Commit c8000779 authored by unknown's avatar unknown

Merge perch.ndb.mysql.com:/home/jonas/src/mysql-5.1-new-ndb

into  perch.ndb.mysql.com:/home/jonas/src/51-work


storage/ndb/src/kernel/blocks/dbdih/DbdihMain.cpp:
  Auto merged
storage/ndb/src/ndbapi/NdbScanOperation.cpp:
  Auto merged
storage/ndb/test/include/HugoTransactions.hpp:
  Auto merged
storage/ndb/test/src/HugoTransactions.cpp:
  Auto merged
parents aa822133 f8b838b6
......@@ -8529,11 +8529,20 @@ void Dbdih::openingTableErrorLab(Signal* signal, FileRecordPtr filePtr)
/* WE FAILED IN OPENING A FILE. IF THE FIRST FILE THEN TRY WITH THE */
/* DUPLICATE FILE, OTHERWISE WE REPORT AN ERROR IN THE SYSTEM RESTART. */
/* ---------------------------------------------------------------------- */
ndbrequire(filePtr.i == tabPtr.p->tabFile[0]);
filePtr.i = tabPtr.p->tabFile[1];
ptrCheckGuard(filePtr, cfileFileSize, fileRecord);
openFileRw(signal, filePtr);
filePtr.p->reqStatus = FileRecord::OPENING_TABLE;
if (filePtr.i == tabPtr.p->tabFile[0])
{
filePtr.i = tabPtr.p->tabFile[1];
ptrCheckGuard(filePtr, cfileFileSize, fileRecord);
openFileRw(signal, filePtr);
filePtr.p->reqStatus = FileRecord::OPENING_TABLE;
}
else
{
char buf[256];
BaseString::snprintf(buf, "Error opening DIH schema files for table: %d",
tabPtr.i);
progError(__LINE__, NDBD_EXIT_AFS_NO_SUCH_FILE, buf);
}
}//Dbdih::openingTableErrorLab()
void Dbdih::readingTableLab(Signal* signal, FileRecordPtr filePtr)
......
......@@ -12789,19 +12789,17 @@ void Dblqh::lastWriteInFileLab(Signal* signal)
void Dblqh::writePageZeroLab(Signal* signal)
{
if (false && logPartPtr.p->logPartState == LogPartRecord::FILE_CHANGE_PROBLEM)
if (logPartPtr.p->logPartState == LogPartRecord::FILE_CHANGE_PROBLEM)
{
if (logPartPtr.p->firstLogQueue == RNIL)
{
jam();
logPartPtr.p->logPartState = LogPartRecord::IDLE;
ndbout_c("resetting logPartState to IDLE");
}
else
{
jam();
logPartPtr.p->logPartState = LogPartRecord::ACTIVE;
ndbout_c("resetting logPartState to ACTIVE");
}
}
......
/* Copyright (C) 2003 MySQL AB
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#include "DynArr256.hpp"
#include <stdio.h>
#include <assert.h>
#include <NdbOut.hpp>
#define DA256_BITS 5
#define DA256_MASK 31
struct DA256CL
{
Uint32 m_magic;
Uint32 m_data[15];
};
struct DA256Free
{
Uint32 m_magic;
Uint32 m_next_free;
};
struct DA256Node
{
struct DA256CL m_lines[17];
};
struct DA256Page
{
struct DA256CL m_header[2];
struct DA256Node m_nodes[30];
};
#define require(x) require_impl(x, __LINE__)
//#define DA256_USE_PX
//#define DA256_USE_PREFETCH
#define DA256_EXTRA_SAFE
#ifdef UNIT_TEST
#ifdef USE_CALLGRIND
#include <valgrind/callgrind.h>
#else
#define CALLGRIND_TOGGLE_COLLECT()
#endif
Uint32 allocatedpages = 0;
Uint32 allocatednodes = 0;
Uint32 releasednodes = 0;
#endif
inline
void
require_impl(bool x, int line)
{
if (!x)
{
ndbout_c("LINE: %d", line);
abort();
}
}
DynArr256Pool::DynArr256Pool()
{
m_type_id = RNIL;
m_first_free = RNIL;
m_memroot = 0;
}
void
DynArr256Pool::init(Uint32 type_id, const Pool_context & pc)
{
m_ctx = pc;
m_type_id = type_id;
m_memroot = (DA256Page*)m_ctx.get_memroot();
}
static const Uint32 g_max_sizes[5] = { 0, 256, 65536, 16777216, ~0 };
/**
* sz = 0 = 1 - 0 level
* sz = 1 = 256^1 - 1 level
* sz = 2 = 256^2 - 2 level
* sz = 3 = 256^3 - 3 level
* sz = 4 = 256^4 - 4 level
*/
Uint32 *
DynArr256::get(Uint32 pos) const
{
Uint32 sz = m_head.m_sz;
Uint32 ptrI = m_head.m_ptr_i;
DA256Page * memroot = m_pool.m_memroot;
Uint32 type_id = (~m_pool.m_type_id) & 0xFFFF;
if (unlikely(pos >= g_max_sizes[sz]))
{
return 0;
}
#ifdef DA256_USE_PX
Uint32 px[4] = { (pos >> 24) & 255,
(pos >> 16) & 255,
(pos >> 8) & 255,
(pos >> 0) & 255 };
#endif
Uint32* retVal = &m_head.m_ptr_i;
for(; sz --;)
{
if (unlikely(ptrI == RNIL))
{
return 0;
}
#ifdef DA256_USE_PX
Uint32 p0 = px[sz];
#else
Uint32 shr = sz << 3;
Uint32 p0 = (pos >> shr) & 255;
#endif
Uint32 page_no = ptrI >> DA256_BITS;
Uint32 page_idx = ptrI & DA256_MASK;
DA256Page * page = memroot + page_no;
Uint32 *magic_ptr, p;
if (p0 != 255)
{
Uint32 line = ((p0 << 8) + (p0 << 4) + p0 + 255) >> 12;
Uint32 * ptr = (Uint32*)(page->m_nodes + page_idx);
p = 0;
retVal = (ptr + 1 + p0 + line);
magic_ptr =(ptr + (p0 & ~15));
}
else
{
Uint32 b = (page_idx + 1) >> 4;
Uint32 * ptr = (Uint32*)(page->m_header+b);
p = page_idx - (b << 4) + b;
retVal = (ptr + 1 + p);
magic_ptr = ptr;
}
ptrI = *retVal;
Uint32 magic = *magic_ptr;
if (unlikely(! ((magic & (1 << p)) && (magic >> 16) == type_id)))
goto err;
}
return retVal;
err:
require(false);
return 0;
}
Uint32 *
DynArr256::set(Uint32 pos)
{
Uint32 sz = m_head.m_sz;
Uint32 type_id = (~m_pool.m_type_id) & 0xFFFF;
DA256Page * memroot = m_pool.m_memroot;
if (unlikely(pos >= g_max_sizes[sz]))
{
if (unlikely(!expand(pos)))
{
return 0;
}
sz = m_head.m_sz;
}
#ifdef DA256_USE_PX
Uint32 px[4] = { (pos >> 24) & 255,
(pos >> 16) & 255,
(pos >> 8) & 255,
(pos >> 0) & 255 };
#endif
Uint32 ptrI = m_head.m_ptr_i;
Uint32 *retVal = &m_head.m_ptr_i;
for(; sz --;)
{
#ifdef DA256_USE_PX
Uint32 p0 = px[sz];
#else
Uint32 shr = sz << 3;
Uint32 p0 = (pos >> shr) & 255;
#endif
if (ptrI == RNIL)
{
if (unlikely((ptrI = m_pool.seize()) == RNIL))
{
return 0;
}
* retVal = ptrI;
}
Uint32 page_no = ptrI >> DA256_BITS;
Uint32 page_idx = ptrI & DA256_MASK;
DA256Page * page = memroot + page_no;
Uint32 *magic_ptr, p;
if (p0 != 255)
{
Uint32 line = ((p0 << 8) + (p0 << 4) + p0 + 255) >> 12;
Uint32 * ptr = (Uint32*)(page->m_nodes + page_idx);
p = 0;
magic_ptr = (ptr + (p0 & ~15));
retVal = (ptr + 1 + p0 + line);
}
else
{
Uint32 b = (page_idx + 1) >> 4;
Uint32 * ptr = (Uint32*)(page->m_header+b);
p = page_idx - (b << 4) + b;
magic_ptr = ptr;
retVal = (ptr + 1 + p);
}
ptrI = * retVal;
Uint32 magic = *magic_ptr;
if (unlikely(! ((magic & (1 << p)) && (magic >> 16) == type_id)))
goto err;
}
return retVal;
err:
require(false);
return 0;
}
static
inline
void
initpage(DA256Page* p, Uint32 page_no, Uint32 type_id)
{
Uint32 i, j;
#ifdef DA256_USE_PREFETCH
#if defined(__GNUC__) && !(__GNUC__ == 2 && __GNUC_MINOR__ < 96)
#ifdef DA256_EXTRA_SAFE
for (i = 0; i<(30 * 17 + 2); i++)
{
__builtin_prefetch (p->m_header + i, 1);
}
#else
{
__builtin_prefetch (p->m_header + 0, 1);
__builtin_prefetch (p->m_header + 1, 1);
for (i = 0; i<30; i++)
{
__builtin_prefetch (p->m_nodes + i, 1);
}
}
#endif
#endif
#endif
DA256CL* cl;
for (i = 0; i<2; i++)
{
cl = p->m_header + i;
cl->m_magic = (~type_id << 16);
}
DA256Free* free;
for (i = 0; i<30; i++)
{
free = (DA256Free*)(p->m_nodes+i);
free->m_magic = type_id;
free->m_next_free = (page_no << DA256_BITS) + (i + 1);
#ifdef DA256_EXTRA_SAFE
DA256Node* node = p->m_nodes+i;
for (j = 0; j<17; j++)
node->m_lines[j].m_magic = type_id;
#endif
}
free = (DA256Free*)(p->m_nodes+29);
free->m_next_free = RNIL;
}
bool
DynArr256::expand(Uint32 pos)
{
Uint32 i;
Uint32 idx = 0;
Uint32 alloc[5];
Uint32 sz = m_head.m_sz;
Uint32 shl = 0;
for (; pos >= g_max_sizes[sz]; sz++);
if (m_head.m_sz == 0)
{
m_head.m_sz = sz;
return true;
}
sz = m_head.m_sz;
for (; pos >= g_max_sizes[sz]; sz++)
{
Uint32 ptrI = m_pool.seize();
if (unlikely(ptrI == RNIL))
goto err;
alloc[idx++] = ptrI;
}
alloc[idx] = m_head.m_ptr_i;
m_head.m_sz = 1;
for (Uint32 i = 0; i<idx; i++)
{
m_head.m_ptr_i = alloc[i];
Uint32 * ptr = get(0);
* ptr = alloc[i + 1];
}
m_head.m_sz = sz;
m_head.m_ptr_i = alloc[0];
return true;
err:
for (i = 0; i<idx; i++)
m_pool.release(alloc[i]);
return false;
}
void
DynArr256::init(ReleaseIterator &iter)
{
iter.m_sz = 0;
iter.m_pos = 0;
iter.m_ptr_i[0] = m_head.m_ptr_i;
iter.m_ptr_i[1] = RNIL;
iter.m_ptr_i[2] = RNIL;
iter.m_ptr_i[3] = RNIL;
}
bool
DynArr256::release(ReleaseIterator &iter)
{
Uint32 ptrI = iter.m_ptr_i[iter.m_sz];
Uint32 page_no = ptrI >> DA256_BITS;
Uint32 page_idx = ptrI & DA256_MASK;
Uint32 type_id = (~m_pool.m_type_id) & 0xFFFF;
DA256Page * memroot = m_pool.m_memroot;
DA256Page * page = memroot + page_no;
if (ptrI != RNIL)
{
Uint32 tmp = iter.m_pos & 255;
Uint32 p0 = tmp;
for (; p0<256 && p0 < tmp + 16; p0++)
{
Uint32 *retVal, *magic_ptr, p;
if (p0 != 255)
{
Uint32 line = ((p0 << 8) + (p0 << 4) + p0 + 255) >> 12;
Uint32 * ptr = (Uint32*)(page->m_nodes + page_idx);
p = 0;
retVal = (ptr + 1 + p0 + line);
magic_ptr =(ptr + (p0 & ~15));
}
else
{
Uint32 b = (page_idx + 1) >> 4;
Uint32 * ptr = (Uint32*)(page->m_header+b);
p = page_idx - (b << 4) + b;
retVal = (ptr + 1 + p);
magic_ptr = ptr;
}
Uint32 magic = *magic_ptr;
if (unlikely(! ((magic & (1 << p)) && (magic >> 16) == type_id)))
goto err;
Uint32 val = * retVal;
if (val != RNIL)
{
if (iter.m_sz + 2 == m_head.m_sz)
{
* retVal = RNIL;
m_pool.release(val);
iter.m_pos = (iter.m_pos & ~255) + p0;
return false;
}
else
{
* retVal = RNIL;
iter.m_sz++;
iter.m_ptr_i[iter.m_sz] = val;
iter.m_pos = (p0 << 8);
return false;
}
}
}
if (p0 == 256)
{
if (iter.m_sz == 0)
goto done;
iter.m_sz--;
iter.m_pos >>= 8;
m_pool.release(ptrI);
return false;
}
else
{
iter.m_pos = (iter.m_pos & ~255) + p0;
return false;
}
}
done:
if (m_head.m_ptr_i != RNIL)
{
m_pool.release(m_head.m_ptr_i);
}
new (&m_head) Head();
return true;
err:
require(false);
return false;
}
static
inline
bool
seizenode(DA256Page* page, Uint32 idx, Uint32 type_id)
{
Uint32 i;
Uint32 b = (idx + 1) >> 4;
Uint32 p = idx - (b << 4) + b;
DA256Node * ptr = (DA256Node*)(page->m_nodes + idx);
#ifdef DA256_USE_PREFETCH
#if defined(__GNUC__) && !(__GNUC__ == 2 && __GNUC_MINOR__ < 96)
__builtin_prefetch (page->m_header + b, 1);
for (i = 0; i<17; i++)
{
__builtin_prefetch (ptr->m_lines+i, 1);
}
#endif
#endif
#ifdef DA256_EXTRA_SAFE
Uint32 check = type_id;
#endif
type_id = ((~type_id) << 16) | 0xFFFF;
#ifdef DA256_EXTRA_SAFE
if (unlikely(((page->m_header + b)->m_magic & (1 << p)) != 0))
{
return false;
}
#endif
(page->m_header + b)->m_magic |= (1 << p);
(page->m_header + b)->m_data[p] = RNIL;
for (i = 0; i<17; i++)
{
DA256CL * line = ptr->m_lines + i;
#ifdef DA256_EXTRA_SAFE
if (unlikely(line->m_magic != check))
{
return false;
}
#endif
line->m_magic = type_id;
for (Uint32 j = 0; j<15; j++)
line->m_data[j] = RNIL;
}
#ifdef UNIT_TEST
allocatednodes++;
#endif
return true;
}
static
bool
releasenode(DA256Page* page, Uint32 idx, Uint32 type_id)
{
Uint32 i;
Uint32 b = (idx + 1) >> 4;
Uint32 p = idx - (b << 4) + b;
DA256Node * ptr = (DA256Node*)(page->m_nodes + idx);
#ifdef DA256_USE_PREFETCH
#if defined(__GNUC__) && !(__GNUC__ == 2 && __GNUC_MINOR__ < 96)
__builtin_prefetch (page->m_header + b, 1);
for (i = 0; i<17; i++)
{
__builtin_prefetch (ptr->m_lines+i, 1);
}
#endif
#endif
#ifdef DA256_EXTRA_SAFE
Uint32 check = ((~type_id) << 16) | 0xFFFF;
#endif
#ifdef DA256_EXTRA_SAFE
if (unlikely((((page->m_header + b)->m_magic & (1 << p)) == 0)))
{
return false;
}
#endif
(page->m_header + b)->m_magic ^= (1 << p);
for (i = 0; i<17; i++)
{
DA256CL * line = ptr->m_lines + i;
#ifdef DA256_EXTRA_SAFE
if (unlikely(line->m_magic != check))
{
return false;
}
#endif
line->m_magic = type_id;
}
#ifdef UNIT_TEST
releasednodes++;
#endif
return true;
}
Uint32
DynArr256Pool::seize()
{
Uint32 ff = m_first_free;
Uint32 type_id = m_type_id;
DA256Page* page;
DA256Page * memroot = m_memroot;
if (ff == RNIL)
{
Uint32 page_no;
if (likely((page = (DA256Page*)m_ctx.alloc_page(type_id, &page_no)) != 0))
{
initpage(page, page_no, type_id);
#ifdef UNIT_TEST
allocatedpages++;
#endif
}
else
{
return RNIL;
}
ff = (page_no << DA256_BITS);
}
else
{
page = memroot + (ff >> DA256_BITS);
}
Uint32 idx = ff & DA256_MASK;
DA256Free * ptr = (DA256Free*)(page->m_nodes + idx);
if (likely(ptr->m_magic == type_id))
{
Uint32 next = ptr->m_next_free;
if (likely(seizenode(page, idx, type_id)))
{
m_first_free = next;
return ff;
}
}
//error:
require(false);
return 0;
}
void
DynArr256Pool::release(Uint32 ptrI)
{
Uint32 ff = m_first_free;
Uint32 type_id = m_type_id;
Uint32 page_no = ptrI >> DA256_BITS;
Uint32 page_idx = ptrI & DA256_MASK;
DA256Page * memroot = m_memroot;
DA256Page * page = memroot + page_no;
DA256Free * ptr = (DA256Free*)(page->m_nodes + page_idx);
if (likely(releasenode(page, page_idx, type_id)))
{
ptr->m_next_free = ff;
ptr->m_magic = type_id;
m_first_free = ptrI;
return;
}
require(false);
}
#ifdef UNIT_TEST
#include <NdbTick.h>
#include "ndbd_malloc_impl.hpp"
#include "SimulatedBlock.hpp"
Ndbd_mem_manager mm;
Configuration cfg;
Block_context ctx(cfg, mm);
struct BB : public SimulatedBlock
{
BB(int no, Block_context& ctx) : SimulatedBlock(no, ctx) {}
};
BB block(DBACC, ctx);
static
void
simple(DynArr256 & arr, int argc, char* argv[])
{
for (Uint32 i = 1; i<(Uint32)argc; i++)
{
Uint32 * s = arr.set(atoi(argv[i]));
{
bool found = false;
for (Uint32 j = 1; j<i; j++)
{
if (atoi(argv[i]) == atoi(argv[j]))
{
found = true;
break;
}
}
if (!found)
* s = i;
}
Uint32 * g = arr.get(atoi(argv[i]));
Uint32 v = g ? *g : ~0;
ndbout_c("p: %p %p %d", s, g, v);
}
}
static
void
basic(DynArr256& arr, int argc, char* argv[])
{
#define MAXLEN 65536
Uint32 len = 0;
Uint32 save[2*MAXLEN];
for (Uint32 i = 0; i<MAXLEN; i++)
{
int op = (rand() % 100) > 50;
if (len == 0)
op = 1;
if (len == MAXLEN)
op = 0;
switch(op){
case 0:{ // get
Uint32 item = (rand() % len) << 1;
Uint32 idx = save[item];
Uint32 val = save[item+1];
//ndbout_c("get(%d)", idx);
Uint32 *p = arr.get(idx);
assert(p);
assert(* p == val);
break;
}
case 1:{ // set
Uint32 item = len << 1;
Uint32 idx = i; //rand() & 0xFFFFF; // & 0xFFFFF; //rand(); //(65536*i) / 10000;
Uint32 val = rand();
#if 0
for(Uint32 j = 0; j < item; j += 2)
{
if (save[j] == idx)
{
item = j;
break;
}
}
#endif
//ndbout_c("set(%d, %x)", idx, val);
Uint32 *p = arr.set(idx);
assert(* p);
if (item == (len << 1))
{
*p = val;
len++;
}
else
{
assert(* p == save[item+1]);
* p = val;
}
save[item] = idx;
save[item+1] = val;
}
}
}
}
unsigned long long
micro()
{
struct timeval tv;
gettimeofday(&tv, 0);
unsigned long long ret = tv.tv_sec;
ret *= 1000000;
ret += tv.tv_usec;
return ret;
}
static
void
read(DynArr256& arr, int argc, char ** argv)
{
Uint32 cnt = 100000;
Uint64 mbytes = 16*1024;
Uint32 seed = time(0);
Uint32 seq = 0, seqmask = 0;
for (Uint32 i = 2; i<argc; i++)
{
if (strncmp(argv[i], "--mbytes=", sizeof("--mbytes=")-1) == 0)
{
mbytes = atoi(argv[i]+sizeof("--mbytes=")-1);
if (argv[i][strlen(argv[i])-1] == 'g' ||
argv[i][strlen(argv[i])-1] == 'G')
mbytes *= 1024;
}
else if (strncmp(argv[i], "--cnt=", sizeof("--cnt=")-1) == 0)
{
cnt = atoi(argv[i]+sizeof("--cnt=")-1);
}
else if (strncmp(argv[i], "--seq", sizeof("--seq")-1) == 0)
{
seq = 1;
}
}
/**
* Populate with 5Mb
*/
Uint32 maxidx = (1024*mbytes+31) / 32;
Uint32 nodes = (maxidx+255) / 256;
Uint32 pages = (nodes + 29)/ 30;
ndbout_c("%lldmb data -> %d entries (%dkb)",
mbytes, maxidx, 32*pages);
for (Uint32 i = 0; i<maxidx; i++)
{
Uint32 *ptr = arr.set(i);
assert(ptr);
* ptr = i;
}
srand(seed);
if (seq)
{
seq = rand();
seqmask = ~(Uint32)0;
}
ndbout_c("Timing %d %s reads (seed: %u)", cnt,
seq ? "sequential" : "random", seed);
for (Uint32 i = 0; i<10; i++)
{
Uint32 sum0 = 0, sum1 = 0;
Uint64 start = micro();
for (Uint32 i = 0; i<cnt; i++)
{
Uint32 idx = ((rand() & (~seqmask)) + ((i + seq) & seqmask)) % maxidx;
Uint32 *ptr = arr.get(idx);
sum0 += idx;
sum1 += *ptr;
}
start = micro() - start;
float uspg = start; uspg /= cnt;
ndbout_c("Elapsed %lldus diff: %d -> %f us/get", start, sum0 - sum1, uspg);
}
}
static
void
write(DynArr256& arr, int argc, char ** argv)
{
Uint32 seq = 0, seqmask = 0;
Uint32 cnt = 100000;
Uint64 mbytes = 16*1024;
Uint32 seed = time(0);
for (Uint32 i = 2; i<argc; i++)
{
if (strncmp(argv[i], "--mbytes=", sizeof("--mbytes=")-1) == 0)
{
mbytes = atoi(argv[i]+sizeof("--mbytes=")-1);
if (argv[i][strlen(argv[i])-1] == 'g' ||
argv[i][strlen(argv[i])-1] == 'G')
mbytes *= 1024;
}
else if (strncmp(argv[i], "--cnt=", sizeof("--cnt=")-1) == 0)
{
cnt = atoi(argv[i]+sizeof("--cnt=")-1);
}
else if (strncmp(argv[i], "--seq", sizeof("--seq")-1) == 0)
{
seq = 1;
}
}
/**
* Populate with 5Mb
*/
Uint32 maxidx = (1024*mbytes+31) / 32;
Uint32 nodes = (maxidx+255) / 256;
Uint32 pages = (nodes + 29)/ 30;
ndbout_c("%lldmb data -> %d entries (%dkb)",
mbytes, maxidx, 32*pages);
srand(seed);
if (seq)
{
seq = rand();
seqmask = ~(Uint32)0;
}
ndbout_c("Timing %d %s writes (seed: %u)", cnt,
seq ? "sequential" : "random", seed);
for (Uint32 i = 0; i<10; i++)
{
Uint64 start = micro();
for (Uint32 i = 0; i<cnt; i++)
{
Uint32 idx = ((rand() & (~seqmask)) + ((i + seq) & seqmask)) % maxidx;
Uint32 *ptr = arr.set(idx);
*ptr = i;
}
start = micro() - start;
float uspg = start; uspg /= cnt;
ndbout_c("Elapsed %lldus -> %f us/set", start, uspg);
DynArr256::ReleaseIterator iter;
arr.init(iter);
while(!arr.release(iter));
}
}
int
main(int argc, char** argv)
{
if (0)
{
for (Uint32 i = 0; i<30; i++)
{
Uint32 b = (i + 1) >> 4;
Uint32 p = i - (b << 4) + b;
printf("[ %d %d %d ]\n", i, b, p);
}
return 0;
}
Pool_context pc;
pc.m_block = &block;
Resource_limit rl;
rl.m_min = 0;
rl.m_max = 10000;
rl.m_resource_id = 0;
mm.set_resource_limit(rl);
if(!mm.init())
{
abort();
}
DynArr256Pool pool;
pool.init(0x2001, pc);
DynArr256::Head head;
DynArr256 arr(pool, head);
if (strcmp(argv[1], "--args") == 0)
simple(arr, argc, argv);
else if (strcmp(argv[1], "--basic") == 0)
basic(arr, argc, argv);
else if (strcmp(argv[1], "--read") == 0)
read(arr, argc, argv);
else if (strcmp(argv[1], "--write") == 0)
write(arr, argc, argv);
DynArr256::ReleaseIterator iter;
arr.init(iter);
Uint32 cnt = 0;
while (!arr.release(iter)) cnt++;
ndbout_c("allocatedpages: %d allocatednodes: %d releasednodes: %d"
" releasecnt: %d",
allocatedpages,
allocatednodes,
releasednodes,
cnt);
return 0;
#if 0
printf("sizeof(DA256Page): %d\n", sizeof(DA256Page));
DA256Page page;
for (Uint32 i = 0; i<10000; i++)
{
Uint32 arg = rand() & 255;
Uint32 base = 0;
Uint32 idx = arg & 256;
printf("%d\n", arg);
assert(base <= 30);
if (idx == 255)
{
Uint32 b = (base + 1) >> 4;
Uint32 p = base - (b << 4) + b;
Uint32 magic = page.m_header[b].m_magic;
Uint32 retVal = page.m_header[b].m_data[p];
require(magic & (1 << p));
return retVal;
}
else
{
// 4 bit extra offset per idx
Uint32 line = idx / 15;
Uint32 off = idx % 15;
{
Uint32 pos = 1 + idx + line;
Uint32 magic = pos & ~15;
Uint32 * ptr = (Uint32*)&page.m_nodes[base];
assert((ptr + pos) == &page.m_nodes[base].m_lines[line].m_data[off]);
assert((ptr + magic) == &page.m_nodes[base].m_lines[line].m_magic);
}
}
}
#endif
}
Uint32 g_currentStartPhase;
Uint32 g_start_type;
NdbNodeBitmask g_nowait_nodes;
void childExit(int code, Uint32 currentStartPhase)
{
abort();
}
void childAbort(int code, Uint32 currentStartPhase)
{
abort();
}
void childReportError(int error)
{
abort();
}
void
UpgradeStartup::sendCmAppChg(Ndbcntr& cntr, Signal* signal, Uint32 startLevel){
}
void
UpgradeStartup::execCM_APPCHG(SimulatedBlock & block, Signal* signal){
}
void
UpgradeStartup::sendCntrMasterReq(Ndbcntr& cntr, Signal* signal, Uint32 n){
}
void
UpgradeStartup::execCNTR_MASTER_REPLY(SimulatedBlock & block, Signal* signal){
}
#include <SimBlockList.hpp>
void
SimBlockList::unload()
{
}
#endif
/* Copyright (C) 2003 MySQL AB
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#ifndef DYNARR256_HPP
#define DYNARR256_HPP
#include "Pool.hpp"
class DynArr256;
struct DA256Page;
class DynArr256Pool
{
friend class DynArr256;
public:
DynArr256Pool();
void init(Uint32 type_id, const Pool_context& pc);
protected:
Uint32 m_type_id;
Uint32 m_first_free;
Pool_context m_ctx;
struct DA256Page* m_memroot;
private:
Uint32 seize();
void release(Uint32);
};
class DynArr256
{
public:
struct Head
{
Head() { m_ptr_i = RNIL; m_sz = 0;}
Uint32 m_ptr_i;
Uint32 m_sz;
};
DynArr256(DynArr256Pool & pool, Head& head) :
m_head(head), m_pool(pool){}
Uint32* set(Uint32 pos);
Uint32* get(Uint32 pos) const ;
struct ReleaseIterator
{
Uint32 m_sz;
Uint32 m_pos;
Uint32 m_ptr_i[4];
};
void init(ReleaseIterator&);
bool release(ReleaseIterator&);
protected:
Head & m_head;
DynArr256Pool & m_pool;
bool expand(Uint32 pos);
void handle_invalid_ptr(Uint32 pos, Uint32 ptrI, Uint32 p0);
};
#endif
......@@ -20,7 +20,8 @@ libkernel_a_SOURCES = \
Mutex.cpp SafeCounter.cpp \
Rope.cpp \
ndbd_malloc.cpp ndbd_malloc_impl.cpp \
Pool.cpp WOPool.cpp RWPool.cpp
Pool.cpp WOPool.cpp RWPool.cpp \
DynArr256.cpp
INCLUDES_LOC = -I$(top_srcdir)/storage/ndb/src/mgmapi
......@@ -44,7 +45,7 @@ libkernel.dsp: Makefile \
@$(top_srcdir)/storage/ndb/config/win-sources $@ $(libkernel_a_SOURCES)
@$(top_srcdir)/storage/ndb/config/win-libraries $@ LIB $(LDADD)
EXTRA_PROGRAMS = ndbd_malloc_impl_test bench_pool
EXTRA_PROGRAMS = ndbd_malloc_impl_test bench_pool testDynArr256
ndbd_malloc_impl_test_CXXFLAGS = -DUNIT_TEST
ndbd_malloc_impl_test_SOURCES = ndbd_malloc_impl.cpp
ndbd_malloc_impl_test_LDFLAGS = @ndb_bin_am_ldflags@ \
......@@ -54,9 +55,19 @@ ndbd_malloc_impl_test_LDFLAGS = @ndb_bin_am_ldflags@ \
$(top_builddir)/strings/libmystrings.a
bench_pool_SOURCES = bench_pool.cpp
bench_pool_LDFLAGS = @ndb_bin_am_ldflags@ ../SimBlockList.o \
bench_pool_LDFLAGS = @ndb_bin_am_ldflags@\
libkernel.a ../error/liberror.a \
$(top_builddir)/storage/ndb/src/libndbclient.la \
$(top_builddir)/mysys/libmysys.a \
$(top_builddir)/dbug/libdbug.a \
$(top_builddir)/strings/libmystrings.a
testDynArr256_CXXFLAGS = -DUNIT_TEST
testDynArr256_SOURCES = DynArr256.cpp
testDynArr256_LDFLAGS = @ndb_bin_am_ldflags@ \
libkernel.a ../error/liberror.a \
$(top_builddir)/storage/ndb/src/libndbclient.la \
$(top_builddir)/mysys/libmysys.a \
$(top_builddir)/dbug/libdbug.a \
$(top_builddir)/strings/libmystrings.a
......@@ -60,7 +60,7 @@ Uint32 sizes = 7;
unsigned int seed;
Ndbd_mem_manager mm;
Configuration cfg;
Block_context ctx = { cfg, mm };
Block_context ctx(cfg, mm);
struct BB : public SimulatedBlock
{
BB(int no, Block_context& ctx) : SimulatedBlock(no, ctx) {}
......@@ -548,6 +548,8 @@ main(int argc, char **argv)
}
Uint32 g_currentStartPhase;
Uint32 g_start_type;
NdbNodeBitmask g_nowait_nodes;
void childExit(int code, Uint32 currentStartPhase)
{
......
......@@ -34,7 +34,8 @@ public:
bool allowConstraintViolation = true,
int doSleep = 0,
bool oneTrans = false,
int updateValue = 0);
int updateValue = 0,
bool abort = false);
int scanReadRecords(Ndb*,
int records,
......
......@@ -519,7 +519,8 @@ HugoTransactions::loadTable(Ndb* pNdb,
bool allowConstraintViolation,
int doSleep,
bool oneTrans,
int value){
int value,
bool abort){
int check, a;
int retryAttempt = 0;
int retryMax = 5;
......@@ -585,10 +586,22 @@ HugoTransactions::loadTable(Ndb* pNdb,
if (!oneTrans || (c + batch) >= records) {
// closeTrans = true;
closeTrans = false;
check = pTrans->execute( Commit );
if(check != -1)
m_latest_gci = pTrans->getGCI();
pTrans->restart();
if (!abort)
{
check = pTrans->execute( Commit );
if(check != -1)
m_latest_gci = pTrans->getGCI();
pTrans->restart();
}
else
{
check = pTrans->execute( NoCommit );
if (check != -1)
{
check = pTrans->execute( Rollback );
closeTransaction(pNdb);
}
}
} else {
closeTrans = false;
check = pTrans->execute( NoCommit );
......
......@@ -31,6 +31,8 @@ int main(int argc, const char** argv){
int _batch = 512;
int _loops = -1;
int _rand = 0;
int _onetrans = 0;
int _abort = 0;
const char* db = 0;
struct getargs args[] = {
......@@ -39,7 +41,9 @@ int main(int argc, const char** argv){
{ "loops", 'l', arg_integer, &_loops, "Number of loops", "" },
{ "database", 'd', arg_string, &db, "Database", "" },
{ "usage", '?', arg_flag, &_help, "Print help", "" },
{ "rnd-rows", 0, arg_flag, &_rand, "Rand number of records", "recs" }
{ "rnd-rows", 0, arg_flag, &_rand, "Rand number of records", "recs" },
{ "one-trans", 0, arg_flag, &_onetrans, "Insert as 1 trans", "" },
{ "abort", 0, arg_integer, &_abort, "Abort probability", "" }
};
int num_args = sizeof(args) / sizeof(args[0]);
int optind = 0;
......@@ -92,10 +96,13 @@ int main(int argc, const char** argv){
HugoTransactions hugoTrans(*pTab);
loop:
int rows = (_rand ? rand() % _records : _records);
int abort = (rand() % 100) < _abort ? 1 : 0;
if (abort)
ndbout << "load+abort" << endl;
if (hugoTrans.loadTable(&MyNdb,
rows,
_batch,
true, 0, false, _loops) != 0){
true, 0, _onetrans, _loops, abort) != 0){
return NDBT_ProgramExit(NDBT_FAILED);
}
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment