
2 DEPENDENT SUBQUERY t2 index_subquery s1 s1 6 func 2 Using index; Using where
Warnings:
Note 1003 select `test`.`t1`.`s1` AS `s1`,not(<in_optimizer>(`test`.`t1`.`s1`,<exists>(<index_lookup>(<cache>(`test`.`t1`.`s1`) in t2 on s1 checking NULL where (`test`.`t2`.`s1` < _latin1'a2'))))) AS `s1 NOT IN (SELECT s1 FROM t2 WHERE s1 < 'a2')` from `test`.`t1`
drop table t1,t2;
......
......@@ -2886,3 +2886,16 @@ SELECT * FROM t1;
UPDATE t1 SET i = i - 1;
SELECT * FROM t1;
DROP TABLE t1;
# BUG#17379
create table t1 (a int);
insert into t1 values (0),(1),(2),(3),(4),(5),(6),(7),(8),(9);
create table t2 (a int, b int, c int, e int, primary key(a,b,c));
insert into t2 select A.a, B.a, C.a, C.a from t1 A, t1 B, t1 C;
analyze table t2;
select 'In next EXPLAIN, B.rows must be exactly 10:' Z;
explain select * from t2 A, t2 B where A.a=5 and A.b=5 and A.C<5
and B.a=5 and B.b=A.e and (B.b =1 or B.b = 3 or B.b=5);
drop table t1, t2;
......@@ -450,6 +450,8 @@ class PARAM : public RANGE_OPT_PARAM
/* TRUE if last checked tree->key can be used for ROR-scan */
bool is_ror_scan;
/* Number of ranges in the last checked tree->key */
uint n_ranges;
};
class TABLE_READ_PLAN;
......@@ -6582,6 +6584,7 @@ check_quick_select(PARAM *param,uint idx,SEL_ARG *tree)
param->table->file->primary_key_is_clustered());
param->is_ror_scan= !cpk_scan;
}
param->n_ranges= 0;
records=check_quick_keys(param,idx,tree,param->min_key,0,param->max_key,0);
if (records != HA_POS_ERROR)
......@@ -6589,7 +6592,7 @@ check_quick_select(PARAM *param,uint idx,SEL_ARG *tree)
param->table->quick_keys.set_bit(key);
param->table->quick_rows[key]=records;
param->table->quick_key_parts[key]=param->max_key_part+1;
param->table->quick_n_ranges[key]= param->n_ranges;
if (cpk_scan)
param->is_ror_scan= TRUE;
}
......@@ -6725,7 +6728,10 @@ check_quick_keys(PARAM *param,uint idx,SEL_ARG *key_tree,
HA_NOSAME &&
min_key_length == max_key_length &&
!memcmp(param->min_key,param->max_key,min_key_length))
{
tmp=1; // Max one record
param->n_ranges++;
}
else
{
if (param->is_ror_scan)
......@@ -6745,6 +6751,7 @@ check_quick_keys(PARAM *param,uint idx,SEL_ARG *key_tree,
is_key_scan_ror(param, keynr, key_tree->part + 1)))
param->is_ror_scan= FALSE;
}
param->n_ranges++;
if (tmp_min_flag & GEOM_FLAG)
{
......
......@@ -3377,7 +3377,10 @@ best_access_path(JOIN *join,
uint key= keyuse->key;
KEY *keyinfo= table->key_info+key;
bool ft_key= (keyuse->keypart == FT_KEYPART);
uint found_ref_or_null= 0;
/* Bitmap of keyparts where the ref access is over 'keypart=const': */
key_part_map const_part= 0;
/* The or-null keypart in ref-or-null access: */
key_part_map ref_or_null_part= 0;
/* Calculate how many key segments of the current key we can use */
start_key= keyuse;
......@@ -3389,12 +3392,14 @@ best_access_path(JOIN *join,
do
{
if (!(remaining_tables & keyuse->used_tables) &&
!(found_ref_or_null & keyuse->optimize))
!(ref_or_null_part && (keyuse->optimize &
KEY_OPTIMIZE_REF_OR_NULL)))
{
found_part|= keyuse->keypart_map;
double tmp= prev_record_reads(join,
(found_ref |
keyuse->used_tables));
if (!(keyuse->used_tables & ~join->const_table_map))
const_part|= keyuse->keypart_map;
double tmp= prev_record_reads(join, (found_ref |
keyuse->used_tables));
if (tmp < best_prev_record_reads)
{
best_part_found_ref= keyuse->used_tables;
......@@ -3406,8 +3411,8 @@ best_access_path(JOIN *join,
If there is one 'key_column IS NULL' expression, we can
use this ref_or_null optimisation of this field
*/
found_ref_or_null|= (keyuse->optimize &
KEY_OPTIMIZE_REF_OR_NULL);
if (keyuse->optimize & KEY_OPTIMIZE_REF_OR_NULL)
ref_or_null_part |= keyuse->keypart_map;
}
keyuse++;
} while (keyuse->table == table && keyuse->key == key &&
......@@ -3443,7 +3448,7 @@ best_access_path(JOIN *join,
Check if we found full key
*/
if (found_part == PREV_BITS(uint,keyinfo->key_parts) &&
!found_ref_or_null)
!ref_or_null_part)
{ /* use eq key */
max_key_part= (uint) ~0;
if ((keyinfo->flags & (HA_NOSAME | HA_NULL_PART_KEY)) == HA_NOSAME)
......@@ -3455,6 +3460,23 @@ best_access_path(JOIN *join,
{
if (!found_ref)
{ /* We found a const key */
/*
ReuseRangeEstimateForRef-1:
We get here if we've found a ref(const) (c_i are constants):
"(keypart1=c1) AND ... AND (keypartN=cN)" [ref_const_cond]
If range optimizer was able to construct a "range"
access on this index, then its condition "quick_cond" was
eqivalent to ref_const_cond (*), and we can re-use E(#rows)
from the range optimizer.
Proof of (*): By properties of range and ref optimizers
quick_cond will be equal or tighther than ref_const_cond.
ref_const_cond already covers "smallest" possible interval -
a singlepoint interval over all keyparts. Therefore,
quick_cond is equivalent to ref_const_cond (if it was an
empty interval we wouldn't have got here).
*/
if (table->quick_keys.is_set(key))
records= (double) table->quick_rows[key];
else
......@@ -3475,6 +3497,23 @@ best_access_path(JOIN *join,
if (records < 2.0)
records=2.0; /* Can't be as good as a unique */
}
/*
ReuseRangeEstimateForRef-2: We get here if we could not reuse
E(#rows) from range optimizer. Make another try:
If range optimizer produced E(#rows) for a prefix of the ref
access we're considering, and that E(#rows) is lower then our
current estimate, make an adjustment. The criteria of when we
can make an adjustment is a special case of the criteria used
in ReuseRangeEstimateForRef-3.
*/
if (table->quick_keys.is_set(key) &&
const_part & (1 << table->quick_key_parts[key]) &&
table->quick_n_ranges[key] == 1 &&
records > (double) table->quick_rows[key])
{
records= (double) table->quick_rows[key];
}
}
/* Limit the number of matched rows */
tmp= records;
......@@ -3503,12 +3542,50 @@ best_access_path(JOIN *join,
{
max_key_part= max_part_bit(found_part);
/*
Check if quick_range could determinate how many rows we
will match
ReuseRangeEstimateForRef-3:
We're now considering a ref[or_null] access via
(t.keypart1=e1 AND ... AND t.keypartK=eK) [ OR
(same-as-above but with one cond replaced
with "t.keypart_i IS NULL")] (**)
Try re-using E(#rows) from "range" optimizer:
We can do so if "range" optimizer used the same intervals as
in (**). The intervals used by range optimizer may be not
available at this point (as "range" access might have choosen to
create quick select over another index), so we can't compare
them to (**). We'll make indirect judgements instead.
The sufficient conditions for re-use are:
(C1) All e_i in (**) are constants, i.e. found_ref==FALSE. (if
this is not satisfied we have no way to know which ranges
will be actually scanned by 'ref' until we execute the
join)
(C2) max #key parts in 'range' access == K == max_key_part (this
is apparently a necessary requirement)
We also have a property that "range optimizer produces equal or
tighter set of scan intervals than ref(const) optimizer". Each
of the intervals in (**) are "tightest possible" intervals when
one limits itself to using keyparts 1..K (which we do in #2).
From here it follows that range access used either one, or
both of the (I1) and (I2) intervals:
(t.keypart1=c1 AND ... AND t.keypartK=eK) (I1)
(same-as-above but with one cond replaced
with "t.keypart_i IS NULL") (I2)
The remaining part is to exclude the situation where range
optimizer used one interval while we're considering
ref-or-null and looking for estimate for two intervals. This
is done by last limitation:
(C3) "range optimizer used (have ref_or_null?2:1) intervals"
*/
if (table->quick_keys.is_set(key) &&
table->quick_key_parts[key] == max_key_part)
if (table->quick_keys.is_set(key) && !found_ref && //(C1)
table->quick_key_parts[key] == max_key_part && //(C2)
table->quick_n_ranges[key] == 1+test(ref_or_null_part)) //(C3)
{
tmp= records= (double) table->quick_rows[key];
}
else
{
/* Check if we have statistic about the distribution */
......@@ -3552,21 +3629,37 @@ best_access_path(JOIN *join,
}
records = (ulong) tmp;
}
if (ref_or_null_part)
{
/* We need to do two key searches to find key */
tmp *= 2.0;
records *= 2.0;
}
/*
If quick_select was used on a part of this key, we know
the maximum number of rows that the key can match.
ReuseRangeEstimateForRef-4: We get here if we could not reuse
E(#rows) from range optimizer. Make another try:
If range optimizer produced E(#rows) for a prefix of the ref
access we're considering, and that E(#rows) is lower then our
current estimate, make the adjustment.
The decision whether we can re-use the estimate from the range
optimizer is the same as in ReuseRangeEstimateForRef-3,
applied to first table->quick_key_parts[key] key parts.
*/
if (table->quick_keys.is_set(key) &&
table->quick_key_parts[key] <= max_key_part &&
const_part & (1 << table->quick_key_parts[key]) &&
table->quick_n_ranges[key] == 1 + test(ref_or_null_part &
const_part) &&
records > (double) table->quick_rows[key])
tmp= records= (double) table->quick_rows[key];
else if (found_ref_or_null)
{
/* We need to do two key searches to find key */
tmp *= 2.0;
records *= 2.0;
tmp= records= (double) table->quick_rows[key];
}
}
/* Limit the number of matched rows */
set_if_smaller(tmp, (double) thd->variables.max_seeks_for_key);
if (table->used_keys.is_set(key))
......@@ -4382,344 +4475,11 @@ find_best(JOIN *join,table_map rest_tables,uint idx,double record_count,
if ((rest_tables & real_table_bit) && !(rest_tables & s->dependent) &&
(!idx|| !check_interleaving_with_nj(join->positions[idx-1].table, s)))
{
double best,best_time,records;
best=best_time=records=DBL_MAX;
KEYUSE *best_key=0;
uint best_max_key_part=0;
my_bool found_constraint= 0;
if (s->keyuse)
{ /* Use key if possible */
TABLE *table=s->table;
KEYUSE *keyuse,*start_key=0;
double best_records=DBL_MAX;
uint max_key_part=0;
/* Test how we can use keys */
rec= s->records/MATCHING_ROWS_IN_OTHER_TABLE; // Assumed records/key
for (keyuse=s->keyuse ; keyuse->table == table ;)
{
key_part_map found_part=0;
table_map found_ref=0;
uint key=keyuse->key;
KEY *keyinfo=table->key_info+key;
bool ft_key=(keyuse->keypart == FT_KEYPART);
uint found_ref_or_null= 0;
/* Calculate how many key segments of the current key we can use */
start_key=keyuse;
do
{
uint keypart=keyuse->keypart;
table_map best_part_found_ref= 0;
double best_prev_record_reads= DBL_MAX;
do
{
if (!(rest_tables & keyuse->used_tables) &&
!(found_ref_or_null & keyuse->optimize))
{
found_part|=keyuse->keypart_map;
double tmp= prev_record_reads(join,
(found_ref |
keyuse->used_tables));
if (tmp < best_prev_record_reads)
{
best_part_found_ref= keyuse->used_tables;
best_prev_record_reads= tmp;
}
if (rec > keyuse->ref_table_rows)
rec= keyuse->ref_table_rows;
/*
If there is one 'key_column IS NULL' expression, we can
use this ref_or_null optimisation of this field
*/
found_ref_or_null|= (keyuse->optimize &
KEY_OPTIMIZE_REF_OR_NULL);
}
keyuse++;
} while (keyuse->table == table && keyuse->key == key &&
keyuse->keypart == keypart);
found_ref|= best_part_found_ref;
} while (keyuse->table == table && keyuse->key == key);
/*
Assume that that each key matches a proportional part of table.
*/
if (!found_part && !ft_key)
continue; // Nothing usable found
if (rec < MATCHING_ROWS_IN_OTHER_TABLE)
rec= MATCHING_ROWS_IN_OTHER_TABLE; // Fix for small tables
/*
ft-keys require special treatment
*/
if (ft_key)
{
/*
Really, there should be records=0.0 (yes!)
but 1.0 would be probably safer
*/
tmp=prev_record_reads(join,found_ref);
records=1.0;
}
else
{
found_constraint= 1;
/*
Check if we found full key
*/
if (found_part == PREV_BITS(uint,keyinfo->key_parts) &&
!found_ref_or_null)
{ /* use eq key */
max_key_part= (uint) ~0;
if ((keyinfo->flags & (HA_NOSAME | HA_NULL_PART_KEY |
HA_END_SPACE_KEY)) == HA_NOSAME)
{
tmp=prev_record_reads(join,found_ref);
records=1.0;
}
else
{
if (!found_ref)
{ // We found a const key
if (table->quick_keys.is_set(key))
records= (double) table->quick_rows[key];
else
{
/* quick_range couldn't use key! */
records= (double) s->records/rec;
}
}
else
{
if (!(records=keyinfo->rec_per_key[keyinfo->key_parts-1]))
{ // Prefere longer keys
records=
((double) s->records / (double) rec *
(1.0 +
((double) (table->s->max_key_length-keyinfo->key_length) /
(double) table->s->max_key_length)));
if (records < 2.0)
records=2.0; // Can't be as good as a unique
}
}
/* Limit the number of matched rows */
tmp= records;
set_if_smaller(tmp, (double) thd->variables.max_seeks_for_key);
if (table->used_keys.is_set(key))
{
/* we can use only index tree */
uint keys_per_block= table->file->block_size/2/
(keyinfo->key_length+table->file->ref_length)+1;
tmp=record_count*(tmp+keys_per_block-1)/keys_per_block;
}
else
tmp=record_count*min(tmp,s->worst_seeks);
}
}
else
{
/*
Use as much key-parts as possible and a uniq key is better
than a not unique key
Set tmp to (previous record count) * (records / combination)
*/
if ((found_part & 1) &&
(!(table->file->index_flags(key,0,0) & HA_ONLY_WHOLE_INDEX) ||
found_part == PREV_BITS(uint,keyinfo->key_parts)))
{
max_key_part=max_part_bit(found_part);
/*
Check if quick_range could determinate how many rows we
will match
*/
if (table->quick_keys.is_set(key) &&
table->quick_key_parts[key] == max_key_part)
tmp=records= (double) table->quick_rows[key];
else
{
/* Check if we have statistic about the distribution */
if ((records=keyinfo->rec_per_key[max_key_part-1]))
tmp=records;
else
{
/*
Assume that the first key part matches 1% of the file
and that the whole key matches 10 (duplicates) or 1
(unique) records.
Assume also that more key matches proportionally more
records
This gives the formula:
records= (x * (b-a) + a*c-b)/(c-1)
b = records matched by whole key
a = records matched by first key part (10% of all records?)
c = number of key parts in key
x = used key parts (1 <= x <= c)
*/
double rec_per_key;
rec_per_key= keyinfo->rec_per_key[keyinfo->key_parts-1] ?
(double) keyinfo->rec_per_key[keyinfo->key_parts-1] :
(double) s->records/rec+1;
if (!s->records)
tmp=0;
else if (rec_per_key/(double) s->records >= 0.01)
tmp=rec_per_key;
else
{
double a=s->records*0.01;
tmp=(max_key_part * (rec_per_key - a) +
a*keyinfo->key_parts - rec_per_key)/
(keyinfo->key_parts-1);
set_if_bigger(tmp,1.0);
}
records=(ulong) tmp;
}
/*
If quick_select was used on a part of this key, we know
the maximum number of rows that the key can match.
*/
if (table->quick_keys.is_set(key) &&
table->quick_key_parts[key] <= max_key_part &&
records > (double) table->quick_rows[key])
tmp= records= (double) table->quick_rows[key];
else if (found_ref_or_null)
{
/* We need to do two key searches to find key */
tmp*= 2.0;
records*= 2.0;
}
}
/* Limit the number of matched rows */
set_if_smaller(tmp, (double) thd->variables.max_seeks_for_key);
if (table->used_keys.is_set(key))
{
/* we can use only index tree */
uint keys_per_block= table->file->block_size/2/
(keyinfo->key_length+table->file->ref_length)+1;
tmp=record_count*(tmp+keys_per_block-1)/keys_per_block;
}
else
tmp=record_count*min(tmp,s->worst_seeks);
}
else
tmp=best_time; // Do nothing
}
} /* not ft_key */
if (tmp < best_time - records/(double) TIME_FOR_COMPARE)
{
best_time=tmp + records/(double) TIME_FOR_COMPARE;
best=tmp;
best_records=records;
best_key=start_key;
best_max_key_part=max_key_part;
}
}
records=best_records;
}
/*
Don't test table scan if it can't be better.
Prefer key lookup if we would use the same key for scanning.
Don't do a table scan on InnoDB tables, if we can read the used
parts of the row from any of the used index.
This is because table scans uses index and we would not win
anything by using a table scan.
(see comment in best_access_path() for more details on the below
condition)
*/
if ((records >= s->found_records || best > s->read_time) &&
!(s->quick && best_key && s->quick->index == best_key->key &&
best_max_key_part >= s->table->quick_key_parts[best_key->key]) &&
!((s->table->file->table_flags() & HA_TABLE_SCAN_ON_INDEX) &&
! s->table->used_keys.is_clear_all() && best_key) &&
!(s->table->force_index && best_key && !s->quick))
{ // Check full join
ha_rows rnd_records= s->found_records;
/*
If there is a restriction on the table, assume that 25% of the
rows can be skipped on next part.
This is to force tables that this table depends on before this
table
*/
if (found_constraint)
rnd_records-= rnd_records/4;
/*
Range optimizer never proposes a RANGE if it isn't better
than FULL: so if RANGE is present, it's always preferred to FULL.
Here we estimate its cost.
*/
if (s->quick)
{
/*
For each record we:
- read record range through 'quick'
- skip rows which does not satisfy WHERE constraints
*/
tmp= record_count *
(s->quick->read_time +
(s->found_records - rnd_records)/(double) TIME_FOR_COMPARE);
}
else
{
/* Estimate cost of reading table. */
tmp= s->table->file->scan_time();
if (s->table->map & join->outer_join) // Can't use join cache
{
/*
For each record we have to:
- read the whole table record
- skip rows which does not satisfy join condition
*/
tmp= record_count *
(tmp +
(s->records - rnd_records)/(double) TIME_FOR_COMPARE);
}
else
{
/* We read the table as many times as join buffer becomes full. */
tmp*= (1.0 + floor((double) cache_record_length(join,idx) *
record_count /
(double) thd->variables.join_buff_size));
/*
We don't make full cartesian product between rows in the scanned
table and existing records because we skip all rows from the
scanned table, which does not satisfy join condition when
we read the table (see flush_cached_records for details). Here we
take into account cost to read and skip these records.
*/
tmp+= (s->records - rnd_records)/(double) TIME_FOR_COMPARE;
}
}
/*
We estimate the cost of evaluating WHERE clause for found records
as record_count * rnd_records / TIME_FOR_COMPARE. This cost plus
tmp give us total cost of using TABLE SCAN
*/
if (best == DBL_MAX ||
(tmp + record_count/(double) TIME_FOR_COMPARE*rnd_records <
best + record_count/(double) TIME_FOR_COMPARE*records))
{
/*
If the table has a range (s->quick is set) make_join_select()
will ensure that this will be used
*/
best=tmp;
records= rows2double(rnd_records);
best_key=0;
}
}
join->positions[idx].records_read= records;
join->positions[idx].key=best_key;
join->positions[idx].table= s;
if (!best_key && idx == join->const_tables &&
s->table == join->sort_by_table &&
join->unit->select_limit_cnt >= records)
join->sort_by_table= (TABLE*) 1; // Must use temporary table
double records, best;
best_access_path(join, s, thd, rest_tables, idx, record_count,
read_time);
records= join->positions[idx].records_read;
best= join->positions[idx].read_time;
/*
Go to the next level only if there hasn't been a better key on
this level! This will cut down the search for a lot simple cases!
......
......@@ -264,6 +264,7 @@ struct st_table {
ha_rows quick_rows[MAX_KEY];
key_part_map const_key_parts[MAX_KEY];
uint quick_key_parts[MAX_KEY];
uint quick_n_ranges[MAX_KEY];
/*
If this table has TIMESTAMP field with auto-set property (pointed by
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment